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Detecting structural changes in economic relationships has been a longstanding
challenge in econometrics. Most of the literature on structural breaks has considered
abrupt structural breaks. Existing tests for detecting smooth structural change typi-
cally rely on kernel estimation. In this article, we introduce a novel tuning-parameter-
free test that minimizes a criterion function over all possible nondecreasing or
nonincreasing structural change functions. This test is pivotal (after appropriate
scaling) in the scalar case and remains computationally simple even in multivariate
settings. Compared to existing nonparametric tests, our method offers superior power
against local monotonic structural changes and does not involve the choice of a
bandwidth parameter. A simulation study and two empirical examples highlight the
merits of the proposed test relative to some popular tests for structural changes in the
literature.

1. INTRODUCTION

Detecting structural changes in economic relationships has been a persistent chal-
lenge in econometrics. Historically, most existing tests have focused on identifying
abrupt structural breaks. However, as emphasized by Hansen (2001), structural
changes may not occur instantaneously; rather, they often emerge gradually over
time. Factors such as technological progress, shifts in preferences, and policy
adjustments, which are often key drivers of structural changes, tend to undergo
gradual and evolutionary transformations over the long term.

The study of structural breaks began with the seminar work of Chow (1960).
This test relies primarily on the assumption of error normality and is designed to
detect a single structural break with a known break date. Andrews (1993) further
advances the field by assuming that the structural break occurs at a fixed fraction
of the sample size, enabling asymptotic analysis. Andrews (1993) explores the
optimization of various test statistics across a range of potential change points,
typically within the interval [nn, 1 — nn], where n denotes the sample size and
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n is some small number, such as 0.15 or 0.20. Building on Andrews’ work, Bai
and Perron (1998) extend the methodology to accommodate multiple structural
breaks. More recently, modeling and testing for smooth structural changes have
attracted more attention in the literature. Chen and Hong (2012), Kristensen (2012)
and Zhang and Wu (2012) introduce novel approaches by considering structural
change functions of the form f(¢/n) and propose various tests capable of detecting
both smooth structural changes and abrupt breaks. Expanding upon these ideas,
Li, Phillips, and Gao (2020) extend the framework to accommodate nonstationary
regressors and Su and Wang (2017) consider models with latent factors. All these
tests rely on nonparametric estimation of the structural change function f(-)."

This article addresses settings where the direction of the potential change is
clear and proposes a novel test based on isotonic regression to detect both smooth
structural changes and abrupt structural breaks. Our test complements existing
methods for abrupt structural breaks, eliminating the complexities associated with
identifying multiple breaks or unknown break-points.

In contrast to nonparametric tests in the literature designed for smooth structural
changes, our test exhibits significant power against local smooth structural changes
with a rate of n='/? and does not require the selection of a tuning parameter. The
foundation of our test lies in isotonic regression, which minimizes a stochastic
function within a domain of monotonic functions. While the requirement of
monotonicity may initially appear stringent, it aligns naturally with many real-
world applications, particularly when structural changes result from factors like
population growth or technological advancements.” The monotonicity assumption
has been imposed implicitly in some existing works in the structural break
literature as well. An indicator function is a monotonic function. Hence, if the true
DGP has a single break, the monotonicity assumption is automatically satisfied.
Alternatively, if the true is a first-order logistic function, as the smooth transition
regression suggested in Lin and Terisvirta (1994), monotonicity holds as well.?

Our test can be applied to assess the presence of monotonic trends or monotonic
structural changes within linear regression. Unlike many tests that optimize over
a function space, our statistic is asymptotically pivotal after scaling in the scalar
case and remains computationally simple even in multivariate scenarios.

The remainder of the article is organized as follows. In Section 2, we introduce
our test and establish its asymptotic distribution and consistency. Section 3 outlines

I The literature on structural changes is huge and still growing. For brevity, we focus on methods most relevant to our
approach.

20ne example is the trend regression considered in Section 4. With global warming, technological progress, or
population growth, the monotonicity assumption seems reasonable in many applications of trend regression. Another
example is the expectations-augmented Phillips curve studied by Alogoskoufis and Smith (1991), Bai and Perron
(2003), and Blanchard and Bernanke (2024). The parameter of interest is the coefficient that measures the persistence
of inflation, which is expected to increase over time over the past 20 years.

3We conjecture that if the true structural change function is well approximated by a monotonic function, our
results can still go through. However, the theoretical extension is very challenging and we would like to leave it
for future research. Nevertheless, we explore the power of our test against non-monotonic structural changes via a
comprehensive simulation study in Session 4.
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the computation of the test statistic. In Section 4, we conduct a simulation study
to validate the reliability of the asymptotic theory in finite samples. Additionally,
we apply our test to two practical examples: global warming and the impact of
personal tax exemptions on fertility rates. Section 5 concludes. All mathematical
proofs are collected in the “Appendix” Section for reference.

2. SETUP AND MAIN RESULT

2.1. Setup

Consider the data generating process (DGP)

V=0t Bot/n) z+en  t=1m, 5

where y, is a dependent variable, x; is an m x 1 vector of explanatory variables, z; is
the same as x; or part of x;, By : [0, 1] — RF(k<m)isakx1 possibly time-varying
parameter vector, &, is an unobservable disturbance with E(¢;|x,) = 0 almost surely
(a.s.). The null hypothesis of interest is

Hy : By (t/n) = 0 for all 7.
The alternative hypothesis is
Hy, : Bo (r) is a nondecreasing function of r, where r € [0, 1].

The case where By (r) is a nonincreasing function is analogous. If z; is the same
as x;, we have pure structural changes and the whole parameter vector is subject to
change under the alternative hypothesis; if z; is part of x,, we have partial structural
changes (Andrews, 1993).

We consider a test by minimizing the distance between the sums of squared
residuals over a space of functions that is monotone on [0, 1]. To be precise, let
B = B(n) denote the class of functions on [0, 1] such that g; () is nondecreasing in
r for every j € {1,...,k} and constant on [0,n] and on [1 — n, 1], where 7 is a small
constant. In the literature, a similar constant occurs in works such as Andrews
(1993) and Bai and Perron (1998). When one wants to test for structural change
that is initiated by some political or institutional change, the prior information can
be used to choose n. When no information is available, the common choice of 7 is
0.15 in the literature, as suggested by Andrews (1993), and hence we follow this
tradition.* In our tables below, we will list critical values for n = 0.10,0.15,0.20,
and 0.25. While we will prove our results for B, the class of functions such that
Bi(r) is nondecreasing in r, the results remain valid as long as it is a priori known
which B;(r) are increasing and which are decreasing.

“4Note that the choice of 1 and the choice of the bandwidth / in those existing nonparametric tests (e.g., Chen and
Hong, 2012; Kristensen, 2012) are very different. The choice of & has an impact on the convergence rate of the test
statistic and the local alternative the test can detect is n~'/2h~1/4  In contrast, the convergence rate of our test defined
below does not depend on the choice of 7 as long as 7 is bounded away from zero and one. Our additional simulation
results reported in the appendix show that the test is not sensitive to the choice of 7.

https://doi.org/10.1017/50266466625100066 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466625100066

4 BIN CHEN AND ROBERT DE JONG

Our test statistic is defined as
inf A, (B) = inf [A— t/n)’ 2—”], 2
inf A, (B) ,22,3; (B =B/ z) & )

where &, =y, — 6'x, and @ is the OLS estimator of 6 in the model v, =0'x;+¢. As
7, is a subset of x;, we can write z; = Sx; where S is a (k x m) selection matrix that
contains zeros and ones and satisfies SS’ = I;. For any function 8(-), we have

An(B) =Y ((Bt/n)'z)* —28:B(t/m) z)

t=1

=D B/n)'SxxS'B(t/m) =2 ) €S B(t/n)

=1 =1

—2) " Bolt/n) Sxx S Blt/m)+2 ) Polt/n) Sxx; (Y xx) ™D xixS' B(t/n)
=1 =1 =1

t=1
n n n
+2) e (Y )~ Y xS B(t/m), 3)
=1 =1 =1

where we have used the fact that y, = 6)x, + Bo(t/n)'z; + .
The situation of minimizing an objective function

> v — Bt/n))?
=1

over all nondecreasing S(-) for a sequence of positive weights w; is referred to as
isotonic regression. For an overview of isotonic regression, we refer to Robertson,
Wright, and Dykstra (1988). As explained in Wu, Woodroofe, and Mentz (2001),
in general, isotonic regression will not generate a limit distribution for statistics
such as infg A, (B), where the “inf” is taken over the space B. This is due to a
“spiking problem.” This problem concerns the limit behavior of the endpoints of
the B(-) functions that minimize A,(B). In their paper, Wu et al. (2001) consider
limiting the distance between the endpoints of the isotonic regression function.
However, their approach does not deal with a regression setting and we suggest an
alternative modification of the isotonic regression setting, namely, fixing the 8(-)
function in the neighborhoods of 0 and of 1. This modification is very much in
the spirit of what is done in Andrews (1993) and has the feature of generating an
asymptotically pivotal statistic inf A, (8) for the case of scalar z;.

