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Abstract

In this paper we consider the beta(2 — o, o)-coalescents with 1 < o < 2 and
study the moments of external branches, in particular, the total external branch length
Lg;z of an initial sample of n individuals. For this class of coalescents, it has been
proved that n®~17) 2 T, where T™ is the length of an external branch chosen
at random and 7 is a known nonnegative random variable. For beta(2 — o, «)-
coalescents with 1 < o < 2, we obtain lim,_, {5 n3°‘*5E{(L$2 —n? U E({TH?} =
(@ — DI (e 4+ 1)@ — @) /(3 — a)[' (4 — 2a)).
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1. Introduction

1.1. Motivation

In a Wright—Fisher haploid population model with size N, we sample n individuals at present
from the total population, and look backward to see the ancestral tree until we find the most
recent common ancestor (MRCA). If time is well rescaled and the population size N becomes
large, then the genealogy of the sample of size n converges weakly to the Kingman n-coalescent
(see [33] and [34]). During the evolution of the population, mutations may occur. We consider
the infinite sites model introduced by Kimura [32]. In this model, each mutation is produced at a
new site which has never been seen before and will never be seen in the future. The neutrality of
mutations means that all mutants are equally privileged by the environment. Under the infinite
sites model, to detect or reject the neutrality when the genealogy is given by the Kingman
coalescent, Fu and Li [22] proposed a statistical test based on the total mutation numbers on
the external branches and internal branches. Mutations on external branches affect only single
individuals, so in practice they can be picked out accordin% to the model setting. In this test, the
ratio L é’;g /L™ between the total external branch length L e’;z and the total length L measures
in some sense the weight of mutations occurring on external branches among all mutations. It
then makes the study of these quantities relevant.

For many populations, Kingman’s coalescent describes the genealogy quite well. But for
some others, when descendants of one individual can occupy a large ratio of the next generation
with nonnegligible probability, it is no longer relevant, for example, in the case of some marine
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species (see [1], [9], [19], [23], and [26]). In this case, if time is well rescaled and the population
size becomes large, the ancestral tree converges weakly to the A-coalescent which is associated
with a finite measure A on [0, 1]. This coalescent allows multiple collisions and was introduced
by Pitman [38] and Sagitov [39]. Among A-coalescents, a special and important subclass is
called beta(a, b)-coalescents characterized by A being a beta distribution beta(a, b). The most
popular distributions are those with parameters 2 — « and o where o € (0, 2).

beta-coalescents arise not only in the context of biology; they also have connections with su-
percritical Galton—Watson processes (see [40]), continuous-state branching processes (see [2],
[6], and [20]), and continuous random trees (see [4]). If « = 1, we recover the Bolthausen—
Sznitman coalescent which appears in the field of spin glasses (see [8] and [10]) and is also
connected to random recursive trees (see [25]). The Kingman coalescent is also obtained from
the beta(2 — «, ov)-coalescent by letting « tend to 2.

For beta(2 — «, ar)-coalescents with 1 < a < 2, a central limit theorem (CLT) of the total
external branch length ng is known (see [31]). The aim of this paper is to study its moments.
The results obtained can be extended to more general coalescent processes (see [15]). We should
say that in this case, using the moment method we are not able to obtain the right convergence
speed in the CLT, which illustrates some limitations of moment calculations.

1.2. Introduction and main results

Let & be the set of partitions of N := {1, 2, 3, ...} and, forn € N, &, be the set of partitions
of N, := {1, 2, ..., n}. We denote by p(”) the natural restrictionon &,. If 1 <n <m < 400
and m = {A;}ies is a partition of N,,, then ,o(”)n is the partition of N,, defined by p(")n =
{A; NN,}ier. For a finite measure A on [0, 1], we denote by IT = (I1;);>0 the A-coalescent
process, introduced independently in [38] and [39]. The process (I1;);>0 is a cadlag continuous-
time Markovian process taking values in & with [Ty = {{1}, {2}, {3}, ...}. It is characterized
by the cadlag A n-coalescent processes (H;(n))tzo = (,o(")I"I,),Zo, n € N. Forn <m < 400,
we have (H,")),Zo = (p(")nf’")),zo (where TT(Ho°) = 7).

Let v(dx) = x 2A(dx). For2 < a < b, we set
1 1
Apa = / X721 — )P A@dx) = / x4(1 — x)P" % (dx).
0 0

It holds that [T®™ is a Markovian process with values in §,,, and its transition rates are given
by, for&, n € &,, q¢,, = Ap,q if nis obtained by merging a of the b = |&]| blocks of £ and letting
the b — a others remain unchanged, and g¢ ;, = 0 otherwise. We say that a individuals (or
blocks) of & have been coalesced in one single individual of 7. We remark that the process 1"
is an exchangeable process, which means that, for any permutation 7 of N,,, 7 o IT® 2 [1(,

The process I finally reaches one block. This final individual is the MRCA. We denote
by 7 the number of collisions it takes for the n individuals to be coalesced to the MRCA.

