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A Note on Quaternionic Hyperbolic Ideal
Triangle Groups

Wensheng Cao and Xiaolin Huang

Abstract. In this paper, the quaternionic hyperbolic ideal triangle groups are parametrized by a
real one-parameter family {ϕs ∶ s ∈ R}. _e indexing parameter s is the tangent of the quaternionic
angular invariant of a triple of points in ∂H2

H forming this ideal triangle. We show that if s >
√

125/3,
then ϕs is not a discrete embedding, and if s ≤

√

35, then ϕs is a discrete embedding.

1 Introduction

A basic problem in geometry and representation theory is the deformation problem.
Suppose that ϕ0∶ Γ → G1 is a discrete embedding of a ûnitely generated group Γ into
a Lie group G1. Suppose also that G1 ⊂ G2, where G2 is a larger Lie group. _e de-
formation problem amounts to ûnding and studying discrete embeddings ϕs ∶ Γ → G2
that extend ϕ0.

When Γ is the fundamental group of a surface,G1 = Isom(H2
R), the isometry group

of the hyperbolic plane, and G2 = Isom(H3
R), the isometry group of hyperbolic three

space, one is dealing with the theory of quasifuchsian groups, which is quite well de-
veloped ( see [16] and the references therein).
A complex hyperbolic ideal triangle group is a representation of the form ϕs ∶ Γ →

PU(2, 1). Here Γ is the free product Z/2 ∗ Z/2 ∗ Z/2. _e indexing parameter, s, is
the tangent of the angular invariant of the ideal triangle formed by the three complex
lines ûxed by the generators. _e representation ϕs maps the standard generators
of Γ to distinct order-two complex inversions, such that any product of two distinct
generators is parabolic. Modulo conjugation, there is a one-parameter family

{ϕs ∶ s ∈ R}
of such representations.

Goldman and Parker [6] took one of the ûrst steps on the road to a theory of com-
plex hyperbolic quasifuchsian groups. _ey deûned and partially classiûed which
complex hyperbolic ideal triangle groups are discrete and faithful.

_eorem GP ([6]) If ∣s∣ >
√

125/3, then ϕs is not a discrete embedding. If ∣s∣ ≤
√

35,
then ϕs is a discrete embedding.
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Let gs be the product of all three generators of ϕs(Γ) taken in any order. In [6],
it was shown that gs is loxodromic for ∣s∣ ∈ [0,

√
125/3), parabolic for ∣s∣ =

√
125/3,

and elliptic for ∣s∣ >
√

125/3. If gs is ellipticwith ûnite order, then ϕs is not an embed-
ding. If gs is elliptic with inûnite order, then ϕs is not discrete. Goldman and Parker
conjectured that ϕs remains a discrete embedding for ∣s∣ ∈ (35, 125/3].

Schwartz proved a sharp version of the Goldman–Parker conjecture.

_eorem S ([13, 15]) ϕs is a discrete embedding if and only if gs is not elliptic. Also,
ϕs is indiscrete if gs is elliptic.

_e signiûcance of the above two theorems was that it proposed the ûrst complete
description of a complex hyperbolic deformation problem. _e results in [6, 13] are
seminal. Since then much research have been done into discreteness of non-ideal
cases as well as fundamental domain construction and exploration of the structure of
limit sets and domain of discontinuity (see [7, 11, 12, 14] and the references therein).

Real hyperbolic geometry is extensively studied and complex hyperbolic geometry
is still a central subject of recent research. _e quaternionic hyperbolic space is less
well understood. As interest in quaternionic hyperbolic space has grown,many of real
and complex hyperbolic problems have been translated into the quaternionic arena
[1–3, 8]. _is paper is concerned with the deformation problem mentioned above in
quaternionic hyperbolic geometry.

Let PSp(2, 1) be the isometry group of quaternionic hyperbolic spaceH2
H and Γ =

Z/2 ∗ Z/2 ∗ Z/2 be freely generated by involutions ε0 , ε1 , ε2. Let Hom(Γ,PSp(2, 1))
be the space of homomorphism Γ → PSp(2, 1). We consider a homomorphism in
Hom(Γ,PSp(2, 1)) that geometrically arises from a triple u = (u0 , u1 , u2) of points in
∂H2

H. Wemention that such a triple u is parametrized up to PSp(2, 1)-equivalence by
the quaternionic Cartan angular invariant [1] AH(u) ∈ [0, π/2].

Let Q0 be the quaternionic line Lu1u2 spanned by u1 and u2. Similarly let Q1 =
Lu0u2 and Q2 = Lu0u1 . We denote inversion in Q j by τ j ∈ PSp(2, 1) and deûne the
representation ϕu above by

(1.1) ϕu ∶ ε j → τ j .

