
Canad. J. Math. Vol. 70 (1), 2018 pp. 117–141
http://dx.doi.org/10.4153/CJM-2017-023-x
©Canadian Mathematical Society 2017

Smooth Polynomial Solutions to a
Ternary Additive Equation

Junsoo Ha

Abstract. Let Fq[T] be the ring of polynomials over the ûnite ûeld of q elements and Y a large
integer. We say a polynomial in Fq[T] is Y-smooth if all of its irreducible factors are of degree at
most Y . We show that a ternary additive equation a + b = c over Y-smooth polynomials has many
solutions. As an application, if S is the set of ûrst s primes in Fq[T] and s is large, we prove that the
S-unit equation u + v = 1 has at least exp(s1/6−є log q) solutions.

1 Introduction and Statement of Results

_e S-unit equation has been studied over the years. For the simplest case, let S be a
ûnite set of (rational) primes. We consider an additive equation a+b = c over integers,
where all prime factors of abc lie in S and a, b, c are coprime. _is equation is a special
case of the binary S-unit equation (so-called because it is usually written as u + v = 1
with u = a/c and v = b/c). One of the classic theorems on S-unit equations is the
famous theorem of Siegel: every binary S-unit equation has ûnitely many solutions.
A�er Siegel, several upper bounds on the number of solutions to general or special

S-unit equationswere established. Evertse [4] established a uniform upper bound that
only depends on the cardinality of S (and on the extension degree of the number ûeld
in the number ûeld case.) Let s be the cardinality of S. In the case of a+b = c, Evertse’s
bound showed that the equation has atmost 3⋅72s solutions. On the otherhand, S-unit
equations sometimes havemany solutions, particularly when S contains many small
primes. Erdös, Stewart, and Tijdeman [3] showed that there exist arbitrarily large sets
S forwhich the S-unit equation u+v = 1 has at least exp((4−є)(s/ log s)1/2) solutions.
Konyagin and Soundararajan [13] reûned the argument to produce arbitrarily large
sets S for which the equation a + b = c has at least exp(s2−

√
2−є) solutions. _e set S

constructed by these authors starts with the set of the ûrst few primes, and expands
by a small number of primes accordingly as the argument proceeds, andmay contain
a large prime.

When S is the set of the ûrst s primes, the problemis particularly interesting in con-
nectionwith smooth numbers. We say an integer is y-smooth if all of its prime factors
are less than or equal to y, andwewrite Ψ(x , y) for the number of y-smooth integers
up to x. For clarity, we say a solution to a + b = c is primitive if gcd(a, b, c) = 1. _en
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when S is the set of primes up to y, each solution to the S-unit equation u + v = 1 cor-
responds to a primitive solution to an additive equation a+b = c over y-smooth num-
bers. Lagarias and Soundararajan studied this additive equation [15,16]. Let N∗(x , y)
be the number of solutions to a + b = c, and where gcd(a, b, c) = 1, a, b, c are all y-
smooth and less than or equal to x. _en they investigated the equation by the circle
method to show that, in a rough form,

N∗(x , (log x)κ) ∼ C(κ)Ψ(x , (log x)κ)3

x
under the Generalized Riemann Hypothesis (GRH) when κ > 8 and x is large and
where C(κ) is a constant depending on κ.

We let S be the set of primes up to y and s = π(y) ∼ y/ log y. _en for given κ > 1,
we have a smooth asymptote Ψ(x , y) ∼ x 1−1/κ+o(1) when y = (log x)κ . We denote by
S(x , y) the set of y smooth numbers up to x. _en if y is large and κ > 8, we have

(1.1) {(a, b, c) ∈ S(x , y)3 ∶ a + b = c, gcd(a, b, c) = 1} ≫ x2−3/κ+o(1) ≥ exp(s1/κ).
_us, as a corollary of their work, Lagarias and Soundararajan showed that under
GRH the binary S-unit equation has at least exp(s1/8−є) solutions when S is the set of
the ûrst s primes and s is large.

We remark here that a few unconditional results have been made in recent years;
Drappeau [1] proved unconditionally the number of solutions to a + b = c in the
range exp(c

√
log x log log x) ≤ y ≤ x in terms of exponential sums as Lagarias and

Soundararajan did, and some nontrivial estimates on major arcs in a wide range of x
and y. Very recently, Harper [8] gave an unconditional proof in the range (log x)κ ≤
y ≤ x for some κ, using the result of Bourgain on the restriction theory for theminor
arcs.

We turn our attention to the polynomials over a ûnite ûeld. Let q be a prime power
and Fq be the ûeld of q elements. _roughout this paper, we take T as an indetermi-
nate and we simply say m is a polynomial ifm is a polynomial in Fq[T]. _e analogy
of the ring of integers and the ring of polynomials over a ûnite ûeld has been studied
by numerous authors, and one may ask if a comparable result in the ring of polyno-
mials can be established. We say a solution to a + b = c is primitive if gcd(a, b, c) = 1,
and separable if not all of a, b, c are p-th power, where p is the characteristic of Fq . In
this paper, we prove the following theorem.

_eorem 1.1 Let Y be a large integer and S be the set of irreducible polynomials of
degree at most Y . _en the S-unit equation a + b = c with all irreducible factors of abc
lying in S has at least q∣S∣

1/6−є
separable primitive solutions.

_is result improves that of the previous paper [5], where we obtained 1/8 − є in-
stead of 1/6 − є.

We remark here that a few features of the xyz conjecture of Lagarias and Soundara-
rajan [15] need a slight modiûcation in the case of Fq[T]. Over the integers, Lagarias
and Soundararajan deûned the smoothness exponent κ for a solutions to a + b = c by

(1.2) κLS(a, b, c) =
logmaxp∣abc ∣p∣

log logmax(∣a∣, ∣b∣, ∣c∣) .
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_en the original xyz smoothness exponent is deûned by

κLS
0 = lim inf

gcd(a ,b ,c)=1
max(∣a∣,∣b∣,∣c∣)→∞

κLS(a, b, c).

_en they conjectured that κ0 is ûnite and that κLS
0 = 3/2. As mentioned earlier, the

ûniteness part was proved by Harper.
In Fq[T], we deûne the norm of polynomial (with respect to prime 1/T) by

(1.3) ∣m∣ = qdeg m ,

which is used to compute the size of a solution. We also deûne the analogue for
smooth numbers; we say a polynomial is Y-smooth if all of its prime factors have de-
gree less than or equal to Y . _enwe can consider the distribution function Ψ(X ,Y),
the number of Y-smooth polynomials of degree X. _e work ofManstavičius [18, 19]
can be used to prove Ψ(X ,Y) = qX(1−1/κ+o(1)) when κ = logq X/Y under some range
of X and Y (see (2.1) for the precise condition). _is formula suggests that the natural
logarithms in (1.2) should be replaced by the base q logarithms. _erefore in Fq[T],
we can deûne

(1.4) κ(a, b, c) =
logq maxϖ∣abc ∣ϖ∣

logq logq max(∣a∣, ∣b∣, ∣c∣) =
maxϖ∣abc degϖ

logq max(deg a, deg b, deg c, )
where ϖ denotes an irreducible polynomial, and we want to deûne

κnaive
0 = lim inf

gcd(a ,b ,c)=1
max(∣a∣,∣b∣,∣c∣)→∞

κ(a, b, c)

in a similarway. _enwe expect that the heuristics on smooth numbers should be ap-
pliedwith aminor change. However,we need to consider the following two examples,
which only arise in the function ûeld case.

_e ûrst example comes from the separability. If (a, b, c) is a primitive solutions
to a + b = c, so is (ap , bp , cp), where p is the characteristic of Fq . _en raising by the
p-th power of the solution, (a, b, c) increases themaximum degree of the solution by
p times,whereas themaximum degree of the prime divisors of abc remains the same.
_en the xyz exponent

κ(apk
, bpk

, cp
k
)

clearly converges to 0 for any ûxed solution a, b, c as k →∞. To remedy such a case,
we call the solution separable when at least one of a, b, c is not the p-th power when
p is the characteristic, and we require that the solutions should be separable.