We define by R™ = (R,(")),Zo the block counting process of (H;")),Zo: R,(") = |1'I,(")|,
which equals the number of blocks/individuals at time r. Then R™ is a continuous-time
Markovian process taking values in N,,, decreasing from n to 1. At state b, fora = 2, ..., b,
each of the (2) groups with a individuals coalesces independently at rate A;, ,. Hence, the time
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the process (Rt(")) ¢>0 stays at state b is exponential with parameter

b

8b = Z <z>kb,a

a=2

1
= / 1= (1 —x)°=bx(1 —x)* Hvdx)
0

1
= bbb — 1)[ 1 =0b2p@)dr, (1.1
0

where p(t) = / ! v(dx). We denote by Y ) = = (¥ (n))k>0 the discrete-time Markov chain asso-
ciated with R(”S This is a decreasing process from Y|, ) — 5 which reaches 1 at the ™th
jump. The probability transitions of the Markov chain Y (”) are given by, forb > 2,k > 1, and
1<l<b-1,

(L™
b,l1+1
popt =P =b—1| Y = by = (1.2)

8b
and 1 is an absorbing state.
We introduce the discrete-time process X (). _ =Y, (") Yk(n), k > 1 with X(()") = 0. This
process counts the number of blocks we lose at the kth Jump. Fori € {1, ..., n}, we define

7" = inf{r | {i} ¢ TI{")

as the length of the ith external branch and T™ the length of a randomly chosen external
branch. By exchangeability, 7, 2 7M. We denote by Lext =30 T ) the total external
branch length of I1™, and by L(”) the total branch length.

For several measures A, many asymptotic results on the external branches and their total
external lengths of the A n-coalescent are already known.

1. If A = 8¢, Dirac measure on 0, [T® is Kingman’s n-coalescent. Then

(a) nT™ converges in distribution to 7', which is a random variable with density
fr(x) = 8/(2 + x)* 10 (see [7], [12], and [27]);

(b) LW converges in L?t02 (see [18] and [22]). A CLT is also proved in [27].

ext

2. If A is the uniform probability measure on [0, 1], [1® is the Bolthausen—Sznitman -
coalescent. Then (logn)T™ converges in distribution to an exponential variable with
parameter 1 (see [21] and [41]). For moment results of Lg(i, see [14], and for the CLT,
see [30].

3. Ifv_ = /01 x~1A(dx) < 400, which includes the case of the beta(2 — «, )-coalescent

with 0 < o < 1, then

(@ T®W converges in distribution to an exponential variable with parameter v_; (see
[24] and [37]);

(b) L™ /n converges in distribution to a random variable L whose distribution coin-
cides with that of fS) °e~Xr dt, where X, is a certain subordinator (see [17, p. 1405]
and [36]), and L /L(”) converges in probability to 1 (see [37]).

ext
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4. If A is the beta(2 — «, o) measure with 1 < o < 2, then we obtain the beta(2 — «, «)-
coalescents. Note that n%~! T converges in distribution to 7 which is a random variable

with density function (see [16])
X —a/(a—1)—1
) 10} (1.3)

1
(@ — DIN'(ex) < + ol (a)
For CLTs of Lé"% and L™ see [31] and [29], respectively.

X

frx) =

In the rest of the paper, we only consider the beta(2 — o, r)-coalescents, 1 < o < 2. In that
case, we have

_ 1 —l—a/ _ a—1
v(dx) = T = a)x (1 —x) dx,

where T denotes a random variable with density (1.3). If (a,),>1 and (b,),>1 are two real
sequences, we define a, ~ b, when lim,,_, { a, /b, = 1 is true.
(n)

ext

Theorem 1.1. (i) The total external branch length L. satisfies

lim #3*SE(LY) — n2*E{T)H?} = A(a),

n—-+00 ext
where E{T} = a(a — 1)I" (@) and

(@ — Dl + D)) T4 — )
B —a)[ (4 —20a) '

Alx) =

asz(”)

oxi— E{T} in the L? (second-order moment) distance.

(ii) As a consequence, n

Remark 1.1. For the second part of the theorem, the almost sure convergence in probability
can be found from Berestycki et al. [3]-[5].

From the first part of the theorem, we obtain n
tending to n2’°‘E{T} in L2 distance. But, as shown in [31],

(5=3)/2 a5 the convergence speed for Lg'(z

LY — 2 9R(TY} 5 a2 —a)(a — DV (@)

ext
nl/etl—a - F(Z—a)l/"‘ ’

where ¢ is a stable random variable with parameter «. Our moment method fails to obtain the
correct speed of convergence in distribution.
To prove Theorem 1.1, the first idea is to write

E{(LL) — n®*EB(TH?} = nvar(T\") + n(n — 1) cov(T", T)

ext
+ (EAT"} — n®OR(T})2. (1.4)
Hence, we have to obtain results on the moments of the external branches. This is the subject

of the next theorems. The first theorem provides the asymptotic behaviour for the covariance
of two external branch lengths.

Theorem 1.2. The asymptotic covariance of two external branch lengths is given by

1 2—a 2
: 3(a—1) (n) @)y _ Jo (=x) — D7v(dx)
ngl}kloon COV(TI ’ T2 )= 3_o

(@ — DI(a + 1)) = Ae).
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Remark 1.2. Here A(«) is the limit only in the case of beta(2 — «, «)-coalecents, but the result
can be extended to more general A-coalescent (see [15]).

Note that A(«) is strictly positive implies that cov(Tl("), Tz(")) is of order n373% and Tl(”),
T2(n) are positively correlated in the limit which is similar to the Boltausen—Sznitman coalescent
and the opposite of Kingman’s coalescent (negatively correlated) (see [14]). To prove this
theorem, we need the asymptotic behaviours of E{Tl(") Tz(")} and E{Tl(")} (Theorem 2.1). From
Theorem 2.1, it follows that the third term in (1.4) satisfies

ME(T{""} — n®~E(T})> = 0(n®~*).