When u0 , u1 , u2 lie in the boundary of a quaternionic line Q, that is AH(u) = π/2,
then each Q j = Q and the representation ϕu takes Γ onto the cyclic group of order
two generated by inversion in Q. On the other handwhen u0 , u1 , u2 lie on anR-circle
bounding an R-plane R, that is AH(u) = 0, then by a change of co-ordinates wemay
take R to be the subspace H2

R ⊂ H2
H. _en ϕu embeds Γ as a lattice in the subgroup

PO(2, 1) stabilizingH2
R. As the triple u is determined up to PSp(2, 1)-equivalence by

the quaternionic Cartan angular invariant AH(u). _e resulting map

[0, π/2]→ Hom(Γ,PSp(2, 1))/PSp(2, 1)

yields a one-parameter family of representations interpolating between these two
cases.

Let

(1.2) s = tan(Ah(u)), ϕs ∶= ϕu .
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Our main result is the following theorem.

_eorem 1.1 If s >
√

125/3, then ϕs is not a discrete embedding. If s ≤
√

35, then ϕs
is a discrete embedding.

As should be apparent, our exposition and results are based on the paper [6] of
Goldman and Parker. As is suggested by complex hyperbolic geometry [13, 15], we
also propose the following conjecture in quaternionic hyperbolic geometry.

Conjecture 1.1 ϕs is a discrete embedding if and only if gs is not elliptic; ϕs is indiscrete
if gs is elliptic.

_e paper is organized as follows. Section 2 contains some necessary background
material on quaternionic hyperbolic geometry. Section 3 contains some properties
of bisections and Dirichlet polyhedra, which is crucial in constructing the Dirich-
let polyhedra of some involved subgroups. Section 4 contains a type criterion of
ϕs(ε0ε1ε2) by the parameter s. Section 5 contains the proof of_eorem 1.1. Section 6
contains some remark about Conjecture 1.1.

2 Background

2.1 Quaternionic Hyperbolic Space

We brie�y recall some necessary material on quaternionic hyperbolic geometry here
and we refer to [1,4, 8] for further details.

We recall that a real quaternion is of the form q = q0 + q1i + q2j + q3k ∈ H
where q i ∈ R and i2 = j2 = k2 = ijk = −1. Let q = q0 − q1i − q2j − q3k and ∣q∣ =√

qq =
√

q2
0 + q2

1 + q2
2 + q2

3 be the conjugate andmodulus of q, respectively. We deûne
R(q) = (q+q)/2 and I(q) = (q−q)/2. Let S = {ν = ν1i+ν2j+ν3k ∶ ν2

1 +ν2
2 +ν2

3 = 1}.
Every unit quaternion ν can be written as

ν = exp(θI) ∶= cos θ + I sin θ = cos(−θ) + (−I) sin(−θ)

for some θ ∈ [0, π] and I ∈ S.
Let H2,1 be a copy of the vector spaceH3 equipped with theHermitian form

⟨z,w⟩ = w∗ Jz = w̄1z1 + w̄2z2 − w̄3z3 ,

where

J =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎟
⎠
.

We deûne Sp(n, 1) = {g ∈ GL(n + 1,H) ∶ A∗ JA = J}. Let

V0 = {z ∈ H2,1 ∖ {0} ∶ ⟨z, z⟩ = 0} ,
V− = {z ∈ H2,1 ∶ ⟨z, z⟩ < 0} ,
V+ = {z ∈ H2,1 ∶ ⟨z, z⟩ > 0} .
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Let P∶H2,1 ∖ {0}→ HP2 be the right projection onto H-projective space given by

P(z1 , z2 , z3)T = (z1z−1
3 , z2z

−1
3 )T ∈ H2 .

_e ball model of the quaternionic hyperbolic 2-space is deûned to beH2
H = P(V−)

with the boundary ∂H2
H = P(V0). Wemention that g ∈ Sp(2, 1) acts onH2

H ∪ ∂H2
H as

g(z) = PgP−1(z). _e Bergman metric on H2
H is given by the distance formula

(2.1) cosh2 ρ(z,w)
2

= ⟨z, w⟩⟨w, z⟩
⟨z, z⟩⟨w, w⟩ ,

where z,w ∈ H2
H, z ∈ P−1(z), w ∈ P−1(w). _e holomorphic isometry group ofH2

H is
PSp(2, 1) = Sp(2, 1)/ ± I3.

2.2 Quaternionic Inversion

Deûnition 2.1 For distinct z,w ∈ H2
H with li�s z and w, respectively, we deûne the

quaternionic line spanned by z,w as the set

Lzw = P({x ∶ x = zλ +wµ, λ, µ ∈ H}) ∩H2
H .

We need the following proposition to deûne the polar vector of a quaternionic line.

Proposition 2.1 If z,w ∈ V− ∪V0 ∖ {0} and P(z) ≠ P(w), then there exists a unique
c ∈ V+ under projection such that ⟨c, z⟩ = ⟨c,w⟩ = 0.