_e next example is more pathological and seems unique to Fq[T]. For any n,
consider the additive equation a+ b = c when (a, b, c) = (Tqn−1 ,−1, Tqn−1 − 1). From
the fact that Fqn is a splitting ûeld of Tqn − T over Fq , we have the identity

Tqn
− T = ∏

deg f ∣n
f ∶irreducible

f (T),

and thus we observe that all prime factors of abc have degree at most n. _en this
family of solutions to a + b = c satisûes maxϖ∣abc ∣ϖ∣ = qn whereas max(∣a∣, ∣b∣, ∣c∣) =
qqn−1. As n grows, the corresponding smoothness exponent converges to 1, and thus
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κnaive
0 ≤ 1. On the contrary, one can show that κnaive

0 ≥ 1, as a corollary of abc conjec-
ture for function ûelds (see [21,_eorem 7.17]). _us we easily deduce that κnaive

0 = 1.
However, it is not only inconsistent with the heuristic conjecture that κLS

0 = 3/2, but
it also may not be applied to producing many S-unit equations when S is the set of
the ûrst few primes, which is one of the main implications of the work of Lagarias
and Soundararajan. It may be noted that this particular family of solutions is insuõ-
cient to producemany solutions to an S-unit equation. _erefore, wemay reûne the
conjecture of Lagarias and Soundararajan for the rational function ûeld case in the
following new form.

Conjecture 1.2 Let (a, b, c) be a triple in the ring of polynomials over Fq , and let H
be a large positive integer. Let B(H) = {(a, b, c) ∶ max(deg a, deg b, deg c) ≤ H}. We
consider the set of all primitive and separable triples that are solutions to a + b = c, and
denote those with bounded smoothness exponent κ̃ by

(1.5) A(κ̃) =
{(a, b, c) ∶ a + b = c, gcd(a, b, c) = 1, (a, b, c) is separable and κ(a, b, c) < κ̃} .

_e new xyz exponent κnew
0 > 0 is deûned by

(1.6) κnew
0 = inf {κ∶ lim inf

H→∞

log # (A(κ) ∩ B(H))
log #B(H) > 0} .

_en κnew
0 = 3/2.

In other words, κnew
0 is the least exponent so that for any κ̃ > κnew

0 , there is δ > 0
such that for all suõciently large H, the equation a + b = c with the degrees bounded
byH and the smoothness exponent at most κ̃ has at least qδH separable and primitive
solutions. We can show that for any κ̃ > κnew

0 , there are at least exp(s1/κ̃) (separable)
solutions to the S-unit equation when S is the set of ûrst s primes and s is large. _e
results of Lagarias and Soundararajan and of Harper can bemigrated to this setting,
showing that over the integers, the inûmum of the exponent κ forwhich the equation
a + b = c has at least xδ solutions for suõciently large y and y = (log x)κ is at most
8 under GRH, and is unconditionally ûnite. In connection with this new conjecture,
our result can be stated as follows.

_eorem 1.3 In Fq[T], the new xyz exponent κnew
0 ≤ 6.

In the next section, we shall state amore technical version of this theorem. Mean-
while, we would like to survey some technical aspects of the theorem.

We note two features of the above theorem compared with the work of Lagarias
and Soundararajan. _e ûrst is that it is an unconditional theorem and this property
is rather clear, becausewe have a direct substitute for theGRH in the case of function
ûelds, namely the Weil bound on curves over ûnite ûelds. On the other hand, the
obvious decrease in the exponent from 8 to 6 is the new part of this theorem. _e key
element here is the use ofwell-factorizability of the smooth polynomials,which stems
from the work ofHarper [6] and an unpublished work of Soundararajan, who used a
similar technique to producemany solutions to certain S-unit equation.
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2 Main Technical Result and the Idea of the Proof

In this section, we state our main theorem more precisely, and brie�y survey the his-
tory of some technical elements of the proof that appear in the remaining sections.

_e proof uses several major ingredients from previous authors. _e basic setup
of this paper is based on thework of Lagarias and Soundararajan, who used the circle
method in the additive problem over smooth numbers, and their techniques such as
character decomposition, and themajor andminor arc estimates work fairly parallel
in our main theorem.
Another underlying setup is the circlemethod in the polynomial ring over a ûnite

ûeld. One of the ûrst studies is due to Hayes [10] who proved that a polynomial in
Fq[T] can be written as the sum of three irreducible polynomials, an analogue of
the ternary Goldbach problem. Another nice application of the circlemethod can be
found in themore recentwork of Liu andWooley [17]who studiedWaring’s problem
over Fq[T].

_e central advantage of this paper relies on the observation of Harper [6] in the
study of the Diophantine equation a + 1 = c where all prime factors of ac lie in a
set S. Harper observed that the average behavior of smooth numbers in an arithmetic
progression can bemanaged in terms of bilinear form due towell-factorizability of the
set of smooth numbers, i.e., the ability to factor into any two sets of desirable sizes.
In this way, he managed to prove that the character sums on average over certain
sets of smooth numbers can be well estimated. Soundararajan gave a reformulation
of Harper’s idea in his unpublished note, and his setup is closely related to our new
setting.

2.1 Main Technical Result: Counting Certain Solutions to a + b = c

Let Fq be the ûnite ûeld of q elements, and Fq[T] be the ring of polynomials. Wewrite
M for monic polynomials, and M0 for squarefree monic polynomials. _roughout
this paper, ϖ represents a monic irreducible polynomial, and m represents a monic
polynomial. We usually use a capital letter to denote a positive integer, and lowercase
for polynomials. To emphasize the parallel argument between Z and Fq[T],we adopt
some handy notation from the work of Liu andWooley. We write Ẑ = qZ for any real
number Z > 1. Similarly, we write L(Z) = max(logq Z , 1). Obviously, L(Ẑ) reduces
to Z, but we sometimes keep the former form when we have a comparable form of
equations over the ring of integers.

Let X and Y be large and we write ψ(X ,Y) for the number of monic Y-smooth
polynomials of degree X. We aremainly interested in the range when Ŷ = L(X̂)κ for
some κ > 1. _e work of Manstavičius [18, 19] can be applied in our range so that if
Ŷ = L(X̂)κ as a particular case,

(2.1) ψ(X ,Y) = X̂1−1/κ+o(1) ,

when Y , X/Y , and Ŷ/L(X̂) are large. _is result is comparable to the counting func-
tion of y-smooth integers up to x, which is Ψ(x , y) = x 1−1/κ+o(1) when y = (log x)κ

and y is large and κ > 1 is ûxed.
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Instead of a + b = c, we will use a + b = 2c, to maintain that all variables bemonic.
Heuristically, the number of solutions to a + b = 2c can be expected to be of size
≍ ψ(X ,Y)3/X̂, because the choice of each variable is considered to be ψ(X ,Y), and
the chance of two randomly chosenmonic polynomials of the same leading coeõcient
being equal can be thought of as 1/X̂. In this point of view, we may conjecture that
the number of solutions is ≍ ψ(X ,Y)3/X̂ = X̂2−3/κ+o(1) , and we have at least ≫ X̂δ
solutions if κ > 3/2. For a lower bound, suppose Y divides X and Y is large. Instead
of using the whole set of Y-smooth polynomials of degree X, we consider the subset
S1 deûned by

S1 = {m ∈M0 ∶ degm = X ,ϖ ∣ m⇒ degϖ = Y} .

Finding the solutions over S1 is useful, because we want to establish the lower bound
for the number of solutions, and the cardinality of the set S1 is still fairly large. Indeed,
we let K = X/Y be the number of prime factors for elements in S1. _en for Ŷ =
L(X̂)κ and for large X, we have

∣S1∣ = (π(Y)
K

) = π(Y)K(1+o(1))

K!
= (Ŷ/K)K(1+o(1)) = X̂1−1/κ+o(1) ,

where π(Y) is the number of irreducible polynomials of degree Y , and it is known
that π(Y) ∼ Ŷ/L(Ŷ) (see Lemma 3.1). _erefore we solve the equation a + b = 2c
over a, b, c ∈ S and we still expect that the equation has many solutions. Indeed, we
have the following theorem.

_eorem 2.1 Let Y be a large integer, κ > 6, and let X be an integer such that X is
divisible by Y and L(X̂)κ ≤ Ŷ . _en the number of solutions to a + b = 2c is

N(S1) =S
∣S1∣3

X̂
( 1 + O( 1

Ŷ 1/2
)) ,

where the singular series S is deûned by

S =∏
ϖ
( 1 − 1

(∣ϖ∣ − 1)2 ) ,

where the product is taken over all monic irreducible polynomials of any degree.

Wemay impose the coprimality condition without much loss.

_eorem 2.2 Retain the assumption of_eorem 2.1. _en the number of primitive
solutions to a + b = 2c is

N∗(S1) = N(S1)( 1 + O( 1
Ŷ 1/2

)) .

We remark that from the construction, the separability is already attained.