Let || B l=sup,¢(g,1718(r)| where |.| denotes the Euclidean norm. Also, for any
K > 0 define By = {B € B :|| B ||< K}. Throughout this article, the maintained
assumption is the following.

Assumption 1. There exists a positive definite matrix €2 such that

[rn]

W,(r) = Q12p12 Zs,x,
=1
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satisfies W, (r) = W(r). Furthermore, for

[rn]

V,(r)=n"" Zx,x;
=1
and V(r) = rQ,, we have

sup |V, (r) = V()| - 0,
rel0,1]

and Q, is positive definite.

Noting that
X, = n(V,(t/n) =V, ((t—1)/n))
and

ex, = n'?QY2(W,(t/n) — W, ((t — 1) /n)),
We can now write

An(B)=n Zﬂ(t/n)/S(Vn(t/n) —Vu((t=1)/n)S'B(t/n)

t=1

— 2023 (Wi (t/m) = Wa(t— 1) /)Y Q%S B (2/m)

t=1

=21y Bolt/n) S(Vy(t/n) = V(e = 1) /m))S B(t/n)

t=1

+21) " Bo(t/n)'S(Va(t/n) = V(1 = 1) /m) V(1)
=1
X Z(Vn(t/n) — Vu((t=1)/n))S'B(t/n)
=1

+2n" PW, (1) QUPV,(1)T Y (Valt/m) = Vi (k= D) /m)S B(t/n).  (4)

t=1

This five-term representation will be key to establishing our results under both the
null and alternative hypothesis.

2.2. Limit Distribution Under the Null Hypothesis

The representation of Equation (4) suggests that if Sy(-) = 0, the third and fourth
terms will disappear in the expression of Equation (4) and hence A, (n~'/?8) will
asymptotically resemble
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1 1
Al(B) = / B(r)SQS B(rydr—2 / B(r) SQ2dW(r) +2W(1)'QY2S'B,  (5)
0 0

where 8 = fol B(rdr.
Formalizing this intuition gives our main result, which is the following theorem.

THEOREM 1. Under Assumption 1, if Bo(-) =0,
. d . 1
},‘;E An(B) — ;EEA (8).
Furthermore,

1 B _ 1 B

inf A'(8) = inf ( / (B(r) = B)'SQuS (B(r) — B)dr—2 / (B(r) — B)'SQ'2aW ().
BeB geB Jo 0

The proofs of the theorems are provided in the Mathematical Appendix.

2.3. A Pivotal Test for Structural Change

It seems hard to generate a pivotal statistic in general from the result of Theorem
1, except for the case where k = 1 and z, € R. For that case, define Q,, = SQ,..5,
A2 = SQS and W(r) = A~1SQ2W(r), and note that W(r) is a scalar Brownian
motion process. We then have

inf A,(8) = Inf A,(48/Q:2)
1
N inf( fo (A Q)(B() — B))'SQuS (B(r) — BY(A/Q.))dr
1
-2 A (A0 (B(r) — B)' SQ2dW (r))

1 1
= (*/Qz) inf( /0 (B(r) = p)?dr =2 A (B(r) = B)dW (1),

and the expression

1 1
. 1 . ) 2 _ R T
inf AL(B) = inf( /0 B — Bdr—2 /0 B — HdW(r)

is pivotal. Since B depends on the choice of  and on whether B denotes the set of
(1) all nonincreasing or (2) all nondecreasing functions, different critical values are
obtained for each case. Table 1 lists the critical values of the infgcgA](B) statistic
for n = 0.10, 0.15, 0.20, and 0.25 for the case where B contains nondecreasing
functions; these values were obtained by simulation using 10,000 replications. For
the case when B contains nonincreasing functions the critical values are identical,
because of the distributional equivalence of W(-) to —W(-).
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TABLE 1. Critical values of inf ﬂeBAl(,B).

0.10 0.15 0.20 0.25
n 10% 5% 10% 5% 10% 5% 10% 5%
100 —6.42 =810 =578 748 =521 —6.78 —472 —6.27
250 —6.62 -840 596 -—-7.63 538 —695 —489 —6.39
500 —-690 -867 —-622 -791 =563 -732 =512 —6.74

1,000 -7.03 -9.15 -6.28 =813 =570 =752 =521 —6.90
2,500 -722 -9.11 —-635 -—-839 583 758 525 —6.83
5,000 -7.15 -9.08 —-633 -—-8.18 =577 -7.60 527 —-7.03

2.4. Limit Behavior Under the Alternative

Under the alternative hypothesis that By € B, but By(-) # 0, we should consider
n~'A,(B). In this case, it can be shown that the second and fifth terms of
Equation (4) vanish, and this observation gives the following consistency result.

THEOREM 2. Assume that Assumption | holds. Then
1 1 1
nlinf A (B) = - / (Bo(r) — / Bo(r)dr)'SQucS' (Bo(r) / Po(r)dr)dr.
0 0 0

The above theorem is based on showing that n~'4,(8) approaches A%(B), where
1 1 1 1
£ = [ pursous purr=2 [ porrsoussiar+2 [ puovarseus [ s

The expression A2(8) is minimal for B(r) = fo(r) — [, Bo(r)dr because
0= /Ol(ﬂ(r)—50(r)+/(.)lﬁo(r)dr)'SQxxS’(/3(r)—ﬁo(r)+/(;1ﬂo(r)dr)dr
= /0 1 B(r)'SQuS B(r)dr + /O 1(ﬁo(r)— /0 1 Bo()dr)' SQuS' (Bo(r) — /o ]ﬁo(r)dr)dr
—2/01(,30(0—/Olﬂo(r)dr)’SQxxS’

1 1 1
—A2B)+ /0 (Bo(r) — fo Bo(r)dr) SOwS' (Bo(r) — /0 Bo(r)dr)dr,

and therefore,
1 1 1
A(8) > — /0 (Bor) — /0 Bo(1)dr) SQuS (Bo(r) — /0 Bo(P)dr)dr

1
— A2(Bo(r) — /0 Bo(r)dr).
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It is notable that A% () is minimized at Bo(7) — fol Bo(r)dr, instead of at By (r). Since
z;1sincluded in x;, adding a constant to 8 (r) and subtracting the same constant from
the corresponding element of 8, will not alter the objective function. Therefore, we
can view the subtraction of fol Bo(r)dr = 0 as a necessary normalization.
To gain more insight into the power property of infgepA,(B), we consider the
following sequence of local alternatives:
g(r)

Ha () : Bo(r) = W,FG [0, 1],

where g : [0,1] — R¥ is a monotonic vector function. Following the proof of
Theorem 1, we can verify that under Hy(n), infgepA,(B) —d> infﬂegAl(,B) —
fol (g(r) — 8)' SQS'B(r)dr, where A'(B) is defined in Equation (5) and g =
fol g(r)dr. This suggests that our test has nontrivial power against the class of
smooth monotonic alternatives with rate n~'/2, which is faster than the nonpara-

metric rate n~'/?h~!/4, where & is the bandwidth, obtained in Chen and Hong
(2012) and Kristensen (2012).