Proof Without loss of generality, let z = (z1 , z2 , 1)T ,w = (w1 ,w2 , 1)T , and c =
(c1 , c2 , c3)T . By ⟨c, z⟩ = ⟨c,w⟩ = 0, we have that ⟨c, z⟩ = z1c1 + z2c2 − c3 = 0 and
⟨c,w⟩ = w1c1 +w2c2 − c3 = 0. Since z ≠ w, we have that z1 ≠ w1 or z2 ≠ w2. We obtain
under projection a unique c given by

c =
⎧⎪⎪⎨⎪⎪⎩

((z1 −w1)−1(w2 − z2), 1, z1(z1 −w1)−1(w2 − z2) + z2)
T , provided z1 ≠ w1 ,

( 1, (w2 − z2)−1(z1 −w1),w2(w2 − z2)−1(z1 −w1) +w1)
T , provided z2 ≠ w2 .

It is easy to verify that c ∈ V+.

By Proposition 2.1, any vector c ∈ V+ determines the two-dimensional quater-
nionic subspace {z ∈ H2,1∣⟨c, z⟩ = 0} . _e projection of this subspace is a quater-
nionic line L determined by c. We call the vector c ∈ V+ the polar vector of quater-
nionic line L.

Given a quaternionic line L, there is a unique isometry τL ∈ PSp(2, 1) of order 2
whose ûxed point set equals L. We call this isometry τL the quaternionic inversion
in L, which is given by τL(z) = P(−z + 2 ⟨z,c⟩

⟨c,c⟩ c) , where c is the polar vector of L and
z ∈ P−1(z).
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2.3 Quaternionic Cartan Angular Invariant

Let u = (u0 , u1 , u2) be any triple of distinct points in H2
H and u0, u1, u2 be arbitrary

li�s of u0, u1, u2, respectively. It was shown in [2] that the number

⟨u0 , u1 , u2⟩ = ⟨u1 , u0⟩⟨u2 , u1⟩⟨u0 , u2⟩ ∈ H, and R(⟨u0 , u1 , u2⟩) ≤ 0.

Hence we can reformulate the deûnition of quaternionic Cartan angular invariant
given by Apanasov and Kim [1] as follows.

Deûnition 2.2 _e quaternionicCartan angular invariant of a tripleu = (u0 , u1 , u2)
of distinct points in H2

H is the angular AH(u), 0 ≤ AH(u) ≤ π
2 , given by

AH(u) = arccos
R(−⟨u0 , u1 , u2⟩)

∣⟨u0 , u1 , u2⟩∣
.

where u0 , u1 , u2 are li�s of u0 , u1 , u2, respectively.

_e quaternionic Cartan angular invariantAH(u) was ûrst used by Apanasov and
Kim [1] to study the deformation of quaternionic hyperbolic manifolds. Similar to
the complex case, the quaternionic Cartan angular invariant has the following prop-
erties [1].

Proposition 2.2 Let u = (u0 , u1 , u2) and v = (v0 , v1 , v2) be two triples of distinct
points in ∂H2

H.
(i) _ree points u0 , u1 , u2 lie in the same R-circle if and only if AH(u) = 0.
(ii) _ree points u0 , u1 , u2 lie in the boundary of anH-line if and only ifAH(u) = π/2.
(iii) _en AH(u) = AH(v) if and only if there exists an isometry f ∈ PSp(2, 1) such

that f (u i) = v i , i = 0, 1, 2.

For more details of quaternionic Cartan angular invariant, see [1,2].

2.4 The Classification of Elements in PSp(2, 1)
Following Chen andGreenberg [4], a non-trivial element g ∈ Sp(2, 1) is called elliptic
if it has a ûxed point inH2

H, parabolic if it has exactly one ûxed pointwhich lies in ∂H2
H,

and loxodromic if it has exactly two ûxed points which lie in ∂H2
H. _is classiûcation

is exhaustive and exclusive. We reûne this classiûcation further as follows.
(i) Let g be elliptic: If g hasmutually distinct eigenvalues, then g is called a regular

elliptic. If two of the eigenvalues of g are equal to each other, then it is called a complex
elliptic. If all the eigenvalues of g are equal, then we call it a simple elliptic.

(ii) Suppose g is hyperbolic: _e isometry g is called a regular hyperbolic if it has
a non-real eigenvalue of norm diòerent from 1. If all the eigenvalues of g are real
numbers, then it is called strictly hyperbolic. If g has two and only two real eigenvalues,
then it is called a screw hyperbolic.

(iii) Suppose g is parabolic: Let g be unipotent, i.e., all eigenvalues of g are 1. If
the minimal polynomial of g is (x − 1)2, then it is called a vertical translation. It is
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a non-vertical translation if the minimal polynomial is (x − 1)3. Suppose g is non-
unipotent, i.e., it has a non-real eigenvalue. Suppose the multiplicity of the non-real
eigenvalue is 3. _en g is an ellipto-translation or ellipto-parabolic according as the
minimal polynomial of g has degree 2 or 3. If g has two distinct eigenvalues, it is called
a screw parabolic.

