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Introduction

This introduction aims to present the principal actors of the book and to
explain the main results of our monograph. We begin with the question about
transcendence of periods of integrals of 1-forms over closed or non-closed
paths. Historically integrals over non-closed paths were not considered as
periods. The change came from looking at them in the relative cohomology.
This leads us to distinguish between complete and incomplete periods.

The order of topics presented here does not follow the order in the main
text but is, we hope, designed to help those readers without a background in
transcendence.

1.1 Transcendence

The vector space P1 over Q of one-dimensional periods, complete or incom-
plete, has a number of different descriptions. In the most elementary situation
its elements are given by the period integrals

α = ∫
σ
ω,

where

● X is a smooth projective curve over Q;
● ω is a rational differential form on X;
● σ = ∑

n
i=1 aiγi is a chain in the Riemann surface Xan defined by X which

avoids the singularities of ω and has boundary divisor ∂σ in X(Q); in
particular γi ∶ [0,1] → Xan is a path and ai ∈ Z.

This set includes many interesting numbers like 2πi, logα for algebraic α and
the periods of elliptic curves over Q. We study their transcendence properties.
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2 Introduction

The case of complete periods in the general case, i.e. X and ω arbitrary,
γ closed, was settled in 1986 by the second author in [Wüs87]: if a period
is non-zero, it is transcendental. Both cases can arise. A simple example is a
hyperelliptic curve whose Jacobian is isogenous to a product of two elliptic
curves. Then 8 of the 16 standard periods are 0. The others are transcendental.

When X is an elliptic curve we refer the reader to [BW07, Section 6.2] for
the case of incomplete periods. The general case has been described as an open
problem in [Wüs84a]. Often the values are transcendental, e.g. ∫

2
1 dz/z = log 2,

but certainly not always, e.g. ∫
2

0 dz = 2. Again, it is not difficult to write down
a list of simple cases in which the period is a non-zero algebraic number.
However, it was not at all clear whether the list was complete and what the
structure behind the examples was; see [Wüs12]. The answer that we give now
is surprisingly simple:

Theorem 1.1 (Theorem 13.9). Let α = ∫σω be a one-dimensional period on
X. Then α is algebraic if and only if

ω = d f +ω′,

where f ∈ Q(X)∗ and ∫σω
′ = 0 with ω′ a form with no extra poles.

The condition is clearly sufficient because the integral evaluates to

∑
i

ai( f (γi(1)) − f (γi(0))) ∈ Q

in this case.
Theorem 13.9 gives a complete answer to two of the seven problems listed

in Schneider’s book [Sch57, p. 138], 1 2 open for more than 60 years. We even
include periods of abelian integrals of the third kind.

1.2 Relations Between Periods

Questions on transcendence can be viewed as a very special case of the ques-
tion on Q-linear relations between 1-periods: a complex number is transcen-
dental if it is Q-linearly independent of 1. The most general problem of this
kind is to determine the dimension of the period space generated over Q by
the periods of all rational 1-forms of an algebraic variety. It is easy to give an
upper bound for this dimension in terms of cohomological data. The problem

1 Problem 3. Es ist zu versuchen, Transzendenzresultate über elliptische Integrale dritter
Gattung zu beweisen.

2 Problem 4. Die Transzendenzsätze über elliptische Integrale erster und zweiter Gattung sind in
weitestmöglichem Umfang auf analoge Sätze über abelsche Integrale zu verallgemeinern.
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is then to decide whether the upper bound is the correct number or whether
there are linear relations between periods.

This fundamental question will be one of the central topics in this mono-
graph. We establish a complete description of the linear relations between (not
necessarily complete) periods for all rational differential forms of degree 1. It is
crucial to use here the more conceptual descriptions of P1 either as periods in
cohomological degree 1 or as cohomological periods of curves, or even better
periods of 1-motives.

The following theorem gives a first answer. It establishes Kontsevich’s ver-
sion of the Period Conjecture for P1 and furnishes a qualitative description of
the period relations.

Theorem 1.2 (Kontsevich’s Period Conjecture for P1, Theorem 13.3). All
Q-linear relations between elements of P1 are induced by bilinearity and
functoriality of pairs (C,D) where C is a smooth affine curve over Q and
D ⊂ C a finite set of points over Q.