The next theorem gives the asymptotic behaviour of moments of one external branch length,
hence, we can estimate n Var(Tl(")). We then see that n(n — 1) cov (Tl("), Tz(")) is dominant in
E{(L(") — n2"E{T}?} (see (1.4)). Then, we obtain Theorem 1.1.

ext

Theorem 1.3. Forbeta(2 — «, a)-coalescent, we have
(1) if0< B < a/(a—1) then lim,_, 4 IE{(n“_lTl("))ﬂ} =E{T#};
(i) if B > /(@ — 1) then lim,_, 400 B{(n* ' T\")P} = +00.

1.3. Organization of this paper

In Sections 2 and 3, we provide estimates of E{Tl(")} and IE{TI(") Tz(")}, respectively. Both
E{Tl(")} and ]E{Tl(")Tz(")} satisfy the same type of recurrence which allows us to obtain their
estimates and leads to an estimate of cov(Tl(” , Tz(")) in Section 3. The main tool is Lemma A.1,
the proof of which is in Appendix A. In Section 4 we deal with Theorem 1.3. In Appendix A
we provide proofs omitted in the main text.

2. First moment of Tl(") by recursive methods

2.1. Preliminaries
For s > —«, we define the measure

1

—xflfol(l _X)OlflJrS d.x.
)2 —a)

v (dx) == (1 — x) v(dx) =

The collision rates of the A-coalescent associated with the measure v®) is

o

1
(s) . (1 v\ _ i1y, ~
gy = fo 1—-(1-—x) nx(1 —x)""Hv*(dx) e+l

when n — oo.
We introduce the quantity p®) (z) := ftl v® (dx).

Lemma 2.1. Fors > —a, whent — 0, we have

©) (1) — e =l Y
P (t)_F(a+1)r(2—a) (a—l)F(a)F(Z—a)+0(t );
-« 1 —a a—1+s
flp(s)(x)dxz ! Jo X7 =) — D dx
1 (¢ — DI+ DR — ) T2 — )
! + 0>,

" (@— DI@I Q2 —a)
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Then lim;_, o+ (fll P (x)dx — 17 /(@ — DI (a + D2 — @) exists, and its value is

Jo X~ =07 — Ddx 1 .
T(@)IQ2—a) @— DI @I 2—a)

In particular, if s > 1 —a, C® =T (a +5)/T(s + DI (@) (1 — a).

c® —

Proof. The result for p(s )(1) is straightforward since

! 1
(s) —1—« a—1+s
p () = /t —( T )x (1—x) dx.

For ftl 0¥ (x) dx, using integration by parts, we have

Slhame @ =0 dx

1
/ PO (x)dx = —1p® (1) +

t rao)r2 —ow)
B tl—oz ftl (xia(l _x)ot71+x —x"")dx
T al(@)l 2 —a) T2 — )
ftl x~%dx -

+—F(a)F(2—a) +0@™%)
B 1= Jo a7 =)%Y — 1) dx
(= DIN@+ D2 —a) + T2 —a)

-~ : + 0>,

(¢ — D' @)I'2 — )
which also provides the existence and the first definition of C®).
Ifs=1-—0a C® =1/0 —a)T'(@)'2—a). If s > 1 — «, again using integration by
parts, we obtain

Jo x4 (1 = )% — 1) d 1 T(a +s5)

() — _ _
= F(e)l'2 —a) (@—DI'@r2—ae) TI's+DMe(—a)

‘We define two values
1
A ::/ (1= 1= (- Dx)Pdx),
0
1
B :=/ (1 — )21 1 —2(a — D)@ (dx),
0

which we will use on numerous occasions.

Lemma 2.2. If A, B are defined as above, then

’

2
1 1 I
a‘ —a < 4 —a)

_ ,
o - Tla+D@—1) r(4_2a)+(°‘ o 1)F(0t+2)>.

o—1
Proof. Note that

@ =)' =1 — (@ — Dx)x~ (1 — x)* dx
- INCHNCEY) '

A
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Using integration by parts: x =% dx = —dx~%/a,

 fy@x(1 =0+ (1 =0 — Dx ¥ dx

A
MNoe+DI'Q2 —ow)
Again, using integration by parts: x "% dx = —dx'"*/(a — 1),
B Jo@@ =D -0 —a?@—Dxd —0)* Hxl*dx o2 —a—1
B (@—DI'a+DI'Q2—a) o a—1
In the same way, we obtain
1 ré4-—o) 2
B = —a— 1l 2) ).
M + D@ — 1) (F(4—2a) +lot—a— D+ )>

2.2. The main result
Theorem 2.1. We have

E{T"} = (@ — DT(@ + n'™@

— DX« + 1)?
(a )2(_(;1 ) A+ (@ — HCD — COy20-0) |y 20-a)y

The idea is to use the recurrence satisfied by E{Tl(n)} (see [14]):

n—1 1

1 k
E{T("} = —+ Y pux
8n = n

E{T"}. Q2.1

Let L = (¢ — 1)I'(e¢+1) and

_1)2 2
0= (o l)z(i(;x + 1)) (A+ (o — 1)C(1) _ C(O)).

