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Detecting structural changes in economic relationships has been a longstanding
challenge in econometrics. Most of the literature on structural breaks has considered
abrupt structural breaks. Existing tests for detecting smooth structural change typi-
cally rely on kernel estimation. In this article, we introduce a novel tuning-parameter-
free test that minimizes a criterion function over all possible nondecreasing or
nonincreasing structural change functions. This test is pivotal (after appropriate
scaling) in the scalar case and remains computationally simple even in multivariate
settings. Compared to existing nonparametric tests, our method offers superior power
against local monotonic structural changes and does not involve the choice of a
bandwidth parameter. A simulation study and two empirical examples highlight the
merits of the proposed test relative to some popular tests for structural changes in the
literature.

1. INTRODUCTION

Detecting structural changes in economic relationships has been a persistent chal-
lenge in econometrics. Historically, most existing tests have focused on identifying
abrupt structural breaks. However, as emphasized by Hansen (2001), structural
changes may not occur instantaneously; rather, they often emerge gradually over
time. Factors such as technological progress, shifts in preferences, and policy
adjustments, which are often key drivers of structural changes, tend to undergo
gradual and evolutionary transformations over the long term.

The study of structural breaks began with the seminar work of Chow (1960).
This test relies primarily on the assumption of error normality and is designed to
detect a single structural break with a known break date. Andrews (1993) further
advances the field by assuming that the structural break occurs at a fixed fraction
of the sample size, enabling asymptotic analysis. Andrews (1993) explores the
optimization of various test statistics across a range of potential change points,
typically within the interval [ηn, 1 − ηn], where n denotes the sample size and
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2 BIN CHEN AND ROBERT DE JONG

η is some small number, such as 0.15 or 0.20. Building on Andrews’ work, Bai
and Perron (1998) extend the methodology to accommodate multiple structural
breaks. More recently, modeling and testing for smooth structural changes have
attracted more attention in the literature. Chen and Hong (2012), Kristensen (2012)
and Zhang and Wu (2012) introduce novel approaches by considering structural
change functions of the form f (t/n) and propose various tests capable of detecting
both smooth structural changes and abrupt breaks. Expanding upon these ideas,
Li, Phillips, and Gao (2020) extend the framework to accommodate nonstationary
regressors and Su and Wang (2017) consider models with latent factors. All these
tests rely on nonparametric estimation of the structural change function f (·).1

This article addresses settings where the direction of the potential change is
clear and proposes a novel test based on isotonic regression to detect both smooth
structural changes and abrupt structural breaks. Our test complements existing
methods for abrupt structural breaks, eliminating the complexities associated with
identifying multiple breaks or unknown break-points.

In contrast to nonparametric tests in the literature designed for smooth structural
changes, our test exhibits significant power against local smooth structural changes
with a rate of n−1/2 and does not require the selection of a tuning parameter. The
foundation of our test lies in isotonic regression, which minimizes a stochastic
function within a domain of monotonic functions. While the requirement of
monotonicity may initially appear stringent, it aligns naturally with many real-
world applications, particularly when structural changes result from factors like
population growth or technological advancements.2 The monotonicity assumption
has been imposed implicitly in some existing works in the structural break
literature as well. An indicator function is a monotonic function. Hence, if the true
DGP has a single break, the monotonicity assumption is automatically satisfied.
Alternatively, if the true is a first-order logistic function, as the smooth transition
regression suggested in Lin and Teräsvirta (1994), monotonicity holds as well.3

Our test can be applied to assess the presence of monotonic trends or monotonic
structural changes within linear regression. Unlike many tests that optimize over
a function space, our statistic is asymptotically pivotal after scaling in the scalar
case and remains computationally simple even in multivariate scenarios.

The remainder of the article is organized as follows. In Section 2, we introduce
our test and establish its asymptotic distribution and consistency. Section 3 outlines

1The literature on structural changes is huge and still growing. For brevity, we focus on methods most relevant to our
approach.
2One example is the trend regression considered in Section 4. With global warming, technological progress, or
population growth, the monotonicity assumption seems reasonable in many applications of trend regression. Another
example is the expectations-augmented Phillips curve studied by Alogoskoufis and Smith (1991), Bai and Perron
(2003), and Blanchard and Bernanke (2024). The parameter of interest is the coefficient that measures the persistence
of inflation, which is expected to increase over time over the past 20 years.
3We conjecture that if the true structural change function is well approximated by a monotonic function, our
results can still go through. However, the theoretical extension is very challenging and we would like to leave it
for future research. Nevertheless, we explore the power of our test against non-monotonic structural changes via a
comprehensive simulation study in Session 4.
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the computation of the test statistic. In Section 4, we conduct a simulation study
to validate the reliability of the asymptotic theory in finite samples. Additionally,
we apply our test to two practical examples: global warming and the impact of
personal tax exemptions on fertility rates. Section 5 concludes. All mathematical
proofs are collected in the “Appendix” Section for reference.

2. SETUP AND MAIN RESULT

2.1. Setup

Consider the data generating process (DGP)

yt = θ ′
0xt +β0 (t/n)′ zt + εt, t = 1,..,n, (1)

where yt is a dependent variable, xt is an m×1 vector of explanatory variables, zt is
the same as xt or part of xt,β0 : [0,1] →R

k (k ≤ m) is a k×1 possibly time-varying
parameter vector, εt is an unobservable disturbance with E(εt|xt) = 0 almost surely
(a.s.). The null hypothesis of interest is

H0 : β0 (t/n) = 0 for all t.

The alternative hypothesis is

HA : β0 (r) is a nondecreasing function of r, where r ∈ [0,1].

The case where β0 (r) is a nonincreasing function is analogous. If zt is the same
as xt, we have pure structural changes and the whole parameter vector is subject to
change under the alternative hypothesis; if zt is part of xt, we have partial structural
changes (Andrews, 1993).

We consider a test by minimizing the distance between the sums of squared
residuals over a space of functions that is monotone on [0, 1]. To be precise, let
B = B(η) denote the class of functions on [0, 1] such that βj (r) is nondecreasing in
r for every j ∈ {1,...,k} and constant on [0,η] and on [1−η,1], where η is a small
constant. In the literature, a similar constant occurs in works such as Andrews
(1993) and Bai and Perron (1998). When one wants to test for structural change
that is initiated by some political or institutional change, the prior information can
be used to choose η. When no information is available, the common choice of η is
0.15 in the literature, as suggested by Andrews (1993), and hence we follow this
tradition.4 In our tables below, we will list critical values for η = 0.10,0.15,0.20,
and 0.25. While we will prove our results for B, the class of functions such that
βi(r) is nondecreasing in r, the results remain valid as long as it is a priori known
which βi(r) are increasing and which are decreasing.

4Note that the choice of η and the choice of the bandwidth h in those existing nonparametric tests (e.g., Chen and
Hong, 2012; Kristensen, 2012) are very different. The choice of h has an impact on the convergence rate of the test
statistic and the local alternative the test can detect is n−1/2h−1/4. In contrast, the convergence rate of our test defined
below does not depend on the choice of η as long as η is bounded away from zero and one. Our additional simulation
results reported in the appendix show that the test is not sensitive to the choice of η.
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4 BIN CHEN AND ROBERT DE JONG

Our test statistic is defined as

inf
β∈B

An (β) ≡ inf
β∈B

n∑
t=1

[(
ε̂t −β (t/n)′ zt

)2 − ε̂2
t

]
, (2)

where ε̂t = yt − θ̂ ′xt and θ̂ is the OLS estimator of θ in the model yt = θ ′xt +εt. As
zt is a subset of xt, we can write zt = Sxt where S is a (k ×m) selection matrix that
contains zeros and ones and satisfies SS′ = Ik. For any function β(·), we have

An(β) =
n∑

t=1

((β(t/n)′zt)
2 −2ε̂tβ(t/n)′zt)

=
n∑

t=1

β(t/n)′Sxtx
′
tS

′β(t/n)−2
n∑

t=1

εtx
′
tS

′β(t/n)

−2
n∑

t=1

β0(t/n)′Sxtx
′
tS

′β(t/n)+2
n∑

t=1

β0(t/n)′Sxtx
′
t(

n∑
t=1

xtx
′
t)

−1
n∑

t=1

xtx
′
tS

′β(t/n)

+2
n∑

t=1

εtx
′
t(

n∑
t=1

xtx
′
t)

−1
n∑

t=1

xtx
′
tS

′β(t/n), (3)

where we have used the fact that yt = θ ′
0xt +β0(t/n)′zt + εt.

The situation of minimizing an objective function
n∑

t=1

wt(vt −β(t/n))2

over all nondecreasing β(·) for a sequence of positive weights wt is referred to as
isotonic regression. For an overview of isotonic regression, we refer to Robertson,
Wright, and Dykstra (1988). As explained in Wu, Woodroofe, and Mentz (2001),
in general, isotonic regression will not generate a limit distribution for statistics
such as infβ An(β), where the “inf” is taken over the space B. This is due to a
“spiking problem.” This problem concerns the limit behavior of the endpoints of
the β(·) functions that minimize An(β). In their paper, Wu et al. (2001) consider
limiting the distance between the endpoints of the isotonic regression function.
However, their approach does not deal with a regression setting and we suggest an
alternative modification of the isotonic regression setting, namely, fixing the β(·)
function in the neighborhoods of 0 and of 1. This modification is very much in
the spirit of what is done in Andrews (1993) and has the feature of generating an
asymptotically pivotal statistic inf An(β) for the case of scalar zt.