The conjecture has an alternative formulation in terms of motives. In fact, we
deduce Theorem 1.2 from the motivic version below, together with the result
of Ayoub and Barbieri-Viale in [ABV15] which says that the subcategory of
MMeff

Nori generated by H∗(C,D) with C of dimension at most 1 agrees with
Deligne’s much older category of 1-motives; see [Del74].

Every 1-motive M has a singular realisation Vsing(M) and a de Rham
realisation VdR(M). They are linked via a period isomorphism

Vsing(M) ⊗Q C ≅ VdR(M) ⊗Q C.

There is a well-known relation between curves and 1-motives provided by the
theory of generalised Jacobians. From this fact we see that the set P1 has
another alternative description as the union of the images of the period pairings

Vsing(M) × V∨
dR(M) → C

for all 1-motives M over Q.

Theorem 1.3 (Period Conjecture for 1-motives, Theorem 9.10). All Q-linear
relations between elements of P1 are induced by bilinearity and functoriality
for morphisms of iso-1-motives over Q.

This theorem does not say anything about the actual dimension of the period
space. We need a quantitative answer. In other words the space of relations has
to be determined. It turns out that finding the answer is rather difficult in some
cases.
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1.3 Dimensions of Period Spaces

The above qualitative theorems can be refined into an explicit computation of
the dimension δ(M) of the Q-vector space generated by the periods of a given
1-motive M. The result depends on the subtle and very unexpected interplay
between the constituents of M.

Not only for the proofs, but also for the very formulation of the dimension
formulas, we rely on the theory of 1-motives introduced by Deligne; see
[Del74]. They form an abelian category that captures all cohomological prop-
erties of algebraic varieties in degree 1, including all one-dimensional periods.

We review the basics: a 1-motive over Q is a complex M = [L → G], where
G is a semi-abelian variety over Q and L is a free abelian group of finite rank.
The map is a group homomorphism. As mentioned earlier, every 1-motive has
de Rham and singular realisations, and a period isomorphism between them
after extension of scalars to C.

If C is a smooth curve over k, D ⊂ C a finite set of Q-points, then there
is a 1-motive M1(C) such that Hsing

1 (Can,D;Q) agrees with the singular
realisation of M1(C), and H1

dR(C,D)∨ agrees with the de Rham realisation of
M1(C). Hence the periods of the pair (C,D) agree with the periods of M1(C).
Explicitly, M1(C) = [Z[D]0 → J(C)], where J(C) is the generalised Jacobian
of C and Z[D]0 means divisor of degree 0 supported on D.

We denote by P(M) the image of the period pairing for M and by P⟨M⟩

the abelian group (or, equivalently, Q-vector space) generated by P(M) ⊂ C.

We fix a 1-motive M = [L → G], with G an extension of an abelian variety
A by a torus T and L a free abelian group of finite rank. For the definition of
its singular realisation Vsing(M) and its de Rham realisation V∨

dR(M), we refer
the reader to Chapter 8.

The weight filtration on M, explicitly given by

[0→ T ] ⊂ [0→ G] ⊂ [L→ G],

induces

Vsing(T) ↪ Vsing(G) ↪ Vsing(M)

and dually

V∨
dR(M) ↩ V∨

dR ([L→ A]) ↩ V∨
dR ([L→ 0]) .
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Together, they introduce a bifiltration

P⟨T ⟩
� � // P⟨G⟩

� � // P⟨M⟩

P⟨A⟩
� � //

?�

OO

P⟨[L→ A]⟩
?�

OO

P⟨[L→ 0]⟩
?�

OO

on P⟨M⟩.

We introduce the following notation and terminology:

PTa(M) = P⟨T ⟩ Tate periods,

P2(M) = P⟨A⟩ 2nd kind wrt closed paths,

Palg(M) = P⟨[L→ 0]⟩ algebraic periods,

P3(M) = P⟨G⟩/(PTa(M) + P2(M)) 3rd kind wrt closed paths,

Pinc2(M) = P⟨[L→ A]⟩/(P2(M) + Palg(M)) 2nd kind wrt non-cl. paths,

Pinc3(M) = P⟨M⟩/(P3(M) + Pinc2(M)) 3rd kind wrt non-cl. paths,

where wrt and non-cl. are abbreviations for ‘with respect to’ and ‘non-closed’.
After choosing bases, we can organise the periods into a period matrix of the
form

⎛
⎜
⎝

PTa(M) P3(M) Pinc3(M)

0 P2(M) Pinc2(M)

0 0 Palg(M)

⎞
⎟
⎠
.