2.2 A Remark on Applications to the Number Field Case

_e reader may ask if the original problem of ûnding many solutions to S-unit equa-
tions over the integers can be attacked by themethods used in this paper. For instance,
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if we assume GRH, we choose a parameter y large and κ > 6 so that one may write
a + b = c with a, b, c being of the form p1 ⋅ ⋅ ⋅ pk , where p i are primes in the interval
[y/2, y] and k is in the range comparable to y1/κ . Indeed, one obtains a similar esti-
mate on theminor arcs in such a case. On the other hand, technical diõculties arise
on the major arcs, because we no longer have a sharp estimate for the exponential
sums over prime like (5.1) in Proposition 5.1. _is is partly because, in the function
ûeld case, all polynomials that appear in the exponential sum are of constant size,
whereas for the case of integers, the size varies to the scale of 2z , and we cannot use a
combinatorial argument without producing large errors. _is problem does not arise
in the case of Lagarias and Soundararajan, because the counting function for smooth
numbers is smooth, whereas the variant accumulative function that we used as the
product of k primes in a short interval is not.

_e reason we took S1 instead of all smooth polynomials is that we need the set
S to be decomposed into the multiplication of two sets of the desirable size in order
to use the well-factorizability of the smooth polynomials. On the other hand,Harper
[7] recently proved a Bombieri–Vinogradov type estimate for smooth numbers, that
was later improved by Drappeau [2]. In their proofs, they showed how we can use
the well-factorizability of smooth numbers using Fourier analysis when the set itself
cannot be decomposed directly into two sets, but each element can be decomposed
into the desired size [7, §4.2].
Brie�y speaking, when we decompose a smooth integer n into n1n2, where n1 is

the factor of the desired size, the range of n2 depends on the variable n1 and cannot
be summed separately. However, when we use theMellin transform on the indicator
function of the interval of the desired size, the factors n−s

1 and n−s
2 are separated, and

we can use the well-factorizability directly on the set of y-smooth numbers in each
dyadic interval. Combined with their new technique, we can obtain (1.1) for κ > 6.
We leave it for a future paper.

3 Number Theory in a Polynomial Ring

_e parallel theory between the ring of integers and the ring of polynomial rings over
ûnite ûelds was well known. In this section, we cite a few relevant results in Fq[T]
whose counterparts in Z are familiar to number theorists. We start from the prime
number theorem for polynomials.

Lemma 3.1 Let N be an integer, and write π(N) for the number ofmonic irreducible
polynomials of degree N. _en

π(N) = ∑
deg ϖ=N

1 = N̂
L(N̂)

(1 + O(N̂−1/2)).

Moreover, π(N) ≤ N̂/L(N̂).

Proof See [21,_eorem 2.2]. _e last assertion is from

L(N̂)π(N) ≤ ∑
D∣N

L(D̂)π(D) = N .
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Next, we introduce the congruence characters [9]. Let g be a monic polynomial
and l an integer. We deûne the dual of a polynomial f ∈ Fq[T] by

(3.1) f ⋆ = T− deg f f (T) ∈ Fq[
1
T
] .

_en we deûne the equivalence relation Rg , l on the set ofmonic polynomials as fol-
lows.

Deûnition 3.2 We deûne the equivalence relation on M such that

m1 ∼ m2 ⇐⇒ m1 ≡ m2 (mod g) and m⋆
1 = m⋆

2 (mod T−l−1)
for m1, m2 ∈ M and write m1 ≡ m2 (mod Rg , l) for this case. Equivalently, m1 ≡ m2
(mod Rg , l) ifm1 ≡ m2 (mod g) and the ûrst l+1 coeõcients ofm1 andm2 coincide,
including the leading coeõcient 1.

Now we deûne the congruence characters, which extend the Dirichlet characters
(mod g).

Deûnition 3.3 We say m is invertible (modRg , l) if there is m∗such that mm∗ ≡ 1
(mod Rg , l). _en we say ξ ∶M→ C is a congruence character (modRg , l ) if ξ satisûes
the following.
● ξ( f1 f2) = ξ( f1)ξ( f2) for any f1, f2 ∈ Fq[T],
● ξ( f1) = ξ( f2) if f1 ≡ f2 (mod Rg , l),
● ξ(1) = 1,
and with the convention that ξ( f ) = 0 when f is not invertible (mod Rg , l ).

_e invertible congruence classes form amultiplicative group and we have

(Fq[T]/Rg , l)× ≃ (Fq[T]/⟨g⟩ × Fq[T−1]/⟨T−l−1⟩)×

with an isomorphism f ↦ ( f , f ⋆). _us any congruence character can be written as
ξ = χθ for a Dirichlet character χ (mod g) and a character θ (modR1, l ). For the latter,
we simply say θ is a congruence character (mod 1/T l+1). Similar to Dirichlet charac-
ters, we say a congruence character θ (mod 1/T l+1) is primitive if it is not induced
from a congruence character θ⋆ (mod 1/T l1+1) for some l1 < l ; nevertheless, θ and θ⋆

deûne the same function onmonic polynomials, and thus the character (mod 1/T l+1)
being primitive onlymeans that the conductor is chosen to beminimal. Likewise, we
say ξ (mod Rg , l ) is primitive if ξ = χθ for some primitive characters χ (mod g) and
θ (mod 1/T l+1). As a convention, we write θ = 1 when θ is the trivial congruence
character (mod 1/T), i.e., θ(m) = 1 for all monic polynomial m.

Nowwe state an analogue of theGeneralizedRiemannHypothesis inFq[T]. Hayes
[11] explicitly constructed the maximal abelian extension of K = Fq(T) using the
torsion point of a Calitz module. We may ûnd a Galois extension Kg , l of K whose
Galois group is isomorphic to the group of invertible congruence classes mod Rg , l
via an Artin map. _en we apply the work of Weil on algebraic curves over ûnite
ûelds to bound the character sums. (SeeHsu [12], for an explicit bound.)
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_eorem 3.4 Suppose ξ is a nontrivial primitive character (modRg , l ). _enwe have

π(N , ξ) = ∑
deg ϖ=N

ξ(ϖ) ≤ (l + deg g + 3) N̂ 1/2

L(N̂)
.

Proof Apart from the explicit constant 3 in the sum, this estimate can be deduced
from theWeil bound [21,_eorems 9.16 A–B]. _is explicit form of the upper bound
is a direct consequence ofHsu [12, Corollary 2.5].

Next we discuss the analogue of the exponential sum and a unit interval. Let K∞

be the ring of formal power series

K∞ = Fq((1/T)) = {x = ∑
−∞<i≤n

x iT i , x i ∈ Fq}

equipped with the norm

(3.2) ∣x∣ = q− ord x ,

where ord x is the smallest (possibly negative) integer k for which the T−k coeõcient
is nonzero. _en the deûnition of the norm (3.2) is consistent with the norm deûned
earlier in (1.3) when x ∈ Fq[T]. We take T = {x ∈ K∞ ∶ ∣x∣ < 1}, and ûx an additive
Haar measure on K∞ normalized so that T has measure 1.

Let p be the characteristic of Fq . We deûne a nontrivial additive character on K∞

by

e(x) = exp( 2πi
p

trFq/Fp x−1)

for x ∈ K∞, where x−1 denotes the coeõcient of T−1 in the Laurent series expansion
of x.

Lemma 3.5 For λ ∈ K∞, we have

∫
T
e(λx) dx =

⎧⎪⎪⎨⎪⎪⎩

1 ∣λ∣ < 1,
0 ∣λ∣ ≥ 1.

In particular, when m ∈ Fq[T] is amonic polynomial, the integral ∫T e(mx) is 1 if and
only if m = 0, and is 0 otherwise.

Proof See [10, Corollary 2.5] or [14, Lemma 1].

Later, we want to decompose e(λx) (as a function of x) into characters, when λ is
near a/g for small denominator g. Let χ be a Dirichlet character (mod g) where g is
chosen to bemonic. _en we deûne the Gauss sum of character χ by

τ(χ) = ∑
∣b∣<∣g∣

χ(b)e(b/g),

where b runs over all polynomials of degree less than g (including non-monic ones.)
We introduce the Euler totient function and theMöbius function for Fq[T] by

φ(m) = ∣m∣ ∏
ϖ∣m

( 1 − 1
∣ϖ∣ )
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and

µ(m) =
⎧⎪⎪⎨⎪⎪⎩

(−1)r if m is squarefree and has r prime factors,
0 otherwise.

_en, using the orthogonality of characters, for (b, g) = 1,

e(b/g) = 1
φ(g) ∑

χ (mod g)
τ(χ)χ(b).

_e size estimate for the Gauss sum remains to hold.

Lemma 3.6 (i) If χ is a character (mod g) and is induced by primitive character
χ⋆ (mod g⋆), we have τ(χ) = µ(g/g⋆)χ(g/g⋆)τ(χ⋆).

(ii) Moreover, if χ is primitive, ∣τ(χ)∣ =
√

∣g∣ and thus for any χ (primitive or imprim-
itive), then ∣τ(χ)∣ ≤

√
∣g∣.