Let ‖ β ‖= supr∈[0,1] |β(r)| where |.| denotes the Euclidean norm. Also, for any
K > 0 define BK = {β ∈ B :‖ β ‖≤ K}. Throughout this article, the maintained
assumption is the following.

Assumption 1. There exists a positive definite matrix � such that

Wn(r) = �−1/2n−1/2
[rn]∑
t=1

εtxt

https://doi.org/10.1017/S0266466625100066 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100066


TESTING FOR STRUCTURAL CHANGE 5

satisfies Wn(r) ⇒ W(r). Furthermore, for

Vn(r) = n−1
[rn]∑
t=1

xtx
′
t

and V(r) = rQxx we have

sup
r∈[0,1]

|Vn(r)−V(r)| p−→ 0,

and Qxx is positive definite.

Noting that

xtx
′
t = n(Vn(t/n)−Vn((t −1)/n))

and

εtxt = n1/2�1/2(Wn(t/n)−Wn((t −1)/n)),

we can now write

An(β) = n
n∑

t=1

β(t/n)′S(Vn(t/n)−Vn((t −1)/n))S′β(t/n)

−2n1/2
n∑

t=1

(Wn(t/n)−Wn((t −1)/n))′�1/2S′β(t/n)

−2n
n∑

t=1

β0(t/n)′S(Vn(t/n)−Vn((t −1)/n))S′β(t/n)

+2n
n∑

t=1

β0(t/n)′S(Vn(t/n)−Vn((t −1)/n))Vn(1)−1

×
n∑

t=1

(Vn(t/n)−Vn((t −1)/n))S′β(t/n)

+2n1/2Wn(1)′�1/2Vn(1)−1
n∑

t=1

(Vn(t/n)−Vn((t −1)/n))S′β(t/n). (4)

This five-term representation will be key to establishing our results under both the
null and alternative hypothesis.

2.2. Limit Distribution Under the Null Hypothesis

The representation of Equation (4) suggests that if β0(·) = 0, the third and fourth
terms will disappear in the expression of Equation (4) and hence An(n−1/2β) will
asymptotically resemble
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6 BIN CHEN AND ROBERT DE JONG

A1(β) =
∫ 1

0
β(r)′SQxxS′β(r)dr −2

∫ 1

0
β(r)′S�1/2dW(r)+2W(1)′�1/2S′β̄, (5)

where β̄ = ∫ 1
0 β(r)dr.

Formalizing this intuition gives our main result, which is the following theorem.

Theorem 1. Under Assumption 1, if β0(·) = 0,

inf
β∈B

An(β)
d−→ inf

β∈B
A1(β).

Furthermore,

inf
β∈B

A1(β) = inf
β∈B

(

∫ 1

0
(β(r)− β̄)′SQxxS′(β(r)− β̄)dr −2

∫ 1

0
(β(r)− β̄)′S�1/2dW(r)).

The proofs of the theorems are provided in the Mathematical Appendix.

2.3. A Pivotal Test for Structural Change

It seems hard to generate a pivotal statistic in general from the result of Theorem
1, except for the case where k = 1 and zt ∈ R. For that case, define Qzz = SQxxS′,
λ2 = S�S′ and W̃(r) = λ−1S�1/2W(r), and note that W̃(r) is a scalar Brownian
motion process. We then have

inf
β∈B

An(β) = inf
β∈B

An(λβ/Qzz)

d−→ inf
β∈B

(

∫ 1

0
((λ/Qzz)(β(r)− β̄))′SQxxS′((β(r)− β̄)(λ/Qzz))dr

−2
∫ 1

0
(λ/Qzz)(β(r)− β̄)′S�1/2dW(r))

= (λ2/Qzz) inf
β∈B

(

∫ 1

0
(β(r)− β̄)2dr −2

∫ 1

0
(β(r)− β̄)dW̃(r)),

and the expression

inf
β∈B

A1
1(β) = inf

β∈B
(

∫ 1

0
(β(r)− β̄)2dr −2

∫ 1

0
(β(r)− β̄)dW̃(r)

is pivotal. Since B depends on the choice of η and on whether B denotes the set of
(1) all nonincreasing or (2) all nondecreasing functions, different critical values are
obtained for each case. Table 1 lists the critical values of the infβ∈B A1

1(β) statistic
for η = 0.10, 0.15, 0.20, and 0.25 for the case where B contains nondecreasing
functions; these values were obtained by simulation using 10,000 replications. For
the case when B contains nonincreasing functions the critical values are identical,
because of the distributional equivalence of W(·) to −W(·).
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Table 1. Critical values of infβ∈B A1(β).

η 0.10 0.15 0.20 0.25

n 10% 5% 10% 5% 10% 5% 10% 5%

100 −6.42 −8.10 −5.78 −7.48 −5.21 −6.78 −4.72 −6.27

250 −6.62 −8.40 −5.96 −7.63 −5.38 −6.95 −4.89 −6.39

500 −6.90 −8.67 −6.22 −7.91 −5.63 −7.32 −5.12 −6.74

1,000 −7.03 −9.15 −6.28 −8.13 −5.70 −7.52 −5.21 −6.90

2,500 −7.22 −9.11 −6.35 −8.39 −5.83 −7.58 −5.25 −6.83

5,000 −7.15 −9.08 −6.33 −8.18 −5.77 −7.60 −5.27 −7.03

2.4. Limit Behavior Under the Alternative

Under the alternative hypothesis that β0 ∈ B, but β0(·) 	= 0, we should consider
n−1An(β). In this case, it can be shown that the second and fifth terms of
Equation (4) vanish, and this observation gives the following consistency result.

Theorem 2. Assume that Assumption 1 holds. Then

n−1 inf
β∈B

An(β)
p−→ −

∫ 1

0
(β0(r)−

∫ 1

0
β0(r)dr)′SQxxS′(β0(r)−

∫ 1

0
β0(r)dr)dr.

The above theorem is based on showing that n−1An(β) approaches A2(β), where

A2(β) =
∫ 1

0
β(r)′SQxxS′β(r)dr −2

∫ 1

0
β0(r)

′SQxxS′β(r)dr +2
∫ 1

0
β0(r)

′drSQxxS′
∫ 1

0
β(r)dr.

The expression A2(β) is minimal for β(r) = β0(r)− ∫ 1
0 β0(r)dr because

0 ≤
∫ 1

0
(β(r)−β0(r)+

∫ 1

0
β0(r)dr)′SQxxS′(β(r)−β0(r)+

∫ 1

0
β0(r)dr)dr

=
∫ 1

0
β(r)′SQxxS′β(r)dr +

∫ 1

0
(β0(r)−

∫ 1

0
β0(r)dr)′SQxxS′(β0(r)−

∫ 1

0
β0(r)dr)dr

−2
∫ 1

0
(β0(r)−

∫ 1

0
β0(r)dr)′SQxxS′

= A2(β)+
∫ 1

0
(β0(r)−

∫ 1

0
β0(r)dr)′SQxxS′(β0(r)−

∫ 1

0
β0(r)dr)dr,

and therefore,

A2(β) ≥ −
∫ 1

0
(β0(r)−

∫ 1

0
β0(r)dr)′SQxxS′(β0(r)−

∫ 1

0
β0(r)dr)dr

= A2(β0(r)−
∫ 1

0
β0(r)dr).
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It is notable that A2(·) is minimized at β0(r)−
∫ 1

0 β0(r)dr, instead of at β0(r). Since
zt is included in xt, adding a constant to β(r) and subtracting the same constant from
the corresponding element of θ0 will not alter the objective function. Therefore, we
can view the subtraction of

∫ 1
0 β0(r)dr = 0 as a necessary normalization.

To gain more insight into the power property of infβ∈B An(β), we consider the
following sequence of local alternatives:

HA(n) : β0 (r) = g(r)√
n

,r ∈ [0,1],

where g : [0,1] → R
k is a monotonic vector function. Following the proof of

Theorem 1, we can verify that under HA(n), infβ∈B An(β)
d−→ infβ∈B A1(β) −∫ 1

0 (g(r)− ḡ)′ SQxxS′β(r)dr, where A1(β) is defined in Equation (5) and ḡ =∫ 1
0 g(r)dr. This suggests that our test has nontrivial power against the class of

smooth monotonic alternatives with rate n−1/2, which is faster than the nonpara-
metric rate n−1/2h−1/4, where h is the bandwidth, obtained in Chen and Hong
(2012) and Kristensen (2012).

3. CALCULATING THE STATISTIC

Considering the DGP in Equation (1), we conduct our test via the following steps:

1. Run OLS regression of yt on xt and get the estimated residual ε̂t.
2. Estimate β (t) via isotonic regression

β̂ (t/n) = argmin
β∈B

n∑
t=1

(ε̂t −β(t/n)′zt)
2.