3. CALCULATING THE STATISTIC

Considering the DGP in Equation (1), we conduct our test via the following steps:

1. Run OLS regression of y, on x; and get the estimated residual &,.
2. Estimate B (¢) via isotonic regression

B (1/m) = argmin ;e = Bt/m'z)’.

3. Compute the test statistic

n

}}Ig;An(ﬂ) = Z [(ét -B (t/n)’zt>2 - 53]

1=1
and compare it with the critical values.

Our algorithm covers pure and partial structural changes in a unified framework,
where z; is the same as x; for pure changes and a subset of x; for partial changes.
Step 2 in our algorithm involves isotonic regression and minimizing a random
function over a function space may seem cumbersome at first sight. However, the
computational problem turns out to be surprisingly simple. In the literature on
isotonic regression, such as Wu et al. (2001), or Robertson et al. (1988), a common
formulation is

minZw,(V, — ), (6)

=1
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where {v;}/_, are the observed time series, {w;}/_, are prespecified positive weights
and {u}, are the parameters to be estimated, and p; < pp < --- < pu,,. Therefore,
from a perspective of calculating our statistic, the proposal of this article focuses
on the class of nondecreasing functions that are constant on [0,7] and on [1 —
1, 1], which amounts to forcing p1 = --- = ppy, and pyi—pnj+1 = -+ = Wy. The
maximization of this objective function is a strictly convex quadratic programming

problem, and its solution is unique (Robertson et al., 1988)
In the case of scalar 8(.) and z;, under the assumptions B(1/n) =--- = B([nn]/n)
and B(([(1 —n)n]+1)/n) = --- = B(1), Step 2 in our algorithm can be written as

min Y (& — B(t/n)z)*

n—[nn] [nn] n
=min Y 5 E/a—BU/mY+Y G C/a—Bu/m)+ Y e/~ Bt/n)
t=[nn]+1 =1 t=n—[nn]+1
n—[nn] [nn] [nn] AzZl
=Ctmin Y P@E/u- ﬂ(r/n>)2+<z A(ZEL g1 /m)y?
1=[nn]+1 =17%t
n > &z
1 1612t
+OY DS ),
=[(I—pyn]+1 h [(1— r])nH»th

which implies that Step 2 is equivalent to carrying out the isotonic regression
in Equation (6) on a dataset with n — 2[nn] + 2 observations: {v},_, 22 o
Zr | Bz

[nn]
=1 ~l‘

V2 = é[m]]-H/Z[nn]-Q—l has Weight Wy = Z[m;]-H , €tC., up to Vn—2[nnl+1 = én—[nr]]/zn—[m]]
which has weight w,_sp4+1 = z,21 and the last observation v,_spy42 =

has weight w; = 5""1] 1,2, the second one

which the first observation v =

—[nn]®

p3y [(1— n)n]+15f7f n 2
DY T has weight wy—spmi+1 = 3 g1 %

As shown in Robertson et al. (1988), the explicit formula of the values B(t/ n)
for isotonic regression with weights w, can be found as:

,é(i/n) maxm1nAv(8],8]+1,... £n),
JU<i h:h>i

where

Zi’:] Wi gt

—
Zz:j Wi

For weights w; all equal to 1 this simplifies to

AV(Q‘j, §j+1, ceey :‘:‘h) =

. Bt gd
f(i/n) = maxmin 2
ji<i kh>i h—j+1

Therefore, the test statistic is straightforward to calculate from the data.
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4. MONTE CARLO AND APPLICATION
4.1. Monte Carlo Simulations

In the simulations below, we used the value n = 0.15, v, ~ i.i.d.N(0,1) and ¢,
and v, are mutually independent.’ To examine the size of all tests under Hy, we
considered the following DGP, which was also used in Chen and Hong (2012):

e DGPO: No Structural Change

Y = 1 +0.5xl+8h
x; = 0.5x_1 +v,.

To examine the robustness of tests, we consider two cases for {&}: (i) & ~
i.i.d.NQ,1); (i1) & = 0.56;—1 + us,u, ~ i.i.d.N(0,1). We generated 5,000 data
sets of the random sample {x;,y;};_; for n = 100,250 and 500 respectively. We
compared our test with a variety of popular tests, including: Andrews’ (1993)
supremum LM test; Lin and Terésvirta’s (1994) LM test test based on the first-
order Taylor expansion; Bai and Perron’s (1998) UD max test; Elliott and Miiller’s
(2006) gLL test, and Chen and Hong’s (2012) generalized Hausman test. Following
Andrews (1993), we chose the trimming region IT = [0.15,0.85] for the tests of
Andrews (1993) and Bai and Perron (1998). For Bai and Perron’s (2003) test, the
maximum number of breaks is set to five. For the generalized Hausman test, we
adopted the rule-of-thumb bandwidth 4 = \/ern‘l/ 3, as suggested by Chen and
Hong (2012).

To investigate the power of all tests in detecting structural changes, we consid-
ered six alternatives: (i) a single break, (ii) monotonic multiple breaks, (iii) non-
monotonic multiple breaks, (iv) monotonic smooth structural changes, (v) non-
monotonic smooth structural changes, and (vi) non-persistent temporary breaks,
respectively:

e DGP1I: Single Structural Break

140.5x;,+¢&, ift<0.3n,

Y =1124x+¢, otherwise.

e DGP2: Monotonic Multiple Structural Breaks

140.5x;+ &, if t <0.2n,
yvi=411240.7x,+¢, if0.2n<1t<0.6n,
1.4+0.9x; +¢;,, otherwise.

o DGP P.3: Non-monotonic Multiple Structural Breaks

1+0.5x;+¢, ifr<0.3n,
yvi=14 1l4+x+e, if 0.3n <t <0.7n,
140.8x;+¢&;, otherwise.

5 Simulation results with different 7 can be found in Table A.1 in the Appendix.
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TABLE 2. Empirical size of tests.

DGP S.1 DGP S.2

i.i.d. error serially correlated error
n 100 250 500 100 250 500
infgepAn, (B)  .047 052 .048 .032 .049 .047
H 095 078 053 204 177 .156
LM 044 054 052 .081 .070 .065
SupLM 049 .048 .052 .197 .109 .072
UDMax 051 .052 .050 .375 .208 125
qLL 065 .055 .052 .042 .057 .060

Note: (1) 5% significance level; (2) infgep A, (B) is our test based on isotonic

regression; H is Chen and Hong’s (2012) generalized Hausman test; LM is
Lin and Teridsvirta’s (1994) LM test based on the first-order Taylor expansion;
SupLM is Andrews’ (1993) supremum LM test; UDMax is Bai and Perron’s
(1998) double maximum test; qLL is Elliott and Miiller’s (2006) efficient test
based on a quasilocal level model.

e DGP4: Monotonic Smooth Structural Changes
yi=F(r)(1+0.5x) +é&,

where r = £ and F (r) = 0.2exp (—0.7+3.57)..
e DGP P.5: Non-monotonic Smooth Structural Changes

vi =14+0.5F (r)x;+ &,

where r = £ and F (r) = r+exp[ —4+ (r—0.5)%1—1.
e DGP P.6: Non-persistent Temporary Breaks

) 14+0.5x+¢, ift<03nort>0.7n,
Y=Y 144, otherwise.

For each of DGPs 1-6, we generated 1,000 data sets of the random sample
{y1, %11 for n = 100,250, and 500. Table 2 reports the rejection rates of all tests
under DGPO using asymptotic critical values at the 5% significance level. Under
i.i.d. and serially correlated errors, our infgepA, (B) test underrejected Hy when
n = 100, but not excessively and improved as n increases. For other tests, under
i.i.d. errors, Chen and Hong’s (2012) test and Elliott and Miiller’s (2006) gLL
test have some overrejection when n is small, but they improve as n increases.
Under serially correlated errors, Chen and Hong’s (2012) Hausman test, Andrews’
(1993) SupLm test and Bai and Perron’s (1998) double maximum test have rather
large overrejection although the overrejection becomes smaller with the increase
of sample sizes. Overall, our test displays the most robust size although Elliott and
Miiller’s (2006) gLL test also has good size control.
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TABLE 3. Empirical power of tests under i.i.d. errors.

