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Summary

This paper uses data from the Human Gene Mutation Database to contrast two hypotheses for

the origin of short DNA repeats : substitutions and insertions that duplicate adjacent sequences.

Because substitutions are much more common than insertions, they are the dominant source of

new 2-repeat loci. Insertions are rarer, but over 70% of the 2–4 base insertion mutations are

duplications of adjacent sequences, and over half of these generate new repeat regions. Insertions

contribute fewer new repeat loci than substitutions, but their relative importance increases rapidly

with repeat number so that all new 4–5-repeat mutations come from insertions, as do all 3-repeat

mutations of tetranucleotide repeats. This suggests that the process of repeat duplication that

dominates microsatellite evolution at high repeat numbers is also important very early in

microsatellite evolution. This result sheds light on the puzzle of the origin of short tandem repeats.

It also suggests that most short insertion mutations derive from a slippage-like process during

replication.

1. Introduction

Microsatellites are tandem repeats of DNA motifs

two to five bases long, common in the genomes of

eukaryotes and some prokaryotes (Weber, 1990; Field

& Wills, 1996). Because of their high levels of

polymorphism in numbers of repeats, they have been

widely used as markers in studies of kinship, popu-

lation structure and genetic mapping (e.g. Queller et

al., 1993; Estoup et al., 1995; Weissenbach et al.,

1992). They are also implicated in a number of human

genetic disorders (Sutherland & Richards, 1995).

However, we do not yet have a clear understanding of

exactly how the strings of repeats that make up

microsatellites originate.

Studies of microsatellite mutation and evolution

have focused on established microsatellites with

multiple repeats. The number of repeats usually

increases or decreases by a single repeat unit, though

sometimes more (Levinson & Gutman, 1987a ; Valdes

et al., 1993; Kruglyak et al., 1998). The mechanism
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appears to involve slippage during DNA replication

(Schlo$ tterer & Tautz, 1992; observed rates may also

reflect efficiency of repair mechanisms (Wierdl et al.,

1997)). Slippage is thought to depend on mispairing of

tandem repeats during DNA replication (Levinson &

Gutman, 1987b), so it may not occur when there are

few tandem repeats. Three lines of evidence seem to

support this possibility. First, direct studies of slippage

mutations show that they are more common in loci

with longer repeats (Brinkmann et al., 1998). Second,

loci with fewer than 5 repeats are rarely polymorphic,

as expected if they incur few mutations, and poly-

morphism levels increase with number of repeats

(Weber, 1990; Strassmann et al., 1997; Zhu et al.,

2000). Variant repeat units interrupting a string of

repeats reduce slippage rates (Petes et al., 1997).

Third, while longer strings of repeats occur more

often than expected by chance, as expected from high

slippage rates, this was reported not to be true for very

short repeat sequences below a threshold of about 8

nucleotides (Rose & Falush, 1998; but see Pupko &

Graur, 1999).

If slippage is dependent on possession of a few

repeats then some process other than slippage must
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account for the origin and early evolution of repeat

loci below this threshold. A reasonable hypothesis is

that some threshold number of repeats must be

acquired through other kinds of random mutations,

such as substitutions, before slippage can occur

(Levinson & Gutman, 1987b ; Stephan & Cho, 1994;

Messier et al., 1996; Rose & Falush 1998).

In a phylogenetic study of three wasp microsatellite

loci, we observed that short insertions in the flanking,

non-repeat regions had a high likelihood of being

duplications of adjacent bases (GenBank accession

numbers in Zhu et al., 2000). This suggested that

microsatellites might evolve by a slippage-like mech-

anism from the very beginning, starting with the

duplication of a few bases to form a 2-repeat proto-

microsatellite. However, the number of insertions in

this wasp dataset was too small to draw any general

conclusions, and some events inferred to be insertions

could really be deletions if the phylogeny was not

correct. Therefore we turned to a different dataset to

explore the origins of tandem repeats : the Human

Gene Mutation Database (Krawczak & Cooper,

1997).