3. Compute the test statistic

inf
β∈B

An(β) =
n∑

t=1

[(
ε̂t − β̂ (t/n)′ zt

)2 − ε̂2
t

]

and compare it with the critical values.

Our algorithm covers pure and partial structural changes in a unified framework,
where zt is the same as xt for pure changes and a subset of xt for partial changes.
Step 2 in our algorithm involves isotonic regression and minimizing a random
function over a function space may seem cumbersome at first sight. However, the
computational problem turns out to be surprisingly simple. In the literature on
isotonic regression, such as Wu et al. (2001), or Robertson et al. (1988), a common
formulation is

min
n∑

t=1

wt(vt −μt)
2, (6)
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where {vt}n
t=1 are the observed time series, {wt}n

t=1 are prespecified positive weights
and {μ}t are the parameters to be estimated, and μ1 ≤ μ2 ≤ ·· · ≤ μn. Therefore,
from a perspective of calculating our statistic, the proposal of this article focuses
on the class of nondecreasing functions that are constant on [0,η] and on [1 −
η,1], which amounts to forcing μ1 = ·· · = μ[ηn] and μ[(1−η)n]+1 = ·· · = μn. The
maximization of this objective function is a strictly convex quadratic programming
problem, and its solution is unique (Robertson et al., 1988)

In the case of scalar β(.) and zt, under the assumptions β(1/n) = ·· · = β([ηn]/n)
and β(([(1−η)n]+1)/n) = ·· · = β(1), Step 2 in our algorithm can be written as

min
n∑

t=1

(ε̂t −β(t/n)zt)
2

= min
n−[nη]∑

t=[nη]+1

z2
t (ε̂t/zt −β(t/n))2 +

[nη]∑
t=1

z2
t (ε̂t/zt −β(t/n))2 +

n∑
t=n−[nη]+1

z2
t (ε̂t/zt −β(t/n))2

= C +min
n−[nη]∑

t=[nη]+1

z2
t (ε̂t/zt −β(t/n))2 + (

[nη]∑
t=1

z2
t )(

∑[nη]
t=1 ε̂tzt∑[nη]
t=1 z2

t

−β(1/n))2

+ (

n∑
t=[(1−η)n]+1

z2
t )(

∑n
t=[(1−η)n]+1 ε̂tzt∑n
t=[(1−η)n]+1 z2

t
−β(1))2,

which implies that Step 2 is equivalent to carrying out the isotonic regression
in Equation (6) on a dataset with n − 2[ηn] + 2 observations: {vt}n−2[ηn]+2

t=1 for

which the first observation v1 =
∑[nη]

t=1 ε̂tzt∑[nη]
t=1 z2

t
has weight w1 = ∑[nη]

t=1 z2
t , the second one

v2 = ε̂[nη]+1/z[nη]+1 has weight w2 = z2
[nη]+1, etc., up to vn−2[nη]+1 = ε̂n−[nη]/zn−[nη]

which has weight wn−2[nη]+1 = z2
n−[nη], and the last observation vn−2[nη]+2 =∑n

t=[(1−η)n]+1 ε̂tzt∑n
t=[(1−η)n]+1 z2

t
has weight wn−2[nη]+1 = ∑n

t=[(1−η)n]+1 z2
t .

As shown in Robertson et al. (1988), the explicit formula of the values β̂(t/n)

for isotonic regression with weights wt can be found as:

β̂(i/n) = max
j:j≤i

min
h:h≥i

Av(ε̂j,ε̂j+1,...,ε̂h),

where

Av(ε̂j,ε̂j+1,...,ε̂h) =
∑h

t=j wtε̂t∑h
t=j wt

.

For weights wt all equal to 1 this simplifies to

β̂(i/n) = max
j:j≤i

min
h:h≥i

ε̂j +·· ·+ ε̂h

h− j+1
.

Therefore, the test statistic is straightforward to calculate from the data.
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4. MONTE CARLO AND APPLICATION

4.1. Monte Carlo Simulations

In the simulations below, we used the value η = 0.15, νt ∼ i.i.d.N(0,1) and εt

and νt are mutually independent.5 To examine the size of all tests under H0, we
considered the following DGP, which was also used in Chen and Hong (2012):

• DGP0: No Structural Change

yt = 1+0.5xt + εt,

xt = 0.5xt−1 +νt.

To examine the robustness of tests, we consider two cases for {εt}: (i) εt ∼
i.i.d.N(0,1); (ii) εt = 0.5εt−1 + ut,ut ∼ i.i.d.N(0,1). We generated 5,000 data
sets of the random sample {xt,yt}n

t=1 for n = 100,250 and 500 respectively. We
compared our test with a variety of popular tests, including: Andrews’ (1993)
supremum LM test; Lin and Teräsvirta’s (1994) LM test test based on the first-
order Taylor expansion; Bai and Perron’s (1998) UDmax test; Elliott and Müller’s
(2006) qLL test, and Chen and Hong’s (2012) generalized Hausman test. Following
Andrews (1993), we chose the trimming region 	 = [0.15,0.85] for the tests of
Andrews (1993) and Bai and Perron (1998). For Bai and Perron’s (2003) test, the
maximum number of breaks is set to five. For the generalized Hausman test, we
adopted the rule-of-thumb bandwidth h = 1√

12
n−1/5, as suggested by Chen and

Hong (2012).
To investigate the power of all tests in detecting structural changes, we consid-

ered six alternatives: (i) a single break, (ii) monotonic multiple breaks, (iii) non-
monotonic multiple breaks, (iv) monotonic smooth structural changes, (v) non-
monotonic smooth structural changes, and (vi) non-persistent temporary breaks,
respectively:

• DGP1: Single Structural Break

yt =
{

1+0.5xt + εt, if t ≤ 0.3n,
1.2+ xt + εt, otherwise.

• DGP2: Monotonic Multiple Structural Breaks

yt =
⎧⎨
⎩

1+0.5xt + εt, if t ≤ 0.2n,
1.2+0.7xt + εt, if 0.2n < t < 0.6n,
1.4+0.9xt + εt, otherwise.

• DGP P.3: Non-monotonic Multiple Structural Breaks

yt =
⎧⎨
⎩

1+0.5xt + εt, if t ≤ 0.3n,
1+ xt + εt, if 0.3n ≤ t ≤ 0.7n,
1+0.8xt + εt, otherwise.

5Simulation results with different η can be found in Table A.1 in the Appendix.
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Table 2. Empirical size of tests.

DGP S.1 DGP S.2

i.i.d. error serially correlated error

n 100 250 500 100 250 500

infβ∈B An (β) .047 .052 .048 .032 .049 .047

Ĥ .095 .078 .053 .204 .177 .156

LM .044 .054 .052 .081 .070 .065

SupLM .049 .048 .052 .197 .109 .072

UDMax .051 .052 .050 .375 .208 .125

qLL .065 .055 .052 .042 .057 .060

Note: (1) 5% significance level; (2) infβ∈B An (β) is our test based on isotonic
regression; Ĥ is Chen and Hong’s (2012) generalized Hausman test; LM is
Lin and Teräsvirta’s (1994) LM test based on the first-order Taylor expansion;
SupLM is Andrews’ (1993) supremum LM test; UDMax is Bai and Perron’s
(1998) double maximum test; qLL is Elliott and Müller’s (2006) efficient test
based on a quasilocal level model.

• DGP4: Monotonic Smooth Structural Changes

yt = F (r)(1+0.5xt)+ εt,

where r = t
n and F (r) = 0.2exp (−0.7+3.5r) .

• DGP P.5: Non-monotonic Smooth Structural Changes

yt = 1+0.5F (r)xt + εt,

where r = t
n and F (r) = r + exp[ −4+ (r −0.5)2]−1.

• DGP P.6: Non-persistent Temporary Breaks

yt =
{

1+0.5xt + εt, if t ≤ 0.3n or t ≥ 0.7n,
1+ xt + εt, otherwise.

For each of DGPs 1–6, we generated 1,000 data sets of the random sample
{yt,xt}n

t=1 for n = 100,250, and 500. Table 2 reports the rejection rates of all tests
under DGP0 using asymptotic critical values at the 5% significance level. Under
i.i.d. and serially correlated errors, our infβ∈B An (β) test underrejected H0 when
n = 100, but not excessively and improved as n increases. For other tests, under
i.i.d. errors, Chen and Hong’s (2012) test and Elliott and Müller’s (2006) qLL
test have some overrejection when n is small, but they improve as n increases.
Under serially correlated errors, Chen and Hong’s (2012) Hausman test, Andrews’
(1993) SupLm test and Bai and Perron’s (1998) double maximum test have rather
large overrejection although the overrejection becomes smaller with the increase
of sample sizes. Overall, our test displays the most robust size although Elliott and
Müller’s (2006) qLL test also has good size control.
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Table 3. Empirical power of tests under i.i.d. errors.