WriteH = C⊕ jC. For A ∈ Sp(2, 1), express A = A1 + jA2, where A1 ,A2 ∈ M3(C).
_is gives an embedding A↦ AC of Sp(2, 1) into GL(6,C), where

AC = (A1 −A2
A2 A1

) .

Cao and Gongopadhyay obtained a classiûcation of isometries ofH2
H in [3,_eorem

1.1]. _is is an analogue of [5,_eorem 6.2.4].

Proposition 2.3 Deûne an embedding χ∶A ↦ AC, where A ∈ Sp(2, 1) and AC ∈
GL(6,C). _e characteristic polynomial of AC is of the form

χA(x) = x6 − ax5 + bx4 − cx3 + bx2 − x + 1,
where a, b, c are real numbers. Deûne G = 27(a − c) + 9ab − 2a3, H = 3(b − 3) − a2,
and ∆ = G2 + 4H3. _en we have the following.
(i) A acts as a regular hyperbolic if and only if ∆ > 0;
(ii) A acts as a regular elliptic if and only if ∆ < 0;
(iii) A acts as a strictly hyperbolic, or a screw hyperbolic, or a complex elliptic, or a

screw parabolic if and only if ∆ = 0 and G ≠ 0.

3 Bisectors and Dirichlet Polyhedra

It is well known that there exist no totally geodesic hypersurfaces, that is, surfaces of
real codimension 1, in rank 1 symmetric spaces distinct from real hyperbolic spaces.
A reasonable substitute are the bisectors introduced by Mostow [10]. _e bisector
equidistant from two points x , y ∈ H2

H is deûned as follows:

B(x , y) = { z ∈ H2
H ∶ ρ(x , z) = ρ(y, z)} .

_e half-space containing the center x and bounded by the bisector B(x , y) is de-
noted byB+(x , y) = { z ∈ H2

H ∶ ρ(x , z) < ρ(y, z)} . By use of the bisections, the usual
construction of Dirichlet fundamental polyhedra for real hyperbolic space straight-
forwardly extends to H2

H giving rise to a locally ûnite fundamental domain DG(x)
based at x ∈ H2

H for the discrete group G ⊂ PSp(2, 1):
DG(x) = { z ∈ H2

H ∶ ρ(x , z) < ρ(g(x), z),∀g ∈ G ∖ id} = ⋂
g∈G∖id

B+(x , g(x)) .

_e following lemma is a simple case of Klein’s combination theorem (see [9] for
the real hyperbolic case and [6] for the quaternionic hyperbolic case), whose exten-
sion to quaternionic hyperbolic space is straightforward.

Lemma 3.1 LetG1 ,G2 be discrete subgroups ofPSp(2, 1)with connected fundamental
domains D1 and D2. Let E1 and E2 be the interior of the complement of D1 and D2,
respectively. Suppose that E1 ∩ E2 = ∅ and D1 ∩ D2 ≠ ∅. _en G = ⟨G1 ,G2⟩ is discrete
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and D = D1 ∩ D2 is a fundamental domain for G. In particular if D1 ,D2 are Dirichlet
polyhedra based at x ∈ H2

H for G1 and G2, then D is the Dirichlet polyhedron based at
x for G.

Repeatingword-for-word the arguments for the complex hyperbolic space in [5,6],
we obtain the following result.

Lemma 3.2 Suppose Q is an H-linear subspace of H2
H and let ΠQ ∶H2

H → Q be an
orthogonal projection onto Q endowed with hyperbolic distance ρ. Suppose that x ∈ Q
and G is a discrete group of automorphisms ofH2

H leaving Q invariant. _en

DG(x) = Π−1
Q (DG(x) ∩ Q) .

We use the following lemma about Dirichlet polyhedra in real hyperbolic 4-space
H1

H (see [6] for the case of the hyperbolic plane).

Lemma 3.3 Let Q = H1
H and let p1 , p2 ∈ Q be distinct points. Let σi denote inversion

in p i , for i = l , 2 and Σ = ⟨σ1 , σ2⟩. Let x ∈ B(p1 , p2) ⊂ Q and let γ i = B(x , σi(x))
denote the totally geodesic hypersurface equidistant from x and σi(x).
(i) If γ1 ∩ γ2 = ∅, then the Dirichlet polyhedron DΣ(x) equals

B+(x , σ1(x)) ∩B+(x , σ2(x))

and is bounded by γ1 and γ2.
(ii) Otherwise

DΣ(x) = B+(x , σ1(x)) ∩B+(x , σ2(x)) ∩B+(x , σ1σ2(x)) ∩B+(x , σ1σ2(x))

and has four faces which are totally geodesic hypersurfaces

γ1 , γ2 , γ12 = B(x , σ1σ2(x)) and γ21 = B(x , σ2σ1(x)) .

Proof We remark that Figure 2 in [6, p. 77] can still be used as a schematic diagram
to indicate the relative positions of the involving geometric objects.

We ûrst observe that Σ only contains hyperbolic elements (which are integer pow-
ers of σ1σ2) and inversions (which are conjugates of σi by hyperbolic elements).