2. Methods

The mutations compiled in the Human Gene Mutation

Database are located in the coding regions of human

nuclear genes and cause inherited diseases (Krawczak

& Cooper, 1997). This database has two clear

advantages for evaluating mutations generating new

proto-microsatellites of only two repeats. First, be-

cause the wild-type sequence is known (the normal,

non-mutated, disease-free state), one can easily dis-

tinguish insertions from deletions. Second, the data-

base is large and contains numerous mutations in

many genes. At the time of our survey, the database

included 88 two-base insertions, 35 three-base

insertions, 63 four-base insertions and 9070 substi-

tutions.

The database search engine requires that you first

specify a gene of interest, and then specify insertion or

substitution mutations. Our procedures differed some-

what for insertions and substitutions, but both

involved finding the mutations, finding their flanking

sequences, and checking for formation of new repeats.

We examined all the genes in the database to see

whether they had any insertion mutations of 2–4

basepairs. We conducted an exhaustive search by

using wildcard searches of gene names (e.g. ‘gl* ’

would pull out all genes beginning with the letters gl).

The database search engine picked up a maximum of

40 genes from a given search, so we made our

abbreviations of gene names more specific if we

obtained 40 genes, thus ensuring that we accessed

every gene in the database at the time of the study.

Because there were so many substitutions in the

Fig. 1. Example of the different possible reading frames
that need to be evaluated to determine whether a
substitution creates a new dinucleotide repeat. In this
example there are two repeat motifs, ‘CT’ and ‘TC’, but
we counted only one because they are different ways
representing the same repeat locus. There are also six and
eight such frames for checking any potential trinucleotide
and tetranucleotide repeats, respectively (not shown).

database, we did not do an exhaustive search, but

instead used a sample : the first 1000 we encountered.

For substitutions, the database included sufficient

adjacent sequences for us to check to see whether

repeatswere created.However, the entries for insertion

mutations did not include flanking sequences, so we

sought them in the original publications. We used all

insertion mutations of 2–4 bases for which we could

readily find the reference and identify the appropriate

sequence: 31 dinucleotides, 19 trinucleotides and 25

tetranucleotides.

To determine whether substitutions created repeats,

we searched the sequences using a simple computer

program that identified repeats in any of the 18

possible windows. There are four such windows for

dinucleotide repeats, six for trinucleotide repeats and

eight for tetranucleotide repeats (Fig. 1). For

insertions, we examined the sequences by eye.

Insertions of multiple identical bases, such as TT,

were also sometimes duplications of an adjacent

sequence, but were not counted, as they generated

mononucleotide repeats. We counted new repeats as

duplications of the adjacent sequence only if the full

insertion was duplicated. For example, an ATC

insertion was counted as generating new repeats if it

was adjacent to another ATC, but not if it created a

dinucleotide repeat by being adjacent to another TC.

Because we were interested in generation of repeats by
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Table 1. Dinucleotide insertions and their surrounding sequences

Gene
Symbol}name Nucleotides affected

Duplication of adjacent
dinucleotide?
(number duplicated) References

1 p67-phox CCTTctCTTGG Yes (1) Nunoi et al. (1995)
2 beta-spectrin CGAagAGAGGTG Yes (2) Tse et al. (1991)
3 Hb Agnana AACAgtGTGTCACG Yes (2) Ristaldi et al. (1990)
4 Na-Cl cotrasporter TTgtCTCTG No Mastroianni et al. (1996)
5 TSC2 GCGTatGAGC No Au et al. (1998)
6 NF1 TATaaGCTTCG No Colman et al. (1997)
7 DHAPAT CAttGTTAT No Ofman et al. (1998)
8 PPO GGAGagCCCTA Yes (1) Lam et al. (1997)
9 CF CATCtcTCATTC Yes (2) Iannuzzi et al. (1991)