DGP P.2 DGP P3

DGP P.1 monotonic non-monotonic

single break multiple breaks multiple breaks
n 100 250 500 100 250 500 100 250 500
infgepA, (B) 646 958 1.00 458 770 972 439 .821 987
H 396 790 990 220 424 .797 303 .660  .960
LM 422 850 993 312 .654 937 204 410 .703
SupLM 446 893 994 225 556 885 264 .697  .968
UDMax 493 935 999 258 .629 929 326 774  .988
qLL 436 .897 1.00 240 .635 917 311 .805 .984

DGP P4 DGP PS5
monotonic non-monotonic DGP P.6

smooth changes smooth changes temporary break

n 100 250 500 100 250 500 100 250 500
infgepA,(B) 681 949 1.00 487 .837 990 .149 378 744
H 345 748 981 229 548 820 381 .796  .994
LM 472 876 995 256 .604 918 .067 .063  .066
SupLM 414 839 993 273 .666 944 178 518  .903
UDMax A77 885 996 298 727 971 332 .831 .998
qLL 446 888 995 261 .724 967 404 .884  .998

Note: (1) 5% significance level; (2) infgepA, (B) is our test based on isotonic regression; H
is Chen and Hong’s (2012) generalized Hausman test; LM is Lin and Terdsvirta’s (1994) LM
test based on the first-order Taylor expansion; SupLM is Andrews’ (1993) supremum LM test;
UDMax is Bai and Perron’s (1998) double maximum test; qLL is Elliott and Miiller’s (2006)
efficient test based on a quasilocal level model.

Next, we consider power. Tables 3 and 4 report the rejection rates of all tests
using empirical critical values, which are size-adjusted critical values, at the 5%
level under i.i.d. errors and serially correlated errors, respectively. Under i.i.d.
errors, our test compares favorably to other competing tests across DGPs P.1-P.5.
In particular, our test is more powerful than the kernel-based generalized Hausman
test, confirming our theoretical comparison. Notably, even when B(r) exhibits
non-monotonic changes under DGPs P.3 and P.5, the proposed test outperforms
all competing tests. Under DGP P.6, where the break persists only for a limited
period, Lin and Terésvirta’s LM test has no power even at n = 500. While our
test infgep A, (B) is less powerful than I:I, SupLM, UDMax, and qLL tests in this
setting, its rejection rate still increases with sample size. Overall, infgepA, (B)
has comparable power against non-monotonic structure breaks, except when those
breaks are temporary. The rankings of all tests under serially correlated errors are
consistent with those observed under i.i.d. errors.
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TABLE 4. Empirical power of tests under serially correlated errors.

DGP P2 DGPP3

DGPP1 monotonic non-monotonic

single break multiple breaks multiple breaks
n 100 250 500 100 250 500 100 250 500
infgepAn (B) 367 714 968 459 731 932 411 .691 928
H 166 628 882 329 441 670 455 .690 @ .920
LM 207 479 789 174 361 619 115 219 368
SupLM 229 532 915 424 565 785 340 .621 .856
UDMax 164 513 885 438 559 756 440 780  .908
qLL 231 541 890 136 .329 575 138 405 .762

DGP P4 DGP P5
monotonic non-monotonic DGP P.6

smooth changes smooth changes temporary break

n 100 250 500 100 250 500 100 250 500
infgepAn (B) 607 864 989 288 550 .844 208 .355  .634
H 536 805 963 458 706 910 289 446  .804
LM .839 989 1.00 .169 347 577 079 .063  .066
SupLM 566 769 934 151 351 753 214 385 .670
UDMax 700 823 942 260 .719 885 229 447  .900
qLL 251 563 868 149 369 720 .181 .483  .851

Note: (1) 5% significance level; (2) infgep A, (B) is our test based on isotonic regression; His
Chen and Hong’s (2012) generalized Hausman test; Lin and Terdsvirta’s (1994) LM test based
on the first-order Taylor expansion; SupLM is Andrews’ (1993) supremum LM test; UDMax
is Bai and Perron’s (1998) double maximum test; qLL is Elliott and Miiller’s (2006) efficient
test based on a quasilocal level model.

4.2. Application to Data

The issue of global warming has received considerable attention for more than two
decades, as evidenced by studies such as those by Melillo (1999), Delworth and
Knutson (2000) and Nordhaus (2019). In our research, we apply our test to assess
the significance of the increasing global temperature anomalies over time. Annual
temperature anomaly data, spanning from 1850 to 2023, were obtained from the
National Centers for Environmental Information. Figure 1 displays the time series
plot. The estimated infgep A, (B) statistic with n =0.15is —150.42, which is highly
significant at any conventional significance level. The strong rejection is echoed by
all other tests statistics: Andrews’ (1993) SupLLM test is 28.29, Bai and Perron’s
(1998) test is 37.04, Elliott and Miiller’s (2006) gLL test is -29.041, Chen and
Hong’s (2012) Hausman test is 409.69.

As another application, we examine the effect of personal tax exemption on
fertility rates studied by Wooldridge (2008). The yearly data, covering 1913-1984,
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FIGURE 2. The estimated residuals of Equation (7).

were sourced from Whittington, Alm, and Peters (1990). Following Wooldridge
(2008), we consider the linear regression model:

gfr: = Bo+ Bipe: + Boww2, + Bapill; + uy, (7

where gfr, is the general fertility rate, pe, is the average real dollar value of the
personal tax exemption, and ww2, and pill, are dummy variables. The dummy
variable ww2, equals 1 during the years 1941 through 1945 and O otherwise, while
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pill; equals 1 from 1963 onward and O otherwise. Equation (7) is estimated via
OLS, and the estimated residuals are plotted in Figure 2.

The intercept captures the expected general fertility rate with O personal tax
exemption, controlling the effect of World War II and the introduction of the birth
control pill. To test whether B is changing over time, we applied our infgep A, (8)
test. Using n = 0.15, the estimated statistic is —17.76, which strongly rejects the
null hypothesis that 8 is a constant over time. Similarly, Andrews’ (1993) SupLM
test and Bai and Perron’s (1998) UDmax test are 16.98 and 19.95, respectively,
which also reject the null. The gLL test of Elliott and Miiller’s (2006) rejects the
null hypothesis at the 10% significance level but not at the 5% level. In contrast,
Chen and Hong’s (2012) Hausman test fails to reject the null hypothesis, with the
statistic value —0.87.

5. CONCLUSION

Detection of structural changes has been a long-standing interest in econometrics,
and in this article, we have introduced a novel tuning-parameter-free test that is
designed to detect both smooth structural changes and abrupt structural breaks.
While existing tests rely on kernel estimation, our test is based on isotonic
regression. This approach allows us to detect monotonic trends or structural
changes, making it well-suited for scenarios where prior information might suggest
such patterns.

Features of our test are (1) our test minimizes an objective function over a space
of functions; (2) improved power against monotonic smooth structural changes,
as compared to approaches that use a tuning parameter; and (3) simplicity, as a
pivotal limit distribution is obtained after scaling in the scalar case. Our simulation
study and application underscore the decent power properties of our test and the
pragmatic value of our approach.

A. Appendix

A.1. Mathematical Appendix

The main result is based on the following lemma, which holds for general An(). Everywhere
in this Appendix, we write Bx = {8 € B:|| B ||< K}, and s; denote a k-vector of all zeros,
except for an entry of 1 at spot j.