We denote the geodesic connecting p1 and p2 by α. _is is the axis of σ1σ2 and so all
our ûxed points of inversions in Σ lie on the geodesic α. Moreover, as x is equidistant
from both p1 and p2, the orthogonal projection of x onto α is themidpoint of p1 and
p2 . If x ∈ α, then γ1 and γ2 are orthogonal to α and γ1 ∩ γ2 = ∅. _is is case (i).

Sowe suppose that x ∉ α andwe let β = B(p1 , p2) be the totally geodesic hypersur-
face through x perpendicular to α. It is easy to see that γ12 = σ1(β) and γ21 = σ2(β).
Consider the inversion σ ∈ Σ. Without loss of generality suppose that p, the ûxed

point of σ , is closer to p1 than to p2 and let γ = B(x , σ(x)) , the totally geodesic
hypersurface equidistant from x and σ(x). Since the translate length of hyperbolic
elements in Σ is kρ(p1 , p2), where k is a positive integer, the point p must lie in α
satisfying ρ(p, p1) ≥ ρ(p1 , p2). _is implies that the point p is in the complement
of both B+(x , σ1(x)) and B+(x , σ1σ2(x)) . _e angle between α and γ1 at p1 is less

https://doi.org/10.4153/CMB-2015-084-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-084-2


A Note on Quaternionic Hyperbolic Ideal Triangle Groups 251

than the angle between α and γ at p. Since the angle between α and γ at p is acute, by
convexity γ lies in the complement ofB+(x , σ1(x)) ∩B+(x , σ1σ2(x)) .

_us the only candidates for the faces of DΣ(x) are γ1 , γ2 , γ12 and γ21. If γ1 and
γ2 are disjoint, then β lies completely in B(x , σ1(x)) ∩ B(x , σ2(x)) , therefore γ12
and γ21 lie outside this set. _is is case (i) also. If γ1 ∩ γ2 = l ≠ ∅, then σ1(l) ⊂ γ12
and σ2(l) ⊂ γ21 so these totally geodesic hypersurfaces are in the boundary of DΣ(x).
_is is case (ii).

As in the complex case [5,6], there exist quaternionic lines playing the role of bi-
sectors of asymptotic pairs of quaternionic lines. We record this fact in the following
lemma.

Lemma 3.4 Let Q1 ,Q2 be two asymptotic quaternionic lines. _en there exists a
unique quaternionic lines Q12 so that inversion in Q12 interchanges Q1 and Q2. More-
over, if Q0 is a quaternionic line asymptotic to Q1 and Q2, and such that ∂Q1 ∩ ∂Q2 ∉
∂Q0, then Q0 meets Q12 .

4 The Type of gs

In this section, we will obtain a type criterion of ϕs(ε0ε1ε2) by the parameter s.

Proposition 4.1 Let gs = ϕs(ε0ε1ε2),where ϕs is given by (1.2). _en gs is loxodromic
for s ∈ [0,

√
125/3), parabolic for s =

√
125/3, and elliptic for s >

√
125/3.

Proof We recall that ϕs = ϕu , which are given by (1.1) and (1.2). We li� ϕu to a
representation Γ → PSp(2, 1), which we also denote by ϕu . Choose co-ordinates so
that u0, u1, u2 li� to the following null vectors in H2,1:

ũ0 =
⎛
⎜
⎝

0
1
1

⎞
⎟
⎠
, ũ1 =

⎛
⎜
⎝

−1
0
1

⎞
⎟
⎠
, ũ2 =

⎛
⎜
⎝

exp(2Aj)
0
1

⎞
⎟
⎠
.

_en AH(u) = A and the three quaternionic lines Q0 = Lu1u2 , Q1 = Lu0u2 , and Q2 =
Lu0u1 are represented by the polar vectors:

c0 =
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠
, c1 =

⎛
⎜
⎝

1
exp(−2Aj)
exp(−2Aj)

⎞
⎟
⎠
, c2 =

⎛
⎜
⎝

1
−1
−1

⎞
⎟
⎠

_e corresponding quaternionic inversions are given by

τ j(z) = P(−z + 2
⟨z, c j⟩
⟨c j , c j⟩

c j) , j = 0, 1, 2,
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where z is an arbitrary li� of z. _ese inversions are represented in Sp(2, 1) by the
following isometries:

τ0 =
⎛
⎜
⎝

−1 0 0
0 1 0
0 0 −1

⎞
⎟
⎠
,

τ1 =
⎛
⎜
⎝

1 2 exp(2Aj) −2 exp(2Aj)
2 exp(−2Aj) 1 −2
2 exp(−2Aj) 2 −3

⎞
⎟
⎠
,

τ2 =
⎛
⎜
⎝

1 −2 2
−2 1 −2
−2 2 −3

⎞
⎟
⎠
.