10 hMSH2 GACtaTTTAC No Maliaka et al. (1996)
11 NF1 AGTTttACTG No Ainsworth et al. (1993)
12 SOD-1 TGAAttAGAA No Orrell et al. (1997)
13 DSS CATAcgCGT Yes (1) Rautenstrauss et al. (1994)
14 APC CATAtaGT Yes (1) Paffenholz et al. (1994)
15 C4A GGCTCtcAGTC Yes (1) Barba et al. (1993)
16 APC ATTTttA No Mandl et al. (1994)
17 COL3A1 AAttTGTC No Richards et al. (1994)
18 IDUA TCcaCTTC No Bunge et al. (1994)
19 NF2 AGGAGAgaTCTT Yes (2) Mautner et al. (1996)
20 PAX6 GCCccGTGC No Davis & Cowell (1993)
21 MSH2 ATAtgTGTACGA Yes (1) Nystrom-Lahti et al. (1996)
22 MATA1 GACTtgCTAA No Chamberlin et al. (1996)
23 hMLH1 GTGCgcACC Yes (1) Wijnen et al. (1996)
24 CFTR GGATATATatATTC Yes (4) White et al. (1990)
25 PAX6 TACTgaGATCCA Yes (1) Jordan et al. (1992)
26 ZIC3 GGGCttGAGA No Gebbia et al. (1997)
27 G6Pase CATCatATATGT Yes (2) Lei et al. (1993)
28 CD40 CGTCTCtcCGAC Yes (2) Macchi et al. (1995)
29 PDH AGttTTTTCC No Chun et al. (1993)
30 RB1 CAGAgaTGT Yes (1) Lohmann et al. (1994)
31 HBB ACTGtgTGACA Yes (2) Ristaldi et al. (1990)

duplication of an adjacent sequence, we did not count

any insertions that created repeats not due to

duplication, as in line 11 of Table 2, where a CGG

insertion creates two GCG repeats. Thus, throughout

this paper, repeats arising from insertion should be

read as repeats arising by an insertion which duplicates

an adjacent sequence.

We estimated the total number of each type of

mutation from the number of those mutations we

found, multiplied by a scaling factor to account for

the part of the database not checked. For example, we

checked 19 of 35 trinucleotide insertions and found

that seven of them generated a new two-repeat

microsatellite. So, for this example we estimated that

there were (7}19)¬35¯12±89 new 2-repeat trinucleo-

tides from 3 base insertions. Other trinucleotide

insertions generated 3 to 5 repeat microsatellites.

Continuing the example but for substitutions, 59 of

the 1000 substitutions we checked generated new 2-

repeat trinucleotide microsatellites. Thus (59}1000)¬
9070¯ 535±13 (59 substitutions of that type, 1000

of 9070 substitutions assessed). The overall fraction of

2-repeat trinucleotides from insertions was therefore

12±89}(12±89­535±13)¯ 0±0235. Similar logic was

applied to calculating dinucleotide and tetranucleotide

motif repeats of 2 to 5 repeats.

3. Results

Over 70% of the insertions that we examined were

duplications of adjacent bases (Tables 1–3; Fig.2a).

Specifically, 55% of the dinucleotide insertions 68%

of the trinucleotide insertions, and 92% of the

tetranucleotide insertions copied adjacent sequences

(excluding copies of mononucleotide runs). Some of

the duplications were of already existing short repeat

sequences of 2–4 units, but over half of the 2- and 3-

base duplications, and nearly all the 4-base dupli-

cations, had no pre-existing repeat structure. These

are identified by ‘1 ’ in column 4 of Tables 1–3,

because there was only one pre-existing copy of the

duplicated motif, going to a 2-copy proto-micro-

satellite after the insertion. We found that 29% of all

dinucleotide insertions generated a new 2-copy repeat,

23% added a third repeat to an existing run of 2

repeats, and 3% added a fourth or fifth repeat.
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Table 2. Trinucleotide insertions and their surrounding sequences

Gene
symbol}name Nucleotides affected

Duplication of adjacent
trinucleotide?
(number duplicated) References

1 NF2 GATttgTTGGTG Yes (1) Ruttledge et al. (1996)
2 CLCN5 CGAGACCaccGGGATAGGC Yes (1) Lloyd et al. (1997)
3 �WF GGACATGatgATGGA Yes (2) Ribba et al. (1991)
4 �WF GTCCCgcgGCGGCGT Yes (2) Gaucher et al. (1994)
5 ALDP GAGGtggTGGTGGTGGCC Yes (3) Feigenbaum et al. (1996)
6 XPCC AGTggtGGTGAG Yes (1) Li et al. (1993)
7 CYP11B1 ATGCTGCTGCTGCTGctgCACCAT Yes (4) Geley et al. (1996)
8 Fibrillin CAACCAccaAGCAAC Yes (1) Milewicz & Duvic. (1994)
9 C1-inhibitor ACTGtgtGGGTGGAG No Siddique et al. (1993)