DGP P.2 DGP P.3

DGP P.1 monotonic non-monotonic

single break multiple breaks multiple breaks

n 100 250 500 100 250 500 100 250 500

infβ∈B An (β) .646 .958 1.00 .458 .770 .972 .439 .821 .987

Ĥ .396 .790 .990 .220 .424 . 797 .303 .660 .960

LM .422 .850 .993 .312 .654 .937 .204 .410 .703

SupLM .446 .893 .994 .225 .556 .885 .264 .697 .968

UDMax .493 .935 .999 .258 .629 .929 .326 .774 .988

qLL .436 .897 1.00 .240 .635 .917 .311 .805 .984

DGP P.4 DGP P.5

monotonic non-monotonic DGP P.6

smooth changes smooth changes temporary break

n 100 250 500 100 250 500 100 250 500

infβ∈B An (β) .681 .949 1.00 .487 .837 .990 .149 .378 .744

Ĥ .345 .748 .981 .229 .548 .820 .381 .796 .994

LM .472 .876 .995 .256 .604 .918 .067 .063 .066

SupLM .414 . 839 .993 .273 .666 .944 .178 .518 .903

UDMax .477 .885 .996 .298 .727 .971 .332 .831 .998

qLL .446 .888 .995 .261 .724 .967 .404 .884 .998

Note: (1) 5% significance level; (2) infβ∈B An (β) is our test based on isotonic regression; Ĥ
is Chen and Hong’s (2012) generalized Hausman test; LM is Lin and Teräsvirta’s (1994) LM
test based on the first-order Taylor expansion; SupLM is Andrews’ (1993) supremum LM test;
UDMax is Bai and Perron’s (1998) double maximum test; qLL is Elliott and Müller’s (2006)
efficient test based on a quasilocal level model.

Next, we consider power. Tables 3 and 4 report the rejection rates of all tests
using empirical critical values, which are size-adjusted critical values, at the 5%
level under i.i.d. errors and serially correlated errors, respectively. Under i.i.d.
errors, our test compares favorably to other competing tests across DGPs P.1-P.5.
In particular, our test is more powerful than the kernel-based generalized Hausman
test, confirming our theoretical comparison. Notably, even when β(r) exhibits
non-monotonic changes under DGPs P.3 and P.5, the proposed test outperforms
all competing tests. Under DGP P.6, where the break persists only for a limited
period, Lin and Teräsvirta’s LM test has no power even at n = 500. While our
test infβ∈B An (β) is less powerful than Ĥ, SupLM, UDMax, and qLL tests in this
setting, its rejection rate still increases with sample size. Overall, infβ∈B An (β)

has comparable power against non-monotonic structure breaks, except when those
breaks are temporary. The rankings of all tests under serially correlated errors are
consistent with those observed under i.i.d. errors.
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Table 4. Empirical power of tests under serially correlated errors.

DGP P.2 DGP P.3

DGP P.1 monotonic non-monotonic

single break multiple breaks multiple breaks

n 100 250 500 100 250 500 100 250 500

infβ∈B An (β) .367 .714 .968 .459 .731 .932 .411 .691 .928

Ĥ .166 .628 .882 .329 .441 .670 .455 .690 .920

LM .207 .479 .789 .174 .361 .619 .115 .219 .368

SupLM .229 .532 .915 .424 .565 .785 .340 .621 .856

UDMax .164 .513 .885 .438 .559 .756 .440 .780 .908

qLL .231 .541 .890 .136 .329 .575 .138 .405 .762

DGP P.4 DGP P.5

monotonic non-monotonic DGP P.6

smooth changes smooth changes temporary break

n 100 250 500 100 250 500 100 250 500

infβ∈B An (β) .607 .864 .989 .288 .550 .844 .208 .355 .634

Ĥ .536 .805 .963 .458 .706 .910 .289 .446 .804

LM .839 .989 1.00 .169 .347 .577 .079 .063 .066

SupLM .566 .769 .934 .151 .351 .753 .214 .385 .670

UDMax .700 .823 .942 .260 .719 .885 .229 .447 .900

qLL .251 .563 .868 .149 .369 .720 .181 .483 .851

Note: (1) 5% significance level; (2) infβ∈B An (β) is our test based on isotonic regression; Ĥ is
Chen and Hong’s (2012) generalized Hausman test; Lin and Teräsvirta’s (1994) LM test based
on the first-order Taylor expansion; SupLM is Andrews’ (1993) supremum LM test; UDMax
is Bai and Perron’s (1998) double maximum test; qLL is Elliott and Müller’s (2006) efficient
test based on a quasilocal level model.

4.2. Application to Data

The issue of global warming has received considerable attention for more than two
decades, as evidenced by studies such as those by Melillo (1999), Delworth and
Knutson (2000) and Nordhaus (2019). In our research, we apply our test to assess
the significance of the increasing global temperature anomalies over time. Annual
temperature anomaly data, spanning from 1850 to 2023, were obtained from the
National Centers for Environmental Information. Figure 1 displays the time series
plot. The estimated infβ∈B An (β) statistic with η = 0.15 is −150.42, which is highly
significant at any conventional significance level. The strong rejection is echoed by
all other tests statistics: Andrews’ (1993) SupLM test is 28.29, Bai and Perron’s
(1998) test is 37.04, Elliott and Müller’s (2006) qLL test is -29.041, Chen and
Hong’s (2012) Hausman test is 409.69.

As another application, we examine the effect of personal tax exemption on
fertility rates studied by Wooldridge (2008). The yearly data, covering 1913–1984,
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Figure 1. Global warming data.

Figure 2. The estimated residuals of Equation (7).

were sourced from Whittington, Alm, and Peters (1990). Following Wooldridge
(2008), we consider the linear regression model:

gfrt = β0 +β1pet +β2ww2t +β3pillt +ut, (7)

where gfrt is the general fertility rate, pet is the average real dollar value of the
personal tax exemption, and ww2t and pillt are dummy variables. The dummy
variable ww2t equals 1 during the years 1941 through 1945 and 0 otherwise, while
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pillt equals 1 from 1963 onward and 0 otherwise. Equation (7) is estimated via
OLS, and the estimated residuals are plotted in Figure 2.

The intercept captures the expected general fertility rate with 0 personal tax
exemption, controlling the effect of World War II and the introduction of the birth
control pill. To test whether β0 is changing over time, we applied our infβ∈B An (β)

test. Using η = 0.15, the estimated statistic is −17.76, which strongly rejects the
null hypothesis that β0 is a constant over time. Similarly, Andrews’ (1993) SupLM
test and Bai and Perron’s (1998) UDmax test are 16.98 and 19.95, respectively,
which also reject the null. The qLL test of Elliott and Müller’s (2006) rejects the
null hypothesis at the 10% significance level but not at the 5% level. In contrast,
Chen and Hong’s (2012) Hausman test fails to reject the null hypothesis, with the
statistic value −0.87.

5. CONCLUSION

Detection of structural changes has been a long-standing interest in econometrics,
and in this article, we have introduced a novel tuning-parameter-free test that is
designed to detect both smooth structural changes and abrupt structural breaks.
While existing tests rely on kernel estimation, our test is based on isotonic
regression. This approach allows us to detect monotonic trends or structural
changes, making it well-suited for scenarios where prior information might suggest
such patterns.

Features of our test are (1) our test minimizes an objective function over a space
of functions; (2) improved power against monotonic smooth structural changes,
as compared to approaches that use a tuning parameter; and (3) simplicity, as a
pivotal limit distribution is obtained after scaling in the scalar case. Our simulation
study and application underscore the decent power properties of our test and the
pragmatic value of our approach.

A. Appendix

A.1. Mathematical Appendix

The main result is based on the following lemma, which holds for general Ān(·). Everywhere
in this Appendix, we write BK = {β ∈ B :‖ β ‖≤ K}, and sj denote a k-vector of all zeros,
except for an entry of 1 at spot j.

Lemma A.1. Assume

1. For Ān : B → R and Ā1 : B → R, for all K > 0, infβ∈BK Ān(n−1/2β), infβ∈B Ān(β),
infβ∈BK Ā1(β), and infβ∈B Ā1(β) are proper random variables;

2. For all K > 0,

inf
β∈BK

Ān(n
−1/2β)

a.s.−→ inf
β∈BK

Ā1(β);

3. limsupK→∞ limsupn→∞ P(infβ∈B Ān(n−1/2β) 	= infβ∈BK Ān(n−1/2β)) = 0.
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Then

inf
β∈B

Ān(β)
d−→ inf

β∈B
Ā1(β).

Proof of Lemma A.1. Define Yn = infβ∈B Ān(β) = infβ∈B Ān(n−1/2β), YnK =
infβ∈BK Ān(n−1/2β), YK = infβ∈BK Ā1(β), and Y = infβ∈B Ā1(β). The lemma asserts

that Yn
d−→ Y , and because

|E exp(irYn)−E exp(irY)| ≤ |E exp(irYn)−E exp(irYnK)|
+ |E exp(irYnK)−E exp(irYK)|+ |E exp(irYK)−E exp(irY)|,

it suffices to show that

limsup
K→∞

limsup
n→∞

|E exp(irYn)−E exp(irYnK)| = 0,

limsup
n→∞

|E exp(irYnK)−E exp(irYK)| = 0,

and

limsup
K→∞

|E exp(irYK)−E exp(irY)| = 0.