The contribution of PTa(M) (multiples of 2πi) and Palg(M) (algebraic num-
bers) is readily understood. Note that the off-diagonal entries are only well
defined up to periods on the diagonal. This can also be seen in the case of
Baker periods, which are contained in Pinc3(M) for special M. The value of
logα depends on the chosen path and is only well defined up to multiples
of 2πi. The total dimension is obtained by adding up these dimensions. In
particular, we have, for example,

P⟨[L→ A]⟩ ∩ P⟨[0→ G]⟩ = P⟨[0→ A]⟩.

The complete result takes a rather complicated form. In order to state it we
write δ(M) = dimP⟨M⟩ and δ?(M) = dimP?(M) for the different entries of
the period matrix. If B is a simple abelian variety, g(B) will be its genus and
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e(B) the Q-dimension of End(B)Q. We also need the invariants rkB(L,M),
rkB(T,M) as introduced in Notation 15.2.

Theorem 1.4 (Corollary 16.4, Proposition 16.5). The following always holds:

δ(M) = δTa(M) + δ2(M) + δalg(M) + δ3(M) + δinc2(M) + δinc3(M).

1. All Tate periods are Q-multiples of 2πi. All algebraic periods are in Q. In
particular, δTa(M) and δalg(M) take the values 0 or 1, depending on the
(non)-vanishing of T and L.

2. We have

δ2(M) = ∑
B

4g(B)2

e(B)
,

where the sum is taken over all simple factors of A, without multiplicities.
3. We have

δ3(M) = ∑
B

2g(B)rkB(L,M),

δinc2(M) = ∑
B

2g(B)rkB(T,M).

The special case A = 0 gives Baker’s Theorem. The most interesting and
hardest contribution is Pinc3(M). The computation of this contribution was
not possible without the methods that we develop here. Up to particular cases
the formulas for the other contributions were not in the literature either. For
an overview see, for example [BW07, Section 6.2], [Wüs84a, Wüs12] and
[Wüs21].

The formula for Pinc3(M) simplifies in the case of motives that we call
saturated; see Definition 15.1.

Theorem 1.5 (Theorem 15.3). If M = M0 × M1 is the product of a Baker
motive M0 = [L0 → T0], i.e. with vanishing abelian part, and a saturated motive
M1 = [L1 → G1], then

δinc3(M) = rkgm(L,M1) +∑
B

e(B)rkB(G1,M1)rkB(L1,M1).

Fortunately, by Theorem 15.3 (2) the periods of a general motive are always
included in the period space of M0 × Msat with M0 of Baker type (A0 = 0) and
Msat saturated.

There is a precise recipe for δinc3(M) for any 1-motive M. It is spelt out in
Chapter 17, in particular Theorem 17.8. See also Chapter 11 for examples of
elliptic curves without and with CM.
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1.4 Method of Proof 7

1.4 Method of Proof

As in the case of closed paths, the main ingredient of our proof (and the
only input from transcendence theory) is the Analytic Subgroup Theorem of
[Wüs89]. We give a reformulation as Theorem 6.2: given a smooth connected
commutative algebraic group over Q and u ∈ Lie(Gan) such that expG(u) ∈

G(Q), there is a canonical short exact sequence

0→ G1 → G
π
Ð→ G2 → 0

of algebraic groups over Q such that Ann(u) = π∗(coLie(G2)) and u ∈

Lie(Gan
1 ). Here Ann(u) ⊂ coLie(G) is the largest subspace such that

⟨Ann(u),u⟩ = 0 under the canonical pairing.
Given a 1-motive M, Deligne constructed a vector extension M♮ of G such

that VdR(M) = Lie(M♮). This is the group to which we apply the Subgroup
Theorem.

Theorem 1.6 (Subgroup Theorem for 1-motives, Theorem 9.7). Given a
1-motive M over Q and u ∈ Vsing(M), there is a short exact sequence
of 1-motives up to isogeny

0→ M1
i
Ð→ M

p
Ð→ M2 → 0,

such that Ann(u) = p∗V∨
dR(M2) and u ∈ i∗Vsing(M1). Here Ann(u) ⊂ V∨

dR(M)

is the left kernel under the period pairing. The sequence is uniquely determined
by these properties.