‘We transform the recurrence (2.1) to

(E{na—lTl(")} _ L)na—l -0

na—l n—1 k—1/n a—1 n—1 k—1/n 2(a—1)
(5 (=25 () )t -e(i-Er () )
k=2 k=2

B 8n n
n—1 2@ 4 _q
+ Z(f) prk—— KT ERITFY - L) - Q). 22)
k n
k=2
Hence, we obtain a recurrence
n—1
an =by+ Y qnrak (2.3)
k=2
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a, = En* T} = Ln*~! = 0,

ne=1 L k= 1/n\! L k=1 /n\2e D
b: — 1— - L Ol—l_ 1_ 7 ’
= (- (Xt (1) et e(-Xe (1))

<n)2(c(—l) k—1
dnk = | 7 Pn.k .
k n

With this notation, the theorem can be written as lim,,—, y o, a, = 0. It is then natural to study
the behaviour of b,, when n tends to co. To this aim, we obtain asymptotics of 1/g,, and

n—1 r
k—1
S po L <ﬁ> . r>0.leN, Q2.4)
2Pk

where (n); is defined as (the same for (k — 1);),

- nm—1)mn-=2)---(m—=1+1) iftn>1>1,
n =
"o if1>n> 1

2.2.1. Asymptotics of 1/g,. For any ¢, d € R, we have

I'n+c) _

c+d—1
T(n+d)

c—d _
n (1 + (c—d) >

n !+ O(n_2)>. 2.5)
This is a straightforward consequence of Stirling’s formula:

1 1
M) =2z 2 (1+—+0(=)), z>0.
12z 72

Then, for any real numbers a and b > —1,

Fm+a+DIB+1)
Fn+a+b+2)

1
/ =0t dx =
0

=T+ l)nlb(l +(=1— b)&z‘“ﬂn*1 + O(nz)). (2.6)

Using (2.6), we obtain the following lemma.

Lemma 2.3. For beta(2 — o, «)-coalescents, we have

n% (a(a—l) +2—oz

)na—l + 0(n0t—1)

"= Ta+) \2l@+1) " T@)
and
1 o  3a 1 1 —a
— =T(a+ 1)(1 + <—7 + ?>n + o(n ))n . 2.7

Proof. The proofis straightforward using Lemma 2.1 and g, = n(n— 1)f01 t(1=)""2p (1) dt.
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2.2.2. Calculus of (2.4).

Lemma 2.4. Consider any A-coalescent process associated withmeasurev. Letl € {1,2, ...,
n — 2} be fixed. Then, for any real function f,

ank

Oy . . . . .
where BV {-} indicates that the A-coalescent is associated with the measure v\®.

(n—1-Xx{")
(n)

f( ) = { }JE”(”{f(n — x(mhy),

Proof. Recall the definitions of g, and p, x (see (1.1) and (1.2)). We have
V()R — k()

n—1 n—1
(k=1 Jo Gl
2 = 2

k=I+1

8n

1 ( n—I )xn—k+l(1 _ x)k—l—lv(l)(dx)

_ Vlz—:l fO n—k+1

k=1+1 &n
_ n—1-I fol (n_z:éﬂ)xnfk—ul(l _ x)kflv(l)(dx)
—1 8n
(O]
gn l
8n
Then
(k — 1)
ank OIAL
k=2

_ <’§p . (k — 1)1> paya pn k((k =Dy /(n)) f (k)
() S 0zs Puk(k = 1)/ ()

k=2

|1 =Xy Sici Jo () a1 = 0 oy @)
B (n); g,
S CCER D ST pos o (i) A - 0 R+ DO
B (n); g?
—1-x"My
-5|" () L o )
1y
- K (n l(n)le )i ]Evm{f(n—Xin*l))}.

This completes the proof of the lemma.

In consequence,
G-y [a=1=X")\ 0 nooY
> puk L N ) el BREC § o\ I (P I GG ¥
P,k () n—x"D
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E{———¢, E —_— .
{ o XD

The latter is obtained from Proposition B.1 in Appendix A. The former is studied in the following

We have

lemma.

Lemma 2.5. Consider a beta(2 — o, a)n-coalescent. Letl € {1,2,...,n — 2} be fixed. We
have

E{ (n—1- XY”)z}
(n)
la ! l ot
=1—-—— 4T+ 1)( ( ,)(—1)-/ / x/v(dx) — C<°>1>n—“ +o(n™®).
n(a —1) o N 0

Proof. We have

E{(n— 1 —Xi"))l}
(n)
[—1

(n) l (n) j

X" +1 ; (X" + 1)/
:E{l_z ,ll_l- +Z Z (_l)j(n_i)(nl_i)...(n_i.) :
i=0 J=2 li1,....i; all different; ! 2 Y

0§i1,..‘,ij§l—l}

For ]E{Zﬁ;(l)(XY’) + 1)/(n — i)}, we use Lemma B.1 in Appendix B. Using Lemma B.2,
we obtain

I ™, 1
E{Z > (1) X, + 1 }

J=2 {i1.....i; all different; (n—in—iz)---(n—ij)
0<iy,...,i;<I-1}

l 1
=nT@+1)) (j,)(—l)j/ x/v(dx) + 0(n™?).
=2 0

Now we can provide the estimate of (2.4) using (2.8), Lemma 2.5, and Proposition B.1.