Proof _e proof is similar to the number theoretic case [5, Lemma 3.7].

Lagarias and Soundararajan introduced a joint Mellin–Fourier transform of a
smooth weight function, a variant of the Gauss sum, to control the exponential sums
on the major arcs. In our case, however, the cutoò function for a ûxed degree is al-
ready a Schwartz–Bruhat (locally constant) function, and the analogue of a Mellin
transform is a Fourier transform by a continuous character of K×

∞.
We [5] gave a few properties of Fourier analysis on K×

∞ for which one may ûnd
a parallel result in Tate’s thesis; although Tate did not state the function ûeld case
explicitly, the samemethod can be applied. _e role of quasi-characters n ↦ n i t (t ∈
R) is played by the continuous characters on a locally compact groupU1 = 1+T ⊂ K×

∞.
We use the following (unconventional) notation.

Deûnition 3.7 We say θ∶U1 → {z ∈ C ∶ ∣z∣ = 1} is a character at pole if θ is totally
multiplicative and θ(Ur+1) = 1 for some integer r. We say the conductor of θ by 1/T r+1

if the choice of r is minimal.

When θ is a character at pole with the conductor 1/T l+1, θ induces a (primitive)
congruence character θ∗ (mod 1/T l+1) by θ∗(m) = θ(m⋆) for anymonic polynomial
m where m⋆ is the dual of m deûned in (3.1). One may easily check that this (non-
canonical) correspondence is one-to-one. Now we are ready to deûne the Fourier–
Mellin transform of the cutoò function on U1.

Deûnition 3.8 Let Φ be a characteristic function of U1. For λ ∈ K∞ and a char-
acter at pole θ, we deûne Φ̌(θ , λ) by Φ̌(θ , λ) = ∫U1

e(λx)θ(x) dx, where dx is the
(additive) Haar measure of K∞.

_en we have the following lemma.

Lemma 3.9 Let θ be a character at pole and λ ∈ K∞. _e following statements are
true.
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(i) For θ = 1, we have Φ̌(1, λ) = e(λ) ⋅ 1∣λ∣<1, where 1∣λ∣<1 is the characteristic function
of ∣λ∣ < 1.

(ii) For θ /= 1, let l be such that the conductor of θ is 1/T l+2. _en Φ̌(θ , λ) = 0 if
∣λ∣ /= q l .

(iii) For θ /= 1 and if ∣λ∣ = q l , there are exactly q l characters at pole (mod 1/T l+2)
that satisfy ∣Φ̌(θ , λ)∣ = q−l/2, and Φ̌(θ , λ) = 0 for the remaining characters.
Indeed, the character θ satisûes Φ̌(θ , λ) /= 0 if and only if θ ∈ θ⋆Û1/U l+1 for some
primitive character θ⋆ ∈ Û1/U l+2.

Proof (i) _is assertion is immediate from Lemma 3.5.
(ii) (See [5, Lemma 3.14] and [20, Lemma 7.4].) Let ∣λ∣ = qr . Fix a set of represen-

tatives in U1/Ur+2 and write x = au with aUr+2 ∈ U1/Ur+2 and r ∈ Ur+2. If r < l , we
have e(λar) = e(λa) because ∣λar − λa∣ ≤ q−2. _us

∫
U1
e(λx)θ(x) = ∑

a∈U1/Ur+2

θ(a)e(λa)∫
Ur+1

θ(u) du.

However, θ∣Ur+1 is nontrivial and the integral is 0 by the orthogonality of characters.
If r > l , we write x = a(1 + T−l−1u) with a ∈ U1/U l+2, u ∈ T. _en θ(1 + T−l−1u) = 1,
and using the change of variable, dx = du/q l+1. _us

∑
a∈U1/U l+2

θ(a)e(λa) 1
q l+1 ∫T

e(λaT−l−1u)du.

By Lemma 3.5, the integral is 0.
(iii) If r = l , we have

∣Φ̌(θ , λ)∣2 =∬
U1×U1

e(λ(x − y))θ(yx−1) dxdy

= ∫
U1

θ(z)∫
U1
e(λ(1 − z)x) dxdz.

_en the inner integral is e(λ(1 − z)) if ∣λ(1 − z)∣ < 1, and 0 otherwise. _erefore we
have

∣Φ̌(θ , λ)∣2 = ∫
Ur+1

θ(z)e(λ(1 − z)) dz

= 1
q l+1 ∑

a∈Fq

θ( 1 + a
T l+1 ) e( a ⋅

λ
T l+1 ) .

For given θ and λ, we write ψθ(a) = θ(1+ a/T l+1) and χλ(a) = e(aλT−l−1). Viewed
as a function of a, both ψθ and χλ are additive characters on Fq ; thus the sum is either
0 or q, and the size of ∣Φ̌(θ , λ)∣, if not zero, is q−l/2 .

Nowwe deûne a surjective group homomorphism T from Û1/U l+2 to the group of
additive characters on Fq by T(θ) = ψθ whose kernel is Û1/U l+1. _erefore, T−1(χλ),
which is the set of characters θ for which Φ̌(θ , λ) is nonzero, is a coset written as
θ⋆Û1/U l+1 for some character θ⋆ (mod 1/T l+2). Because χλ is nontrivial (λ l /= 0), we
also have θ⋆ ∉ Û1/U l+1 and thus θ⋆ is primitive (mod 1/T l+2). Since ∣Û1/U l+1∣ = q l ,
the number of characters θ for which ∣Φ̌(θ , λ)∣ is nonzero, is exactly q l .
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Combining all the above results, we can deduce the multiplicative character de-
composition of e(λx).

Corollary 3.10 Let λ ∈ K∞. _en for any monic polynomial m,

e(λm) =∑
θ

Φ̌(θ , λTdeg m)θ∗(m),

where the sum is taken over all characters at pole.

Proof We write
e(λm) = e( λTdeg m ⋅ m

Tdeg m ) .

_en m/Tdeg m ∈ U1. Using the Fourier inversion formula,

e(λm) =∑
θ

Φ̌(θ , λTdeg m)θ( m
Tdeg m ) .

From Lemma 3.9 Φ̌(θ , λTdeg m) = 0 for all except ûnitely many θ, and thus the sum
is deûned. _e result is immediate from the deûnition of θ∗.

4 Exponential Sums

Let X and Y be two large integers and suppose Y divides X. Recall that we denote
by S1 the set of squarefreemonic polynomials of degree X whose prime factors are of
degree Y . We want to count the number of solutions to a + b = 2c where a, b, c ∈ S1.
For α ∈ T and a set of polynomials S, we write

(4.1) E(α) = E(α;S) = ∑
m∈S

e(mα).

_en the number of solutions to the equation a + b = 2c with a, b, c ∈ S is

(4.2) N(S) = ∫
T
E(α;S)2E(−2α;S) dα.

_eorem 2.1 can be proved by estimating N(S1). To prove_eorem 2.2 however, we
need to use the inclusion-exclusion principle on S1 as our ûnal step, and thuswe need
to estimate N(S)when S varies over a slightlymore general type of set, that is, the set
S1 si�ed by a small number of primes. We write for squarefreemonic r,

(4.3) Sr = {m ∈ S1 ∶ (m, r) = 1} .

We shall treat all S simultaneously in the next few sections.

4.1 The Hardy–Littlewood Method: Major and Minor Arcs

_emain idea of the Hardy–Littlewoodmethod, or the circlemethod, is to estimate
an exponential sum (over integers) near a rational numberwith a small denominator.
A straightforward analogy on Fq[T] are the rational functions with the small degree
denominator. Some successful applications of this method can be found in [10,14,17].

We start with the following lemma on Diophantine approximation.
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Lemma 4.1 Let α ∈ T and Q be a ûxed positive integer. _en there exist a, g ∈ Fq[T]
such that deg a, deg g ≤ Q and ∣α − a

g ∣ <
1

∣g∣Q̂ .

Proof See [5, Lemma 3.5] or [10,_eorem 4.3].

For a, g ∈ Fq[T], we write

F( a
g
, R̂) = {x ∈ T ∶ ∣x − a

g
∣ < 1

∣g∣R̂
} .

_en the collection of arcs F(a/g , R̂) for (a, g) = 1, deg g ≤ R are disjoint, because,
when ∣α − a1/g1∣ < 1/∣g1∣R̂ and ∣α − a2/g2∣ < 1/∣g2∣R̂,

1
∣g1g2∣

≤ ∣ a1
g1
− a2

g2
∣ ≤ max( ∣α − a1

g1
∣ , ∣α − a2

g2
∣ )

by the strong triangular inequality,which failswhen deg g1, deg g2 ≤ R. _erefore,we
dissect the range T by the disjoint unions of F(a/g , R̂).

