
J. Functional Programming 6 (4): 621-655, July 1996 © 1996 Cambridge University Press 621

Benchmarking implementations of functional
languages with 'Pseudoknot', a float-intensive

benchmark

PIETER H. HARTEL
Department of Computer Systems, University of Amsterdam,

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands (e-mail: pieterQfwi.uva.nlJ

MARC FEELEY
Departement d'informatique et r.o., Universite de Montreal,

succursale centre-mile, Montreal H3C 3J7, Canada (e-mail: feeley9iro.umontreal .caj

MARTIN ALT
Informatik, Universitat des Saarlandes, 66041 Saarbriicken 11, Germany (e-mail: altQcs.uni-sb.de,)

LENNART AUGUSTSSON
Department of Computer Systems, Chalmers University of Technology, 412 96 Goteborg, Sweden

(e-mail: augustssQcs.Chalmers.se)

PETER BAUMANN
Department of Computer Science, University of Zurich, Winterthurerstr. 190, 8057 Zurich,

Switzerland (e-mail: baumannSifi.unizh.ch)

MARCEL BEEMSTER
Department of Computer Systems, University of Amsterdam,

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands (e-mail: beemster@fwi.uva.nl,)

EMMANUEL CHAILLOUX
LIENS, URA 1327 du CNRS, Ecole Normale Superieure, 45 rue dVlm, 75230 PARIS Cedex 05, France

(e-mail: Ennnanuel.ChaillouxSens.fr,)

CHRISTINE H. FLOOD
Laboratory for Computer Science, MIT, 545 Technology Square, Cambridge, MA 02139, USA

(e-mail: chfSlcs.mit.edu,)

WOLFGANG GRIESKAMP
Berlin University of Technology, Franklinstr. 28-29, 10587 Berlin, Germany,

(e-mail: wgQcs.tu-berlin.deJ

JOHN H. G. VAN GRONINGEN
Faculty of Mathematics and Computer Science, Univ. of Nijmegen,

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands (e-mail: johnvgOcs.kun.nl)

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

622 P. H. Hand et al.

KEVIN HAMMOND
Department of Computing Science, Glasgow University, 17 Lilybank Gardens, Glasgow, G12 8QQ, UK

('e-mail: kh9dcs.glasgow.ac.uk,)

BOGUMIL HAUSMAN
Computer Science Lab, Ellemtel Telecom Systems Labs, Box 1505, S-125 25 Alvsjo, Sweden

(e-mail: bogdanSerix.ericsson.se,)

MELODY Y. IVORY
Computer Research Group, Institute for Scientific Computer Research,

Lawrence Livermore National Laboratory, P.O. Box 808 L-419, Livermore, CA 94550, USA
('e-mail: ivoryl911nl.gov,)

RICHARD E. JONES
Department of Computer Science, University of Kent at Canterbury, Canterbury, Kent, CT2 7NF, UK

(e-mail: R.E.Jones9ukc.ac.uk)

JASPER KAMPERMAN
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands ('e-mail: jasper9cwi.nl ,)

PETER LEE
Department of Computer Science, Carnegie Mellon University,

5000 Forbes Avenue Pittsburgh, Pennsylvania 15213, USA (e -mai l : petelflcs.cmu.edu,)

XAVIER LEROY
INRIA Rocquencourt, projet Cristal, B.P. 105, 78153 Le Chesnay, France

(e-mail: Xavier.Leroy9inria.frJ

RAFAEL D. LINS
Departamento de Informdtica, Universidade Federal de Pernambuco, Recife, PE, Brazil

(e-mail: rdlQdi .ufpe.br)

SANDRA LOOSEMORE
Department of Computer Science, Yale University, New Haven, CT, USA

(e-mail: loosemore-sandraOcs. yale. edu,)

NIKLAS ROJEMO
Department of Computer Systems, Chalmers University of Technology, 412 96 Gb'teborg, Sweden

(e-mail: rojemoQcs.chalmers.se,)

MANUEL SERRANO
INRIA Rocquencourt, projet Icsla, B.P. 105, 78153 Le Chesnay, France

(e-mail: Manuel.Serrano9inria.fr,)

JEAN-PIERRE TALPIN
European Computer-Industry Research Centre, Arabella Strafie 17, D-81925 Munich, Germany

(e-mail: jp9ecrc.de,)

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 623

JON THACKRAY
Harlequin Ltd, Barrington Hall, Barrington, Cambridge CB2 5RG, UK

(e-mail: jont@harlequin.co.uk,)

STEPHEN THOMAS
Department of Computer Science, University of Nottingham, Nottingham, NG7 2RD, UK

('e-mail: spt@cs.nott.ac.ukJ

PUM WALTERS
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands (e -mai l : pum8cwi.nl,)

PIERRE WEIS
INRIA Rocquencourt, projet Cristal, B.P. 105, 78153 Le Chesnay, France

(e-mail: Pierre.WeisSinria.fr,)

PETER WENTWORTH
Department of Computer Science, Rhodes University, Grahamstown 6140, South Africa

(e-mail: cspw8cs.ru. ac.za,)

Abstract

Over 25 implementations of different functional languages are benchmarked using the same
program, a floating-point intensive application taken from molecular biology. The principal
aspects studied are compile time and execution time for the various implementations that were
benchmarked. An important consideration is how the program can be modified and tuned
to obtain maximal performance on each language implementation. With few exceptions, the
compilers take a significant amount of time to compile this program, though most compilers
were faster than the then current GNU C compiler (GCC version 2.5.8). Compilers that
generate C or Lisp are often slower than those that generate native code directly: the cost
of compiling the intermediate form is normally a large fraction of the total compilation
time. There is no clear distinction between the runtime performance of eager and lazy
implementations when appropriate annotations are used: lazy implementations have clearly
come of age when it comes to implementing largely strict applications, such as the Pseudoknot
program. The speed of C can be approached by some implementations, but to achieve
this performance, special measures such as strictness annotations are required by non-strict
implementations. The benchmark results have to be interpreted with care. Firstly, a benchmark
based on a single program cannot cover a wide spectrum of 'typical' applications. Secondly,
the compilers vary in the kind and level of optimisations offered, so the effort required to
obtain an optimal version of the program is similarly varied.

Capsule Review

A large group of people programmed a floating-point intensive application from molecular
biology called 'Pseudoknot', using 28 different implementations of 18 functional languages
and variants (as well as the C language). In this paper, the complex of performance results is
carefully organised and analysed.

The reader can expect to gain new insights into sources of variation in the compiler
speed, the implications of choosing alternatives for native code generation vs. an intermediate
language, the necessity and effect of various programming techniques, and the performance
drawbacks (and some palliatives) associated with non-strict evaluation.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

624 P. H. Hartel et al.

Of course, few definitive conclusions can be drawn from a single-program benchmark, but
the authors have set a high standard for the functional language community in the quality of
their performance analyses.

This unprecedented collaboration has had three positive influences: researchers learned
directly about the methods and techniques used by others; they were well motivated to apply
new techniques because of the competitive element of the collaboration; and the common
benchmark pointed out various weaknesses of the languages and implementations used.
This report may encourage more, similar experiences because of the obvious value to the
participants of this collaboration.

1 Introduction

At the Dagstuhl Workshop on Applications of Functional Programming in the
Real World in May 1994 (Giegerich and Hughes, 1994), several interesting ap-
plications of functional languages were presented. One of these applications, the
Pseudoknot problem (Feeley et al., 1994), had been written in several languages,
including C, Scheme (Rees and Clinger, 1991), Multilisp (Halstead Jr, 1985) and
Miranda* (Turner, 1985). A number of workshop participants decided to test their
compiler technology using this particular program. The first point of comparison is
the speed of compilation and the speed of the compiled program. The second point
is how the program can be modified and tuned to obtain maximal performance on
each language implementation available.

The initial benchmarking efforts revealed important differences between the vari-
ous compilers. The first impression was that compilation speed should generally be
improved. After the workshop we have continued to work on improving both the
compilation and execution speed of the Pseudoknot program. Some researchers not
present at Dagstuhl joined the team, and we present the results as a record of a small
scale, but exciting collaboration with contributions from many parts of the world.

As is the case with any benchmarking work, our results should be taken with a
grain of salt. We are using a realistic program that performs a useful computation,
however it stresses particular language features that are probably not representative
of the applications for which the language implementations were intended. Imple-
mentations invariably trade-off the performance of some programming features for
others in the quest for the right blend of usability, flexibility, and performance
on 'typical' applications. It is clear that a single benchmark is not a good way
to measure the overall quality of an implementation. Moreover, the performance
of an implementation usually (but not always) improves with new releases as the
implementors repair bugs, add new features, and modify the compiler. We feel that
our choice of benchmark can be justified by the fact that it is a real world appli-
cation, that it had already been translated into C and several functional languages,
and that we wanted to compare a wide range of languages and implementations.
The main results agree with those found in earlier studies (Cann, 1992; Hartel and
Langendoen, 1992).

t Miranda is a trademark of Research Software Ltd.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 625

Section 2 briefly characterises the functional languages that have been used. The
compilers and interpreters for the functional languages are presented in section 3.
The Pseudoknot application is introduced in section 4. Section 5 describes the
translations of the program to the different programming languages. The benchmark
results are presented in section 6. The conclusions are given in the last section.

2 Languages

The Pseudoknot benchmark takes into account a large number of languages and an
even larger number of compilers. Our aim has been to cover as comprehensively as
possible the landscape of functional languages, while emphasising typed languages.

Of the general purpose functional languages, the most prominent are the eager,
dynamically typed languages Lisp and Scheme (the Lisp family); the eager, strongly
typed languages SML and Caml (the SML family); and the lazy, strongly typed
languages Haskell, Clean, Miranda and LML (the Haskell family). These languages
are sufficiently well known to obviate an introduction. There are also some variants
of these languages, such as the Gofer and RUFL variants of Haskell. The syntax
and semantics of these variants is sufficiently close to that of their parents that no
introduction is needed.

Four of our functional languages were designed primarily for concurrent/parallel
applications. These are Erlang, an eager, concurrent language designed for prototyp-
ing and implementing reliable real-time systems; Facile, which combines SML with a
model of higher-order concurrent processes based on CCS; ID, an eager, non-strict,
mostly functional, implicitly parallel language; and Sisal, an eager, implicitly parallel
functional language designed to obtain high performance on commercial scalar and
vector multiprocessors.

The concurrent/parallel capabilities of these four languages have not been used
in the Pseudoknot benchmark, so a further discussion of these capabilities is not
relevant here. It should be pointed out however, that because these languages were
intended for parallel execution, the sequential performance of some may not be
optimal (see section 6.3.3).