Proposition 2.1. Consider a beta(2 — «, a)n-coalescent. Letl € {1,2,...,n —2} andr €
[0, o + 1) be fixed. We have

n—1 r
(k=1 (n\ (r—Ila)
,;p””‘ () (Z> = he-n

1
+D(a + 1)(/ (A =x)" =1 —rx)p?Dx)
0

! 1
l , .
+ Z < ) (=1’ / xIvdx) +rc® — lc(0)>n—a
. J 0
j=2

+o(m™%).
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2.3. Proof of Theorem 2.1

Recall the transformation (2.2) and the associated recurrence (2.3). The aim is to prove that
lim;,_, 400 a, = 0 for a, in (2.3). Using Proposition 2.1, we obtain

n—1
k—1 1
1— an k < ) T T+ DA+ @—1DCD == o),

and
n—1

k—1/n\@ D 2 q e
I—ank () _n(a—1)+0(n )

Hence, we obtain b,, = o(n_l).
Let e > O such that 2(@ — 1) + € < «. We have

n—1 k—1 2(a—1)+e¢
1—ank ( ) =0 >0

The recurrence (2.3) satisfies the assumptions of Lemma A. 1, which leads to lim;,— 4o a, = 0.

3. Estimate of E{T,"’ T,"} and proof of Theorem 1.2
Using Theorem 1.1 in [14], we have
(n) -1
2E(T,
E(TO 1) = 2E{T} Z E{T(k)T(k)}.
&n =2
As a consequence of (2.7) and Theorem 2.1,
2E(T,")
8n

=2(T(a + 1)*n' =2

12
x(oe—l—l-(a DT(x+1)

5, At+@-ncth - c“)))nl—“) +o(n?™).

Thanks to the recurrence method described in the previous section, from a direct calculation it
follows that

E(T" 13"} = (@ = DT (@ + 1))~

—1
+ 27 (@ = DI+ 1))°
3—«

2
x (B +2—-1DCP +1-2c9 4 (At He® — c<°>))
-«
w 3= 4 0(n3(l—oc)).
Now together with Theorem 2.1, we can obtain the estimate of

((@ — DI'(a + 1))°
3—«
X (B—2A+2(c — 1)(C? — D) + D17 4 o(n3 1),

cov(Tl(") , Tz(")) =
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Then 3
A = &= IS)F(“ T 2442 - 1)(Cc® — ch) 4 1),
—

It is straightforward to see that

(@ — DIM(a + 1)’ T(4 — )

Ae) =
G —a)T(4—2a)

by recalling the values of A, B, C M and C@. Then, we prove

Jo (= )>7% = D2(dx)
3—«

Af@) = (@ — DT (@ + 1)),

Note that
1
B —2A = f (1 =x)2C _2(1 —x)> + 1 — x> + 2(x — Dx2(1 — x))v(dx).
0

By definition,
1
c?®—c® = lim /(p<2>(x)—p<1>(x))dx
t—+00 ¢

1
= lir% x (@ (dx) — vV (dx))
t—

t
1
= / —x2(1 — x)v(dx),
0
and fol x%v(dx) = 1. This concludes the proof.

4. Proof of Theorem 1.3

Note that n*- IT(") — T and if B > «/(e — 1), we obtain E{T#} = 400, hence;
E{(n*~ 1T )/3} converges to +0o (see [28, Lemma 4.11]). If 0 < B < B2 < a/(a¢ — 1)
and (E{(n"‘ 1T(”))/’Z} n > 2) is bounded, then ((n%~ 1T("))’31 n > 2) is uniformly integrable
(see [28, Lemma 4.11] and [11, Sectlon 8.3, Problem 14]). Then, we need only to prove that
for B € [2, a/(a — 1)), (E{(n®~ 1T )8}, n > 2) is bounded.

We will prove by induction on n that there exists a constant C > 0 such that for alln > 2,
(E{n*— 1T })‘3 < C. We first assume that, forall2 < k <n — 1, (E{k*~ 1T })’3 < C and
then we w111 prove that (if C is 1arge enough) (E{n*— lT(")})ﬁ <C.

Writing the decomposition of T ) at the first coalescence, we have

n—1
(n) €0 ()
Tln =_+Zl{ nk}T
=2

where

e H, i is the event: {From # individuals, we have k individuals after the first coalescence,
and individual 1 is not involved in this collision},2 <k <n — 1;

° eo 1s a unit exponential random variable, T(k) T(k) and all these random variables e,
I{Hn .} are independent. Note that IED{H,, k} = pnik(k —1)/n (see (2.1)).
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Using Lemma D.1 in Appendix D, we have the following inequality:

E{(1{")P} = {( +21{Hﬂk}T )}sln,1+1n,z+1n,3+1n,4, @1

e\ n—1 IRV
(@) sl B )
8n i

p—1 o \B-1n=]
_ 0 -
I3 = {,32/“ (thﬂ”) } In,4=E{/32’3 1<g—> Zl{ﬂn,k}Tfk)}
" k=2

We first bound /1. Recall that g, ~ n®/I"(« + 1). Hence, there exists a constant K1 > 0
(which depends on ) such that, for any n > 2,

where

K
n@p, <=L 4.2)
n

We now consider 7, 2. Note that (¢« — 1) < o 4+ 1. Hence, using Proposition 2.1, we have

I hpN k=1 m\eDP 1K)
L =0TV g (Z) E((*~'T™)F)
k=2

n—l k—1 (—1)p
<Cank < )

_ _oz—((x—l),B -1
_C<1 e o)

- C<1 _ M) forn > N. 43)
2n(a — 1)

where N is a fixed positive integer.
We now proceed to I, 3. Note that, for2 <k <n — 1,