_erefore

τ0τ1τ2 =
⎛
⎜
⎝

−1 2 + 2 exp(2Aj) −2 − 2 exp(2Aj)
2 + 2 exp(−2Aj) −3 − 4 exp(−2Aj) 4 + 4 exp(−2Aj)
−2 − 2 exp(−2Aj) 4 + 4 exp(−2Aj) −5 − 4 exp(−2Aj)

⎞
⎟
⎠

=
⎛
⎜
⎝

−1 2 + 2 cos(2A) −2 − 2 cos(2A)
2 + 2 cos(2A) −3 − 4 cos(2A) 4 + 4 cos(2A)
−2 − 2 cos(2A) 4 + 4 cos(2A) −5 − 4 cos(2A)

⎞
⎟
⎠

+ j
⎛
⎜
⎝

0 2 sin(2A) −2 sin(2A)
−2 sin(2A) 4 sin(2A) −4 sin(2A)
2 sin(2A) −4 sin(2A) 4 sin(2A)

⎞
⎟
⎠
.

By the embedding χ∶A↦ AC in Proposition 2.3, the corresponding matrix of τ0τ1τ2
in GL(6,C) is the following matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−1 2 + 2 cos(2A) −2 − 2 cos(2A) 0 −2 sin(2A) 2 sin(2A)
2 + 2 cos(2A) −3 − 4 cos(2A) 4 + 4 cos(2A) 2 sin(2A) −4 sin(2A) 4 sin(2A)
−2 − 2 cos(2A) 4 + 4 cos(2A) −5 − 4 cos(2A) −2 sin(2A) 4 sin(2A) −4 sin(2A)

0 2 sin(2A) −2 sin(2A) −1 2 + 2 cos(2A) −2 − 2 cos(2A)
−2 sin(2A) 4 sin(2A) −4 sin(2A) 2 + 2 cos(2A) −3 − 4 cos(2A) 4 + 4 cos(2A)
2 sin(2A) −4 sin(2A) 4 sin(2A) −2 − 2 cos(2A) 4 + 4 cos(2A) −5 − 4 cos(2A)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

_e characteristic polynomial of the abovematrix is

χτ0τ1τ2(x) = x6 + ( 16 cos(2A) + 18)x5 + ( 128 cos(2A) + 127)x4 − 4(64 cos2(2A)
+ 72 cos(2A) + 9)x3 + ( 128 cos(2A) + 127)x2

+ ( 16 cos(2A) + 18)x + 1.

By Proposition 2.3 we have

a = −16 cos(2A) − 18, b = 128 cos(2A) + 127, c = 4(64 cos2(2A) + 72 cos(2A) + 9) ,
G = 8192 cos(2A)3 + 2304 cos(2A)2 − 16128 cos(2A) − 10368,

H = −256 cos2(2A) − 192 cos(2A) + 48
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and

∆ = −113246208 cos5(2A) − 334430208 cos4(2A) − 215875584 cos3(2A)
+ 226492416 cos2(2A) + 329121792 cos(2A) + 107937792

= 113246208( cos(2A) + 1) 3( 1 − cos(2A))(cos(2A) + 61
64

) .

It is obvious that if A = 0, then τ0τ1τ2 is loxodromic, and if A = π/2, then τ0τ1τ2 is
elliptic. Henceforth we assume that A ≠ 0,A ≠ π/2.

_erefore ∆ > 0 if and only if cos(2A) > − 61
64 . _at is,

√

6
16 < cosA < 1 and

0 < s = tan(A) <
√

125/3.

Similarly, ∆ < 0 if and only if s >
√

125/3.
If ∆ = 0, then cos(2A) = − 61

64 , s =
√

125/3, and G = 125
32 . In this case

τ0τ1τ2 =
⎛
⎜⎜⎜
⎝

−1 3+5
√

15j
32

−3−5
√

15j
32

3−5
√

15j
32

13+5
√

15j
16

3−5
√

15j
16

−3+5
√

15j
32

3−5
√

15j
16

−19+5
√

15j
16

⎞
⎟⎟⎟
⎠
,

which is a screw parabolic.
By Proposition 2.3, gs is loxodromic for s ∈ [0,

√
125/3), parabolic for s =

√
125/3,

and elliptic for s >
√

125/3.

5 The Proof of Theorem 1.1

We are now ready to prove our main theorem. We only need to prove the following
theorem, which is a reformulation of_eorem 1.1.

_eorem 5.1 Let u = (u0 , u1 , u2) be a triple of points in ∂H2
H and ϕu be given by (1.1).

(i) If ϕu is a discrete embedding, then 0 ≤ AH(u) ≤ arccos
√

6
16 ≈ 81.1938○.

(ii) Conversely ϕu is a discrete embedding when 0 ≤ AH(u) ≤ arccos 1
6 ≈ 80.4059

○.

Proof Wewill use the same symbols as those of Section 4 for our proof. Suppose that
ϕu is a discrete embedding. As we know τ0τ1τ2 has inûnite order in Γ so that τ0τ1τ2

can not be a regular elliptic element. By Proposition 4.1, we have
√

6
16 ≤ cosA ≤ 1.