Two of the functional languages are intended to be used only as intermediate
languages, and thus lack certain features of fully fledged programming languages,
such as pattern matching. These languages are FCMC, a Miranda based language
intended for research on the categorical abstract machine (Lins, 1987); and Stoffel,
an intermediate language designed to study code generation for high level languages
on fine-grained parallel processors. The Stoffel and FCMC compilers have been
included because these compilers offer interesting implementation platforms, not
because of the programming language they implement.

A further three functional languages were designed for a specific purpose: Epic
is a language for equational programming, which was primarily created to support
the algebraic specification language ASF+SDF (Bergstra et al., 1989); Trafola is
an eager language that was designed as a transformation language in a compiler
construction project; and Opal is an eager language that combines concepts from
algebraic specification and functional programming in a uniform framework.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

626 P. H. Hartel et al.

Table 1. Language characteristics. The source of each language is followed by a key
reference to the language definition. The remaining columns characterise the typing
discipline, the evaluation strategy, whether the language is first- or higher-order, and
the pattern-matching facilities.

Language

Caml
SML

Clean

Gofer
LML

Miranda
Haskell
RUFL

Common
Lisp
Scheme

Erlang
Facile
ID

Sisal

FCMC
Stoffel

Epic

Opal
Trafola

ANSI C

Source

INRIA
Committee

Nijmegen

Yale
Chalmers

Kent
Committee
Rhodes

Committee

Committee

Ericsson
ECRC
MIT

LLNL

Recife
Amsterdam

CWI

TU Berlin
Saarbriicken

Committee

Ref. Typing

SML family

Weis (1993) strong, poly
Milner et al. (1990) strong, poly

Haskell family

Plasmeijer and strong, poly
van Eekelen (1994)
Jones (1994) strong, poly
Augustsson and strong, poly
Johnsson (1989)
Turner (1985) strong, poly
Hudak et al. (1992) strong, poly
Wentworth (1992) strong, poly

Lisp family

Steele Jr (1990) dynamic

Rees and Clinger (1991) dynamic

Parallel and concurrent languages

Armstrong et al. (1993) dynamic
Thomsen et al. (1993) strong, poly
Nikhil (1991) strong, poly

McGraw et al. (1985) strong, mono

Intermediate languages

Lins and Lira (1993) strong, poly
Beemster (1992) strong, poly

Other functional

Walters and
Kamperman (1995)
Didrich et al. (1994)
Alt et al. (1993)

C

Kernighan and
Ritchie (1988)

languages

strong, poly

strong, poly
strong, poly

weak

Evaluation

eager
eager

lazy

lazy
lazy

lazy
lazy
lazy

eager

eager

eager
eager
eager
non-strict
eager

lazy
lazy

eager

eager
eager

eager

Order

higher
higher

higher

higher
higher

higher
higher
higher

higher

higher

first
higher
higher

first

higher
higher

first

higher
higher

first

Match

pattern
pattern

pattern

pattern
pattern

pattern
pattern
pattern

access

access

pattern
pattern
pattern

none

access
case

pattern

pattern
pattern

none

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 627

Finally, C is used as a reference language to allow comparison with an imperative
language.

Table 1 provides an overview of the languages that were benchmarked. The table
is organised by language family. The first column of the table gives the name of the
language. The second column gives the source (i.e. a University or a Company) if a
language has been developed in one particular place. Some languages were designed
by a committee, which is also shown. The third column of the table gives a key
reference to the language definition.

The last four columns describe some important properties of the languages. The
typing discipline may be strong (and static), dynamic, or weak; a strong typing
discipline may be monomorphic (mono) or polymorphic (poly). The evaluation
strategy may be eager, lazy or eager with non-strict evaluation. The language may be
first order or higher order. Accessing components of data structures may be supported
by either pattern-matching on function arguments, local definitions and/or as part
of case expressions (pattern, case), by compiler generated access functions to destruct
data (access), or not at all (none). The reader should consult the references provided
for further details of individual languages.

3 Compilers

Having selected a large number of languages, we wished to provide comprehensive
coverage of compilers for those languages. For a number of languages, we set out
to benchmark more than one compiler, so as to provide direct comparisons between
different implementations of some prominent languages as well as between the
languages themselves.

For the Lisp family we use the CMU common Lisp native code compiler, and the
Bigloo and Gambit portable Scheme to C compilers.

For the SML family we use: SML/NJ, an incremental interactive native code
compiler; MLWorks, a commercial native code compiler; Caml Light, a simple
byte-code compiler; Camloo, a Caml to C compiler derived from the Bigloo Scheme
compiler; Caml Gallium, an experimental native-code compiler; and CeML, a
compiler that has been developed to study translations of Caml into C.

For Haskell we use the Glasgow compiler, which generates either C or native
code; the Chalmers native code compiler and the Yale compiler, which translates
Haskell into Lisp. A large subset of Haskell is translated into byte-code by the NHC
compiler. The Haskell relatives RUFL and Gofer can both compile either to native
code or to a byte code. The Clean native code compiler from Nijmegen is used for
Clean. For Miranda, the Miranda interpreter from Research Software Ltd is used,
as well as the FAST compiler, which translates a subset of Miranda into C. For
LML the Chalmers LML native code compiler is used, as well as a modified version
that translates into a low-level intermediate form based on FLIC. After extensive
optimisations (Thomas, 1993), this LML(OP-TIM) back-end generates native code.

For the four concurrent/parallel languages we use the Erlang BEAM compiler,
a portable compiler that generates C; the Facile compiler, which uses the SML/NJ
compiler to translate the SML code embedded in Facile programs into native code;

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

628 P. H. Hartel et al

Table 2. Compiler details consisting of the name of the compiler and/or language, the
University or Company that built the compiler, a key reference to the description of
the implementation and the address from which information about the compiler can be
obtained.

Compiler

Bigloo

Caml Light

Version

1.7

0.61

Caml Gallium

Camloo

CeML
Clean

CMU CL

Epic

Epic-C

Erlang

Facile

FAST

Gambit

TCMC

Gofer

Haskell

Haskell

Haskell

ID
LML

LML
(OP-TIM)

MLWorks

Miranda

Nearly
Haskell

Opal

RUFL

Sisal

SML/NJ

Stoffel
Trafola

0.2

0.22
1.0b

17e

0.8

0.2

6.0.4

Antigua

33

2.3

0.1

2.30a

0.999.6

0.22

2.1

TL0 2.1
0.999.7

Pre-rel.

n.a.

2.018

Pre rel.

2.1c

1.8.4

12.9.2

1.07

1.2

Source

INRIA
Rocquencourt

INRIA
Rocquencourt
INRIA
Rocquencourt
INRIA
Rocquencourt
LIENS
Nijmegen

Carnegie
Mellon
CWI

CWI

Ellemtel AB

ECRC

Southampton/
A TV\cf"^t*/I OTY1
/Vil la LCI UctXIl

Montreal

Recife
DrQ7J1orazii
Yale

Chalmers

Glasgow

Yale

MIT/Berkeley
Chalmers

Nottingham/
Ypnt
Harlequin Ltd.

Research
Software Ltd.
Chalmers

Berlin

Rhodes

LLNL

AT&T
Hell Labs.
Amsterdam
Saarbrucken

Ref.

Serrano (1994)

Leroy (1993)

Leroy (1992)

Serrano and Weis
(1994)
Chailloux (1992)
Smetsers et al.

MacLachlan et al
(1992)
Walters and (1995)
Kamperman
Walters and (1995)
Kamperman
Hausman (1994)

Thomsen et al.

Hartel et al. (1994)

Feeley and Miller
(1990)
Lins and Lira

Jones (1994)

Augustsson (1993)

Peyton Jones et al.
(1993)
Yale Haskell group
(1994)
Nikhil (1991)
Augustsson and
Johnsson (1990)
Thomas (1995)

Harlequin Ltd.

Turner (1990)

Rojemo (1995)

Schulte and
Grieskamp (1991)
Wentworth (1991)

Cann (1992)

Appel (1992)

Beemster (1993)
Alt et al. (1993)

FTP / Email

Ftp: ftp.inria.fr:
/INRIA/Projects/icsla/
Implementations/
Ftp: ftp.inria.fr:
/lang/caml-light/
Email: Xavier.Leroy@inria.fr

Ftp: ftp.inria.fr:
/lang/caml-light/
Email: Emmanuel.Chailloux@ens.fr
Ftp: ftp.cs.kun.nl:
/pub/Clean/
Ftp: lisp-sunl.slisp.cs.cmu.edu:
/pub/
http://www.cwi.nl/ gipe/epic.html

http://www.cwi.nl/ gipe/epic.html

commercial
Email: erlang@erix.ericsson.se
Email: facile@ecrc.de

Email: pieter@fwi.uva.nl

Ftp: ftp.iro.umontreal.ca:
/pub/parallele/gambit/
Email: rdl@di.ufpe.br

Ftp: nebula.cs.yale.edu:
/pub/haskell/gofer/
Ftp: ftp.cs.chalmers.se:
/pub/haskell/chalmers/
Ftp: ftp.dcs.glasgow.ac.uk:
/pub/haskell/glasgow/
Ftp: nebula.cs.yale.edu:
/pub/haskell/yale/
Email: chf@lcs.mit.edu
Ftp: ftp.cs.chalmers.se:
/pub/haskell/chalmers/
Email: spt@cs.nott.ac.uk

commercial

commercial
Email: mira-request@ukc.ac.uk
Ftp: ftp.cs.chalmers.se:
/pub/haskell/nhc/
Ftp: ftp.cs.tu-berlin.de:
/pub/local/uebb/ocs
Ftp: cs.ru.ac.za:
/pub/rufl/
Ftp: sisal.llnl.gov
/pub/sisal
Ftp: research.att.com:
/dist/ml/
Email: beemster@fwi.uva.nl
Email: alt@cs.uni-sb.de

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 629

Table 3. Compilation and execution options. The type of garbage collector is one of
2-space (non-generational 2-space copying collector); mark-scan; gen. (generational
with two or more spaces); 1-space (mark-scan, one space compactor); or reference
counting. Floating-point arithmetic used is either single- or double-precision.