The first result follows because

limsup
K→∞

limsup
n→∞

|E exp(irYn)−E exp(irYnK)| ≤ 2limsup
K→∞

limsup
n→∞

P(Yn 	= YnK) = 0

by Assumption 3. Also, because YnK = infβ∈BK Ān(n−1/2β)
a.s.−→ infβ∈BK Ā1(β) = YK by

Assumption 2,

limsup
n→∞

|E exp(irYnK)−E exp(irYK)| = 0.

Finally, since YK is decreasing in K, limK→∞ YK exists a.s. and equals Y = infβ∈B Ā1(β).
Therefore, the result is now proven. �

For our result under the alternative, we need a result similar to Lemma A.1.

Lemma A.2. Assume

1. For Ān : B → R and Ā2 : B → R, for all K > 0, infβ∈B Ān(β), infβ∈BK Ān(β),
infβ∈BK Ā2(β), and infβ∈B Ā2(β) are proper random variables;

2. For all K > 0,

inf
β∈BK

n−1Ān(β)
a.s.−→ inf

β∈BK
Ā2(β);

3. limsupK→∞ limsupn→∞ P(infβ∈B n−1Ān(β) 	= infβ∈BK n−1Ān(β)) = 0.

Then

n−1 inf
β∈B

Ān(β)
d−→ inf

β∈B
Ā2(β).
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Proof of Lemma A.2. Define Yn = infβ∈B n−1Ān(β), YnK = infβ∈K n−1Ān(β), YK =
infβ∈BK Ā2(β), and Y = infβ∈B Ā2(β). Using these alternative definitions, the proof of
Lemma A.1 is now identical to the proof of Lemma A.2. �

Next, note that under Assumption 1, we have (Vn,Wn) ⇒ (V,W), since V(r) is deter-
ministic. By the Skorokhod representation theorem, because (Vn,Wn) ⇒ (V,W) in the
product space D

(
[0,1],Rm×m)× D

(
[0,1],Rm)

under the product J1-topology, there exist

in a suitably expanded probability space, (V̄n,W̄n) and (V̄,W̄) such that (V̄n,W̄n)
d=

(Vn,Wn), (V̄,W̄)
d= (V,W), and supj,l,r∈[0,1] |s′j(V̄n(r)− V̄(r))sl|+supj,r∈[0,1] |s′j(W̄n(r))−

W̄(r))| a.s.−→ 0. We now define versions of An(β) and A1(β) defined on this Skorokhod space
analogous to the expression of Equation (4), viz.

Ān(β) = n
n∑

t=1

β(t/n)′S(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

−2n1/2
n∑

t=1

(W̄n(t/n)− W̄n((t −1)/n))′�1/2S′β(t/n)

−2n
n∑

t=1

β0(t/n)′S(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

+2n
n∑

t=1

β0(t/n)′S(V̄n(t/n)− V̄n((t −1)/n))Vn(1)−1

×
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

+2n1/2W̄n(1)′�1/2V̄n(1)−1
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n), (A.1)

and

Ā1(β) =
∫ 1

0
β(r)′SQxxS′β(r)dr −2

∫ 1

0
β(r)′S�1/2dW̄(r)+2W̄(1)′�1/2S′β̄, (A.2)

Ā2(β) =
∫ 1

0
β(r)′SQxxS′β(r)dr −2

∫ 1

0
β0(r)

′SQxxS′β(r)dr +2
∫ 1

0
β0(r)

′drSQxxS′
∫ 1

0
β(r)dr.

(A.3)

This definition is such that An(β)
d= Ān(β) and A1(β)

d= Ā1(β), and A2(β)
d= Ā2(β).

Our strategy now is to rewrite the five terms of Ān(·) in a way that allows us to find their
limits uniformly of β ∈ BK relatively easily. The following five lemmas give such results.

Lemma A.3.
n∑

t=1

β(t/n)′S(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

=
k∑

j=1

k∑
l=1

βl(0)βj(0)s′jSV̄n(1)S′sl
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+
k∑

j=1

k∑
l=1

βl(0)s′jS
∫ 1

0
(V̄n(1)− V̄n(r −1/n))S′sldβj(r)

+
k∑

j=1

k∑
l=1

βj(0)s′jS
∫ 1

0
(V̄n(1)− V̄n(r −1/n))S′sldβl(r)

+
k∑

j=1

k∑
l=1

∫ 1

0
s′jS

∫ 1

0
(V̄n(1)− V̄n(max(r,s)−1/n))S′sldβj(r)dβl(s)

and

∫ 1

0
β(r)′SQxxS′β(r)dr

=
k∑

j=1

k∑
l=1

βl(0)βj(0)s′jSV̄(1)S′sl

+
k∑

j=1

k∑
l=1

βl(0)s′jS
∫ 1

0
(V̄(1)− V̄(r))dβj(r)S

′sl

+
k∑

j=1

k∑
l=1

βj(0)s′jS
∫ 1

0
(V̄(1)− V̄(r))dβl(r)S

′sl

+
k∑

j=1

k∑
l=1

∫ 1

0
s′jS

∫ 1

0
(V̄(1)− V̄(max(r,s)))dβj(r)dβl(s)S

′sl.

Proof of Lemma A.3. To show the results for
∑n

t=1 β(t/n)′S(V̄n(t/n) − V̄n((t −
1)/n))S′β(t/n), note that

n∑
t=1

β(t/n)′S(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

=
k∑

j=1

k∑
l=1

n∑
t=1

βj(t/n)βl(t/n)s′jS(V̄n(t/n)− V̄n((t −1)/n))S′sl

=
k∑

j=1

k∑
l=1

n∑
t=1

(βj(0)+
∫ t/n

0
dβj(r))(βl(0)+

∫ t/n

0
dβl(r))s

′
jS(V̄n(t/n)− V̄n((t −1)/n))S′sl

=
k∑

j=1

k∑
l=1

βl(0)βj(0)s′jS
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′sl

+
k∑

j=1

k∑
l=1

βl(0)s′jS
∫ 1

0

n∑
t=1

(V̄n(t/n)− V̄n((t −1)/n))S′slI(r ≤ t/n)dβj(r)
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+
k∑

j=1

k∑
l=1

βj(0)s′jS
∫ 1

0

n∑
t=1

(V̄n(t/n)− V̄n((t −1)/n))S′slI(r ≤ t/n)dβl(r)

+
k∑

j=1

k∑
l=1

s′jS
∫ 1

0

∫ 1

0

n∑
t=1

(V̄n(t/n)− V̄n((t −1)/n))S′slI(r ≤ t/n)I(s ≤ t/n)dβl(r)dβj(s)

=
k∑

j=1

k∑
l=1

βl(0)βj(0)s′jSV̄n(1)S′sl

+
k∑

j=1

k∑
l=1

βl(0)s′jS
∫ 1

0
(V̄n(1)− V̄n(r −1/n))S′sldβj(r)

+
k∑

j=1

k∑
l=1

βj(0)s′jS
∫ 1

0
(V̄n(1)− V̄n(r −1/n))S′sldβl(r)

+
k∑

j=1

k∑
l=1

∫ 1

0
s′jS

∫ 1

0
(V̄n(1)− V̄n(max(r,s)−1/n))S′sldβj(r)dβl(s). (A.4)

To show the result for
∫ 1

0 β(r)′SQxxS′β(r)dr, note that

∫ 1

0
β(r)′SQxxS′β(r)dr

=
k∑

j=1

k∑
l=1

s′jSQxxS′sl

∫ 1

0
βj(r)βl(r)dr

=
k∑

j=1

k∑
l=1

s′jSQxxS′sl

∫ 1

0
(

∫ r

0
dβj(x)+βj(0))(

∫ r

0
dβl(y)+βl(0))dr

=
k∑

j=1

k∑
l=1

s′jSQxxS′sl

∫ 1

0

∫ 1

0
βj(0)βl(0)dr

+
k∑

j=1

k∑
l=1

s′jSQxxS′sl

∫ 1

0
βl(0)

∫ r

0
dβj(x)dr

+
k∑

j=1

k∑
l=1

s′jSQxxS′sl

∫ 1

0
βj(0)

∫ r

0
dβl(x)dr

+
k∑

j=1

k∑
l=1

s′jSQxxS′sl

∫ 1

0

∫ r

0
dβj(x)

∫ r

0
dβl(y)dr

=
k∑

j=1

k∑
l=1

s′jSQxxS′slβj(0)βl(0)
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+
k∑

j=1

k∑
l=1

s′jSQxxS′slβl(0)

∫ 1

0

∫ 1

0
I(0 ≤ x ≤ r)drdβj(x)

+
k∑

j=1

k∑
l=1

s′jSQxxS′slβj(0)

∫ 1

0

∫ 1

0
I(0 ≤ x ≤ r)drdβl(x)

+
k∑

j=1

k∑
l=1

s′jSQxxS′sl

∫ 1

0

∫ 1

0

∫ 1

0
I(0 ≤ x ≤ r)I(0 ≤ y ≤ r)drdβj(x)dβl(y)

=
k∑

j=1

k∑
l=1

s′jSQxxS′slβj(0)βl(0)