E{(kolflTl(k))ﬂfl} S (E{(kO(*]Tl(k))ﬂ})(ﬂfl)/ﬂ S C(ﬂ*l)/ﬂ
Hence, we have

n—1
_ _ —1¢€0 = _
nPL, 5 =n® WE{ﬁzﬁ L2 1}
" k=2

1 oy R N )
< COVEg g S (%)
k=2

— CB-D/B a1 gof—1 g1 (1 a—(@-DE -1 n o(n‘l))
n(a—1)
cB-V/BK,
E— (4.4)

n

where K> is a positive constant. In the second equality, we have used Proposition 2.1.
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While, for any n > 2,

p—1n—1
(a—1)B — pla=Dp p-1( €0 E (k)
n I,a=n E{,BZ < ) 1 H,, T }
" 8n (Bhid

< ﬂzﬂ—lﬂa{eg*l}(gn)1—ﬁn<a—1>(ﬂ—1>E{na—1T]<n>}
< K3

<=5

K

n

4.5)

where K3 is a positive constant. We have used Lemma 2.1 to bound E{n*! T(")}
Using (4.1)—(4.5), we have proved that for any n, n > N, if there exists C > 0 such that,
forall2 <k <n— 1, E{k* ')} < C, then

E{(n®~' TP} < [C + (K1 - C% +CBDIBE, 4 K3>}n_1_

Let C be large enough such that

o—(a—1)p
2(a — 1)

Then E{(n*~! Tl("))ﬂ } < C, which concludes the proof.

Ki—C +CB-DIBK, + Ky <.

Appendix A. The main recurrence tool

Lemma A.1. We consider the recurrence a,, = b, + Zk_] qn kai,n > 1. We assume that all
parameters ay, bp, gnx withn > 1,1 < k < n — 1 are nonnegative, b, = o(n™ 1 and that
there existe > 0 and C > O such that 1 = ;_; ! gnix(n/k)® = Cn~ ! for large enough n. Then
lim;,— 400 an = 0.

Proof. Let (c,),>1 be a positive increasing sequence such that

lim ¢, = 400, lim nb,c, =0.
n—+00 n——+00

Define another sequence (c,),>1 by c1 = ¢;. Forn > 1,

. n+1\° _
Cp+1 = MmNy Cp " » Cn+1 (-

Then, we have lim;_, 400 ¢, = 400, cby, = o(n_l) and, forany 1 <k <n—1,¢,/ck <
(n/k)%. In consequence,

for large enough n. Let ny > 0 such that, for n > ni, we have

c C
1_Zanl>_» Cnbn<z
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and pick a number C’ such that C" > max{l, cyax; 1 < k < n;}. We transform the original

recurrence to
n—1

Cn
Cny = Cpby + Z<Qn,k;)ckak~

k=1
Then

C
Cni+1an+1 = m + <1 - >C/ < C.
By induction, we prove that the sequence (c,a,),>1 is bounded by C’. Since ¢, tends to oo,

we obtain lim,,— o @, = 0.

np+1

Remark A.1. We refer the reader to [35] for a rather detailed survey on this kind of recurrence
relationship.
Appendix B. Asymptotic behaviours of X i")

Lemma B.1. Consider the coalescent process with related measure v'*), where s > —a. Then
s 1
EV( ){X{n)} — _1 + (e + l)C(s)nl—a + o(nl—ot)’
o —
Proof. We have (see [13])

Jo (=0 2(f! p9 ) dr) d
Jo (= 0n=2tp@@)de
From Lemma 2.1, we obtain the expansions of p®)(¢) and ftl PO () dr. Using (2.5), we obtain

1 1 a—2
_ =2 ) R (s),—1 -1
fo(l 1) (/t P (r)dr>dt_(a_1)r(a+l)+C nom™h

and [ (1 = 1)"21p" (1) dt = n* /D (e + 1) + O (n* ).
Lemma B.2. Ifs > —a and k > 2,

®© Xin) ‘ : k in{1+o,k
EY {( > } =T(a+ 1)[ v (dxyn ™ + O (ummintFekd),
n 0

Proof. Let B, x denote abinomial random variable with parameter (n, x),n > 2,0 < x < 1.
Recall that, for2 <i <n,

IP’U(S){XY’) Ci_u= /1 (’;)xi(l — )" y®) (dx) _ /1 P{B, . = i}v(S)(dx).
0 0

g &

EV(S) {Xgn)} —

Here, P means that X f") is related to the coalescent process with measure v*). Then

e { (xi'”)k} _ Jo BU(Bux = /) 1y, =1y (dx)

n g

1 k—1
k . .
= f n_k]E{(Br]:,x - Bn,x) + Z <i>(_1)l(Br]::cl - Bn,x)
0 i=1

+ (=1 = B,y 1{Bn,x21}>}v<s><dx><g£f>)‘.
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Using Lemma C.1 in Appendix C, we obtain E{(B,’;,x — By} = (nx)*+ 0 m*~1x2. Then

- { <X§"> >" } o n 7M@)k + 0@ ()

g

nk [ =1DF = nx — (1 = )" (dx)

o

n

_I_

1 .
=T(a+ 1)/ xkv(s)(dx)n—ot + O(H—mm{l+a,k}).
0

In the second equality, we have used g,(,s) ~ n%/T" (o + 1) and also the fact that

1 1
/ (1 —nx — (1 —x)"W®dx) < g :/ (1 —nx(1 —x)""" = (1 = x)")v®(dx).
0 0

This completes the proof.