Now we deûne the set ofmajor arcs

M = ⋃
a ,g

∣g∣<X̂1/2

M( a
g
) ,

whereM( ag ) = {x ∈ T ∶ ∣x − a
g ∣ <

1
X̂ } , and we deûne the set ofminor arcs by T−M.

_us α ∈ m if and only if α ∈ F(a/g , X̂1/2) and ∣α − a/g∣ ≥ 1/X̂ for some a, g with
∣g∣ ≤ X̂1/2.

4.2 Character Decomposition

In this section, Swill be alwaysS1 orSr for some rwhereSr isdeûned in (4.3). _e goal
of this section is to decompose E(α;S) into character sums. First of all,we decompose
the additive character into the Dirichlet characters. Recall that for (b, g) = 1,

e( b
g
) = 1

φ(g) ∑
χ (mod g)

τ(χ)χ(b).

_en combined with 3.10, we have

e(( a
g
+ γ)m) = 1

φ(g/d) ∑
χ (mod g)

τ(χ)χ(a)∑
θ

Φ̌(θ , γTX)χ(m/d)θ∗(m),

where d = gcd(m, g). For brevity, we write S(d) = {m′ ∶ m′d ∈ S}. _en for α =
a/g + γ, we have

(4.4) E(α) =∑
d ∣g

1
φ(g/d) ∑

χ (mod g/d)
τ(χ)χ(a)∑

θ
Φ̌(θ , γTX)θ∗(d)E(S(d), χθ∗),

where
E(S(d), χθ∗) = ∑

m′∈S(d)
χ(m′)θ∗(m′).
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We remark that if ∣γ∣ ≥ 1/X̂, Φ̌(θ , γTX) = 0 unless θ has a conductor 1/T l+2 for
some l ≥ 0. _erefore all those θ∗ that contribute to the sum (4.4) are nonprincipal
characters if ∣γ∣ ≥ 1/X̂.

4.3 Character Sum Estimate

_e next goal is to estimate E(Sr(d), ξ)when ξ is a congruence character (modRg , l ).
We write κ = κ(X ,Y) ∶= (L(Ŷ))/(LL(X̂)) i.e., Ŷ = L(X̂)κ . _is deûnition is con-
sistent with the previous deûnition (1.4) as the solution a + b = 2c for a, b, c ∈ S1 for
given X, Y is κ(X ,Y).

_e advantage over previous papers is the average estimate over a certain set of
characters. Let X(g , l) be the set of congruence characters (mod Rg , l ). We consider
the set of characters Ξ in either of the forms

Ξ =
⎧⎪⎪⎨⎪⎪⎩

θX(g , l) for some primitive θ (mod 1/T l+2); or
X(g , 0)

(4.5)

which is a typical set of characters that appears in the inner sum (4.4). We write Q =
L(∣Ξ∣) = deg g + l for the ûrst case and Q = deg g for the second case to track the size
of ∣Ξ∣. _e average estimate for character sums for ξ ∈ Ξ in this section depends on Q
but does not depend on the choice of θ, g, and l when theQ-value is the same. Finally,
we use a shorthand notation Ξ′ for the nonprincipal characters in Ξ, i.e., Ξ′ = Ξ for
the ûrst case and Ξ − {χ0,g} for the second case, where χ0,g is the principal character
(mod g).

In this section, we prove the following estimate.

Proposition 4.2 Let d, r be polynomials of degree ≤ X/2 and all prime factors of dr
are of degree Y . Let Ξ be the set of characters of the form (4.5), and Q = deg g + l or
deg g when g, l are as in the deûnition of Ξ. Suppose L(X̂)2 ≤ Ŷ and Q ≤ X/2. We
have

1
∣Ξ∣ ∑ξ∈Ξ′

∣ ∑
m∈Sr(d)

ξ(m)∣ ≤ Q̂−1/κ X̂1/2+O(LL(Ŷ)/L(Ŷ)) .

_e condition on r and d in the proposition appears frequently. _us we deûne

(4.6) D = {d ∈M0 ∶ ϖ ∣ d Ô⇒ ∣ϖ∣ ≤ Ŷ , ∣d∣ ≤ X̂1/2} ,

and for the remainder of this section, we assume r, d ∈ D. It follows that ω(d),
ω(r) ≤ X/2Y , where ω(m) denotes the number of prime factors of m. _us when
Ŷ ≥ L(X̂)2, we have

ω(dr) = X
Y
≤ Ŷ 1/2

L(Ŷ)
.

_erefore, the primes not dividing dr cause little change to the character sums that
we write as the following lemma.
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Lemma 4.3 Let d be a monic polynomial and ξ ∈ Ξ. Suppose ω(d) ≤ Ŷ 1/2/L(Ŷ).
_en

∣ ∑
deg ϖ=Y

ϖ∤d

ξ(ϖ)∣ ≤ (Q + 5) Ŷ 1/2

L(Ŷ)
.

Proof Immediate from _eorem 3.4. We increase the constant by 2, because the
conductor for ξ is at most Q + 1.

_e estimate in Lemma 4.3 is very powerful, and perhaps the bestwe can hope for,
when Q is not too large compared to Y . However, the interesting case in our prob-
lem is when Ŷ is comparable to some power of L(X̂); then if Q̂ is as large as a small
power of X̂,we still have a power savingwhenL(Q̂) ≤ Y 1/2−δ for some δ > 0, but not
as powerful as the square-root cancellation. However, the orthogonality of character,
or the large sieve in more general settings, always ensures the square-root cancella-
tion when you average the (second) moment of character sums over all characters.
Harper observed that when a set is well factorizable, one may incorporate this idea
to produce extra saving over characters. _e following lemma is the interpolation of
this observation combined with theWeil bound estimate.

Lemma 4.4 Let d be a polynomial with ω(d) ≤ Ŷ 1/2/L(Ŷ) and let k be an integer
with k ≤ X/Y . Suppose Q ≤ X/2 and Ŷ ≥ L(X̂)2. We write s = ⌊Q/Y⌋, i.e., the largest
integer satisfying Ŷ s ≤ Q̂. _en we have

1
∣Ξ∣ ∑ξ∈Ξ′

∣ ∑
deg ϖ=Y

ϖ∤d

ξ(ϖ)∣
k
≤
⎧⎪⎪⎨⎪⎪⎩

L(X̂)k−s Ŷ k/2 k ≥ 2s,
O(Ŷ k/2L(X̂)⌈k/2⌉) k < 2s.

Proof Suppose ûrst that k ≥ 2s. _en by Lemma 4.3,

1
∣Ξ∣ ∑ξ∈Ξ′

∣∑
ϖ
ξ(ϖ)∣

k
= 1

∣Ξ∣ ∑ξ∈Ξ′
∣∑

ϖ
ξ(ϖ)∣

2s
∣∑

ϖ
ξ(ϖ)∣

k−2s

≤ 1
∣Ξ∣ ∑ξ∈Ξ′

∣∑
m
a(m)ξ(m)∣

2
((L(Q̂) + 5) Ŷ 1/2

L(Ŷ)
)

k−2s
,

where a(m) is the number of ways to write m as ϖ1 ⋅ ⋅ ⋅ϖs for primes ϖ i (not neces-
sarily distinct). _en a(m) ≤ s! and a(m) is supported on polynomials of degree sY ,
which is at most Q from the construction. _en if m1 and m2 are two monic poly-
nomials of degree at most Q and m1 ≡ m2 (mod Rg , l ), we have m1 = m2. Now we
expand the square and use the orthogonality of characters (mod Rg , l ) to get

1
∣Ξ∣ ∑ξ∈Ξ′

∣∑
m
a(m)ξ(m)∣

2
≤ 1

∣Ξ∣ ∑χ∈Rg , l

∣∑
m
a(m)θ(m)χ(m)∣

2

=∑
m
a(m)2 ≤ s!π(Y)s ,

where θ, g, l are deûned in (4.5), with the convention that θ = 1 when Ξ = X(g , 0).
_en we apply Lemma 3.1 to have π(Y) ≤ Ŷ/L(Ŷ).
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To summarize, we have

1
∣Ξ∣ ∑ξ∈Ξ′

∣∑
ϖ
χ(ϖ)∣

k
≤ s!( Ŷ

L(Ŷ)
)

s
((L(Q̂) + 5) Ŷ 1/2

L(Ŷ)
)

k−2s
.