Compiler

Bigloo
Caml Light
Caml Gallium
Camloo
CeML
Chalmers

Clean

CMUCL

Epic
Epic-C
Erlang BEAM
Facile
FAST
Gambit
TCMC
Glasgow
Gofer
ID

LML Chalmers
LML(OP-TIM)

MLWorks
Miranda
NHC(HBC)
NHC(NHC)
Opal
RUFL
RUFLI
Sisal

SML/NJ
Stoffel
Trafola
Yale

Compiler options

-unsafe -O4

-unsafe -O4
-O
-c -Y-S -H50Mg -
-Y-A500k -cpp

(speed 3) (safety 0) (debug 0)
(compilation-speed 0)
-s80

-fast

-fcg

-O -fvia-C -O2-for-C
-DTIMER
strict, merge-partitions
(tic: opt)
-H24000000 -DSTR -c
LMLC: -H24000000 -DSTR -c
-fno-code -fout-flic;
SPGC:-c-i
no details available"

-H30M
-h2M
opt=full debug=no
-w
-iw
-cpp -seq -O
-c atan2 -cc=-0

-O2 (for C)
-TC -INLINE 1
see CMU CL

Execution options

-nt -s 10k -h ...

-h 600000

-v 1 -h ... -s 400K 1
-:h4096

+RTS-HIM

/heap ...; /count

-m300
-m300 -r32000

-HE 8000000

Collector

mark-scan
gen.
gen.
mark-scan
1-space
2-space

2-space/
mark-scan
2-space

mark-scan
mark-scan
2-space
gen.
2-space
2-space
2-space
gen.
2-space
none

2-space
2-space

2-space
mark-scan
2-space
1-space
refcount
mark-scan
mark-scan
refcount

gen.
2-space
1-space
2-space

Float

double
double
double
double
single
single

double

single

single
single
double
double
single
double
double
single
single
double

single
single

double
double
single
single
single
double
double
double

double
double
sgl/dbl
single

" MLWorks is not yet available. Compilation was for maximum optimisation, no debugging
or statistics collection was taking place at runtime.

the ID compiler, which translates into an intermediate data flow representation
that is subsequently compiled into C by the Berkeley T10 back-end; and the Sisal
compiler, which compiles via C with special provisions to update data structures in
place, without copying.

Epic is supported by a so-called hybrid interpreter, which allows the combination
of interpreted and compiled functions. Initially, all functions are translated to,

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

630 P. H. Hand et al.

essentially, byte-code. Then, individual functions can be translated into C, and can
be linked to the system. This leads to a stratum of possibilities, with, in one extreme,
all functions being interpreted, and in the other, all functions being compiled and
only the dispatch overhead being paid. In this document, the two extremes are being
benchmarked under the names Epic, and Epic-C, respectively.

Of the four remaining languages Opal, FCMC and Stoffel are translated into C
whereas Trafola is translated into an interpreted code.

An overview of the compilers that have been used may be found in Table 2.
Since this table is intended for reference rather than comparisons, the entries are
listed in alphabetical order. The first column gives the name of the language and/or
compiler, the second shows the source of the compiler. A key reference that describes
the compiler is given in the third column. The last column gives instructions for
obtaining the compiler by FTP or email.

To make the best possible use of each of the compilers, compilation and runtime
options have been selected that should give fast execution. We have consistently
tried to optimise for execution speed. In particular no debugging information, run
time checks or profiling code have been generated. Where a '-O' option or higher
optimisation setting could be used to generate faster code, we have done so. The
precise option settings that were used for each compiler are shown in columns 2
and 3 of Table 2. The fourth column shows what type of garbage collection is used,
and the last column indicates whether single or double floating-point precision was
used. Where alternatives were available, we have chosen single-precision, since this
should yield better performance.

4 Application

The Pseudoknot program is derived from a 'real-world' molecular biology applica-
tion (Feeley et al, 1994). In the following sections the program is described briefly
from the point of view of its functional structure and its main operational char-
acteristics. The level of detail provided should be sufficient to understand the later
sections that describe the optimisations and performance analyses of the program.
For more detail on the biological aspects of the program, the reader is referred to
Feeley et al (1994).

4.1 Functional behaviour

The Pseudoknot program computes the three-dimensional structure of part of a
nucleic acid molecule from its primary structure (i.e. the nucleotide sequence) and
a set of constraints on the three-dimensional structure. The program exhaustively
searches a discrete space of shapes and returns the set of shapes that respect the
constraints.

More formally, the problem is to find all possible assignments of the variables
xi, . . . , xn (n = 23 here) that satisfy the structural constraints. Each variable represents
the 3D position, orientation, and conformation (i.e. the internal structure) of a
nucleotide in the nucleic acid molecule. Collectively they represent the 3D structure

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 631

of the molecule. There are four types of nucleotides (A, C, G, and U), which contain
from 30 to 34 atoms each. To reduce the search space, the domains of the variables
are discretised to a small finite set (i.e. x, e £>,). These domains are dependent
on the lower numbered variables (i.e. D, is a function of xi,...,x,_i) to take into
account the restricted ways in which nucleotides attach relatively to one another.
The constraints specify a maximal distance between specific atoms of the molecule.

The heart of the program is a backtracking search. For each possible assignment
of xi, all possible assignments of X2 are explored, and so on until all variables
are assigned a value. A satisfactory set of assignments is a solution. As the search
deepens, the constraints are checked to prune branches of the search tree that do
not lead to a solution. If a constraint is violated, the search backtracks to explore
the next possible assignment of the current variable. When a leaf is reached, the
current set of assignments is added to the list of solutions. For the benchmark, there
are 50 possible solutions.

The computation of the domains is a geometric problem which involves compu-
tations on 3D transformation matrices and points (3D vectors). Notable functions
include tf o_combine (multiplication of 3D matrices), tf o_align (creation of a 3D
matrix from three 3D vectors), and tf o_apply (multiplication of a 3D matrix by a
3D vector). Another important part of the program is the conformation database of
nucleotides. This database contains the relative position of all atoms in all possible
conformations of the four nucleotides (a total of 46 conformations). This data is
used to align nucleotides with one another and to compute the absolute position of
atoms in the molecule.

The program used in the present benchmarking effort is slightly different from
the original (Feeley et al., 1994). The latter only computed the number of solutions
found during the search. However, in practice, it is the location of each atom in
the solutions that is of real interest to a biologist, since the solutions typically need
to be screened manually by visualising them consecutively. The program was thus
modified to compute the location of each atom in the structures that are found. In
order to minimise I/O overhead, a single value is printed: the distance from the
origin to the farthest atom in any solution (this requires that the absolute position
of each atom be computed).

4.2 Operational behaviour

The Pseudoknot program is heavily oriented towards floating-point computations,
and floating-point calculations should thus form a significant portion of the total
execution time. For the C version (executed on machine 10 c.f. Table 5.7), this
percentage was found to be at least 25%.

We also studied the extent to which the execution of the functional versions is
dominated by floating-point calculations, using state-of-the-art compilers for the
eager SML and the lazy FAST versions of the program. The time profile obtained
for the MLWorks compiler for SML suggests that slightly over 50% of the run
time is consumed by three functions, tfo_combine, tfo_align and tfo_apply,
which do little more than floating-point arithmetic and trigonometric functions.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

632 P. H. Hartel et al.

Table 4. Breakdown of the 'real' work involved in the Pseudoknot problem as counted by
the FAST system. The floating-point operations occurring in the trigonometric functions
and the square root are not counted separately.

Square root and
Floating-point operations trigonometric functions

x 3,567,672
+ 2,798,571 r 69,600
>, <, < 129,656 arctan 40,184

330,058 cos 40,184
/ 40,184 sin 40,184

Total 6,866,141 total 190,152

This means that half the time, little more than the floating-point capability of this
implementation is being tested, and some of that functionality is actually provided
by an operating system library.

Statistics from the lazy FAST compiler show that with lazy evaluation the most
optimised version of the program does about 7 million floating-point operations,
excluding those performed by the 190 thousand trigonometric and square root
function calls. A detailed breakdown of these statistics is shown in Table 4.1. Overall,
the program makes about 1.5 million function calls and claims about 15 Mbytes of
space (the maximum live data is about 30 Kbytes).

5 Translations, annotations and optimisations

The Pseudoknot program was hand-translated from either the Scheme or the C
version to the various other languages that were benchmarked. All versions were
hand-tuned to achieve the best possible performance for each compiler. The following
set of guidelines were used to make the comparison as fair as possible:

1. Algorithmic changes are forbidden but slight modifications to the code to allow
better use of a particular feature of the language or programming system are
allowed.

2. Only small changes to the data structures are permitted (e.g. a tuple may be
turned into an array or a list).

3. Annotations are permitted, for example strictness annotations, or annotations
for inlining and specialisation of code.

4. All changes and annotations should be documented.
5. Anyone should be able to repeat the experiments. So all sources and measure-

ment procedures should be made public (by ftp somewhere).
6. All programs must produce the same output (the number 33.7976 to 6 signifi-

cant figures).

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 633

The optimisations and annotations made to obtain best performance with each of
the compilers are discussed in the following subsections. We will make frequent
reference to particular parts of the program text. As the program is relatively large
it would be difficult to reproduce every version in full here. The reader is there-
fore invited to consult the archive that contains most of the versions of the pro-
gram at ftp.fwi.uva.nl, file /pub/computer-systems/functional/packages/
pseudoknot.tar.Z.

The guidelines above were designed on the basis of the experience gained at the
Dagstuhl workshop with a small subset of the present set of implementations. We
tried to make the guidelines as clear and concise as possible, yet they were open
to different interpretations. The problems we had were aggravated by the use of
different terminology, particularly when one term means different things to people
from different backgrounds. During the process of interpreting and integrating the
benchmarking results in the paper we have made every effort to eradicate the
differences that we found. There may be some remaining differences that we are
unaware of.

In addition to these unintentional differences, there are intentional differences:
some experimenters spent more time and effort improving their version of Pseudo-
knot than others. These efforts are documented, but not quantified, in the sections
that follow.

5.7 Sources used in the translations

The translation of the Pseudoknot program into so many different languages repre-
sented a significant amount of work. Fortunately this work could be shared amongst
a large number of researchers. The basic translations were not particularly difficult or
interesting, so we will just trace the history of the various versions. The optimisations
that were applied will then be discussed in some detail in later sections.

The Scheme version of the Pseudoknot benchmark was used as the basis for the
Bigloo, Gambit, CMU Common Lisp, and Miranda versions.

The Miranda source was used to create the Clean, FAST, Erlang, FCMC, Gofer,
Haskell, Stoffel and SML sources. The Haskell source was subsequently used to
create the ID, RUFL and LML sources, and together with the SML source to
create the Opal source. The SML version was subsequently used as the basis for the
translation to Caml, Epic and Facile.

The Sisal version is the only functional code to have been derived from the C
version of the program.