LEMMA A.1. Assume

1. For A, :B— R and Al :B— R, for all K > 0, infﬂGBKAn(n_l/zﬂ), infﬂgBAn(ﬁ),
infﬂegKAl (B), and inf,gegAl (B) are proper random variables;
2. Forall K > 0,

. fA —1/2 as. . £ Al ;
anf n(n” 7)) — At (02))

3. limsupg_, o limsup,,_, o P(infgep A (n~1/2B) # infgep, An(n=1/2B)) = 0.
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Then

. - d . -
inf Au(B) = érel%Al(ﬁ)-

Proof of Lemma A.l. Define Y, = infgepAn(B) = infgepAn(n™'/2p), Y,k =
infﬁeBKf_\n(nfl/zﬂ), YK — infﬂegkﬁl(ﬂ), and Y = infﬂegAl(ﬂ). The lemma asserts

that Y, i> Y, and because
|Eexp(irYy) — Eexp(irY)| < |Eexp(ir¥y) — Eexp(ir¥yg)|

+ |Eexp(irY,g) — Eexp(irY)| + |Eexp(irYX) — Eexp(irY)),
it suffices to show that

limsuplimsup |Eexp(irY,) — Eexp(irY,x)| =0,

K—oo n—>o0

limsup |[Eexp(irY,x) — Eexp(iry®)| =0,

n—oo

and

limsup|Eexp(irYX) — Eexp(irY)| = 0.
K— o0

The first result follows because

limsuplimsup |Eexp(irY,) — Eexp(irY, k)| < 2limsuplimsupP(Yy, # Y,x) =0

K—oo n—00 K—oo n—>o0

by Assumption 3. Also, because Y, x = infgep, An(n~1/2p) L% infgep, Al (B) = YK by
Assumption 2,

limsup |[Eexp(irY,x) — Eexp(iry®)| =0.
n— 00

Finally, since YK is decreasing in K, limg_, oo YK exists a.s. and equals Y = infﬁelg;\l B).
Therefore, the result is now proven. |

For our result under the alternative, we need a result similar to Lemma A.1.

LEMMA A.2. Assume

1. For A, :B— R and A? :B— R, for all K > 0, inf,geBAn(ﬁ), inf,geBK/_ln(ﬁ),
infgepy A%(B), and infijBAZ (B) are proper random variables;
2. Forall K > 0,

. f 71A a.s. . f Az ;
Jnf n71A(p) 5 inf A%(p)

3. limsupg_, o limsup,,_, o P(infgepn 1A, (B) # infgep, n 'A,(B)) = 0.
Then

N d . .2
fA fA .
n it "(ﬂ)—>érelB 0]
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Proof of Lemma A.2. Define ¥, = infgepn™ A, (B), Y,k =infge, n~'An(B), YK =

infgepy A%(B), and Y = inf peB AZ(B). Using these alternative definitions, the proof of
Lemma A.1 is now identical to the proof of Lemma A.2. ]

Next, note that under Assumption 1, we have (V;,, W) = (V, W), since V(r) is deter-
ministic. By the Skorokhod representation theorem, because (V,;, W,;) = (V,W) in the
product space D([0, 1], R"™*™) x D([0, 1], R™) under the product J;-topology, there exist

in a suitably expanded probability space, (\7,,,V_Vn) and (\_/, W) such that (Vn,V_Vn) i
— — d — — —
(Vs W), (V. W) £ (V, W), and sup;, refo, 17 15}V (r) = V(r)sil +5up; rego, 17 18/ (Wi (1) —

W) 2% (). We now define versions of Ap(B) and Al (B) defined on this Skorokhod space
analogous to the expression of Equation (4), viz.

An(B)=ny_ B(t/n)'S(Vu(t/n) = Vu((t—1)/m))S'B(t/n)

t=1

—2n 2N Wat/m) = Wit = 1) /m)) 2128 Bt /m)

=1

=21y Bo(t/n) S(Va(t/n) = Vu((t = 1) /m)S' B(t/n)

=1

+2n) " Bo(t/n) S(Vu(t/n) = Vi ((t = 1) /n)) V(1) ™!

t=1

X D (Va(t/n) = Val(t — 1) /m)S' B(t/n)

t=1

+20 W (1 QY20 (1) (Valt/m) = V(6= 1) /m)S Bt /), (A1)
t=1

and

1 1
AlB) = /0 B(r)'SOxS B(r)dr —2 /0 B(r)SQ2aw ) +2W (1) Q25 B, (A.2)

1 1 1 1
i2p) = /0 B SQuS B(Hdr—2 /0 Bo(r) SQueS B(dr+2 /0 Bo(r) drSQ.S' fo B(r)dr.
(A3)
This definition s such that A, (8) £ A,(8) and A' (8) £ 4! (B), and A2(8) £ A2(B).

Our strategy now is to rewrite the five terms of A;(-) in a way that allows us to find their
limits uniformly of B € By relatively easily. The following five lemmas give such results.

LEMMA A.3.

> B/n) S(Va(t/n) = Vi ((t — 1) /n))S' B(2/n)

t=1

k k
=D BiOB(0)s;SVa(1)S's;

j=11l=1
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k k 1 B
+Y D BIO)SS fo (Vi (1) = Vi (r = 1/n))S 51 B (r)
j=11=1
k k

] - —_
+ LD BOSS [T =Tt 1S sidpitr)
j=1i=1

kK okooo . )
+ZI; fo 5iS fo (Vu(1) = Vp(max(r, ) — 1/n))S"s,dB;(r)dPy (s)
J=1li=

and

1
/o B(1)'SQxxS' B(r)dr

k k
=Y BIOBO)s;SV()S'sy

j=11=1

k k 1 ~
+ D BOS [ D=V
j=11=1
k Kk 1 B
+) D BO)siS /0 V() =V()dB(r)S's,

j=11=1

k k 1 1 ~
+Y 3 /0 5iS /0 (V(1) — V(max(r,5)))dBj(r)dBy(s)S's;.

j=11=1

Proof of Lemma A.3. To show the results for Z;’zlﬁ(t/n)’s(\_/n(t/n) — Vot —
1)/n))S' B(t/n), note that

> B/n) S(Va(t/n) = Vi ((t = 1) /n))S B (t/n)

t=1

Y Bie/mBie/m)siS(Vut/m) = V(1= 1) /m))S's;

I
.MPV
M?v

.
I
_
—
I
_
-~
I
-

n t/n t/n _ B
S (8;0) + /0 dB; (1) (B1(0) + /0 ABINSS Tt/m) = V(1= 1 /m)S's,

I
'MPV
M?v

~
Il
R
—
Il
_
=

BIO)BO)iS D " (Valt/m) = V(1= 1) /n))S'sy

t=1

Il
.M»
M»

~
Il
—
Il

+
-
M-

~

Il
-
~

I
-

rn B
BI(0)s)S /0 Z;wn(r/n) = V(= 1) /m)S'si1(r < 1/m)d; (1)
t=
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k k 1n ~
+Y ) BO)sS /0 D Vnt/m) = V(e = 1) /m)S syl (r < t/m)dBy(r)
j=li=1 =1

k k 1pln _
+Y ) sS /O fo Y (Valt/m) = Va((t = D /n)S'sil (r < t/m)I(s < t/m)dBy(r)dp;(s)
t=1

j=11=1
k ok

=D BOBO)s;SVa(1)S'sy
j=11=1

k k 1 _
+Y Y Bi0)sS /0 (Va(1) = Vialr = 1/m))S"s1d;(r)

j=li=1

k k 1 _
33 Bi0)sls /0 V(1) = Vil = 1/m)S s1dy(r)

j=li=1

k k 1 1 _
+>°) /0 5iS /0 (Va(1) = Vi (max(r,s) — 1/m)S's;dBj(r)dB(s). (A4)

j=11=1

To show the result for /01 B(r)'SOx:S' B(r)dr, note that

1
/(‘) B(r)'SQxxS' B(r)dr

k k 1
=303 s50uS's [ pitar

j=li=1

k k 1 r r
=D siS0uSs: /0 ( /0 dpBj () + Bj(0))( fo dpi(y) + Bi(0))dr

j=li=1
k k

1 rl
=3 ss0us's [ [ opon

j=11=1

k k 1 r
+ 33500’ [ ) [ dpwar

j=11=1

k k 1 r
+ 303 0550uSs [ 40 [ apiwar

j=11=1

k k 1 pr r
+ZZSJ’~SQHS/SI/O /(;dﬂj(x)/o dp(y)dr

j=11=1

k k
=37 550uS s18;(0)B1(0)
j=11=1
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k k 1 1
303500 siBi0) / / 10 < x < Pdrd; ()
" 0 JO
J=11=1
k k