Hence 0 ≤ AH(u) ≤ arccos
√

6
16 ≈ 81.1938○. _is proves assertion (i).

In order to prove assertion (ii), we will show that the homomorphism ϕu ∶ Γ →
Sp(2, 1) given by (1.1) is faithful and discrete provided that cos(AH(u)) ≤ 1

6 .
Consider the quaternionic lines Q3 = τ0Q1 and Q4 = τ0Q2 with corresponding

inversions τ3 = τ0τ1τ0 , and τ4 = τ0τ2τ0. Since ⟨τ1 , τ2 , τ3 , τ4⟩ is a subgroup of
index two in ⟨τ0 , τ1 , τ2⟩, we only need to prove that ⟨τ1 , τ2 , τ3 , τ4⟩ is discrete. We
prove this by constructing a fundamental polyhedron for the group ⟨τ1 , τ2 , τ3 , τ4⟩.
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Let Q12 (resp. Q34 ) be the bisector (in the sense of Lemma 3.4) ofQ1 andQ2 (resp.
Q3 and Q4). Note that ⟨c1 , c1⟩ = ⟨c2 , c2⟩ = 1. _e polar vector of Q12 is

c12 = c1 + c2 =
⎛
⎜
⎝

2
−1 + exp(−2Aj)
−1 + exp(−2Aj)

⎞
⎟
⎠

We shall take the point x = Q0 ∩ Q12 as the center of our Dirichlet polyhedron. Now
by symmetry x = τ0(x) = Q0 ∩ Q34 and so x = Q0 ∩ Q12 ∩ Q34. By computation, a
vector representing x is

x̃′ =
⎛
⎜
⎝

−1+exp(2Aj)
2
0
1

⎞
⎟
⎠

Let x j = τ j(x), j = 1, 2, 3, 4. We claim that the three point x, x1, and x4 lie on a
common quaternionic line, which we call Q14. Similarly x, x2 = τ0(x4), x3 = τ0(x1)
lie on a common quaternionic line Q23 = τ0(Q14).

In fact, by applying the following isometry

h =
⎛
⎜⎜⎜
⎝

− exp(−Aj)
√

2 cosA − 1
√

2
tanAj
√

2
exp(−Aj)
√

2 cosA − 1
√

2
− tanAj
√

2
1−exp(−2Aj)

2 cosA 0 1
cosA

⎞
⎟⎟⎟
⎠
∈ Sp(2, 1)

to x̃′ and its images under inversions τ1 , τ2 , τ3 , τ4, we obtain vectors representing the
points x, x1, x2, x3 , and x4

x̃ =
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
, x̃1 =

⎛
⎜
⎝

−2
√

2 exp(−Aj)
0
3

⎞
⎟
⎠
, x̃2 =

⎛
⎜
⎝

0
−2

√
2 exp(Aj)

3

⎞
⎟
⎠
,

x̃3 =
⎛
⎜
⎝

0
2
√

2 exp(−Aj)
3

⎞
⎟
⎠
, x̃4 =

⎛
⎜
⎝

2
√

2 exp(Aj)
0
3

⎞
⎟
⎠
.

Hence Q14 is the quaternionic line {(z1 , 0)T ∶ ∣z1∣ ≤ 1} = H1
H × {0} and Q23 is the

quaternionic line {(0,w2)T ∶ ∣w2∣ ≤ 1} = {0} ×H1
H.
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_e corresponding inversions hτ ih−1 , i = 0, 1, 2, 3, 4, which we still denote them
by the same symbols τ i , are the following isometries:

τ0 =
⎛
⎜
⎝

0 1 0
1 0 0
0 0 −1

⎞
⎟
⎠
, τ1 =

⎛
⎜
⎝

3 0 2
√

2 exp(−Aj)
0 −1 0

−2
√

2 exp(Aj) 0 −3

⎞
⎟
⎠
,

τ2 =
⎛
⎜
⎝

−1 0 0
0 3 2

√
2 exp(Aj)

0 −2
√

2 exp(−Aj) −3

⎞
⎟
⎠
,

τ3 =
⎛
⎜
⎝

−1 0 0
0 3 −2

√
2 exp(−Aj)

0 2
√

2 exp(Aj) −3

⎞
⎟
⎠
,

τ4 =
⎛
⎜
⎝

3 0 −2
√

2 exp(Aj)
0 −1 0

2
√

2 exp(−Aj) 0 −3

⎞
⎟
⎠
.

Let x14 = τ1τ4(x), x41 = τ4τ1(x), x23 = τ2τ3(x) and x32 = τ3τ2(x). _en we obtain
vectors representing the points x14, x41, x23 and x32

x̃14 =
⎛
⎜
⎝

−12
√

2 cosA
0

9 + 8 exp(2Aj)

⎞
⎟
⎠
, x̃41 =

⎛
⎜
⎝

12
√

2 cosA
0

9 + 8 exp(−2Aj)

⎞
⎟
⎠
,

and

x̃23 =
⎛
⎜
⎝

0
−12

√
2 cosA

9 + 8 exp(−2Aj)

⎞
⎟
⎠
, x̃32 =

⎛
⎜
⎝

0
12
√

2 cosA
9 + 8 exp(2Aj)

⎞
⎟
⎠
.