Some typed languages (RUFL, Opal) require explicit type signatures to be pro-
vided for all top level functions. For other languages (SML/NJ) it was found to be
helpful to add type signatures to improve the readability of the program.

All but two of the sources were translated by hand: the Stoffel source was
translated by the FAST compiler from the Miranda source and the Epic source was
produced by a translator from (a subset of) SML to Epic, which was written in
Epic.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

634 P. H. Hartel et al.

5.2 Splitting the source

Most of the compilers that were used have difficulty compiling the Pseudoknot
program. In particular the C compilers, and also most of the compilers that generate
C, take a long time to compile the program. For example, GCC 2.5.8 requires more
than 900 seconds (on machine 10, see Table 5.7) to compile the program with the
-O optimisation enabled. The bundled SUN CC compiler takes over 300 seconds
(with the same option setting and on the same machine).

The reason it takes so long to compile Pseudoknot is because the program
contains four large functions (which in C comprise 574, 552, 585 and 541 lines of
code, respectively) which collectively build the conformation database of nucleotides.
These functions contain mostly floating-point constants. If the bodies of these four
functions are removed, leaving 1073 lines of C code, the C compilation time is
reduced to approximately 13 seconds, for both SUN CC and GCC. Since the
functional versions of the program have the same structure as the C version, the
functional compilers are faced with the same difficulty.

In a number of languages that support separate compilation (e.g. Haskell, LML
and C), the program has been split into six separate modules. Each global data
structure is placed in its own module which is then imported by each initialisation
module. The main program imports all of these modules. Splitting the source reduced
the compilation times by about 8% for GCC and 3% for SUN CC. As the main
problem is the presence of large numbers of floating-point constants in the source,
this is all we could hope for.

The NHC compiler is designed specifically to compile large programs in a modest
amount of space. There are two versions of this compiler: NHC(HBC), which
is the NHC compiler when compiled by the Chalmers Haskell compiler HBC;
and NHC(NHC), which is a bootstrapped version. The monolithic source of the
Pseudoknot program could be compiled using less than 8 MB heap space by
NHC(NHC), whereas NHC(HBC) requires 30 MB heap space. HBC itself could
not compile the monolithic source in 80 MB heap space, even when a single-space
garbage collector was used.

A number of the functional compilers that compile to C (e.g. Opal and FAST)
generated such large or so many C procedures that some C compilers had trouble
compiling the generated code. For example, the C code generated by Epic-C consists
of many functions occupying 50000 lines of code. It is generated in 3.5 minutes,
but had to be split by hand in order for the gcc compiler to compile it successfully
(taking 2.5 hours; both times on machine 10, c.f. Table 5.7).

As a result of the Pseudoknot experience, the Opal compiler has been modified
to cope better with extremely large functions such as those forming the nucleotide
database.

One way to dramatically reduce C compilation time at the expense of increased
run time is to represent each vector of floating-point constants in the conformation
database as a single large string. This string is then converted into the appropriate
numeric form at run time. For the Bigloo compiler, which uses this technique to

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 635

successfully reduce compilation time, the run time penalty amounted to 30% of the
total execution time.

5.3 Purity

To allow a fair comparison of the quality of code generation for pure functions,
none of the functional versions of Pseudoknot exploit side-effects where these are
available in the source language.

5.4 Typing

Most of the languages are statically typed, in which case the compilers can use this
type information to help generate better code. Some of the compilers for dynamically
typed languages can also exploit static type information when this is provided.

For example, the Erlang version of Pseudoknot used guards to give some limited
type information, as in the following function definition where XI, etc., are typed as
floating-point numbers.

> pt_sub({Xl,Yl,Zl>,-CX2)Y2,Z2})
> when f loat(Xl) , f loat(Yl) , f loat(Zl) ,
> float(X2),float(Y2),float(Z2) -> {X1-X2.Y1-Y2.Z1-Z2}.

Similarly, for Common Lisp, type declarations were added to all floating-point
arithmetic operations and to all local variables that hold floating-point numbers.
This was unnecessary for the Scheme version, which already had calls to floating-
point specific arithmetic functions.

5.5 Functions

Functional abstraction and application are the central notions of functional pro-
gramming. Each of the various systems implements these notions in a different way.
This, in turn, affects the translation and optimisation of the Pseudoknot program.

There is considerable variety in the treatment of function arguments. Firstly,
some languages use curried arguments; some use uncurried arguments; and some
make it relatively cheap to simulate uncurried arguments through the use of tuples
when the normal argument passing mechanism is curried. Secondly, higher-order
languages allow functions to be passed as arguments to other functions; whereas
the first-order languages restrict this capability. Finally, even though most languages
support pattern-matching, some do not allow 'as-patterns', which make it possible
to refer to a pattern as a whole, as well as to its constituent parts.

There are several other issues that affect the cost of function calls, such as
whether function bodies can be expanded 'in-line', and whether recursive calls can
be transformed into tail recursion or loops. These issues will now be discussed
in relation to the Pseudoknot program, with the effects that they have on the
performance where these are significant.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

636 P. H. Hartel et al.

5.5.1 Curried arguments

The SML/NJ source of the Pseudoknot program is written in a curried style. In
SML/NJ version 1.07, this proved to have a relatively small effect on performance
(less than 5% improvement compared with an uncurried style). For the older version
of the SML/NJ compiler used for the Facile system, however (version 0.93), some
of the standard compiler optimisations appear to be more effective on the uncurried
than on the curried version of the program. In this case the difference was still less
than 10%.

5.5.2 Higher-order functions

The Pseudoknot program occasionally passes functions as arguments to other func-
tions. This is obviously not supported by the three first order languages Sisal,
Erlang and Epic. The Sisal code was therefore derived from the C program, where
this problem had already been solved. Erlang took the alternative approach of
eliminating higher-order calls using an explicit application function p_apply. For
example, reference is called by:

> p_apply(reference,Argl,Arg2,Arg3) -> reference(Argl,Arg2,Arg3).

where reference is a constant (it is a static function name). In Epic a similar
mechanism was used.

Higher-order functions are generally expensive to implement so many compilers
will make attempts to reduce how often such functions are used. In most cases higher-
order functions simply pass the name of a statically known function to some other
function. These cases can be optimised by specialising the higher order function.
Many compilers will specialise automatically, in some cases this has been achieved
manually. For example for Yale Haskell the functions atom_pos and search were
inlined to avoid a higher order function call.

5.5.3 Patterns

Some functions in the Pseudoknot program first destruct and then reconstruct a
data item. In CeML, Haskell, LML and Clean as-patterns have been used to avoid
this. As an example, consider the following Haskell fragment:

> atom_pos atom v@(Var i t n) = absolute_pos v (atom n)

Here the rebuilding of the constructor (Var i t n) is avoided by hanging on to the
structure as a whole via the variable v. The Epic compiler automatically recognises
patterns that occur both on the left and the right hand side of a definition; such
patterns are never rebuilt.

This optimisation has not been applied universally because as-patterns are not
available in some languages (e.g. Miranda). In FAST, a similar effect has been
achieved using an auxiliary function:

> atom_pos atom v = absolute_pos v (atom (get_nuc v))

> get_nuc (Var i t n) = n

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 637

The benefits of avoiding rebuilding a data structure do not always outweigh the
disadvantage of the extra function call, so this change was not applied to the other
languages.

Neither of the two intermediate languages support pattern matching. To ac-
cess components of data structures FCMC uses access functions; Stoffel uses case
expressions.

5.5.4 Mining

Functional programs normally contain many small functions, and the Pseudoknot
program is no exception. Each function call carries some overhead, so it may be
advantageous to inline functions, by expanding the function body at the places where
the function is used. Small functions and functions that are only called from one site
are normally good candidates for inlining. Many compilers will automatically inline
functions on the basis of such heuristics, and some compilers (e.g. Opal, Chalmers
Haskell, Glasgow Haskell) are even capable of inlining functions across module
boundaries.

For Clean, FAST, Trafola and Yale Haskell many small functions (in particular
the floating-point operator definitions) and constants were inlined explicitly.

5.5.5 Tail recursion and loops

Tail recursive functions can be compiled into loops, but some languages offer loop
constructs to allow the programmer to express repetitive behaviour directly. In ID
and Sisal the recursive function get_var is implemented using a loop construct. In
Epic, this function coincides with a built-in polymorphic association table lookup,
which was used instead. In ID the backtracking search function search has also
been changed to use a loop instead of recursion.

5.6 Data structures

The original functional versions of the Pseudoknot program use lists and algebraic
data types as data structures. The preferred implementation of the data structures
is language and compiler dependent. We will describe experiments where lists are
replaced by arrays, and where algebraic data types are replaced by records, tuples
or lists.

For the lazy languages strictness annotations on selected components of data
structures and/or function arguments also give significant performance benefits.

5.6.1 Avoiding lists

The benchmark program computes 50 solutions to the Pseudoknot constraint satis-
faction problem. Each solution consists of 23 variable bindings, that is one for each
of the 23 nucleotides involved. This creates a total of 50 x 23 = 1150 records of
atoms for which the distance from the origin to the furthest atom must be computed.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

638 P. H. Hartel et al.

These 1150 records each contain between 30 and 34 atoms, depending on the type
of the nucleotide (33 for type A, 31 for type C, 34 for type G and 30 for type
U). The sizes of these records of atoms are determined statically so they are ideal
candidates for being replaced by arrays. The advantage of using an array instead of
a list of atoms is the amortised cost of allocating/reclaiming all atoms at once. A
list of atoms is traversed linearly from the beginning to the end, so the unit access
cost of the array does not give an extra advantage in this case. This change from
lists to arrays has been implemented in Caml, ID, and Scheme.

In the Sisal code, the problem described above does not arise: instead of building
the 1150 records, a double loop traverses the 50 x 23 records. A further loop
computes the maximum distance to the origin. Consequently, no intermediate lists
or arrays are created.

The local function generate within p_03' was replaced by an ID array compre-
hension; in Sisal a loop construct was used.

5.6.2 Avoiding algebraic data types

Some of the algebraic data type constructors in the Pseudoknot program are rather
large, with up to 34 components. This leads to distinctly unreadable code when
pattern matching on arguments of such types and it may also cause inefficiencies.

For Sisal all algebraic data types were replaced by arrays, since Sisal compilers
are specifically optimised towards the efficient handling of arrays.

For SML/NJ the 12 component coordinate transformation matrix TF0 was
changed to an array representation. This was found not to make a significant
difference.

For the Caml Gallium compiler, some of the algebraic data types have been con-
verted into records to guide the data representation heuristics; this transformation
makes no difference for the other Caml compilers, Caml light and Camloo.