1 1
+30)5j50u8'580) [ [ 10 <x = ndraco
" 0 Jo
=11=1

k k 1 p1 gl
+ Z Zs}SQxxs/s, f / f 10 =x =IO <y < ndrdB;(x)d;(y)
j=1i=1 0JoJo

=~

k
=D 5iS0uS's1B;(0)B1(0)
==
kok 1
+ ) 5iS0uS'siB1(0) /o (1 =x)dp;j(x)

j=li=1

—_

k k 1
305150 s180) /0 (1= x)dp )

j=11=1

k k 1 a1
+2 2D 50uSs /0 /0 (1 —max(x,y))dB;(x)dpi(y)
j=11=1
k k .
=" BOBOsSV(DS's;

j=1i=

—_

k k 1 _ _
+Y Y BIO) /O SiS(WV(1) = V(r)S'sidp;(r)

j=11=1

k k 1 _ _
F LB [ ST =T0)Ssdpo

j=1i=1
k k 1 rl _ _
+) f / SiS(V(1) — V(max(r,5))S"sdB;(r)dpy (s). (A.5)
j=11=1"0 70 O
LEMMA A 4.

Y (Walt/m) = a2 — 1) /m)) Q'S B(2/n)

=1
1
= Wo(1) Q28 B(1) - / W () Q28 dB(r)
0
and

1 1
//S(r)’SQI/ZdV_V(r)=,B(1)’SQI/2V_V(1)—/ W) QY28 dB(r).
0 0
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Proof of Lemma A.4. First, consider 37", (W (t/n) — Wa((r — 1)/n))' Q128 B(1/n).
This term equals

n

t
D (Walt/m) = Wu((t = 1)/m)) Q28" Y " (B(i/m) — B(Gi— 1)/m))

=1 Jj=1

+ Y (Wa(t/m) = Wt — 1) /m)' 225 (0)

t=1

noon ] j/n
= > Y ate/m = W= n/my @S [T dpa
Pt G=1)/n

+ Y (Wa(t/m) = Wt — 1) /m)' 225 (0)

t=1

nori/n _ _ -
=> f j b, (Wa(1) = W (i — 1)/m) @2S'dB(r) + W (1) Q28 B(0)
j=17Ymom

= /0 (1) — W) 225 dB ) + W (1Y 225 BO)

=W,(1)Q!/28'B(1) —/01 Wa () Q28 dB(r) (A.6)
because Wy, ((j — 1)/n) = Wy, (r) for r € ((j— 1)/n,j/n). Also, by integration by parts,
/ s 2 = 18 @2~ | W 2s'ape

1
=5(1)/S91/2V‘V(1)—/ W' QY28 dB(r). O
0

LEMMA AS.

> Bo(t/n)' SV (t/m) — V(1 — 1) /m))S' B (2/n)
t=1
k k
=D BuOBi(O)s;SVa(DS's;
j=11=1
k k 1 ~
+Y ) Bo0)sS /O (Va (1) =V (r = 1/m))S 5, (r)

j=11=1

k k 1 _
33 Bi0sls /0 V(1) = Vil = 1/m)S s1dror)

j=li=1

k k 1 1 _
Yy /0 " /0 (Vi (1) = Vu(max(r. ) — 1/m)S sidf()dBio s)

j=1i=1
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and

1
/0 Bo(r)'SQxxS' B(r)dr

k k
=" Bu(OB0)s;SV(1)S's,

j=11=1

k k 1 ~
+) ) Bu0)siS /0 V(1) = V()dB;(nS's;
j=11=1
k k

1 - -
+Y Y BiO)s)s /0 V(D) = VDB (r)S's,

j=11=1

k k 1 1 _
+ZI; fo ;S fo (V(1) = V(max(r.5))dp;(r)dfoi(s)S's1.
J=l1l=

Proof of Lemma A.5. This proof is nearly identical to the proof of Lemma A.3 and is
therefore omitted. U

LEMMA A.6.

Y Bot/n) S(Va(t/n) = V(2 = 1) /m) V()™ Y " (Vu(t/m) = V(2 = 1) /m))S' B (2/m)

t=1 =1

- 1 - - l -
=(Vn(1)’5’ﬂo(1)—/0 Vn(r)S’dﬂo(r))'Vn(l)_1(Vn(l)’S'ﬂ(l)—fO Va(r)S'dB(r))

and

1 1
/ Bo(r) drSQx.S’ / B(rdr
0 0
— (V'S Bo(1) /0 V(S o) VD)~ (7(1)'S'B(1) — /O V(S dB(r)).

Proof of Lemma A.6. To start the proof, note that
n _ —
Z(Vn(t/n) = Vul(t=1)/n))S' B(t/n)
t=1

n t
= Valt/m) = Va(t—1)/m))S" Y _(B(j/m) = B(G— 1)/n)

=1 Jj=1

+ Y (Valt/n) = Vu((t = 1)/m)S'B(0)

=1
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n n B B , ]/n
=D (Valt/n) = Val(t— 1) /n)S / RG]
o G=D/n

+ Y (Valt/m) = Vu((t = 1) /n)S'B(O)

t=1

norj/n _ _ _
=y /(] oy Fr D = V(G- 1)/m)S'dB(r) + Vu(1)S'B(0)
j=17m o

1
_ /0 V(1) — V(S dB(r) + Vn(1)S B(O)

1
=V,(1)'S'B(1) — f V,(nS'dB(r), A7)
0

and the first part of the lemma now follows. To deal with the second part, note that because
V(r) = rQxx,

- ]_ - 1_
W(Y'S' Bo(1) /0 V(S dBo(m) V(D) (V(1)'S B(1) - /O V(IS dB (1)
1 1
— (008 Bo(1) — QxS /0 rdBo(1)) Q) (QueS' B(1) — QS /O rdB(r)
1 1
— (5'Bo(1) ' fo rdBo() Que(S'B(1) — fo ()
1 1
- / Bo(r) drSQx:S’ f B(rdr. -
0 0
LEMMA A.7.

Wa (1) QY20 ()71 " (Valt/m) = V(= 1) /n)S B(t/m)

=1
1
=Wy ()'Q!28'B(1) - v'vn(l)’sz”z\'/n(l)”/ Va(r)S'dB (r)
0
and
1
W'Q28' 8 =wayQ/2s's1) — V_V(I)’QI/ZS’/ rdB(r).
0
Proof of Lemma A.7. Note that

Wa(1)'Q2V, (1)1 " (Vi (t/n) = V(1= 1) /m)S' B(2/n)

t=1

n t
= Wa (1) Q2Vu (D)™ (Valt/m) = V(e = 1)/m)S" Y (BG/m) — B(G— 1) /m))

=1 j=1

+Wa (1) QY20 ()71 (W (t/n) = V(2 = 1) /m))S' B(O)

t=1
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_ _ " _ Jj/n
= W, (1)'Q2V, (1)~ ZZ(Vn(t/m—vn((z—1)/n))s’/(i e

j=l1=j

+ Wa (1) QY2V, ()71 " (Va(2/n) = V(2 = 1) /m))S' B(0)
t=1

_ _ n_ rj/n _ _
= W,()'Q2V,(1)~ 1y /0 o) (Va(1) = Vu (G — 1) /n) S dB(r)
=170

+ Wa (1) QY2V,(1) "1V, (1)S' B(0)

1
= W,(1yQ!/2v, (17! / (Va(1) = Va(m)S'dB(r) + W (1) 2125 B(0)
0

1
= Wo(1)Q28' (1) — W, (1) @2V, (1) ! f Va(r)S'dB(r)
0

(A.8)

because V,((j—1)/n) = V,(r) for r € ((j — 1)/n,j/n). In addition, to show the second part

of the lemma, note that
1
W' Q2s' g = w28 (rp(n1} - f rdB(r))
0
1
=Ww1)'Q2s's(1) —W(l)/Q]/zS// rdB(r),
0

which completes the proof of the lemma.