_en use a crude bound s! ≤ ss ≤ L(X̂)s , drop the powers of L(Ŷ) in the denomina-
tors, and (L(Q̂) + 5)k−2s ≪ L(X̂)k−2s to obtain the desired result.
For s > k/2, if k is even, we split the k-th power into two (k/2)-th powers and use

the orthogonality to have
1
∣Ξ∣ ∑ξ∈Ξ

∣∑
ϖ
ξ(ϖ)∣

k
≤ (k/2)!Ŷ k/2 ≤ L(X̂)k/2Ŷ k/2 ,

which is the desired result; when k is odd, we apply Lemma 4.3 for the single le�over.

If we expand the k-th power in Lemma 4.4, we have the (average) character sums
over k-products of irreducibles, not necessarily distinct, of degree m, and each poly-
nomial is counted with multiplicity up to k!. We expect that the polynomials that are
the products of k distinct polynomials make up themajority, with multiplicity k!. To
prove this claim rigorously, we need the following combinatorial lemma.

Lemma 4.5 Let {x i}n
i=1 be any sequence of complex numbers. We deûne

πk = ∑
1≤i1<i2<⋅⋅⋅<ik≤n

x i1 ⋅ ⋅ ⋅ x ik

to be the sum of products of k distinct x i and sk = ∑i xk
i to be k-th power sum of x i .

Suppose the power sums satisfy ∣s1∣ ≤ a and ∣sk ∣ ≤ b for k ≥ 2. For any k ≤ n,

k!∣πk ∣ ≤∑
r
(k
r
)ar(bk)(k−r)/2 .

_e proof will be given in Section 4.4. Suppose the lemma for the moment, and
we shall prove Proposition 4.2 using Lemmas 4.4 and 4.5.

Proof of Proposition 4.2 Let K = X/Y and write s = ⌊Q/Y⌋. For each char-
acter ξ ∈ Ξ, we shall take our sequence to be {ξ(ϖ)}deg ϖ=Y ,ϖ∤dr . _en ∣s1∣ =
∣∑deg ϖ=Y ,ϖ∤dr ξ(ϖ)∣ and ∣sk ∣ ≤ π(Y) by the trivial estimate. _us,

∣ ∑
m∈Sr(d)

ξ(m)∣ ≤ 1
K!

∣ ∑
(ϖ i)∶distinct K-tuple

ξ(ϖ1ϖ2 ⋅ ⋅ ⋅ϖK)∣

≤ 1
K! ∑k≤K

(K
k
)∣∑

ϖ
ξ(ϖ)∣

k
(π(Y)K)

(K−k)/2
.

Now if we sum over all characters ξ ∈ Ξ′, we use Lemma 4.4 to have

1
∣Ξ∣ ∑ξ∈Ξ′

∣ ∑
m∈Sr(d)

ξ(m)∣ ≤ 1
K!

( ∑
2s≤k≤K

(K
k
)Ŷ k/2L(X̂)k−s (π(Y)K)(K−k)/2

+ ∑
k≤2s

(K
k
)Ŷ k/2L(X̂)⌈k/2⌉ (π(Y)K)(K−k)/2) .
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_e ûrst sum in the parentheses is

≤ 2K ⋅ ŶK/2L(X̂)K−s∑
t≥0

( π(Y)K
ŶL(X̂)2

)
t/2

by the substitution of t = K − s; the second sum is

≤ 2K ⋅L(X̂)1/2 ⋅ 2s ⋅ ŶK/2L(X̂)K/2

using the trivial estimates π(Y) ≤ Ŷ and K ≤ L(X̂). _e leading factor 1/K! ≤
eO(K)/KK = L(X̂)−K X̂O(LL(Ŷ)/L(Ŷ)) , and 2K ,L(X̂), and 2s are absorbed in the error
term. _us, overall,
1
∣Ξ∣ ∑ξ∈Ξ′

∣ ∑
m∈Sr(d)

ξ(m)∣ ≤ L(X̂)−K X̂O(LL(Ŷ)/L(Ŷ)) (ŶK/2L(X̂)K−s + ŶK/2L(X̂)K/2)

and from Q ≤ X/2, s ≤ K/2. _us the second term is less than the ûrst term. By
substituting ŶK = X̂, we have

1
∣Ξ∣ ∑ξ∈Ξ′

∣ ∑
m∈Sr(d)

ξ(m)∣ ≤ X̂1/2+O(LL(Ŷ)/L(Ŷ))
L(X̂)−s ,

as desired.

4.4 Proof of Lemma 4.5

_e proof of Lemma 4.5 is a direct consequence of theNewton–Girard formula in its
matrix form. Let n be ûxed, x i be complex number, and let

πk = ∑
1≤i1<i2<⋅⋅⋅<ik≤n

x i1 ⋅ ⋅ ⋅ x ik

and sk = ∑i xk
i . _en the Newton–Girard formula states that the symmetric polyno-

mial can be evaluated by the determinant of power sums as follows:

k!πk =

RRRRRRRRRRRRRRRRRRRRRRR

s1 1 0 ⋅ ⋅ ⋅ 0
s2 s1 2 0 0
⋮ ⋮ ⋱ ⋱ ⋮

sk−1 sk−2 ⋅ ⋅ ⋅ s1 k − 1
sk sk−1 ⋅ ⋅ ⋅ s2 s1

RRRRRRRRRRRRRRRRRRRRRRR

.

In our application, ∣x i ∣ ≤ 1 for all i and k is smaller than n, but may grow up to some
small power of n. _e main issue here is to ûnd an upper bound of the determinant
uniformly in k. We start with the following observation.

Lemma 4.6 Suppose f is a permutation of {1, . . . , n} satisfying f (i) ≤ i + 1 for all i.
_en f is a product of a disjoint cycle of consecutive numbers (possibly of length 1).

Proof We proceed by induction on n. When n = 1, the result is trivial. Let k be
the least k > 0 such that f k(1) = 1. _en {1, . . . , f i−1(1)} ⊆ {1, . . . , i} for all i ≤ k
and since all f j(1) are distinct for j < k, we have f (i) = i + 1 for i ≤ k − 1 and
f (k) = f k(1) = 1. Now we apply the induction hypothesis for the remaining n − k
terms. Take gk to be the substitution of the ûrst k terms and the remaining terms, i.e.,
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gk(i) = i + (n − k) for i ≤ k and gk(i) = i − k for i > k. _en applying the induction
hypothesis on gk f g−1

k ∣{1, . . . ,n−k} proves the lemma.

_en Lemma 4.5 follows immediately from the next lemma.

Lemma 4.7 Suppose A = (x i j) is the n by n matrix satisfying x i j = 0 for j > i + 1.
Let ∣x i i ∣ ≤ a, and suppose ∣x i j ∣ ≤ b for i < j, ∣x i j ∣ ≤ c for i = j+ 1 for some b, c ≥ 2. _en
if b ≥ 3c, detA≪ ∑0≤s≤n (n

s)a
s(bc) n−s

2 , where the implied constants are absolute.

Proof Since x i j = 0 for j > i + 1,

detA = ∑
σ∈Sn

σ(i)≤i+1

sgn(σ)x1σ(1) ⋅ ⋅ ⋅ xnσ(n) .

Let Sr ,s be the set of permutation σ such that σ(i) ≤ i + 1. _e cycle decomposi-
tion of σ consists of r cycles, including trivial ones, and σ(i) = i has s solutions. By
Lemma 4.6, each cycle consists of consecutive numbers, and

∣x i , i+1 ⋅ ⋅ ⋅ x i+ j−1, i+ j x i+ j, i ∣ ≤ bc j ,

i.e., each nontrivial cycle of length j contributes bc j−1. _erefore. if σ ∈ Sr ,s ,

∣x1σ(1) ⋅ ⋅ ⋅ xkσ(k)∣ ≤ asbr−sck−r .

By Lemma 4.6, ∣S i j ∣ is determined by the length of each cycle, say a1 , a2 , . . . , ar ,where
exactly s of these variables are equal to 1. _erefore ∣Sr ,s ∣ is equal to the number of
positive integer solutions to the equation a1 + ⋅ ⋅ ⋅ + ar = k when exactly s of these are
equal to 1. By simple combinatorics, when s ≤ r and 2(r − s) + s ≤ k, we have

∣Sr ,s ∣ = (r
s
) ⋅ ((r − s) + (k − s − 2(r − s)) − 1

(k − s − 2(r − s)) ) = (r
s
)( k − r − 1

k − 2r + s
)

≤ (k
s
) ⋅ 2k−r

Fixing s and summing over r, we have

∑
r
∣Sr ,s ∣asbr−sck−r ≤ (k

s
)asb−s(2c)k ∑

s≤r≤(k+s)/2
br(2c)−r

≪ (k
s
)asb[

k+s
2 ]−s(2c)k−[ k+s

2 ] = (k
s
)as(bc) k−s

2

if b ≥ 3c. _erefore, summing over s, ∣detA∣ ≪ ∑k
s=0 (k

s)a
s(bc)(k−s)/2, as desired.