Trafola, Epic and RUFL implement algebraic data types as linked lists of cells,
which implies a significant performance penalty for the large constructors used by
Pseudoknot.

5.6.3 Strictness annotations

The Pseudoknot program does not benefit in any way from lazy evaluation because
all computations contained in the program are mandatory. It is thus feasible to
annotate the data structures (i.e. lists, algebraic data types and tuples) in the
program as strict. Those implementations which allowed strictness annotations only
had to annotate the components of algebraic data types as strict to remove the bulk
of the lazy evaluations. The Gofer, Miranda, NHC, RUFL and Stoffel compilers do
not permit strictness annotations, but a variety of strictness annotations were tried
with the other compilers.

For Yale, Chalmers Haskell and the two LML compilers, all algebraic data types
were annotated as strict; for FCMC the components of Pt and TF0 were annotated
as strict; for Clean, the components of Pt, TF0 and the integer component of

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 639

Var were annotated as strict; for FAST all components of these three data types
were annotated as strict. For Yale Haskell the first argument of get_var and the
arguments of make_relative_nuc were also forced to be strict. This is permissible
since the only cases where these arguments are not used give rise to errors, and are
thus equivalent to demanding the value of the arguments.

Depending on the compiler, strictness annotations caused the Pseudoknot execu-
tion times to be reduced by 50%-75%.

5.6.4 Unboxing

The Pseudoknot program performs about 7 million floating-point operations. Unless
special precautions are taken, the resulting floating-point numbers will be stored as
individual objects in the heap (a 'boxed' representation). Representing these values as
unboxed objects that can be held directly in registers, on the stack, or even as literal
components of boxed structures such as lists, has a major impact on performance:
not only does it reduce the space requirements of the program, but the execution
time is also reduced since less garbage collection is required if less space is allocated.

There are a number of approaches that can be used to avoid maintaining boxed
objects: Caml Gallium, SML/NJ, Bigloo and Gambit provide an analysis that will
automatically unbox certain objects; CMU common Lisp and Glasgow Haskell
provide facilities to explicitly indicate where unboxed objects can safely be used.
Our experience with each of these techniques will now be described in some detail,
as it provides useful insight into the properties of this relatively new technology.

The Caml Gallium compiler employs a representation analysis (Leroy, 1992), which
automatically exploits an unboxed representation for double-precision floating-point
numbers when these are used monomorphically. Since the Pseudoknot benchmark
does not use polymorphism, all floating-point numbers are unboxed. This is the
main reason why the Gallium compiler generates faster code than most of the other
compilers.

The latest version of the SML/NJ compiler (version 1.07) also supports automatic
unboxing through a representation analysis (Shao, 1994). However, unlike Caml
Gallium, it does not directly exploit special load and store instructions to transfer
floating-point numbers to and from the FPU. Changing this should improve the
overall execution time for this compiler.

In an attempt to find better performance, a large number of variations were tried
with the SML/NJ compiler. The execution time was surprisingly stable under these
changes, and in fact no change made any significant difference, either good or bad,
to the execution speed. In the end, the original transcription of the Scheme program,
with a type signature for the main function was used for the measurements. A similar
result was found for the MLWorks compiler, where a few optimisations were tried,
and found to give only a marginal improvement (of 2%). The MLWorks timings
apply to essentially the same source as the SML/NJ timings. MLWorks generates
slightly faster code than SML/NJ for this program.

The SML/NJ implementation of the Pseudoknot program actually performs better
on the DECstation 5000 than on the SPARC. On the DECstation 5000 it runs at

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

640 P. H. Hartel et al.

55% of the speed of C, whereas on the SPARC it runs at only 36% of the speed
of C. We suspect that this is mainly due to memory effects. Previous studies (Diwan
et al., 1994) have shown that the intensive heap allocation which is characteristic
of the SML/NJ implementation interacts badly with memory subsystems that use
a write-no-allocate cache policy, as is the case of the SPARC; in contrast, the use
of a write-allocate policy coupled with what amounts to sub-block placement on
the DECstation (the cache block size is four bytes) supports such intensive heap
allocation extremely well.

The Bigloo compiler uses a two-step representation analysis. The first step is
a control flow analysis that identifies monomorphic parts of the program. The
second step improves the representation of those objects that are only used in
these monomorphic parts. Unfortunately, it is not possible to avoid boxing entirely
because some data structures are used heterogeneously in the Scheme source (e.g.
floating-point numbers, booleans, and vectors are contained in the same vector).
Even so, of the 7 million floating-point values that are created by the Pseudoknot
program, only 700 thousand become boxed.

The Gambit compiler uses two simple 'local' methods for reducing the number
of floating-point numbers that are boxed. Firstly, intermediate results for multiple
argument arithmetic operators, such as when more than two numbers are added, are
never boxed. This means that only 5.3 million of the 7 million floating-point results
need to be considered for boxing. Secondly, Gambit uses a lazy boxing strategy,
whereby floating-point results bound to local variables are kept in an unboxed form
and only boxed when they are stored in a data structure, passed as a function
argument, or when they are live at a branch (i.e. at a function call or return). Of
the 5.3 million floating-point results that might need to be boxed, only 1.4 million
actually become boxed. This optimisation decreases the run time by roughly 30%.

In the Epic implementation specialised functions were defined for the two most
common floating point expressions (two- and three-dimensional vector inproduct),
leading to a 41% reduction of function calls and (un)boxing. Although the new
functions were trivially written by hand, their utilisation was added automatically
by the addition of two rewrite rules to the - otherwise unaltered - SML-to-Epic
translator. This is possible because Epic, unlike many functional languages, does
not distinguish constructor symbols from defined function symbols. Consequently,
laws (in the sense of Miranda (Thompson, 1986) in Epic all functions are defined
by laws) can be introduced, which map specific patterns such as xi * X2 + x$ * xj,
to semantically equivalent, but more efficient patterns which use a newly introduced
function (i.e. inprod2{x\,X2,X3,x4)).

In the Common Lisp version of the program, the Pt and TFO data types were
implemented as vectors specialised to hold untagged single-float objects, rather
than as general vectors of tagged objects. This is equivalent to unboxing those
floating-point numbers.

The Glasgow Haskell compiler has provisions for explicitly manipulating unboxed
objects, using the type system to differentiate boxed and unboxed values (Peyton
Jones and Launchbury, 1991). The process of engineering the Pseudoknot code to
reduce the number of boxed floating-point numbers is a good illustration of how

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 641

Table 5. Time and allocation profile of Pseudoknot from the Glasgow Haskell system
by function, as a percentage of total time /heap allocations.

Cost centre

tfo_combine
tfo apply
p_o3'
tfo_align
dgf_base
get_var
absolute_pos

(a) Original ;

Cost centre

tfo_apply
tfo_combine
search

%time

18.0
15.9
8.3
6.2
5.9
5.9
4.7

profile (by

%time

11.1
10.5
9.9

pseudoknot_constraint 8.2
get_var
var_most_distant
tfo_align

7.0
6.4
5.8

%alloc

4.7
0.0

25.5
1.9

21.6
0.0

24.1

time)

%alloc

0.0
23.2
2.3
8.7
0.0
8.7
4.9

Cost centre

get_var
tfo combine
P_o3'
pseudoknot_constraint
search
tfo_align
pt.phi
tfo_apply

(c) Maximum map

Cost centre

tfo_combine
p_o3'
pseudoknot_constraint
mk_var
tfo_align
tfo_inv_ortho

%time

11.1
10.5

8.5
7.8
7.8
5.2
5.2
5.2

%alloc

0.0
26.5
13.0
9.9
2.6
5.6
0.0
0.0

(by time)

%time

9.7
7.7
4.6
2.0

10.2
2.6

%alloc

26.5
13.0
9.9
6.6
5.6
5.6

(b) Strict types (by time) (d) Maximum map (by allocation)

the Glasgow profiling tools can be used. We therefore present this aspect of the
software engineering process in detail below.

The version of Pseudoknot which was used for Chalmers Haskell ran in 10.2
seconds when compiled with the Glasgow Haskell Compiler for machine 16, c.f.
Table 5.7. The raw time profiling information from this program (see Table 5a) shows
that a few functions account for a significant percentage of the time used, and over
80% of the total space usage. Three of the top four functions by time (tf o_combine,
tf o_apply and tf o_align) manipulate TFOs and Pts, and the remainder are heavy
users of the Var structure. Since these functions can be safely made strict, they are
prime candidates to be unboxed, as was also done with the Common Lisp compiler.

By unboxing these data structures using a simple editor script and changing the
pattern match in the definition of var_most_distant_atom so that it is strict rather
than lazy, an improvement of roughly a factor of 3 is obtained. This is similar to the
improvements which are possible by simply annotating the relevant data structures
to make them strict as with the Chalmers Haskell compiler. However, further
unboxing optimisations are possible if the three uses of the function composition
maximum . map are replaced by a new, specialised function maximum_map as shown
below. This function maps a function whose result is a floating-point number over

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

642 P. H. Hand et al.

a list of arguments, and selects the maximum result. It is not possible to map a
function directly over a list of unboxed values using the normal Prelude map function,
because unboxed values cannot be passed to polymorphic functions.

> maximum_map :: (a->Float#) -> [a]->Float#
> maximum_map f (h: t) =
> max f t (f h)
> where max f (x:xs) m = max f xs (let fx = f x in

> if fx 'gtFloat#' m then fx else m)

> max f [] m = m

> max :: (a->Float#) -> [a] -> Float# -> Float#

This optimisation is suggested indirectly by the time profile (Table 5b) which shows
that the top function by time is tf o_apply. This is called through absolute_pos
within most_distant_atom. Merging the three nested function calls that collectively
produce the maximum value of a function applied to a list of arguments allows
the compiler to determine that the current maximum value can always be held in a
register (an extreme form of deforestation (Wadler, 1990)). When this transformation
is applied to the Haskell source, the total execution time is reduced to 1.8 seconds
user time (still on machine 16). An automatic generalised version of this hand
optimisation, the foldr/build transformation (Gill and Peyton Jones, 1994), has now
been incorporated into the Glasgow Haskell compiler.

The final time profile (Table 5c) shows get .var and p_o3' jointly using 20% of the
Haskell execution time with tfo_combine, tfo_align and tfo_apply accounting
for a further 20%. (The minor differences in percentage time for tfo_combine in
Tables 5c and 5d are probably explained by sampling error over such a short run).
While the first two functions could be optimised to use a non-list data structure, it is
not easy to optimise the latter functions any further. The total execution time is now
close to that for C, with a large fraction of the total remaining time being spent in
the Unix mathematical library. Since the allocation profile (Table 5d) suggests that
there are no space gains which can be obtained easily, it was decided not to attempt
further optimisations. The overall time and space results for Glasgow Haskell are
summarised in Table 5.6.4. In each case, the heap usage reported is the total number
of bytes that were allocated, with the maximum live data residency after a major
garbage collection shown in parentheses.