+
k∑

j=1

k∑
l=1

s′jSQxxS′slβl(0)

∫ 1

0
(1− x)dβj(x)

+
k∑

j=1

k∑
l=1

s′jSQxxS′slβj(0)

∫ 1

0
(1− x)dβl(x)

+
k∑

j=1

k∑
l=1

s′jSQxxS′sl

∫ 1

0

∫ 1

0
(1−max(x,y))dβj(x)dβl(y)

=
k∑

j=1

k∑
l=1

βl(0)βj(0)s′jSV̄(1)S′sl

+
k∑

j=1

k∑
l=1

βl(0)

∫ 1

0
s′jS(V̄(1)− V̄(r))S′sldβj(r)

+
k∑

j=1

k∑
l=1

βj(0)

∫ 1

0
s′jS(V̄(1)− V̄(r))S′sldβl(r)

+
k∑

j=1

k∑
l=1

∫ 1

0

∫ 1

0
s′jS(V̄(1)− V̄(max(r,s)))S′sldβj(r)dβl(s). (A.5)

�

Lemma A.4.

n∑
t=1

(W̄n(t/n)− W̄n((t −1)/n))′�1/2S′β(t/n)

= W̄n(1)′�1/2S′β(1)−
∫ 1

0
W̄n(r)′�1/2S′dβ(r)

and

∫ 1

0
β(r)′S�1/2dW̄(r) = β(1)′S�1/2W̄(1)−

∫ 1

0
W̄(r)′�1/2S′dβ(r).
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Proof of Lemma A.4. First, consider
∑n

t=1(W̄n(t/n)− W̄n((t − 1)/n))′�1/2S′β(t/n).
This term equals

n∑
t=1

(W̄n(t/n)− W̄n((t −1)/n))′�1/2S′
t∑

j=1

(β(j/n)−β((j−1)/n))

+
n∑

t=1

(W̄n(t/n)− W̄n((t −1)/n))′�1/2S′β(0)

=
n∑

j=1

n∑
t=j

(W̄n(t/n)− W̄n((t −1)/n))′�1/2S′
∫ j/n

(j−1)/n
dβ(r)

+
n∑

t=1

(W̄n(t/n)− W̄n((t −1)/n))′�1/2S′β(0)

=
n∑

j=1

∫ j/n

(j−1)/n
(W̄n(1)− W̄n((j−1)/n))′�1/2S′dβ(r)+ W̄n(1)′�1/2S′β(0)

=
∫ 1

0
(W̄n(1)− W̄n(r))′�1/2S′dβ(r)+ W̄n(1)′�1/2S′β(0)

= W̄n(1)′�1/2S′β(1)−
∫ 1

0
W̄n(r)′�1/2S′dβ(r) (A.6)

because W̄n((j−1)/n) = W̄n(r) for r ∈ ((j−1)/n,j/n). Also, by integration by parts,

∫ 1

0
β(r)′S�1/2dW̄(r) = [β(r)′S�1/2W̄(r)]1

0 −
∫ 1

0
W̄(r)′�1/2S′dβ(r)

= β(1)′S�1/2W̄(1)−
∫ 1

0
W̄(r)′�1/2S′dβ(r). �

Lemma A.5.

n∑
t=1

β0(t/n)′S(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

=
k∑

j=1

k∑
l=1

β0l(0)βj(0)s′jSV̄n(1)S′sl

+
k∑

j=1

k∑
l=1

β0l(0)s′jS
∫ 1

0
(V̄n(1)− V̄n(r −1/n))S′sldβj(r)

+
k∑

j=1

k∑
l=1

βj(0)s′jS
∫ 1

0
(V̄n(1)− V̄n(r −1/n))S′sldβl0(r)

+
k∑

j=1

k∑
l=1

∫ 1

0
s′jS

∫ 1

0
(V̄n(1)− V̄n(max(r,s)−1/n))S′sldβj(r)dβl0(s)
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and

∫ 1

0
β0(r)′SQxxS′β(r)dr

=
k∑

j=1

k∑
l=1

β0l(0)βj(0)s′jSV̄(1)S′sl

+
k∑

j=1

k∑
l=1

β0l(0)s′jS
∫ 1

0
(V̄(1)− V̄(r))dβj(r)S

′sl

+
k∑

j=1

k∑
l=1

βj(0)s′jS
∫ 1

0
(V̄(1)− V̄(r))dβ0l(r)S

′sl

+
k∑

j=1

k∑
l=1

∫ 1

0
s′jS

∫ 1

0
(V̄(1)− V̄(max(r,s)))dβj(r)dβ0l(s)S

′sl.

Proof of Lemma A.5. This proof is nearly identical to the proof of Lemma A.3 and is
therefore omitted. �

Lemma A.6.

n∑
t=1

β0(t/n)′S(V̄n(t/n)− V̄n((t −1)/n))Vn(1)−1
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

= (V̄n(1)′S′β0(1)−
∫ 1

0
V̄n(r)S′dβ0(r))′Vn(1)−1(V̄n(1)′S′β(1)−

∫ 1

0
V̄n(r)S′dβ(r))

and

∫ 1

0
β0(r)′drSQxxS′

∫ 1

0
β(r)dr

= (V̄(1)′S′β0(1)−
∫ 1

0
V̄(r)S′dβ0(r))′V(1)−1(V̄(1)′S′β(1)−

∫ 1

0
V̄(r)S′dβ(r)).

Proof of Lemma A.6. To start the proof, note that

n∑
t=1

(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

=
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′
t∑

j=1

(β(j/n)−β((j−1)/n))

+
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′β(0)
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=
n∑

j=1

n∑
t=j

(V̄n(t/n)− V̄n((t −1)/n))S′
∫ j/n

(j−1)/n
dβ(r)

+
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′β(0)

=
n∑

j=1

∫ j/n

(j−1)/n
(V̄n(1)− V̄n((j−1)/n))S′dβ(r)+ V̄n(1)S′β(0)

=
∫ 1

0
(V̄n(1)− V̄n(r))S′dβ(r)+ V̄n(1)S′β(0)

= V̄n(1)′S′β(1)−
∫ 1

0
V̄n(r)S′dβ(r), (A.7)

and the first part of the lemma now follows. To deal with the second part, note that because
V(r) = rQxx,

(V̄(1)′S′β0(1)−
∫ 1

0
V̄(r)S′dβ0(r))′V(1)−1(V̄(1)′S′β(1)−

∫ 1

0
V̄(r)S′dβ(r))

= (QxxS′β0(1)−QxxS′
∫ 1

0
rdβ0(r))′Q−1

xx (QxxS′β(1)−QxxS′
∫ 1

0
rdβ(r))

= (S′β0(1)−S′
∫ 1

0
rdβ0(r))′Qxx(S

′β(1)−S′
∫ 1

0
rdβ(r))

=
∫ 1

0
β0(r)′drSQxxS′

∫ 1

0
β(r)dr. �

Lemma A.7.

W̄n(1)′�1/2V̄n(1)−1
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

= W̄n(1)′�1/2S′β(1)− W̄n(1)′�1/2V̄n(1)−1
∫ 1

0
V̄n(r)S′dβ(r)

and

W̄(1)′�1/2S′β̄ = W̄(1)′�1/2S′β(1)− W̄(1)′�1/2S′
∫ 1

0
rdβ(r).

Proof of Lemma A.7. Note that

W̄n(1)′�1/2V̄n(1)−1
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

= W̄n(1)′�1/2V̄n(1)−1
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′
t∑

j=1

(β(j/n)−β((j−1)/n))

+ W̄n(1)′�1/2V̄n(1)−1
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′β(0)
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= W̄n(1)′�1/2V̄n(1)−1
n∑

j=1

n∑
t=j

(V̄n(t/n)− V̄n((t −1)/n))S′
∫ j/n

(j−1)/n
dβ(r)

+ W̄n(1)′�1/2V̄n(1)−1
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′β(0)

= W̄n(1)′�1/2V̄n(1)−1
n∑

j=1

∫ j/n

(j−1)/n
(V̄n(1)− V̄n((j−1)/n))S′dβ(r)

+Wn(1)′�1/2V̄n(1)−1V̄n(1)S′β(0)

= W̄n(1)′�1/2V̄n(1)−1
∫ 1

0
(V̄n(1)− V̄n(r))S′dβ(r)+ W̄n(1)′�1/2S′β(0)

= W̄n(1)′�1/2S′β(1)− W̄n(1)′�1/2V̄n(1)−1
∫ 1

0
V̄n(r)S′dβ(r) (A.8)

because Vn((j−1)/n) = Vn(r) for r ∈ ((j−1)/n,j/n). In addition, to show the second part
of the lemma, note that

W̄(1)′�1/2S′β̄ = W̄(1)′�1/2S′([rβ(r)]1
0 −

∫ 1

0
rdβ(r))

= W̄(1)′�1/2S′β(1)− W̄(1)′�1/2S′
∫ 1

0
rdβ(r), (A.9)

which completes the proof of the lemma. �

Using the above five lemmas, we can now establish the following two lemmas that are
key to the proof of Theorem 1.