(A9)

|

Using the above five lemmas, we can now establish the following two lemmas that are

key to the proof of Theorem 1.
LeEmMA A.8. Under Assumption 1, if By(-) =0,

limsup lim sup P( inf An(nfl/zﬂ) # inf An(nfl/zﬁ)) =0,
BeB BeBk

K—oo n—0o0

infﬂegf_ln (B) = Op(1), and il’lfﬂeBAl (B) is a proper random variable.

Proof of Lemma A.8. Note that for 8(-) € B, because S(-) is constant on [0, 7] and

[1—n,1] and \_/n(t/n) — V(e — 1)/n) is positive semidefinite,

> Bt/n) S(Vu(t/n) = V(2 — 1) /n))S B (/n)
t=1
[nn]

> Y B/ S(Vu(t/n) = Va((t—1)/m))S' B(t/n)
=1

+ D B/ S(Valt/n) = Vu((t—1)/n)S B(t/n)
t=[n(1-n)]+1
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[nn]
= BO0) Y S(Valt/n) = Va((t—1)/n)S'BO) + B(1)/
=1

Xy S(Vult/m) = Va(t—1)/n)S'B(1)
r=[n(1—-m]+1

= B(0)' SV ([nnl/n)S'B(0) + B(1)'S(Vy (1) — Vu([n(1 —m)1/n)S'B(1)
> 1B(0)|* Amin (Vn([nn] /1)) + 1B (1) [ doin (Vi (1) = Vi (n(1 = )1 /m)),

where A, denotes the minimal eigenvalue. Also, by the result of Equation (A.6),

1> (Walt/m) = Wal(e = 1)/m)) Q128 B(t/m)]

=1

1 1
=|/O Wn<r)’9‘/zs’dﬂ(r)—%(1)/91/2\7”(1)*‘/0 Va(rS'dB(r)|

k.1 1

=1 / Wi (r) Q128 sidp(r) — W (1) 212V, (1) 7! / Va(r)S's;dp;(r)]
- 0 0
j=1

r.j r,

ko1
< (sup| W (r)/ @'/28s;| + sup | W (1) 12V, () 1V (r)S'siD Y / dp;(r)
j oo

k
< (sup | W (r)/ @'/28's;| + sup | W (1)) V2V, (1) "1V (1) S'sj) Y (B;(1) — B;(0))
r.J r.j j=1

< (sup [Wn () QY/28's| + sup W (1) 22V, (1) "LV (0 S s; DB (D + 1BO)])
r.Jj rJj
(A.10)

because Bj(r) < (Zj]-;l ﬂj(r)2)1/2 = |B(r)|. And by the result of Equation (A.8), using
similar reasoning,

IWa(1)'QY2V, (1)1 (Va(t/n) = V(2 = 1) /m)S B(2/m)]

=1
1
=|v'vn<1>’s21/zs’ﬁ<1>—v‘vna)’szl/zvn(l)—l/ Va(r)S'dB(r)|
0

< 25up [Wn (1)’ QY2 V(1) 1V (r)Ss; k(1B O) | + 1B
nJ

Therefore,

An(n™Y28) = |BO)hmin (Vi (lnn) /1)) + 1B Apin (Vi (1) = Vin(n(1 — 1) 1/n))

—3sup | W, (1) @'/2V, (1) ™1V (nSsjlk(|B(DI+BO)])
rJ

— sup [ W (1) Q285 k(1B(D)] +BO)])

rJ
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implying that infgepAn(8) = Op(1) if Apin(Va(lynl/m) ™" = Op(1), Amin(Va(1) —
Va(n(1 = n)1/m) =" = 0p(1), sup, ;|Wa(r)Q2/28's;| = 0,(1), and sup, ;| W, (1)'Q!/2
\7,,(1)_1 Vn(r)S’Sjl = Op(1). These results follow from Assumption 1. Also, it now follows
that under those conditions,

limsuplimsu P(mfA (n~172p) A,(n~ Y28y
AN R L g P
< limsuplimsup P( inf An(rfl/zﬁ) < An(0)) =0.

K—oo n—>oo  BeBN{B:|BlI>K}

Finally, note that by partial integration, because SQ,S’ is positive definite, 8(0) = B(r) for
r € [0,n] and B(1) = B(r) for r € [1 —n, 1] by assumption,

1 1
Al(ﬂ)=/ ﬂ(r)’SQxxS’ﬂ(r)dr—2/ B(r)'sQ2aw ) + 2wy Q!/2s'p
0 0
1
> f " B(1'S QueSB(r)dr + f B(r)'S' QuxSB(rdr —2[8(r) SQY2W ()1}
0 1—n

1 1
+2/ W(r)’szl/zs’dﬂ(r)+2V‘V(1)’s21/2s’/ B(r)dr
0 0
> 1B(0)'S' QuxSB(0) + 1B(1)'S' QueSB(1) — 21 B(HIS22W (1))

B 1
—4k sup |W(V)/QI/ZS/Sj|f dap;(r)
jirel0,1] 0

> n(IBO) + 1B dmin(Qux) — 212 2W (D (1BO)] + 1B

—4k sup [W(r)' QY2851 (1BO)]+ B,
J.rel0,1]

implying that infg¢ BAI (B) is a proper random variable because sup,.¢[q, 11 |W ()| is proper
and A, (Qxx) > 0 by assumption. (]

LEmMMA A.9. Under Assumption 1, if By(-) =0,

sup [An(n~1/28)— Al (B)] L5 0.
BeBk

Proof of Lemma A.9. Defining

Sn=sup }|s;-S(Vn<1) —V(1)S'si]

Jlefl, .k

+ sup IS (Va (1) = Vi (r = 1/m) = V(1) + V(1)S's/|
Jlefl, . kY, re[l/n, 1]

+ sup ISV (1) = Vip(max (r, s) = 1/n) = V(1) + V(max(r,5)))S s
Jlell,. . kY, r,s€[0,1]

+ sup [(Wa(r) — W) 2/28's)|
jell,...,m},re[0,1]

+ sup [Wa (1) 212V, (1) ™ (V) = V()85

Jetll,...,m},ref0,1]
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and noting that §, 250 by the Skorokhod construction and the assumptions of the theorem,
and noting that sup,¢[o 1118;(r)| <Il B ||, we have, by Lemmas A.3-Lemma A.7,

sup |A,(n=1/2)— A1 ()|
BeBk

< sup |ZZﬂz(O)ﬂ,<0>s S(Va(1) = V(1)S's|
BBk 1 1=1

1 —_ —_ —_ -
+ sup | Z Zm(m f SiSWVn(1) = Vo (r = 1/m) = V(1) + V(r)S sidB; ()|
peBk j 1/=1 0

1 - - - -
+ sup |ZZﬂ,(O) / SiS(Va(1) = Via(r = 1/m) = V(1) + V(r))S's1dy ()|
PEBK =111 0

1 rl
+ sup |ZZ/ f $iS(Va(1) = Vp(max(r,s) — 1/m) = V(1)
PeBx j—11=1"0 70
+ V(max(r, NS sidB(r)dpy(s)|

1
+2sup | [ (Wa(r) = W(r)' Q25 dB ()|
BeBk

1
+2 sup |Wn(1)’szl/2‘7n(1>*1/ (Va(r) = V(r)S'dB ()|
BeBk 0
k k

<8y sup Y > 1B(0)IB;(0)]

BEBK 1 |=1

1
+8, sup ZZIﬂz(O)II/O dp;(r)|

BEBK j—1 1=

1
+8, sup ZZIﬁJ(O)II/O dpy(r)|

BEBK j—1 1=

8, sup ZD / / dBj(rdp(5)

BEBK j—1 1=1

+26, sup Z| /0 dp;(r)|

BEBk j—

1
+28, sup D /0 dp;(r)|

ﬁEBKj 1
< SuK (K% +2K% + 2k 482 + 2k + 2k) 25 0. O

We are now able to prove the main theorem.