Given a pair of non-zero u ∈ Vsing(M) and ω ∈ V∨
dR(M) with vanishing

period, the theorem provides a proper submotive M1 of M such that u = i∗u1

for u1 ∈ Vsing(M1) and ω = p∗ω2 for ω2 ∈ V∨
dR(M2). Any Q-linear relation

between periods can be translated into the vanishing of a period. Then the
Subgroup Theorem for 1-motives is applied.

As a by-product, we also get a couple of new results on 1-motives over Q:
they are a full subcategory of the category of Q-Hodge structures over
Q (see Proposition 8.17) and of the category of (non-effective) Nori motives
(see Theorem 13.5) and of the category (Q,Q)-Vect of pairs of vector
spaces together with a period matrix. The last statement was also obtained
independently by Andreatta, Barbieri-Viale and Bertapelle; see [ABVB20].
The case of Hodge structures has just recently been considered by André in
[And21]. He proves that the functor from 1-motives into Q-Hodge structures
is fully faithful for all algebraically closed fields k ⊂ C.

https://doi.org/10.1017/9781009019729.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019729.001


8 Introduction

1.5 Why 1-Motives?

This seems the right moment to address the question of whether our emphasis
on 1-motives is necessary. We think that the answer is yes.

Obviously, all proofs using 1-motives could be rewritten in terms of
commutative algebraic groups because this is how the Subgroup Theorem for
1-Motives itself is deduced. However, the dimension formulas depend on the
constituents of the 1-motive and do not admit a transparent formulation in
terms of the constituents of the algebraic group.

More generally, 1-motives are the link between the classical objects of
transcendence theory à la Lindemann, Schneider or Baker and the structural
predictions linked with Grothendieck, André or Kontsevich.

1.6 The Case of Elliptic Curves

The above results are very general and depend on a subtle interplay between
the data. It is a non-trivial task to make them explicit in particular examples.
We have carried this out to some extent in the case of an elliptic curve E defined
over Q.

Recall the Weierstraß ℘-, ζ- and σ-functions for E. We obtain the following
result.

Theorem 1.7 (Theorem 18.6). Let u ∈ C be such that ℘(u) ∈ Q and expE(u)
is non-torsion in E(Q). Then

uζ(u) − 2 logσ(u)

is transcendental.

This is an incomplete period integral of the third kind. The proof of the
above result is actually not a direct consequence of Theorem 1.1 but rather
uses the insights of our dimension computations.

We also carry out the dimension computation in this case: let M = [L → G]

with L ≅ Z, G an extension of E byGm that is non-split up to isogeny, LQ → EQ
injective. Then by Propositions 11.1 and 11.3,

dimP⟨M⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

11 E without CM,

9 E CM.

The incomplete periods of the third kind become more difficult already if we
consider M = [L→ G] with L ≅ Z2, G an extension of E byG2

m, again LQ → EQ
injective and G completely non-split up to isogeny. If E does not have CM, then
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1.7 Values of Hypergeometric Functions 9

dimP⟨M⟩ = 18.

If E is CM, then

dimP⟨M⟩ = 16,14,12,10,

depending on the interplay of the complex multiplication and L and G.
The extreme case occurs when End(M) is the CM-field. Then the resulting
dimension is 10.

1.7 Values of Hypergeometric Functions

Euler had already known that the hypergeometric function F(a,b, c; z) can be
written as a quotient of two integrals. If a,b, c are rational numbers, these
integrals can be regarded as periods on certain explicit algebraic curves.
Knowledge about Q-linear indepdendence of periods then translates into
transcendence statements for the values F(a,b, c;λ) for λ ∈ Q ∖ {0,1}. This
insight is exploited by Wolfart in [Wol88] and by Chudnovsky–Chudnovsky in
[CC88]. We explain the argument in detail for a = b = 1/2 and c = 1:

Proposition 1.8 (Proposition 19.3). The value F(1/2,1/2,1; z) of the hyper-
geometric function is transcendental for z ∈ Q ∖ {0,1}.

The proposition follows from the Q-linear independence of π and the
complete periods of elliptic curves established first by Schneider in 1936; see
[Sch37, Satz IIIa].