Lemma A.8. Under Assumption 1, if β0(·) = 0,

limsup
K→∞

limsup
n→∞

P( inf
β∈B

Ān(n−1/2β) 	= inf
β∈BK

Ān(n−1/2β)) = 0,

infβ∈B Ān(β) = Op(1), and infβ∈B Ā1(β) is a proper random variable.

Proof of Lemma A.8. Note that for β(·) ∈ B, because β(·) is constant on [0,η] and
[1−η,1] and V̄n(t/n)− V̄n((t −1)/n) is positive semidefinite,

n∑
t=1

β(t/n)′S(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

≥
[ηn]∑
t=1

β(t/n)′S(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

+
n∑

t=[n(1−η)]+1

β(t/n)′S(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)
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= β(0)′
[ηn]∑
t=1

S(V̄n(t/n)− V̄n((t −1)/n))S′β(0)+β(1)′

×
n∑

t=[n(1−η)]+1

S(V̄n(t/n)− V̄n((t −1)/n))S′β(1)

= β(0)′SV̄n([ηn]/n)S′β(0)+β(1)′S(V̄n(1)− V̄n([n(1−η)]/n))S′β(1)

≥ |β(0)|2λmin(V̄n([ηn]/n))+|β(1)|2λmin(V̄n(1)− V̄n(n(1−η)]/n)),

where λmin denotes the minimal eigenvalue. Also, by the result of Equation (A.6),

|
n∑

t=1

(W̄n(t/n)− W̄n((t −1)/n))′�1/2S′β(t/n)|

= |
∫ 1

0
W̄n(r)′�1/2S′dβ(r)− W̄n(1)′�1/2V̄n(1)−1

∫ 1

0
V̄n(r)S′dβ(r)|

= |
k∑

j=1

∫ 1

0
W̄n(r)′�1/2S′sjdβj(r)− W̄n(1)′�1/2V̄n(1)−1

∫ 1

0
V̄n(r)S′sjdβj(r)|

≤ (sup
r,j

|W̄n(r)′�1/2S′sj|+ sup
r,j

|W̄n(1)′�1/2V̄n(1)−1V̄n(r)S′sj|)
k∑

j=1

∫ 1

0
dβj(r)

≤ (sup
r,j

|W̄n(r)′�1/2S′sj|+ sup
r,j

|W̄n(1)′�1/2V̄n(1)−1V̄n(r)S′sj|)
k∑

j=1

(βj(1)−βj(0))

≤ (sup
r,j

|W̄n(r)′�1/2S′sj|+ sup
r,j

|W̄n(1)′�1/2V̄n(1)−1V̄n(r)S′sj|)k(|β(1)|+ |β(0)|)
(A.10)

because βj(r) ≤ (
∑k

j=1 βj(r)
2)1/2 = |β(r)|. And by the result of Equation (A.8), using

similar reasoning,

|Wn(1)′�1/2V̄n(1)−1
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)|

= |W̄n(1)′�1/2S′β(1)− W̄n(1)′�1/2V̄n(1)−1
∫ 1

0
V̄n(r)S′dβ(r)|

≤ 2sup
r,j

|W̄n(1)′�1/2V̄n(1)−1V̄n(r)S′sj|k(|β(0)|+ |β(1)|).

Therefore,

Ān(n−1/2β) ≥ |β(0)|2λmin(V̄n([ηn]/n))+|β(1)|2λmin(V̄n(1)− V̄n(n(1−η)]/n))

−3sup
r,j

|W̄n(1)′�1/2V̄n(1)−1V̄n(r)S′sj|k(|β(1)|+ |β(0)|)

− sup
r,j

|W̄n(r)′�1/2S′sj|k(|β(1)|+ |β(0)|)
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implying that infβ∈B Ān(β) = Op(1) if λmin(V̄n([ηn]/n)−1 = Op(1), λmin(V̄n(1) −
V̄n(n(1 − η)]/n))−1 = Op(1), supr,j |W̄n(r)′�1/2S′sj| = Op(1), and supr,j |W̄n(1)′�1/2

V̄n(1)−1V̄n(r)S′sj| = Op(1). These results follow from Assumption 1. Also, it now follows
that under those conditions,

limsup
K→∞

limsup
n→∞

P( inf
β∈B

Ān(n−1/2β) 	= inf
β∈B∩{β:‖β‖≤K} Ān(n−1/2β))

≤ limsup
K→∞

limsup
n→∞

P( inf
β∈B∩{β:‖β‖>K} Ān(n−1/2β) ≤ Ān(0)) = 0.

Finally, note that by partial integration, because SQxxS′ is positive definite, β(0) = β(r) for
r ∈ [0,η] and β(1) = β(r) for r ∈ [1−η,1] by assumption,

Ā1(β) =
∫ 1

0
β(r)′SQxxS′β(r)dr −2

∫ 1

0
β(r)′S�1/2dW̄(r)+2W̄(1)′�1/2S′β̄

≥
∫ η

0
β(r)′S′QxxSβ(r)dr +

∫ 1

1−η
β(r)′S′QxxSβ(r)dr −2[β(r)′S�1/2W̄(r)]1

0

+2
∫ 1

0
W̄(r)′�1/2S′dβ(r)+2W̄(1)′�1/2S′

∫ 1

0
β(r)dr

≥ ηβ(0)′S′QxxSβ(0)+ηβ(1)′S′QxxSβ(1)−2|β(1)||S�1/2W̄(1)|

−4k sup
j,r∈[0,1]

|W̄(r)′�1/2S′sj|
∫ 1

0
dβj(r)

≥ η(|β(0)|2 +|β(1)|2)λmin(Qxx)−2|S�1/2W̄(1)|(|β(0)|+ |β(1)|)
−4k sup

j,r∈[0,1]
|W̄(r)′�1/2S′sj|(|β(0)|+ |β(1)|),

implying that infβ∈B Ā1(β) is a proper random variable because supr∈[0,1] |W(r)| is proper
and λmin(Qxx) > 0 by assumption. �

Lemma A.9. Under Assumption 1, if β0(·) = 0,

sup
β∈BK

|Ān(n−1/2β)− Ā1(β)| a.s.−→ 0.

Proof of Lemma A.9. Defining

δn = sup
j,l∈{1,...,k}

|s′jS(V̄n(1)− V̄(1))S′sl|

+ sup
j,l∈{1,...,k},r∈[1/n,1]

|s′jS(V̄n(1)− V̄n(r −1/n)− V̄(1)+ V̄(r))S′sl|

+ sup
j,l∈{1,...,k},r,s∈[0,1]

|s′jS(V̄n(1)− V̄n(max(r,s)−1/n)− V̄(1)+ V̄(max(r,s)))S′sl|

+ sup
j∈{1,...,m},r∈[0,1]

|(W̄n(r)− W̄(r))′�1/2S′sj|

+ sup
j∈{1,...,m},r∈[0,1]

|W̄n(1)′�1/2V̄n(1)−1(V̄n(r)− V̄(r))S′sj|
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and noting that δn
a.s.−→ 0 by the Skorokhod construction and the assumptions of the theorem,

and noting that supr∈[0,1] |βj(r)| ≤‖ β ‖, we have, by Lemmas A.3–Lemma A.7,

sup
β∈BK

|Ān(n−1/2β)− Ā1(β)|

≤ sup
β∈BK

|
k∑

j=1

k∑
l=1

βl(0)βj(0)s′jS(V̄n(1)− V̄(1))S′sl|

+ sup
β∈BK

|
k∑

j=1

k∑
l=1

βl(0)

∫ 1

0
s′jS(V̄n(1)− V̄n(r −1/n)− V̄(1)+ V̄(r))S′sldβj(r)|

+ sup
β∈BK

|
k∑

j=1

k∑
l=1

βj(0)

∫ 1

0
s′jS(V̄n(1)− V̄n(r −1/n)− V̄(1)+ V̄(r))S′sldβl(r)|

+ sup
β∈BK

|
k∑

j=1

k∑
l=1

∫ 1

0

∫ 1

0
s′jS(V̄n(1)− V̄n(max(r,s)−1/n)− V̄(1)