https://doi.org/10.1017/50266466625100066 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466625100066

28 BIN CHEN AND ROBERT DE JONG

Proof of Theorem 1. We will verify the conditions of Lemma A.1 for A,,(n_l/z,B)
and Al(ﬂ). Because the distributions of An(nfl/zﬂ) and Al(ﬂ) are identical to those
of Ay (n_l/ 2;8) and Al (B), this suffices for proving the theorem. To verify Condition 1
of Lemma A.l, note that infﬁeBK;\n(n_l/zﬁ) is Borel measurable because A,(8) is a
function of (B(1/n),B(2/n),...,B(1)), and therefore the measurability of the infimum
over Bk follows from standard results, such as those of Jennrich (1969). In addition,
infgep, An(n~12B) is proper because of the result of Lemma A.8. Since

inf A,(8) = lim inf A,(n"1/28),
523 n(B) im ngK n(n B)

K—o0p

it follows that infge BA,lz(ﬂ) is also Borel measurable, because it is the a.s. limit of a
sequence of Borel measurable random variables and also is proper because of Lemma A.8.
By assumption, infgepy Al(B) is the a.s. limit of infgepy A,l1 (n~1/2B), and therefore Borel

measurable, and it is proper because inf g¢ gAL(B)is proper by Lemma A.8. Finally, because

infgep, A (B) is the a.s. limit of infgepA' (B), Borel measurability follows. Condition 2
of Lemma A.1 follows from Lemma A.9. Noting that Condition 3 of Lemma A.1 follows
from Lemma A.8, the proof of convergence in distribution is now complete.

To show that both expressions for the limit distribution of infge pAL(B) are identical,
note that because if 8 € B, for any k-vector c also  + ¢ € B, implying that

1 1 1
inf ( / B(r)'S OxxSBF)dr —2 / B SQY2aw(r) +2w (1) Q28 / B(r)dr)
BeB Jo 0 0
1 1
— inf inf ( / BT +¢)'S 0SB +c)dr —2 / (B +¢)/'SQY2aw ()
BeBceRk Jo 0

1
+2w(1) Ql/2s / (B(r) +c)dr). (A.11)
0

We will now concentrate out ¢ from the above expression. Differentiating with respect to ¢
implies that

1 1
2/ S QuS(B(r) +c)dr—2/ sQ2awr) +25Q2w(1) =0
0 0
which in turn implies, because Q;x = SQxy, that
1
S/Qxxs(/ B(dr+c) =0,
0
and therefore, as long as Q,, is nonsingular,

1
c= —fo B(r)dr=—B.

Plugging this value for ¢ into the expression of Equation (A.11) now shows that both
expressions are identical. |

Our result under the alternative requires two more lemmas.
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LEMMA A.10. Under Assumption 1,

hmsuphmsupP( 1nf An(ﬂ) * 1nf An(ﬂ)) =

K—oo n—0oo
infgep n~l4, (B) = Op(1), and infﬂGBAl (B) are proper random variables.

Proof of Lemma A.10. For the first term on n_lfln(ﬁ), we have by Lemma A.8,

> B/n) S(Vu(t/n) = V(2 — 1) /n))S B (2/n)

=1
> 1B(0)|* Amin (V([nn1 /1)) + | B hninn (Vi (1) = Vi (01 = )1 /).

For the second term, we found in Lemma A.8

| (Wat/n) = Wt = 1) /m)) /28 (/)|
t=1
< 25up Wy (1)’ QY2 V, (1)~ V() sj k(1B + | BO))),

r.j

while for the fifth term, Lemma A.8 gave

(Wa (1) QY20 (1)1 (Vi (t/n) = V(= 1) /m)S' B(2/m)]
t=1

< 25up [Wn (1)’ QY 2V, (1) 71V (r)S's; k(1B O) | + 1B
r).]

29

For the third term, we have, because ;(r) < [B(r)| < |B(0)|+ |B(1)| as was noted in the

proof of Lemma A.8,

1Y Bot/m) S(Va(t/n) = V(2 — 1) /m)S' B(t/m)|

t=1

k k

ZZ Bo(0) B (0)sSV(1)S's/|

j=11=1
k k 1 B

ZZ Bor(0)s7S /0 (Vu(1) = Vil — 1/m))S sy B (r)|
k k
ZZ (0)s/S / (Va(1) = Vo (r = 1/n))S s1dBro ()|
k k
j=1I=

f oS / V(1) = Vn(max(r.s) — 1/n)S'sidBj(dBro (o)l
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k k
< suplsiSVa(NS's11 D D " 1Bor(0)]18;(0)]

JLr

j=11=1

k k
+s?p|s SVa(r)S's; ZZIﬂoz(O)I(Iﬁj(O)H ;D))
Jib T j=lI=1

+5up|s7SVu(r)S'si| ZZ 18 (0)] (1B (O)] + [ Bor (D)

JLr j=11=1
kK
+SUP|s SVn(r)S’SIIZZ(Iﬂ,(O)I+Iﬂ](l)l)(lﬂoz(0)|+Iﬂoz(l)l)

j=lI=1

< sup 15V (1) 511k (1Bo(O) |+ Bo(DDABO) + B,
LT

and for the fourth term, we have by the reasoning of Lemma A.6,

Y Bot/n) S(Va(t/n) = V(2 = 1) /m)Va ()™ Y " (Vu(t/n) = V(2 = 1) /m))S'B(2/m)

t=1 =1

1 1
= (Vo (1)'S'B(1) — /0 Va(NS'dB(r) V(1) ™1V, (1)'S Bo(1) — /0 Viu(r)S'dBo(r)).

LeEmmaA A.11. Under Assumption 1,

sup |n~1A,(8) —A%(B) L5 0.
BeBk

Proof of Lemma A.11. This proof is now analogous to the proof of Lemma A.9 and
hence is omitted for space. O

Proof of Theorem 2. The proof of Theorem 2 is completely analogous to the proof of
Theorem 1, except that the references to Lemma A.8 need to be replaced by references to
Lemma A.10, and the references to Lemma A.9 by Lemma A.11. |

A.2. Additional Simulation
A.2.1. Additional Simulation with Different 1.

A.2.2. Additional Simulation with DGP P’l. We also consider a scenario in
which one parameter (the intercept) is monotonically decreasing and one parameter (the
slope) is monotonically increasing. The DGP is

DGP P’1

0.9+0.5x;+¢;, ifr<0.3n,
vi=3074+0Tx;4¢, if03n<t<0.7n,
0.540.9x; +¢;, otherwise.
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TABLE A.l. Empirical size and power with different 7.

n=0.1 n=0.15 n=0.2
n 100 250 500 100 250 500 100 250 500

DGPS.1 .037 .048 .049 .047 .052 .048 .029 .0344 .042
DGPS2 .039 .054 .056 .032 .049 .047 .032 .037 .044
DGPP1 .626 948 1.00 .646 958 1.00 .666 .963 1.00
DGPP2 446 742 965 458 770 .972 481 786 .978
DGPP3 426 778 986 439 821 987 466 .840 .988
DGPP4 684 956 1.00 .681 949 1.00 .668 .954 1.00
DGPP5 482 825 990 487 837 990 492 831 986
DGPP6 .137 344 700 .149 378 744 175 407 764

Note: 5% significance level.

TABLE A.2. Empirical power of test under

DGPP’1.

n 100 250 500
infgepAn (B) 431 735 944
H 187 578 924
SupLM 184 498 830
UDMax 207 549 874
gLL 232 566 898

Note: (1) 5% significance level; (2) infgep A, (B) is our
test based on isotonic regression; SupLM is Andrews’
(1993) supremum LM test; UDMax is Bai and Perron’s
(1998) double maximum test; qLL is Elliott and Miiller’s
(2006) efficient test based on a quasilocal level model.

The empirical power is reported in Table A.2. The proposed infgepAn (8) outperforms
other tests for all sample sizes, which shows the new test maintains good power under the
case with one parameter decreasing and one increasing.
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