The foldr/build style deforestation of maximum . map has also been applied to the
ID, SML and Scheme sources. For SML/NJ this transformation, and other, similar
deforestation transformations made no measurable improvement (though several led
to minor slowdowns).

5.6.5 Single threading

In a purely functional program, a data structure cannot normally be modified once it
has been created. However, if the compiler can detect that a data structure is modified
by only one operation and that this operation executes after all other operations
on the data structure (or can be so delayed), then the compiler may generate

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 643

Table 6. Time and heap usage of three Pseudoknot variants compiled for
machine 16 by the Glasgow Haskell compiler.

Version Seconds Mbytes (residency)

Original
Strict Types
Maximum Map

10.0 -i
3.5 H
1.8 H

h 0.2
h 0.3
h 0.1

36.8
10.1
7.6

(55K)
(53K)
(46K)

code to modify the data structure in place. The Sisal compiler includes special
optimisations (preallocation (Ranelletti, 1987) and copy elimination (Gopinath and
Hennesy, 1989)) that make safe destructive updates of data structures possible. In
order to exploit this, the Sisal version of the Pseudoknot program was written so
as to expose the single threaded use of some important data structures. An example
is given below, where the array stack is single threaded, so that the new versions
stackl and stack2 occupy the same storage as the original stack:
C (Pseudo code) Sisal revised

> l e t
add new element to stack > stackl := array_addh(stack,element)
increment stack counter
call pseudoknot_domains > stack2 := pseudoknot_domains(stackl, . . .)

> in
decrement stack counter > array_remh(stack2)

> end l e t
In principle, this code is identical to the C code. The Sisal compiler realises

that there is only a single consumer of each stack. It tags the data structure as
mutable and generates code to perform all updates in place. Consequently, the Sisal
code maintains a single stack structure similar to the C code, eliminating excessive
memory usage and copy operations. As in the C code, when a solution is found,
a copy of the stack is made to preserve it. The Sisal code runs in approximately
85 KB of memory and achieves execution speeds comparable to the C code.

5.7 Floating-point precision

When comparing our performance results, there are several reasons why floating-
point precision must be taken into account. Firstly, it is easier to generate fast
code if single-precision floating-point numbers are used, since these can be unboxed
more easily. Secondly, both memory consumption and garbage collection time are
reduced, because single-precision floating-point numbers can be represented more
compactly. Thirdly, single-precision floating-point arithmetic operations are often
significantly faster than the corresponding double-precision operations.

Traditionally, functional languages and their implementations have tended to
concentrate on symbolic applications. Floating-point performance has therefore

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

644 P. H. Hartel et al.

Table 7. Details of the SUN machines and C compilers used to compile the Pseudoknot
program. The type of the machine is followed by the size of the memory (in MB),
the size of the cache (as a total or as instruction /data + secondary cache size), the
operating system name and version, and the type of processor used. The last column
gives the C compiler/version that has been used on the machine.

No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

SUN machine

4/50
4/75
4/330
4/630MP
4/670
4/670MP
4/670
4/670
4/670MP
4/690
4/690MP
4/690
SPARC 10/30
SPARC 10/41
SPARC 10/41
SPARC 10/41
SPARC 10/41
SPARCStat. 5
SPARCStat. 20

Mem.

32 M
64 M
96 M
64 M
64 M
64 M
64 M
64 M
64 M
64 M
64 M
64 M
32 M
64 M
96 M
96 M

128 M
64 M

128 M

Cache

64 K
64 K
128 K
64 K
64 K
64 K
64 K
64 K
1 M
64 K
64 K
1 M
1 M
1 M
1 M
20K/32K+1M
20K/32K+1M
16K/8K
16K/20K+1M

Op. system Processor

SunOS 4.1.3. standard
SunOS 4.1.3. standard
SunOS 4.1.1. standard
SunOS 4.1.2 SUNW
SunOS 4.1.3. standard
SunOS 4.1.3 TMS390Z55
SunOS 4.1.3. TI Supersparc
SunOS 4.1.2. Cypress CY605
SunOS 4.1.3. SUNW, system 600
SunOS 4.
SunOS 4.
SunOS 4.
SunOS 4.
SunOS 4.
SunOS 4.
SunOS 4.

.2. standard
1.3 ROSS 40MHz Super
.3. standard

L.3. TMS390Z55
.3. standard
.3. standard

L.3. TMS390Z50
Solaris 2.3 standard
SunOS 4.1.3 standard
SunOS 4.1.3 Supersparc

C compile

gcc 2.5.8
gcc 2.5.8
gcc 2.5.4
gcc 2.4
gcc 2.5.7
gcc 2.5.7
gcc 2.5.7
gcc 2.4.5
gcc 2.5.8
gcc 2.5.8
cc
gcc 2.5.8
gcc 2.5.8
gcc 2.5.7
gcc 2.5.8
gcc 2.5.7
gcc 2.5.8
gcc 2.6.0
gcc 2.5.8

been largely ignored. One notable exception is Sisal, which is intended more as
a special-purpose language for scientific computations than as a general-purpose
language.

Since single-precision gives sufficient accuracy for the Pseudoknot program on our
benchmark machine, and since single-precision operations are faster than double-
precision operations on this architecture, compilers that can exploit single-precision
arithmetic are therefore at some advantage. The advantage is limited in practice by
factors such as the dynamic instruction mix of the code that is executed: for example,
for the GNU C version of Pseudoknot overall performance is improved by only 12%
when single-precision floating-point is used; for the Trafola interpreter, however,
performance was improved by 16%; and for the Opal compiler, performance was
improved by a factor of 2.

6 Results

Comparative time measurements are best done using a single platform. However,
many of the compilers are experimental and in constant flux. They are therefore

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 645

difficult to install at another site in a consistent and working state. Therefore we
have decided to collect the compiled binaries of the Pseudoknot program, so as to
be able to execute all binaries on the same platform. The measured execution times
of the programs are thus directly comparable and accurate.

The compile times are not directly comparable. To make a reasonable comparison
possible, a relative measure has been defined. This is somewhat inaccurate, but we
think that this is quite acceptable, since for compile times it is more the order of
magnitude that counts than precise values. The relative unit 'pseudoknot' relates
compilation time to the execution time of the C version of the Pseudoknot program,
where both are measured on the same platform. The more obvious alternative of
comparing to the C compilation times of Pseudoknot was rejected because not all
architectures that are at stake here use the same C compiler (see Table 5.7). The
Pseudoknot is computed as:

, . , 1000 x C execution time
relative speed = —: :compilation time

To 'compile at 1000 knots' thus means to take the same amount of time to compile
as it takes the C version of Pseudoknot to execute.

With so many compilers under scrutiny, it is not surprising that a large number
of machines are involved in the different compilations. The most important charac-
teristics of the SUN machines may be found in Table 5.7. The table is ordered by
the type of the machine.

To measure short times with a reasonable degree of accuracy, the times reported
are an average of either 10 or 100 repeated runs. The resulting system and user
times divided by 10 (100) are reported in the Tables 8 and 9.

6.1 Compile time

Table 8 shows the results of compiling the programs. The first column of the table
shows the name of the compiler (c.f. Table 2). The second column 'route' indicates
whether the compiler produces native code ('N'), code for a special interpreter
(T), or compiles to native code through a portable C back-end ('C'), Lisp ('L'), or
Scheme ('S'), or through a combination of these back-ends. The third column gives
a reference to the particular machine used for compilation (c.f. Table 5.7). The next
three columns give the user+system time and the space required to compile the
Pseudoknot program. Unless noted otherwise, the space is the largest amount of
space required by the compiler, as obtained from ps -v under the heading SIZE.
The column marked 'C-runtimes' gives the user+system time required to execute
the C version of the Pseudoknot program on the same machine as the one used for
compilation. The last two columns 'pseudoknots' show the relative performance of
the compiler with respect to the C-runtimes.

It is possible to distinguish broad groups within the compilers. The faster compilers
are, unsurprisingly, those that compile to an intermediate code for a byte-code or
similar interpreter, and which therefore perform few, if any, optimisations. NHC

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

646 P. H. Hartel et al.

Table 8. Results giving the time (user+system time in seconds) and space (in Mbytes)
required for compilation of the Pseudoknot program. The 'pseudoknots' give the relative
speed with respect to the execution (not compilation) of the C version.

Times Space C-runtimes Pseudoknots
Compiler Route Mach. user + sys Mb A/H" user + sys user + sys

Compiled via another high level language: C, L(isp) or S(cheme)

Bigloo
Camloo
Sisal
Gambit
Yale
FCMC
FAST
Opal
Glasgow
Erlang BEAM
CeML
ID
Epic-C
Stoffel

C
S+C

C
C
L
C
C
C
C
C
C
C
C
C

5
5
9
15
11
4
10
2
16
1
5
15
10
17

56
98

112
167
610
332
450

1301
564

>
>
>
>
>

.5 +
+
+
+
+
+
+
+
+

1 Hour
1 Hour
1 Hour

2 Hours
2 Hours

6.4
17.6
13.3
4.2

186
11
40
19
30

7.5
4.6
2.4
8.7

14
13

100
15
47
8

35
64
12.4
25

A
A
A
A
H
A
A
A
A
A
A
A
A
A

3.0
3.0
1.4
1.7
4.7
2.7
2.7
3.0
1.3
3.3
3.0
2.8
2.7
1.3

0.1
0.1
0.1
0.1
0.1
0.3
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

53
31
12
10
8
8
6
2
2

16
6
8

24
1

27
2
5
3

Clean
RUFL
CMUCL
Caml Gallium
SML/NJ
LML Chalmers
LML(OP-TIM)
Facile
MLWorks
Chalmers

Gofer
RUFLI
Miranda
Caml Light
Trafola
Epic
NHC(HBC)
NHC(NHC)

SUN CC -O
GNU GCC -O

N
N
N
N
N
N
N
N
N
N

N
N

8
10
11
7
19
18
18
14
3
13

10
10
10
6
10
10
13
13

10
10

Compiled into native code

30 +
41.6 +

118 +
45.9 +
40.3 +
78.7 +
85.5 +

123 +
394 +
181 +

10
8

25
2.0
2.3

24.0
13.5
2.5

19
45

Interpreted

6.7 +
9.1 +

12.5 +
29.7 +
31.4 +

114 +
122 +
560 +

0.7
1.7
0.8
1.1

11.5
1.6
7.3
5.0

C compilers

325 +
910 +

26
97

9
3

14
3.8

35
14.2
13.6
11.3
14.4
50

3
1

13
2.3
6
8.4

30
8.7

8
21

A
A
H
A
A
A
A
A
R
A

A
A
A
A
A
A
A
A

A
A

2.7 H
2.7 -\
4.7 H
1.4 -\
0.9 -\
1.3 -\
1.3 -\
1.7 H
4.9 -\
1.3 H

2.7 H
2.7 -\
2.7 A
2.7 H
2.7 H
2.7 H
1.6 H
1.6 -\

2.7 H
2.7 H

- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.

- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.

h 0.
h 0.

90 +
I 65 +
I 40 +
I 31 +
I 22 +
I 17 +
I 15 +
I 14 +
I 12 +
I 7 +

I 403 +
I 297 +
I 216 +
I 91 +
I 86 +
I 24 +
I 13 +
I 3 +

1 8 +
1 3 +

10
12
4

50
43

4
7

40
5
2

143
59

125
91

9
62
14
20

4
1

A = Mbytes allocated space; H = Mbytes heap size; R = Mbytes maximum resident set
size.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 647

is an outlier, perhaps because unlike the other compilers in this group, it is a
bootstrapping compiler.

With the exception of Bigloo and Camloo, which are faster than many native
compilers, implementations that generate C or Lisp are the slowest compilers. Not
only does it take extra time to produce and parse the C, but C compilers have
particular difficulty compiling code that contains large numbers of floating-point
constants. The worst case example is the Stoffel compiler. It takes 216 seconds to
generate the C code and more than two hours to compile the C (on machine 17 c.f.
Table 5.7). Most of this time is spent compiling the function that initialises the
data structures containing floating-point numbers. As the bottom two rows of the
table show, C compilers also have particular difficulty compiling the hand written C
version of the Pseudoknot program due to this phenomenon.

The faster compilers also generally allocate less space. This may be because the
slower compilers generally apply more sophisticated (and therefore space-intensive)
optimisations.

6.2 Execution time

All programs have been executed a number of times (on machine 10, c.f. Table 5.7)
with different heap sizes to optimise for speed. The results reported in Table 9 show
the best execution time, inclusive of garbage collection time. The first column of
the table shows the name of the compiler/interpreter (c.f. Table 2). The second
column 'route' duplicates the 'route' column from Table 2. The third column states
whether floating-point numbers are single- or double-precision. Columns 4 and 5
give the user and system time required to execute the Pseudoknot program. The
last column shows the space required, which unless noted otherwise, represents the
largest amount of space required by the program, as obtained from ps -v under
the heading SIZE.

The product moment correlation coefficient calculated from all compilation speeds
(as reported in pseudoknots in Table 8) and execution times (as reported in seconds
in Table 9) is 0.70. This shows that there is a strong correlation between compilation
time and execution speed: the longer it takes to compile, the faster the execution will
be. Only the Clean implementation offers both fast compilation and fast execution.
The set of Caml compilers offers a particularly interesting spectrum: Caml Gallium
is a slow compiler which produces fast code; Caml Light compiles quickly, but is
relatively slow; and Camloo is intermediate between the two.

The Epic-C code generator was designed to allow selected, individual functions
to be compiled, thus providing an almost continuous spectrum of possibilities from
fully interpreted to fully compiled code. The present facilities for compiling code
provide little improvement over interpreted code at the cost of huge compilation
times. The reason is that the C code faithfully mimics each interpreter step without
optimisations, such as the use of local variables or loops. This results in C functions
which behave identical to their interpreted counterparts. As much as 90% of the
speedup of Epic-C with respect to epic was achieved by compiling six of the 170
functions occurring in the Epic version of Pseudoknot.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

648 P. H. Hartel et al.

Table 9. The execution times (user+system time in seconds) and space (MB) of
Pseudoknot as measured on platform 10.

Compiler

Compiled

Glasgow
Opal
CeML
FAST
Yale
Epic-C

Sisal
Gambit
Camloo
ID
Bigloo
TCMC
Stoffel
Erlang BEAM

CMU CL
LML(OP-TIM)
Chalmers
LML Chalmers

Caml Gallium
Clean
MLWorks
SML/NJ
Facile
RUFL

Epic
Trafola
NHC
Gofer

Caml Light
RUFLI
Miranda

GNU GCC

GNU GCC

Route Float

via another high 1

C
C
C
C
L
C

C
C

s+c
c
c
c
c
c

single
single
single
single
single
single

double
double
double
double
double
double
double
double

Compiled into

N
N
N
N

N
N
N
N
N
N

I
I
I
I

I
I
I

C

C

single
single
single
single

double
double
double
double
double
double

Time(s)
user +

evel language

3.9 +
4.7 +
8.7 +

11.0 +
11.9 +
43.9 +

3.7 +
6.2 +

11.2 +
11.6 +
11.7 +
14.7 +
26.6 +
31.8 +

native code

5.8 +
7.7 +

12.1 +
12.5 +

5.1 +
5.1 +
6.3 +
6.9 +

15.5 +
87 +

Interpreted

single
single
single
single

double
double
double

56 +
124 +
176 +
370 +

52 +
529 +

1156 +

C compilers

single

double

2.4 +

2.7 +

sys.

(Cor

0.2
0.5
0.6
0.5
7.2
2.9

0.2
0.7
1.5
2.9
2.4
1.1
2.1
4.5

3.3
0.3
1.0
0.4

0.5
0.8
0.1
1.2
4.3
2.8

2.8
6.3
5.7

12.0

7.4
13.0
34.0

0.1

0.1

Space
Mb i

Lisp)

1
O.8
2
1

14
23

O.7
4.4
4.9

14
4.9

22
5.6

11

14
1.2
3
2.1

0.3
2.5
0.3
2.6
7.9
3

21
10.7

2.6
3

0.3
4

13

0.3

0.3

\/H°

A
A
A
A
H
A

A
A
A
A
A
A
A
A

H
A
A
A

A
A
A
A
A
A

A
A
A
A

A
A
A

A

A

A = Mbytes allocated space; H = Mbytes heap size.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 649

For the compiled systems there is a very rough relationship between execution
speed and heap usage: faster implementations use less heap. There does not, however,
seem to be any correlation between non-strictness and heap usage.

6.2.1 Summary

Overall, the (eager) Sisal compiler achieved the best performance. The next best
implementation is the (lazy) Glasgow Haskell compiler for a heavily optimised
version of the program. The next group of compilers are for Lisp, Scheme and SML,
which generally yield very similar performance. An outlier is the Bigloo optimising
Scheme compiler, whose performance is more comparable to most of the non-strict
implementations (Chalmers, FAST, ID, Stoffel, Yale, and Glasgow Haskell on less
optimised code), which form the next obvious group.

Unsurprisingly, perhaps, the interpretive systems yield the worst performance.
The interpreters for Caml Light, Epic, NHC, and Trafola (which compile to an
intermediate byte-code, which is then interpreted) are, however, significantly faster
than their conventional brethren, Gofer, RUFLI and Miranda (which interpret a
representation that is closer to the program than a byte-code). Interpreters for strict
languages (Caml Light, Epic) do seem on the whole to be faster than interpreters
for non-strict languages (NHC, Gofer, RUFLI, Miranda).

6.3 Analysis of performance results

Apart from the issues already discussed, such as floating-point precision, many
language and implementation design issues clearly affect performance. This section
attempts to isolate the most important of those issues.

63.1 Higher-orderness

It is commonly believed that support for higher-order functions imposes some perfor-
mance penalty, and the fact that the fastest language system (Sisal) is first-order may
therefore be significant. Unfortunately, the other first-order implementations (Erlang
and Epic) yield relatively poor performance. Sisal is also the only monomorphic
language studied, and polymorphism is known to exact some performance penalty,
so results here must be inconclusive.

6.3.2 Non-strictness

As the Glasgow Haskell compiler shows, if the compiler can exploit strictness
at the right points, the presence of lazy evaluation need not be a hindrance to
high performance. This implementation is actually faster than most of the strict
implementations.

Generally, however, non-strict compilers do not achieve this level of performance,
typically offering only around 75% of the performance of eager implementations
such as SML/NJ or Gambit, or 50% of the performance of CMU Common Lisp,

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

650 P. H. Hartel et al.

and only after the exploitation of strictness through unboxing and similar optimi-
sations. Without these features, on the basis of the Glasgow results, performance
can be estimated as just under a quarter of the typical performance of a compiler
for an eager language. For these compilers and this application, support for laziness
therefore costs directly a factor of 3, with a further 50% probably attributable to
the use of different implementation techniques for predefined functions, etc., which
are needed to allow for the possibility of laziness.

The difference between the Yale Haskell and Common Lisp results is due partly
to use of tagged versus untagged arrays, and partly to the overhead of lazy lists
in Haskell. These were the only significant differences between the hand-written
Common Lisp code and the Lisp code produced by the Yale Haskell compiler. The
Haskell code generator could be extended to use untagged arrays for homogeneous
floating-point tuple types as well, but this has not yet been implemented.

The LML(OP-TIM) compiler generates faster code than the corresponding
Chalmers LML compiler because if a case alternative unpacks strict arguments,
LML(OP-TIM) takes into account that the unpacked values are evaluated (in Weak
Head Normal Form).

6.3.3 Concurrency/parallelism support

Several of the compilers benchmarked here include support for concurrency or
parallelism. In some cases (e.g. Facile, Glasgow Haskell), this support does not affect
the normal sequential execution time. In other cases (e.g. ID, Gambit and Erlang
BEAM) it is not possible to entirely eliminate the overhead of parallelism.

The low performance recorded by the Erlang BEAM compiler reflects the fact
that Erlang is a programming language primarily intended for designing robust, con-
current real-time systems. Firstly, a low priority has been placed on floating-point
performance. Secondly, to support concurrent execution requires the implementa-
tion of a scheduling mechanism and a notion of time. Together, these add some
appreciable overhead to the Erlang BEAM execution.

6.3.4 Native code generation

It is interesting that several of the compilers that generate fast code compile through
C rather than being native compilers. Clearly, it is possible to compile efficient
code without generating assembler directly. Space usage for these compilers is also
generally low: the compilers have clearly optimised both for time and space.