5 Estimate for E(α)
Let S be S1 or Sr for some r ∈ D, where D is deûned in (4.6), and E(α) = E(α;S)
denotes the exponential sum deûned in (4.1). In this section, we combine the charac-
ter decomposition of E(α) in (4.4) and the estimate in Proposition 4.2 to produce an
estimate for E(α) near rational polynomials.
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Proposition 5.1 Let α = a/g + γ, where ∣g∣ ≤ X̂1/2, ∣γ∣ ≤ 1/(∣g∣X̂1/2), and є > 0. _en
when Y is suõciently large and Y ≥ L(X̂)2, E(α) = M(α) + O(X̂3/4−1/(2κ)+є), where
M(α) is nonzero only when ∣γ∣ < 1/X̂, and is equal to

(5.1) M(α) = e(γTX)∑
d ∣g

µ(g/d)
φ(g/d) ∣S(d)∣ ( ∣γ∣ < 1

X̂
)

and κ = κ(X ,Y) = L(Ŷ)/L(L(X̂)).

_emain improvement of this paper is the extra saving on the exponent by 1/(2κ);
for instance,when κ = 6+o(1) and for largeY (and thus for large X), the error estimate
is O(X̂2/3+o(1)). We separate the principal character terms in (4.4), let M(α) be those
terms involving principal characters (χ = χ0,g/d for d ∣ g and θ = 1), and let R(α) be
the nonprincipal parts. _en E(α) = M(α) + R(α), where

M(α) =∑
d ∣g

τ(χ0,g/d)
φ(g/d) Φ̌(1, γTX)∣S(d)∣

and χ0,g/d is the principal character (mod g/d).

Proof of Proposition 5.1 From Lemma 3.6 we have τ(χ0,g/d) = µ(g/d) and from
Lemma 3.9, Φ̌(1, γTX) = e(γTX) if ∣γ∣ < 1/X̂, and 0 otherwise. _erefore, if α ∈M,

M(α) = e(γTX)∑
d ∣g

µ(g/d)
φ(g/d) ∣S(d)∣

as desired. _e remainder R(α) can be considered in two cases. If α ∈ M, then
Φ̌(θ , γTX) = 0 unless θ is trivial, and τ(χ) ≤

√
∣g/d∣ from Lemma 3.6. _us we have

∣R∣ ≤∑
d ∣g

√
∣g/d∣

φ(g/d) ∑
χ (mod g/d)
χ/=χ0,g/d

∣ ∑
m∈S(d)

χ(m)∣ .

If α ∈ m, we write ∣γTX ∣ = q l for some l ≥ 0. From Lemma 3.9, there is
θγ ∈ Û1/U l+2 such that Φ̌(θ , γTX) is nonzero if and only if θ ∈ θγÛ1/U l+1, and
Φ̌(θ , γTX) = ∣γTX ∣−1/2 when α ∈ m and θ ∈ θγÛ1/U l+1. In such case, the products
of characters χθ∗ in the sum (4.4) run over θ∗γX(g/d , l) where θ∗γ is a congruence
character (mod 1/T l+2) induced by θγ . _us we have

∣R∣ ≤∑
d ∣g

1
φ(g/d) ∑

χ (mod g/d)
θ∈θγ Û1/U l+1

∣τ(χ)∣ ∣Φ̌(θ , γTX)∣ ∣ ∑
m∈S(d)

χ(m)θ∗(m)∣

≤ 1√
∣γTX ∣

∑
d ∣g

√
∣g/d∣

φ(g/d) ∑ξ∈Ξ
∣ ∑
m∈S(d)

ξ(m)∣

= ∣γTX ∣1/2∣g∣1/2∑
d ∣g

1
∣d∣1/2∣Ξ∣ ∑ξ∈Ξ

∣ ∑
m∈S(d)

ξ(m)∣ ,

where Ξ = θ∗γX(g/d , l) (and we used ∣Ξ∣ = φ(g/d)∣γTX ∣).
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Wemay apply Proposition 4.2 in either case, and when Y is large,

∣R∣ ≪ max(1, ∣γTX ∣)1/2∣g∣1/2∑
d ∣g

∣d∣−1/2 X̂1/2+O(LL(Ŷ)/L(Ŷ))∣ g
d
∣−1/κ(1 + ∣γTX ∣)−1/κ

≤ max(1, ∣γTX ∣)1/2−1/κ ∣g∣1/2−1/κ(∑
d ∣g

∣d∣1/κ−1/2) X̂1/2+є/2 ,

where κ = κ(X ,Y) = L(Ŷ)/L(L(X̂)). _e inner sum on d∣g is bounded by ∣g∣є
and since ∣g∣max(1, ∣γTX ∣) ≤ Q̂ and Q̂ ≤ X̂1/2, R ≪ X̂3/4−1/(2κ)+є , which ûnishes the
proof.

6 Proof of Theorem 2.1

Nowwe prove themain theorem. Indeed,we prove a stronger theorem, and_eorem
2.1 follows directly from the following proposition.

Proposition 6.1 Let Y be a suõciently large integer, κ > 6, and let X be an integer
that is a multiple of Y and satisfying L(X̂)κ ≤ Ŷ . Let r be a squarefree polynomial of
degree at most X/2 whose prime factors are of degree Y . _en the number of solutions
to a + b = 2c with a, b, c ∈ Sr is

N(Sr) =S
∣Sr ∣3

X̂
( 1 + O( 1

Ŷ 1/2
)) ,

where the singular series S is deûned by

S =∏
ϖ
( 1 − 1

(∣ϖ∣ − 1)2 )

and the product is taken over all monic irreducibles.

We ûrst need a rough estimate on ∣Sr(d)∣ .

Lemma 6.2 Let d, r be monic squarefree polynomials of degree at most X/2 and all
prime factors are of degree Y . Suppose Ŷ ≥ L(X)2 and let κ = κ(X ,Y) be such that
Ŷ = L(X̂)κ . _en ∣Sr(d)∣ ≪ ∣Sr ∣ ∣d∣−1+1/κ .

Proof LetK = X/Y . If (r, d) > 1, thenSr(d) is empty and the result is clear. Suppose
(r, d) = 1. _en

∣Sr(d)∣ = (π(Y) − ω(r) − ω(d)
K − ω(d) ) = ∣Sr ∣ ⋅ (

π(Y) − ω(r) − ω(d)
K − ω(d) )/(π(Y) − ω(r)

K
)

= ∣Sr ∣ ∏
0≤ j<ω(d)

( K − j
π(Y) − ω(r) − j

) .

Since ∣d∣ ≤ X̂1/2, we have ω(d) ≤ X/2Y ≤ K/2 and ω(r) ≤ K/2. Since K2 = O(π(Y))
and Ŷ ≥ L(X̂)2, the denominator is

∏
0≤ j<ω(d)

(π(Y) − ω(r) − j) = π(Y)ω(d)eO(ω(d)ω(rd)/π(Y)) ≫ π(Y)ω(d) .
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_e numerator is less than Kω(d), and thus ∣Sr(d)∣ ≪ ( K
π(Y)

)ω(d)∣Sr ∣. We have

K
π(Y) = L(X̂)

L(Ŷ)π(Y)
= Ŷ−1+1/κ( 1 + O(Ŷ−1/2))

by 3.1. _us by taking ω(d)-th power,

( K
π(Y))

ω(d)
= ∣d∣−1+1/κ eO(ω(d)/Ŷ 1/2) ≪ ∣d∣−1+1/κ

because ω(d) ≤ K/2 ≤ Ŷ 1/2 when κ ≥ 2. _erefore, ∣Sr(d)∣ ≪ ∣Sr ∣ ∣d∣−1+1/κ as desired.

_roughout this section, let є > 0 and suppose Y is suõciently large according to
є, and L(X̂)2 ≤ Ŷ . _eminor arc contribution of the integral (4.2) is

∫
m
∣E(α)∣2∣E(−2α)∣ dα ≤ X̂3/4−1/(2κ)+є ∫

T
∣E(α)∣2 dα ≪ ∣S∣X̂3/4−1/(2κ)+є .

Now we handle themain term M and ûnd the contribution of

∫
M

M(α)3M(−2α) dα.

When α ∈ M(a/g), let

M0(g) = M(a/g) = M(α)e(−γTX) =∑
d ∣g

µ(g/d)
φ(g/d) ∣S(d)∣,

which depends only on g, but not on a and γ. We have

∫
M

M(α)2M(−2α) dα = ∑
∣g∣<Q̂

∑
(a ,g)=1

∫
M(a/g)

M0(g)3 dα(6.1)

= 1
X̂
∑

∣g∣<Q̂
φ(g)M0(g)3 .