Proposition B.1. Fors e NU {0} and 0 <r < o + s, we have

el Y1,
n—x") 7 n@—-1

1
+ I'(a + 1)(/ (1 - x)_r -1 I’X)V(S)(dx) + rc(s)>n—oz
0
+o(n™%).

Proof. Using a Taylor expansion, for m > 2 and n > s + 2, we have

(s) n r
= () |
(n—s)
n— Xln !
_ Ev(s) 1 "
B 1— X7 /p
1

- XU I Tk +r) (XTI
=E l+r—+
n h '(r)k!

n
=2

(n—s) —

r 1 Xy V/n X(" ) m

+M 1 _t)—r—m—l 21 —t de b
L'(rym! 0 n

Using Lemma B.1 and Lemma B.2, we have, form > 2,

o [Tk XNk "Dk !
lim n*E" ){ E k+r) < 1 ) } =T(a+1) E f&+n) v (du).
n——+o0o =2 F(r)k' n = F(}’)k' 0

In consequence,

m (n—s)\ k 1
lim  lim n“]E”('v){ZF(ker)(Xl > }:F(a+l)/ (1=x) " =1—rx)v® (dx).
0

m—>+00 n—+00 P I'(r)k! n
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It remains to estimate

(n—s) —
r 1 of [X°5/m X
(m+—+r)EV() / a- t)*rfmfl it 1 dr ¢,
F(r)m' 0 n

which is the sum of two terms P(m, n, s, y) and P,(m,n, s, y), with0 < y < 1, defined by

Pi(m,n,s,y)

(n—s) -
T g f P (B Y
I (rym! 0 n X" =y [

Py(m,n,s,y)

) _
B T PP T . M APR
L (rym! 0 n Xy <y [0

We first focus on Py (m, n, s, y). By Proposition C.1 in Appendix C, we have

,
(s) n
P N < ]Ev —_— 1 n—s
\(m,n,s,y) < {(n ~ XYH)) 1x§ >zny}}

.
v(:) n—s

=E o= ) Lx" 2y
n—s Xl

<n *Kqyo(1—y) ", (B.1)

where 7 € (r, @ 4+ 5) and K4 is a number depending only on 7 and v(® (it is important that it
does not depend on y).
We now provide an upper bound for P>(m, n, s, y),

n“Py(m,n,s,y)
(n—s) (n—s) m
r 1 of (X0 /m X —
_ e (m+1+ F)EVH (1! Xy /n—t drl s ,
T (rym! 0 -1 ek

Fort € [0,x) withO < x < 1, we have (x —¢)/(1 —t) < x. Then

\/Xﬁns)/n Xin_s)/f’l —\" X}n—s) m+1
PR . A — dr < .
0 1—1 - n

Hence, using Lemma B.2, for m > 2,

(n—s) \m+1

r 1 X

n®Py(m,n,s,y) EHQM(I _y)—r—lE 21
C(rym! n

o Pm4+147)
I'(rym!

1
=1=-y)~ (r(a + 1)/ O (dx) + 0(n1)>.
0

By Lemma C.2 in Appendix C, we have
1 1 o )
/ KO (dx) = / X1 = )T (dx) < Ksm ™,
0

0

where K is a positive real number depending only on 7 and v(®).
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Note that I'(m + r + 1)/T'(r)m! ~ m”" /T (r). Hence,
Py(m,n,s,y) <n (1 =) 'm"(Om™) + o(n™)). (B.2)
Combining (B.1) and (B.2), we obtain

lim limsupn®(Pi(m,n,s,y) + P,(m,n,s,y)) =0.

m—>+00 p 400

This convergence together with Lemmas B.1 and B.2 yield this proposition.

Appendix C. Some necessary results for Appendix B

Lemma C.1. Let B, , be a binomial random variable with parameter (n, x),n > 2,0 < x <
1. Let k be an integer such that 2 < k < n. Then

k
nx+nm—1)---(n—k+Dx* <E{BS .} < (n0)* + (z)nk—lx;

Proof. Write B, x = Y1 + --- + Yy, where Y1, ..., Y, are independent Bernoulli random

variables. Let S := {{iy,...,ix}; 1 <iy,...,ix <n}. Then
E{ Z Yi]"‘Yik}+E{ Z Yi]"'Yik}
(i1, ik }€S) (i1, ik }€S3

< E{(Byn.x)*}

SIE{ > Y,-l---Yik}+]E{ > Yil~-~Yik},

{i1,...,ix}€SH {i1,....,ix}€S3
where
@G) if Sy := {{i1,...,in} € Ay i1 = --- =i} then
]E{ Z Y,-l~--Y,-}=nx;
(i1, ik €S
@) if 8 :={{i1,...,in} € A; thereexists ] < p < g <k, i, =i,}then
k k—1_2.
{i1,...,ik}€SH

(iii) if S3 :={{i1,...,in} € A;foralll < p <gq <k,i, #i,} then
E{ > ~~Y,»k} =n(n— 1)+ (1 —k+ Dk,
{i1,....ir}€S3
The lemma is then immediate from the above calculations.