10 VHL TAACGtctTCTTCTA Yes (2) Glavac et al. (1996)
11 LCAT CCGcggCGC No Gotoda et al. (1991)
12 AAP AGGCGGCGgcgGCGGCC Yes (3) Holmes et al. (1987)
13 DHPT CCGCTA ctaCCAA Yes (1) Howells et al. (1990)
14 SPTA AGTTGttgCTGCGG Yes (1) Roux et al. (1989)
15 HPRT1 ATG gcaCAG ACT No Sege-Peterson et al. (1992)
16 ALDP AAG aatGGG No Krasemann et al. (1996)
17 PKLR TGC agcATC No Lenzner et al. (1994)
18 CFTR CTC ctaCTA CAC Yes (1) Do$ rk et al. (1997)
19 HBA CCCCgaaACCA No Moo-Penn et al. (1989)

Table 3. Tetranucleotide insertions and their surrounding sequences

Gene
symbol}name Nucleotides affected

Duplication of adjacent
tetranucleotide?
(number duplicated) References

1 CD40 TCATAAAtaaaCTT Yes (1) Macchi et al. (1995)
2 APC AattcTG No Olschwang et al. (1993)
3 LDH-B TGGACATTcattCTTA Yes (1) Maekawa et al. (1994)
4 CYP17 ACCCctacCTACGG Yes (1) Kagimoto et al. (1989)
5 PDH TGactaACTAACCG Yes (1) Chun et al. (1993)
6 E1 GTTTAAGTaagtCAGT Yes (1) Naito et al. (1994)
7 RB1 GTATTGTTTGtttgCACT Yes (1) Lohmann et al. (1994)
8 ND CGTAGGtaggAA Yes (1) Berger et al. (1992)
9 Androgen receptor GAAGcctaCCTATG Yes (1) Batch et al. (1992)

10 TPO AGACGGCCggccGCGC Yes (1) Abramowicz et al. (1992)
11 Beta-hexosaminidase TATCctatCTATAT Yes (1) Myerowitz & Costigan (1988)
12 DAX-1 GGATggatGACG Yes (1) Habiby et al. (1996)
13 AT AGTACCGaccgCTGT Yes (1) Emmerich et al. (1994)
14 APRT CGAAagccAGCCTACT Yes (1) Kamatani et al. (1992)
15 TSC2 CCTACTtactCCCT Yes (1) Yates et al. (1997)
16 Transglutaminase AGTACGACcgacG Yes (1) Bichakjian et al. (1998)
17 LDL TACaagaAAGAATT Yes (1) Lehrman et al. (1985)
18 FBN1 ACAacttACTTATT Yes (1) Dietz et al. (1993)
19 APECED ACAGGcaggCAGGCC Yes (2) Aaltonen et al. (1997)
20 SRY TTgtagGTAGCT Yes (1) Foster et al. (1994)
21 HLA ATGACTGactgGG Yes (1) Pshezhetsky et al. (1997)
22 PEX TGTtagtGAGAA No Chang et al. (1997)
23 TTP CCAgtaaGTAAGA Yes (1) Ouahchi et al. (1995)
24 F9 CTGGATTgattAAGG Yes (1) Bottema et al. (1989)
25 HEXA TATATCtatcCTAT Yes (1) Myerowitz & Costigan (1988)

Thirty-seven per cent of all trinucleotide insertions

generated a new 2-copy repeat, 16% added a third

repeat to an existing run of 2 repeats, and 16% added

a fourth or fifth repeat. Finally, 88% of all tetra-

nucleotide insertions generated a new, 2-copy repeat

and 4% added a third repeat to an existing run of 2
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Fig. 2. Percentage of (a) insertion mutations and (b)
substitution mutations generating microsatellites of 2–5
tandem repeats. Total repeats generated is obtained by
adding together the bars for repeats of each specified
length.

repeats. Thus insertions are generally copies of

adjacent sequence, and generate proto-microsatellites,

or short microsatellites.