Since x , x1 , x4 ∈ Q14, the group G14 = ⟨τ1 , τ4⟩ leaves invariant the quaternionic
line Q14. Similarly the group G23 = τ0G14τ0 = ⟨τ2 , τ3⟩ leaves the quaternionic line
Q23 invariant. By Lemma 3.2, the Dirichlet polyhedron D14 based at x for the action
of G14 on H2

H is (H × D1) ∩H2
H, where D1 is the Dirichlet polyhedron based at x for

the action of G14 on Q14 = H1
H × {0}. Also D23 = (D2 × H) ∩H2

H, where D2 is the
polyhedron now regarded as a subset of Q23 = {0} ×H1

H.
Let E14 (resp. E23) be the interior of the complement of D14 in H2

H (resp. D23). It
follows from Lemma 3.1 that to show ⟨τ1 , τ2 , τ3 , τ4⟩ is discrete, it suõces to show that
E14 ∩ E23 = ∅.

Let (z1 , z2)T ∈ E14 and (w1 ,w2)T ∈ E23. _en the following inequalities

∣z1∣ ≥ 1/
√

2 and ∣w2∣ ≥ 1/
√

2

imply that E14 ∩ E23 = ∅. Hence we only need to show that D1 and D2 contain a
ball with center 0 and radius 1/

√
2 in H1

H. By Lemma 3.3, it suõces to check that the
totally geodesic hypersurfaces

γ1 = B(x , τ1(x)) , γ4 = B(x , τ4(x)) , γ14 = B(x , τ1τ4(x)) , γ41 = B(x , τ4τ1(x))
and

γ2 = B(x , τ2(x)) , γ3 = B(x , τ3(x)) , γ23 = B(x , τ2τ3(x)) , γ32 = B(x , τ3τ2(x))
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all lie outside the interior of this ball.
Let z1 = q0 + q1i + q2j + q3k ∈ D1. By the distance formula (2.1), we obtain the

expressions for γ1 , γ4 , γ14 and γ41 as follows:

γ1 = { z = (z1 , 0)T ∈ Q14 ∶ (q0 + 3
√

2 cosA
4 ) 2 + q2

1 + (q2 − 3
√

2 sinA
4 ) 2 + q2

3 = (
√

2
4 ) 2} ,

γ4 = { z = (z1 , 0)T ∈ Q14 ∶ (q0 − 3
√

2 cosA
4 ) 2 + q2

1 + (q2 − 3
√

2 sinA
4 ) 2 + q2

3 = (
√

2
4 ) 2} ,

γ14 = { z = (z1 , 0)T ∈ Q14 ∶ (q0 + 9+8 cos 2A
12
√

2 cosA
) 2 + q2

1 + (q2 + 9+8 sin 2A
12
√

2 cosA
) 2 + q2

3

= ( 1
12
√

2 cosA
) 2} ,

γ41 = { z = (z1 , 0)T ∈ Q14 ∶ (q0 − 9+8 cos 2A
12
√

2 cosA
) 2 + q2

1 + (q2 − 9+8 sin 2A
12
√

2 cosA
) 2 + q2

3

= ( 1
12
√

2 cosA
) 2} .

It is obvious that ∣z1∣ ≥ 1/
√

2 for all z ∈ γ1 , γ4.
For all z ∈ γ14 we have ∣z1∣ ≥ 1/

√
2, provided that

√
( 9 + 8 cos 2A

12
√

2 cosA
)

2
+ ( 9 + 8 sin 2A

12
√

2 cosA
)

2
≥ 1√

2
+ 1

12
√

2 cosA
,

that is, cosA ≥ 1
6 .

Similarly we can obtain ∣w2∣ ≥ 1/
√

2 providing that cosA ≥ 1
6 . Note that

0 ≤ AH(u) ≤ arccos
1
6
≈ 80.4059○ .

_is proves _eorem 5.1 (ii).

6 Some Remarks About Conjecture 1.1

By normalization we can see in Section 4 that the null vectors or the polar vectors
all lie in the subspace (R ⊕ jR)2,1 ⊂ H2,1. _is means that the matrices of quater-
nionic inversions τ0 , τ1 , τ2 all lie in a copy of U(2, 1) < Sp(2, 1). Geometrically, this
means that every quaternionic hyperbolic triangle group preserves a totally geodesi-
cally embedded copy of complex hyperbolic space. _is is to say that every Sp(2, 1)
representation of a triangle group factors through a U(2, 1) representation. Based on
this observation we believe that the results of [13, 15] will also follow in the setting of
quaternionic hyperbolic geometry and Conjecture 1.1 is therefore true.

Acknowledgment _e authors would like to thank the referee for his or her useful
suggestions.
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