_us themajor arc contribution is understood through M0(g).
For simplicity, we write PY = ∏deg ϖ=Y ϖ. We observe that ∣S(d)∣ is nonzero only

when d divides PY . _us ifwewrite g = g1g2 so that (g1 , PY) = 1 and all prime factors
of g2 divide PY , we have

M0(g) =
µ(g1)
φ(g1)

∑
d ∣g2

µ(g2/d)
φ(g2/d)

∣S(d)∣.

If g2 has a cube factor, either µ(g2/d) or ∣S(d)∣ vanishes, andM0 = 0. Otherwise, we
can write g2 = g2

3 g4 with g3, g4 both squarefree; then we require d to be amultiple of
g3. _us

M0 =
µ(g1)
φ(g1)

µ(g3)
φ(g3)

∑
d ∣g4

µ(g4/d)
φ(g4/d)

∣S(g3d)∣.

We use a few estimates for classical functions in our case. When m∣PY ,
φ(m)
∣m∣ ≥ ∏

∣ϖ∣=Ŷ
( 1 − 1

∣ϖ∣ ) = ( 1 − 1
Ŷ
)

π(Y)

≫ 1
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and thus φ(m) ≍ m. Also, when m∣PY with ω(m) ≤ X/2Y = Ŷ 1/κ/2L(Ŷ), and for
any v ≥ 1/κ,

∑
d ∣m

1
∣d∣v = ( 1 + 1

∣ϖ∣v )
ω(m)

≤ exp( Ŷ 1/κ−v/L(Ŷ)) ≪ 1,

and thus∑d ∣m ∣d∣v = ∣m∣v ∑d ∣m ∣d∣−v ≍ ∣m∣v .
Combined with Lemma 6.2, we have

M0/∣S∣ ≪
µ2(g1)
φ(g1)

⋅ 1
∣g3∣

∑
d ∣g4

1
∣g4/d∣∣g3d∣1−1/κ = µ2(g1)

φ(g1)
1

∣g3∣2−1/κ ∣g4∣
∑
d ∣g4

∣d∣1/κ

≪ µ2(g1)
φ(g1)

1
∣g3∣2−1/κ ∣g4∣1−1/κ ≤ µ2(g1)

φ(g1)
1

∣g2∣1−1/κ ,

because g3g4∣PY .
_en by writing g = g1g2 and splitting g2 = 1 and ∣g2∣ ≥ Ŷ , (6.1) becomes

∫
M

M(α)2M(−2α) dα = 1
X̂

∑
∣g1 ∣<Q̂

(g1 ,PY)=1

µ(g1)
φ(g1)2 ∣S∣

3

+ O( ∣S∣3

X̂
∑

∣g1 ∣<Q̂
(g1 ,PY)=1

µ2(g1)
φ(g1)2 ∑

Ŷ≤∣g2 ∣<Q̂/∣g1 ∣
ϖ∣g2⇒ϖ∣PY

φ(g2)
∣g2∣3−3/κ )

_e inner sum over g2 can be simpliûed to O(Ŷ−1+3/κ) when κ > 3, and thus the
major arc contribution becomes O( ∣S∣3

X̂ ⋅ Ŷ−1+3/κ). Also,

∑
∣g1 ∣<Q̂

(g1 ,PY)=1

µ(g1)
φ(g1)2 =S + O( 1

Ŷ
) ,

where the singular series S is deûned byS =∏ϖ( 1 − 1
(∣ϖ∣−1)2 ) , where the product is

taken over all primes.
_us if κ > 3,

∫
M

M3 dα = S∣S∣3

X̂
( 1 + O( 1

Ŷ
+ 1
Ŷ 1−3/κ

)) .

_us

∫ E(α)2E(−2α) dα =S
∣S∣3

X̂
( 1 + O( 1

Ŷ 1−3/κ
)) + O(X̂3/4−1/2κ+є ∣S∣).

_en themain term dominates the error term when ∣S∣ = X̂1−1/κ+o(1) > X̂7/8−1/4κ+є/2.
_us when κ ≥ 6 + δ and Y is large, we have

N(S) =S
∣S∣3

X̂
( 1 + O( 1

Ŷ 1/2
))

as desired.
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7 Proof of Theorem 2.2

To impose the coprimality condition on a + b = 2c, we use the sieve argument on
solutions. Let є be given and Y be suõciently large. In previous sections, the variable
X does not vary from line to line and we omitted the implied dependency on Sr ; in
this section, we clarify the dependency of X on Sr . We write for any integer Z,

S
(Z)
1 = {m ∈M0 ∶ degm = Z ,ϖ∣mÔ⇒ degϖ = Y} ,

where M0 is the set of squarefree monic polynomials, and similar to the previous
notation, S(Z)

r denotes the m ∈ S(Z)
1 such that (m, r) = 1. It can be shown from the

deûnition that for given r ∈ S1, the set of elements in S1 divisible by r would be

(7.1) S
(X)
1 (r) = r ⋅ S(X−ω(r)Y)

r .

As they appear frequently, we write Xr = X − ω(r)Y for simplicity. _e following
lemma is immediate.

Lemma 7.1 Let r be a monic squarefree polynomial of degree at most X/2 and all
prime factors of r are of degree Y . _en, for Ŷ ≥ L(X̂)2 , ∣S(Xr)

r ∣ ≪ ∣S(X)
1 ∣ ∣r∣−1+1/κ .

Proof Immediate from Lemma 6.2 and (7.1).

Let r be a given squarefree polynomial all of whose prime factors are of degree
Y and we count the number of solutions to a + b = 2c with a, b, c ∈ S

(X)
1 , and

r ∣ gcd(a, b, c). _en by writing a = ra′, b = rb′, and c = rc′, the number of solutions
to a + b = 2c is equal to that of a′ + b′ = 2c′, where all variables are now from S

(Xr)
r .

When ω(r) ≤ K/2, the condition L(X̂r) ≤ Ŷ 1/κ is satisûed when L(X̂) ≤ 2Ŷ 1/κ .
_us Proposition 4.2 remains to hold for κ > 6 and all suõciently large Y . _us, the
number of solutions is

N(S(Xr)
r ) =S

∣S(Xr)
r ∣ 3

X̂r
( 1 + O( 1

Ŷ 1/2
)) .

By Lemma 7.1, we have N(S(Xr)
r ) ≪ ∣r∣−2+3/κ ⋅ ∣S(X)

1 ∣3/X̂.
Nowwhen N∗(S) denotes the number of primitive solutions,we have the estimate

N∗(S(X)
1 ) = ∑

r∣PY

µ(r)N(S(Xr)
r ) ≥ N(S(X)

1 ) − ∑
∣ϖ∣=Ŷ

N(S(Xϖ)
ϖ ) .

_erefore, N(S(X)
1 ) − N∗(S(X)

1 ) ≪ π(Y)Ŷ−2+3/κN(S(X)
1 ) ≪ Ŷ−1/2N(S(X)

1 ), which
ûnishes the proof.

8 Proof of Theorem 1.1 and Theorem 1.3

We ûnally show that _eorem 2.2 implies _eorem 1.1 and _eorem 1.3. Let Y be a
large integer, and κ > 6 be given. Take X to be the smallest integer that is multiple
of Y and Ŷ ≤ L(X̂)κ and H = X. From the deûnition of A(κ) in (1.5), we have
A(κ) ∩ B(H) ⊇ N∗(S(X)

1 ). _en for any є > 0 and κ > 6, we have #A(κ) ∩ B(H) ≥
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Ĥ2−3/κ−є and #B(H) ≤ Ĥ3, when Y is suõciently large. _us, the set in the deûnition
of (1.6) contains every κ > 6, and it follows that κnew

0 ≤ 6, which proves _eorem 1.3.
When S is the set of irreducible polynomials of degree up to Y , we have

∣S∣ = ∑
Z≤Y

π(Z) ≤ ∑
Z≤Y

qZ

Z
≤ ∑

Y/2<Z≤Y

qZ

Z
+ O( Ŷ 1/2) ≤ 2

Y
q

q − 1
Ŷ + O( Ŷ 1/2) ,

and thus when Y is large, ∣S∣ ≤ Ŷ . Let κ > 6 and 0 < є ≤ (κ − 6)/2 be small, and
let Y be suõciently large, which depends on κ and є. Let X be the least integer that
is a multiple of Y and L(X̂)κ−є ≥ Ŷ . _en the number of solutions to the S-unit
equation is at least N∗(S1). _en N∗(S1) ≥ q(2−3/(κ−є)−є)Ŷ 1/(κ−є) ≥ qŶ

1/κ ≥ q∣S∣
1/κ
for

all suõciently large Y .
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