New proto-microsatellites were also generated by

substitutions. The total number of substitutions in the

database was much larger than the number of 2–4

basepair insertions (9070 vs 186). However, a rela-

tively low percentage of these substitutions generated

new repeats and very few generated runs of more than

2 repeats (Fig. 2b). We found that 16%, of sub-

stitutions generated a new 2-copy dinucleotide repeat.

One per cent of substitutions added a third repeat to

an existing run of 2 dinucleotide repeats and no sub-

stitutions generated a longer run of dinucleotide

repeats. Six per cent of substitutions generated a new

2-copy trinucleotide repeat, 0±2% of substitutions

added a third repeat to an existing run of 2

trinucleotide repeats, and no substitutions generated a

longer run of trinucleotide repeats. Three per cent of

substitutions generated a new 2-copy repeat of a

tetranucleotide repeat and no substitutions generated

any longer run of tetranucleotide repeats (Fig. 2b).

We could determine the relative numbers of short

repeat loci generated by substitutions versus insertions
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Fig. 3. Percentage of small repeat loci (2–5 repeats) in
the mutation database that arise from insertions that are
duplications of an adjacent sequence rather than from
substitutions.

if we assume that these two are represented in the

database in proportions similar to their occurrence

across the genome. We estimated that insertions

generated a minority of new 2-repeat loci in the

database: 1±7% of dinucleotides, 2±4% of trinucleo-

tides and 18±5% of tetranucleotides (Fig. 3). Though

insertions occur less frequently than substitutions,

their relative importance in generating new repeats

rapidly increases with the length of the repeat. For

mutations increasing the number of repeats from 2 to

3, 16±2% were insertions in the dinucleotide class,

23±4% in the trinucleotide class, as was the only

recorded mutation to a third tetranucleotide repeat

(Fig. 3). All recorded mutations generating a fourth or

fifth repeat were insertions (Fig. 3).

4. Discussion

Over 70% of all 2–4 base insertions consist of copies

of existing sequences, and generate runs of 2–5 repeats.

The majority of these were not extensions of pre-

existing repeats, but instead generated a short repeat

region where none existed before. This result indicates

that the kinds of processes that lead to expansion and

polymorphism at established microsatellite loci also

occur with few or no repeats. The mechanism is not

clear. Slippage is generally thought to require repeats,

with repeats in the new strand mispairing with other

repeats on the template during DNA replication

(Levinson & Gutman, 1987b), but this is not possible

in the absence of repeats. However, we did not find

evidence for two other proposed mechanisms of

insertional mutation that might generate repeats :

mispairing of inverted repeats (e.g. ATACC}GGTAT)

(Ohshima et al., 1992) or symmetric elements (Cooper

& Krawczak, 1993).

Messier et al. (1996) suggested that a there may be

minimum number of repeats that must be generated
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by substitution before expansion by slippage can

occur. They offered support from a primate phylo-

genetic study of a short microsatellite sequence.

However, there is an alternative reading of this history

that involves only slippage events, without any

enabling substitutions (Gordon, 1997). Even if the

interpretation of Messier et al. (1996) is correct, this is

a single piece of anecdotal evidence, and it can be

opposed by other anecdotal phylogenetic evidence

showing expansion at very low repeat numbers (e.g.

(AG)
#

to (AG)
$
; Primmer & Ellegren, 1998).

Both slippage mutations (Brinkmann et al., 1998)

and repeat number polymorphisms (Weber, 1990) are

more common at higher repeat numbers. But this

need not imply that slippage is either absent or

unimportant at lower repeat numbers. Studies of

mutation at microsatellite loci have not considered

loci with few repeats, and would have to be carried out

on a much larger scale to do so. For example, the

study of Brinkmann et al. (1998) found 23 micro-

satellite slippage mutations in over 10000 meioses,

using nine loci with mean repeat numbers ranging

from 6 to 15. A study of this size would not be very

useful for detecting slippage at the smallest repeat

numbers if the mutation rates are one or more orders

of magnitude lower.