+ V̄(max(r,s)))S′sldβj(r)dβl(s)|

+2 sup
β∈BK

|
∫ 1

0
(W̄n(r)− W̄(r))′�1/2S′dβ(r)|

+2 sup
β∈BK

|W̄n(1)′�1/2V̄n(1)−1
∫ 1

0
(V̄n(r)− V̄(r))S′dβ(r)|

≤ δn sup
β∈BK

k∑
j=1

k∑
l=1

|βl(0)||βj(0)|

+ δn sup
β∈BK

k∑
j=1

k∑
l=1

|βl(0)||
∫ 1

0
dβj(r)|

+ δn sup
β∈BK

k∑
j=1

k∑
l=1

|βj(0)||
∫ 1

0
dβl(r)|

+ δn sup
β∈BK

k∑
j=1

k∑
l=1

|
∫ 1

0

∫ 1

0
dβj(r)dβl(s)|

+2δn sup
β∈BK

k∑
j=1

|
∫ 1

0
dβj(r)|

+2δn sup
β∈BK

k∑
j=1

|
∫ 1

0
dβj(r)|

≤ δnK(k2 +2k2 +2k2 +4k2 +2k +2k)
a.s.−→ 0. �

We are now able to prove the main theorem.
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Proof of Theorem 1. We will verify the conditions of Lemma A.1 for Ān(n−1/2β)

and Ā1(β). Because the distributions of Ān(n−1/2β) and Ā1(β) are identical to those
of An(n−1/2β) and A1(β), this suffices for proving the theorem. To verify Condition 1
of Lemma A.1, note that infβ∈BK Ān(n−1/2β) is Borel measurable because Ān(β) is a
function of (β(1/n),β(2/n), . . . ,β(1)), and therefore the measurability of the infimum
over BK follows from standard results, such as those of Jennrich (1969). In addition,
infβ∈BK Ān(n−1/2β) is proper because of the result of Lemma A.8. Since

inf
β∈B

Ān(β) = lim
K→∞ inf

β∈BK
Ān(n−1/2β),

it follows that infβ∈B Ā1
n(β) is also Borel measurable, because it is the a.s. limit of a

sequence of Borel measurable random variables and also is proper because of Lemma A.8.
By assumption, infβ∈BK Ā1(β) is the a.s. limit of infβ∈BK Ā1

n(n−1/2β), and therefore Borel

measurable, and it is proper because infβ∈B Ā1(β) is proper by Lemma A.8. Finally, because

infβ∈BK Ā1(β) is the a.s. limit of infβ∈B Ā1(β), Borel measurability follows. Condition 2
of Lemma A.1 follows from Lemma A.9. Noting that Condition 3 of Lemma A.1 follows
from Lemma A.8, the proof of convergence in distribution is now complete.

To show that both expressions for the limit distribution of infβ∈B A1(β) are identical,
note that because if β ∈ B, for any k-vector c also β + c ∈ B, implying that

inf
β∈B

(

∫ 1

0
β(r)′S′QxxSβ(r)dr −2

∫ 1

0
β(r)′S�1/2dW(r)+2W(1)′�1/2S′

∫ 1

0
β(r)dr)

= inf
β∈B

inf
c∈Rk

(

∫ 1

0
(β(r)+ c)′S′QxxS(β(r)+ c)dr −2

∫ 1

0
(β(r)+ c)′S�1/2dW(r)

+2W(1)′�1/2S′
∫ 1

0
(β(r)+ c)dr). (A.11)

We will now concentrate out c from the above expression. Differentiating with respect to c
implies that

2
∫ 1

0
S′QxxS(β(r)+ c)dr −2

∫ 1

0
S�1/2dW(r)+2S�1/2W(1) = 0

which in turn implies, because Qzx = SQxx, that

S′QxxS(

∫ 1

0
β(r)dr + c) = 0,

and therefore, as long as Qxx is nonsingular,

c = −
∫ 1

0
β(r)dr = −β̄.

Plugging this value for c into the expression of Equation (A.11) now shows that both
expressions are identical. �

Our result under the alternative requires two more lemmas.
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Lemma A.10. Under Assumption 1,

limsup
K→∞

limsup
n→∞

P( inf
β∈B

Ān(β) 	= inf
β∈BK

Ān(β)) = 0,

infβ∈B n−1Ān(β) = Op(1), and infβ∈B Ā1(β) are proper random variables.

Proof of Lemma A.10. For the first term on n−1Ān(β), we have by Lemma A.8,

n∑
t=1

β(t/n)′S(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

≥ |β(0)|2λmin(V̄n([ηn]/n))+|β(1)|2λmin(V̄n(1)− V̄n(n(1−η)]/n)).

For the second term, we found in Lemma A.8

|
n∑

t=1

(W̄n(t/n)− W̄n((t −1)/n))′�1/2S′β(t/n)|

≤ 2sup
r,j

|W̄n(1)′�1/2V̄n(1)−1V̄n(r)S′sj|k(|β(1)|+ |β(0)|),

while for the fifth term, Lemma A.8 gave

|Wn(1)′�1/2V̄n(1)−1
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)|

≤ 2sup
r,j

|W̄n(1)′�1/2V̄n(1)−1V̄n(r)S′sj|k(|β(0)|+ |β(1)|).

For the third term, we have, because βj(r) ≤ |β(r)| ≤ |β(0)| + |β(1)| as was noted in the
proof of Lemma A.8,

|
n∑

t=1

β0(t/n)′S(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)|

≤ |
k∑

j=1

k∑
l=1

β0l(0)βj(0)s′jSV̄n(1)S′sl|

+ |
k∑

j=1

k∑
l=1

β0l(0)s′jS
∫ 1

0
(V̄n(1)− V̄n(r −1/n))S′sldβj(r)|

+ |
k∑

j=1

k∑
l=1

βj(0)s′jS
∫ 1

0
(V̄n(1)− V̄n(r −1/n))S′sldβl0(r)|

+ |
k∑

j=1

k∑
l=1

∫ 1

0
s′jS

∫ 1

0
(V̄n(1)− V̄n(max(r,s)−1/n))S′sldβj(r)dβl0(s)|,
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≤ sup
j,l,r

|s′jSV̄n(r)S′sl|
k∑

j=1

k∑
l=1

|β0l(0)||βj(0)|

+ sup
j,l,r

|s′jSV̄n(r)S′sl|
k∑

j=1

k∑
l=1

|β0l(0)|(|βj(0)|+ |βj(1)|)

+ sup
j,l,r

|s′jSV̄n(r)S′sl|
k∑

j=1

k∑
l=1

|βj(0)|(|β0l(0)|+ |β0l(1)|)

+ sup
j,l,r

|s′jSV̄n(r)S′sl|
k∑

j=1

k∑
l=1

(|βj(0)|+ |βj(1)|)(|β0l(0)|+ |β0l(1)|)

≤ sup
j,l,r

|s′jSV̄n(r)S′sl|k2(|β0(0)|+ |β0(1)|)(|β(0)|+ |β(1)|),

and for the fourth term, we have by the reasoning of Lemma A.6,

n∑
t=1

β0(t/n)′S(V̄n(t/n)− V̄n((t −1)/n))Vn(1)−1
n∑

t=1

(V̄n(t/n)− V̄n((t −1)/n))S′β(t/n)

= (V̄n(1)′S′β(1)−
∫ 1

0
V̄n(r)S′dβ(r))Vn(1)−1(V̄n(1)′S′β0(1)−

∫ 1

0
V̄n(r)S′dβ0(r)).

�

Lemma A.11. Under Assumption 1,

sup
β∈BK

|n−1Ān(β)− Ā2(β)| a.s.−→ 0.

Proof of Lemma A.11. This proof is now analogous to the proof of Lemma A.9 and
hence is omitted for space. �

Proof of Theorem 2. The proof of Theorem 2 is completely analogous to the proof of
Theorem 1, except that the references to Lemma A.8 need to be replaced by references to
Lemma A.10, and the references to Lemma A.9 by Lemma A.11. �

A.2. Additional Simulation

A.2.1. Additional Simulation with Different η.

A.2.2. Additional Simulation with DGP P’1. We also consider a scenario in
which one parameter (the intercept) is monotonically decreasing and one parameter (the
slope) is monotonically increasing. The DGP is

DGP P’1

yt =
⎧⎨
⎩

0.9+0.5xt + εt, if t ≤ 0.3n,
0.7+0.7xt + εt, if 0.3n ≤ t ≤ 0.7n,
0.5+0.9xt + εt, otherwise.
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Table A.1. Empirical size and power with different η.

η = 0.1 η = 0.15 η = 0.2

n 100 250 500 100 250 500 100 250 500

DGP S.1 .037 .048 .049 .047 .052 .048 .029 .0344 .042

DGP S.2 .039 .054 .056 .032 .049 .047 .032 .037 .044

DGP P.1 .626 .948 1.00 .646 .958 1.00 .666 .963 1.00

DGP P.2 .446 .742 .965 .458 .770 .972 .481 .786 .978

DGP P.3 .426 .778 .986 .439 .821 .987 .466 .840 .988

DGP P.4 .684 .956 1.00 .681 .949 1.00 .668 .954 1.00

DGP P.5 .482 .825 .990 .487 .837 .990 .492 .831 .986

DGP P.6 .137 .344 .700 .149 .378 .744 .175 .407 .764

Note: 5% significance level.

Table A.2. Empirical power of test under
DGP P’1.

n 100 250 500

infβ∈B An (β) .431 .735 .944

Ĥ .187 .578 .924

SupLM .184 .498 .830

UDMax .207 .549 .874

qLL .232 .566 .898

Note: (1) 5% significance level; (2) infβ∈B An (β) is our
test based on isotonic regression; SupLM is Andrews’
(1993) supremum LM test; UDMax is Bai and Perron’s
(1998) double maximum test; qLL is Elliott and Müller’s
(2006) efficient test based on a quasilocal level model.

The empirical power is reported in Table A.2. The proposed infβ∈B An (β) outperforms
other tests for all sample sizes, which shows the new test maintains good power under the
case with one parameter decreasing and one increasing.
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