Lemma C.2. Consider any A-coalescent such that p(t) = Ct™% + o(t~%). Then, for every
s>0,n>2, fol x"(1 = x)*v(dx) < Ken™?*, where Kg is a positive constant which depends
only on s and v.
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Proof. 1t is clear that there exists K7 > 0 such that p(t) < K7t7% forall 0 < ¢ < 1. Then
1 1

/ x"(1 = x)*v(dx) =/ o()(n—(n+ D" A =) dr
0 0
1
5/ o) —n)" YA =0T dr

0

1
gnK7/ Ml — S dr
0

F'h—a)l(s+1)
'h—a+s+1)
< Ken™*

=nky

for some K¢ which only depends on K7 and s. This completes the proof of the lemma.

Proposition C.1. Lets > —aand0 <r <a+s,7 € (r,a +s). Then there exists a constant
K11 depending only on r and s such that, forall y € (0, 1), n > 2,

r
v n —a —Q 1 _ NTT
]E {(n_Xin)) I{Xf")Zny}} El’l Klly (1 y) .
Proof. Define [x] = min{m € Z; m > x}. We have

S o () = /o — Ry v )

r
v(s) n .
E {(n_ ) I{XE”)zny}} - Z )

(n)
Xl k=[ny] 8n

Using (2.5), there exist two positive constants Kg, K9 such that, forall k € {1,2,...,n — 1},
Fn+1+r) n n \ Fn+1+r)
8 =< — ) <Ky .
rk+2)'n —k+r) k+1)/\n—k rk+2)I'm—k+r)

Moreover, using integration by parts, for | </ <n—1and 0 < x < 1, we have

n—1

Fn+14r) K1 = ke
Fk+2)I'(n—k+r)

k=l
r 1 x r 1
= (n+1+r) A= nrHrlar 4 (rt1tr) (1 —x)"
rd+Drn—I1+r) Jy F'(n+ DI +7r)
r 1 x
_Lar A0 g g .1

F@ra+r) Jo

From Lemma 2.1, we have p TN = 7T (2 — )T (o + 1) + o(t~%). Then there exists
Ko > 0, such that p"+9) () < Ko~ for all t € (0, 1]. We have

r
V() n
B {( —X(")> I{Xﬁ")zny}}

Jo ()@ /G — k) b+ (1 — )1 (d)

- Z (s)

k= fnﬂ &n
fO k+1 (l’l/(l’l—k))r k+1(1 —x)" k— 147, (= r+v)(dx)

- Z (s)

k=Tny] &n
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/0 T+ 1+7)/T(nyl+ DT (n = [ny] + 7)) fo t"1(1 = o)== dpy 79 (dx)
(s)

gﬂ
/01 Tn+1+ r')/l"(n +DIrrd + f))x”(l _ X)FV(_;-H)(dx)
+ Ko -
gﬂ
fo (T +1+7)/T(nyl + DT — [ny] + 7)) p ) ()11 — pyn=Im1+7=1 g
g
+K fo (T +1+7)/T(n+ DI +7)x" (1 —x)" v+ (dx)
(s)
8n
< K9K10F(n +14+ 7T (nyl+1- a){sf)'([nﬂ DT+ 147 —a)
&n
4 KeKo Lt 1D/ + DI + n"

o

< Kiis™%n7?,

where for the first inequality we use (C.1) with [ = [ny], in the second inequality, we use
integration by parts and for the third inequality we bound p~"+%) (x) by K1ox~® and also use
Lemma C.2. For the last inequality, we use (2.5). Here, K11 is a constant which depends only
on 7 and v®. Then, we obtain

" F
() n _ PR n
. {<n — Xg")> I{Xi'l)zny}} A=y {(n _ X}")> l{Xi")zny}}

<Ky “(—y""n"*,
which completes the proof.

Remark C.1. If » > o + s, Proposition C.1 is false. Assume that s = 0, 7 > «, and for any
fixed0 <y <1,n>1/(1 —y), we have ny < n — 1 it then follows that

r X(”) — + i X(n) k
Pl(m,n,s, y) ZE{<<#> — ZH O(r )( rll ) >1{X§n>:n—l}}

)
Xl

k

:P{Xin):n_1}<nr_1_r I_ZH (r—|—l)<n;1>>
flxnv(dx) r —1 1_[1 (l"+l) n—1 k
zog—n<n —1 - _E O < - ))

~ 20 r _ 1 _ -1 H (r+l) n_1k>
Cn (n 1 r Z < . ) ,

where C is a positive number. Then

liminf n® Py(m,n,s,y) > C forall0 <y < 1.

n——+00

Hence, this remark justifies the constraint 0 < r < o + s.
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Appendix D. Results that are used to prove Theorem 1.3
LemmaD.1. Leta > 0,b >0, 8 > 1. Then

0<(a+b)Pf <daf +bP+ 2P a1 4 g2~ 1paP~1,
Proof. 1f 0 <m <1 then
(I+mP <14 p257\m < 14 mP 4 2P~ Im + g2f~1mP=1,

We use the fact that the function m — (1 4+ m)# is convex and that B 281 is the derivative of
(1+m)Patm=1.
If 1 < m then

1Y 1
A+mf = mﬂ(l + —) < (m)ﬂ<1 + ﬁzﬂ—l—) < 14+mP+ g2~ tm 4 p2P=tmP1,
m m
Hence, for all m > 0,

A+m)P <14+mP + g2~ m + p2P~1mP-1,

Then, foralla > 0,5 > 0,

b\
(a—}-b)’g:aﬁ(l—f-—)
a

B p-1
< aﬁ<1 + <é> - ﬁzﬂ*IE + g2f-1 (9) )
a a a

=af +bP + p2PlapP " + B2Ppal .
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