Similar considerations apply to studies of poly-

morphisms. It is clear that polymorphism increases

with repeat number (Weber, 1990), but few studies

examine loci with very few repeats. Strassmann et al.

(1997) confirmed this general pattern, including a few

trinucleotide loci with 3–4 repeats, only one of which

was slightly polymorphic. The observation of lower

polymorphism supports the inference that mutation

rates are lower (or repair rates higher) at low repeat

numbers. However, slippage with few or no repeats

could be much less frequent than slippage with many

repeats, but still be frequent enough to be important

in generating new microsatellites. In short, our finding

that slippage (or some mutation process with the same

effect) takes place even in the absence of repeats is not

inconsistent with earlier studies of mutations and

polymorphism.

Rose & Falush (1998) compared observed and

expected numbers of microsatellites of various lengths

in the yeast genome. They found that long stretches of

repeats were more common than expected by chance,

which they attributed to duplication by slippage. They

also reported that very short stretches of repeats, at or

below an 8-nucleotide threshold (2 tetranucleotide, 4

dinucleotide or 8 mononucleotide repeats), were not

more common than expected by chance. This would

seem to imply that slippage is not important below

this threshold. However, Pupko & Graur (1999), also

using the yeast genome, found that even 2-repeat

microsatellites were observed more often than

expected, and that the observed excess was more or

less of the size expected by extrapolating from longer

repeats. These results are more in line with ours,

suggesting that there is no repeat number threshold,

but only a continuous change in mutation rates. The

reason for the discrepancy between the two yeast

studies is not clear, though the two studies used

different methods of calculating expected frequencies.

If slippage contributes only a minority of new

microsatellites, as suggested by our data (Fig. 3), then

it is not surprising that small differences in

assumptions may lead to differences in results.

Another contributing factor may be the fact that 70%

of the yeast genome is coding sequence where

insertions of 1, 2, 4 or 5 bases would cause reading

frameshifts and would therefore rarely persist long

enough to be sampled. So 70% of the data may be

essentially noise, lowering the power of these studies

to detect weak effects.

Our data also come from coding regions. One

limitation of using a gene database is that we will miss

those microsatellites that originate from polyA tails of

retroposons, a process that appears to be important in

mammals (Arcot et al., 1995; Nadir et al., 1996), but

not in birds (Primmer et al., 1997). Another dis-

advantage of using the Human Gene Mutation

Database is that the mutations in the database

generally have deleterious phenotypic effects. This

could lead to various biases, though the direction of

such biases is not always clear. For example,

dinucleotide and tetranucleotide insertions would

cause frameshifts in coding regions, causing more

severe effects than non-frameshift trinucleotide

insertions. This could cause the frameshift mutation

classes to be either relatively over-represented because

they are more likely to have detectable effects, or

under-represented if they often cause early lethality.

Similarly, frameshift mutations may be over-

represented or under-represented compared with

substitutions, and this would alter our quantitative

comparisons in Fig. 3. On this score, it is somewhat

reassuring that the dinucleotides, which cause frame-

shifts, show patterns rather similar to the trinucleo-

tides, which do not (Fig. 2, 3). Clearly it would be

desirable to confirm our results with sources of data

free of such biases. However, at least one important

conclusion seems unlikely to be affected. It is difficult

to imagine any biases in the Human Gene Mutation

Database would inflate the frequency of insertions

that are copies of adjacent sequences.

While these results need to be supplemented by

studies of non-genic DNA, and also by studies of

other organisms, our data suggest that duplication of

entire repeats is important in the origin and early

evolution of microsatellites. The rarity of repeat-

length polymorphisms in microsatellites with few

repeats does not refute slippage; it only shows that the

rate is lower than the very high rates that characterize
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longer microsatellites. Our data also suggest that

some new 2-repeat microsatellites arise from a

mutational mechanism that has the same effect as

slippage, the duplication of an adjacent sequence. The

importance of this process increases rapidly with

repeat number, but there does not appear to be any

fixed repeat-number threshold that must be surpassed

before slippage can occur.
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