In the case of general a,b, c ∈ Q with least common denominator N, the
Euler integrals can be seen as periods for the algebraic curve with affine
equation

yN = xr(1 − x)s(1 − λx)t

for suitable r, s, t. For the formula in the case of N = p a prime, see Propo-
sition 19.19. These curves have been intensely studied. Using results of
Gross–Rohrlich [GR78], Archinard [Arc03b] and Asakura–Otsubo [AO18],
we work out another example.

Theorem 1.9 (Corollary 19.22). Let p be a prime such that p ≢ 1 mod 3,
1 ≤ n ≤ p−1. Let 0 < r, s < p such that p does not divide r+ s, put t = p− s and

u = [
nr
p
] , v = [

ns
p
] , w = [

nt
p
] .
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We further assume

⟨
nr
p
⟩ + ⟨

ns
p
⟩ − ⟨

n(r + s)
p

⟩ ≠ 1.

Then, for all λ ∈ Q ∖ {0,1}, the corresponding value F(a,b, c;λ) is zero or
transcendental and transcendental if λ ∈ (0,1).

An explict example where the assumptions are satisfied is p = 11, r = s = 2,
n = 1,2,6,7,8. We deduce, for example, that the numbers F(6/11,6/11,
12/11;λ) are zero or transcendental, provided λ ∈ Q ∖ {0,1}.

We should stress that this application relies only on complete periods
on abelian varieties and not on the more general theory developed in our
monograph. It should be seen as a proof of concept: the same argument can be
applied to other geometric families of curves, allowing families of differential
forms of the third kind and non-closed paths. The hyergeometric function
would be replaced by the solutions of differential equations defined by the
Gauss–Manin connection.

1.8 Structure of the Monograph

We have tried to make the monograph accessible to readers who are not
familiar with either motives or periods.

The first part provides foundational material that will be used throughout,
for example terminology from category theory, a review of the theory of
the generalised Jacobian and the basics on singular homology and de Rham
cohomology. We provide precise references for the facts that we need later.
Along the way we also fix notation and normalisations. Depending on their
background, readers are invited to skip some or all of these chapters and use
them only for reference.

Chapters 6 and 7 address less classical material. The first deduces a
reformulation of our key tool, the Analytic Subgroup Theorem. We apply it
to the comparison between analytic and algebraic homomorphisms between
connected commutative algebraic groups.

Chapter 7 presents an abstract formulation of the theory of periods and the
Period Conjecture for abelian categories without a tensor structure.

Part II is the heart of the monograph and presents our main result. It
addresses periods of 1-motives. After settling some notation, Chapter 8 starts
by reviewing Deligne’s category of 1-motives and its properties. We then
establish auxiliary results that are needed in the next chapter.
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Chapter 9 discusses periods of 1-motives and proves the version of the
Period Conjecture purely in terms of 1-motives. We then consider examples: in
Chapter 10 we treat the classical cases like the transcendence of π and values
of log in our language. In Chapter 11 we apply the general results in the case
of a 1-motive whose constituents are as small as possible without being trivial
and compute the dimensions of their period spaces.

In Part III we turn to periods of algebraic varieties. Chapter 12 clarifies
the notion of a cohomological period. After defining P1 in a down-to-earth
way, the interpretation of cohomological periods as the periods of 1-motives
is explained. Finally, we explain the interpretation as periods of Nori or
Voevodsky motives.

In Chapter 13 we use the results on periods of 1-motives to deduce the
qualitative results on P1 and periods of curves: the criterion on transcendence
and the Period Conjecture. The results are made explicit in the classical terms
of differential forms of the first, second and third kind on an algebraic curve in
Chapter 14.

Part IV aims at a dimension formula for the space of periods of a
1-motive in terms of its data. Chapter 15 treats mainly the saturated case. This
can be applied to deduce complete structural results in Chapter 16. Finally,
Chapter 17 is devoted to an explicit dimension computation for the space of
incomplete periods of the third kind, which is very involved. In this rather
complicated case the results were unexpected.

In Chapter 18 we deal with the case of elliptic curves and make our results
explicit in terms of the classical Weierstraß functions ℘, ζ, σ.

We explain in Chapter 19 how transcendence results on special values of
the hypergeometric function can be deduced from Q-linear independence
of 1-periods.

There are three appendices: the first two sketch the theories of Nori and
Voevodsky motives to the extent used in the proof of Theorem 13.3.

The last appendix is of a technical nature: we need to verify that the singular
and de Rham realisations of a 1-motive agree with the realisation of the
attached geometric motive.
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