6.3.5 Language design

Of the languages studied, Sisal is the only one that was specifically designed for
'numeric' rather than 'symbolic' computations, and clearly the design works well for
this application. Floating-point performance has traditionally taken second-place in
functional language implementations, so we may hope that these results spur other
compiler writers to attempt to duplicate the Sisal results.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 651

7 Conclusions

Over 25 compilers for both lazy and strict functional languages have been bench-
marked using a single floating-point intensive program. The results given here
compare compilation time and execution time for each of the compilers against
the same program implemented in C. Compilation time is measured in terms of
'pseudoknots', which are defined in terms of the execution time of the benchmark
program. The execution times of all compiled programs are reported in seconds as
measured on a single machine.

Benchmarking a single program can lead to results which cannot easily be gener-
alised. Special care has been taken to make the comparison as fair as possible: the
Pseudoknot program is not an essentially lazy program; the different implementa-
tions use the same algorithm; all of the binaries were timed on one and the same
machine.

The effort expended by individual teams translating the original Scheme program,
and subsequently optimising their performance varied considerably. This is the result
of a deliberate choice on the part of the teams carrying out the experiments. Firstly,
this variability gives some compilers an advantage (but not an unfair advantage).
Secondly, the aim of the Pseudoknot benchmark is specifically to get the best possible
performance from each of the implementations (using the guidelines discussed in
section 5). There is a wide variability in the kind and level of optimisation offered
by each compiler. The programming efforts required to make these optimisations
effective will thus be as varied as the offerings of the compilers themselves. This
should be kept in mind when interpreting our results.

Turning to the benchmark itself, we observe that the C version of the program
spends 25% of its time in the C library trigonometric and square root routines. This
represents the core of the application: the remaining work is 'overhead' that should
be minimised by a good implementation. While this pattern may not generally hold
for scientific applications, the program is still useful as a benchmark, since the
'real' work it does (the trigonometric and floating-point calculations) is so clearly
identifiable. Not all the benchmark implementations are capable of realising this,
but some implementations do extremely well.

Because the benchmark is so floating-point intensive, implementations that used
an unboxed floating-point representation had a significant advantage over those that
did not. Implementations that were capable of exploiting single-precision (32-bit)
floating-point have some additional advantage, though this is significant only for
the faster implementations, where a greater proportion of execution time is spent
on floating-point operations.

To achieve good performance from lazy implementations, it proved necessary
to apply strictness annotations to certain commonly-used data structures. When
appropriate strictness annotations are used, there is no clear distinction between
the runtime performance of eager and lazy implementations, and in some cases the
performance approaches that of C.

Inserting these strictness annotations correctly can be a fine art, as demonstrated
by the efforts of the Glasgow team. While the behaviour of the Pseudoknot program

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

652 P. H. Hartel et al.

is not sensitive to incorrectly placed strictness annotations, in general lazy functional
programs are not so well behaved in this respect, and considerable effort might be
expended introducing annotations without changing the termination properties of a
program. To make lazy functional languages more useful than they are now, clearly
more effort should go into providing users with simple to use and effective means
of analysing and improving the performance of their programs.

The benchmark proved to stress compilers more than expected: the compilation
times for most compiled implementations (including the two C compilers) was
surprisingly high. Generating C as intermediate code, however, does not necessarily
make the compiler slow, as demonstrated by the performance of the Bigloo and
Camloo compilers. However, generating fast C does often lead to high compilation
times.

The Pseudoknot benchmark represents a collaborative effort of an unprecedented
scale in the functional programming community. This has had a positive influence
on the work that is taking place in that community. Firstly, researchers learn
of the techniques applied by their co-authors in a more direct way than via the
literature. Secondly, researchers are more strongly motivated to apply new techniques
because of the competitive element. Thirdly, using a common benchmark always
points at weaknesses in systems, that were either known and put aside for later, or
uncovered by the benchmarking effort. The Pseudoknot benchmark has been the
trigger to improve a number of implementations. Finally, researchers working on
implementations of the different language families are brought closer together, so
that the functional programming community as a whole may emerge stronger.

Acknowledgements

The comments of the anonymous referees were very useful.
Mark Jones produced the Gofer version of the Pseudoknot program.
Will Partain and Jim Mattson performed many of the experiments reported here

for the Glasgow Haskell compiler. The work at Glasgow is supported by an SOED
Research Fellowship from the Royal Society of Edinburgh, and by the EPSRC
AQUA and PARADE grants.

The work at Nijmegen is supported by STW (Stichting voor de Technische
Wetenschappen, The Netherlands).

Jon Mountjoy performed some of the experiments for the RUFL implementation.
The ID version of the Pseudoknot program was the result of a group effort. Credit

goes to Jamey Hicks, R. Paul Johnson, Shail Aditya, Yonald Chery and Andy Shaw.
Zhong Shao made several important changes to the SML/NJ implementation,

and Andrew Appel and David MacQueen provided general support in the use of
this system. David Tarditi performed several of the SML/NJ experiments.

John T. Feo and Scott Denton of Lawrence Livermore National Laboratory
collaborated on the Sisal version of the Pseudoknot program.

The FCMC version of Pseudoknot was the result of team work with Genesio
Cruz Neto and Ricardo Lima. The FCMC group is supported by CNPq. (Brazilian
Government) grants 40.9110/88-4, 46.0782/89.4, and 80.4520/88-7.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 653

Marc Feeley was supported in part by a grant from the Natural Sciences and
Engineering Research Council of Canada.

References

Alt, M., Fecht, C , Ferdinand, C. and Wilhelm, R. (1993) The Trafola-S subsystem. In
B. Hoffmann and B. Krieg-Briickner, editors, Program development by specification and
transformation, LNCS 680, pp. 539-576. Berlin: Springer-Verlag.

Appel, A. W. (1992) Compiling with Continuations. Cambridge: CUP.

Armstrong, J., Williams, M. and Virding, R. (1993) Concurrent programming in Erlang.
Englewood Cliffs, NJ: Prentice Hall.

Augustsson, L. (1993) HBC user's manual. Programming Methodology Group Distributed
with the HBC compiler, Department of Computer Science, Chalmers University of Tech-
nology, Sweden.

Augustsson, L. and Johnsson, T. (1989) The Chalmers Lazy-ML compiler. The Computer
Journal, 32(2),127-141.

Augustsson, L. and Johnsson, T. (1990) Lazy ML user's manual. Programming methodol-
ogy group report, Department of Computer Science, Chalmers University of Technology,
Sweden.

Beemster, M. (1992) The lazy functional intermediate language Stoffel. Technical report
CS-92-16, Department of Computer Systems, University of Amsterdam.

Beemster, M. (1993) Optimizing transformations for a lazy functional language. In W.-J.
Withagen, editor, 7th Computer systems, pp. 17-40, Eindhoven University of Technology,
The Netherlands.

Bergstra, J. A., Heering, J. and Klint, P. (1989) Algebraic Specification,. New York: ACM
Press (in co-operation with Addison-Wesley).

Cann, D. C. (1992a) The optimizing SISAL compiler: version 12.0. Manual UCRL-MA-
110080, Lawrence Livermore National Laboratory, Livermore, CA.

Cann, D. C. (1992b) Retire FORTRAN? a debate rekindled. Comm. ACM, 35(8), 81-89.

Chailloux, E. (1992) An efficient way of compiling ML to C. In P. Lee, editor, ACM SIGPLAN
Workshop on ML and its Applications, pp. 37-51, San Francisco, CA. (School of Computer
Science, Carnegie Mellon University, Technical report CMU-CS-93-105.)

Didrich, K., Fett, A., Gerke, C, Grieskamp, W. and Pepper, P. (1994) OPAL: Design and im-
plementation of an algebraic programming language. In J. Gutknecht, editor, Programming
Languages and System Architectures, LNCS 782, pp. 228-244. Berlin: Springer-Verlag.

Diwan, A., Tarditi, D. and Moss, E. (1994) Memory subsystem performance of programs
with copying garbage collection. In 21st Principles of Programming Languages, pp. 1-14,
Portland, OR. New York: ACM.

Feeley, M. and Miller, J. S. (1990) A parallel virtual machine for efficient Scheme compilation.
In Lisp and Functional Programming, pp. 119-130, Nice, France. New York: ACM.

Feeley, M., Turcotte, M. and Lapalme, G. (1994) Using Multilisp for solving constraint
satisfaction problems: an application to nucleic acid 3D structure determination. Lisp and
Symbolic Computation, 7(2/3), 231-246.

Giegerich, R. and Hughes, R. J. M. (1994) Functional programming in the real world.
Dagstuhl seminar report 89, IBFI GmbH, Schloss Dagstuhl, D-66687 Wadern, Germany.

Gill, A. J. and Peyton Jones, S. L. (1994) Cheap deforestation in practice: An optimiser for
Haskell. In Proc. IFIP, Vol. 1, pp. 581-586, Hamburg, Germany.

Gopinath, K. and Hennesy, J. L. (1989) Copy elimination in functional languages. In 16th
Principles of Programming Languages, pp. 303-314, Austin, TX. New York: ACM.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

654 P. H. Hartel et al.

The Yale Haskell Group (1994) The Yale Haskell Users Manual (version Y2.3b). Department
of Computer Science, Yale University (Distributed with the Yale Haskell compiler), July.

Halstead Jr., R. H. (1985) Multilisp: A language for concurrent symbolic computation. ACM
Trans, on Programming Languages and Systems, 7(4), 501-538.

Harlequin (1994) MHVorks draft documentation. Harlequin Ltd, Cambridge, UK.
Hartel, P. H., Glaser, H. W. and Wild, J. M. (1994) Compilation of functional languages using

flow graph analysis. Software—Practice and Experience, 24(2), 127-173.
Hartel, P. H. and Langendoen, K. G. (1992) Benchmarking implementations of lazy functional

languages. In 6th Functional Programming Languages and Computer Architecture, pp. 341—
349, Copenhagen, Denmark. New York: ACM.

Hausman, B. (1994) Turbo Erlang: Approaching the speed of C. In E. Tick and G. Succi,
editors, Implementations of Logic Programming Systems, pp. 119-135. Dordrecht: Kluwer.

Hudak, P., Peyton Jones, S. L. and Wadler, P. L. (editors). (1992) Report on the programming
language Haskell - a non-strict purely functional language, version 1.2. ACM SIGPLAN
Notices, 27(5), R1-R162, May.

Jones, M. P. (1994) The implementation of the Gofer functional programming system. Re-
search Report YALEU/DCS/RR-1030, Department of Computer Science, Yale University.

Kernighan, B. W and Ritchie, D. W. (1988) The C Programming Language - ANSI C.
Englewood Cliffs, NJ: Prentice Hall.

Leroy, X. (1992) Unboxed objects and polymorphic typing. In 19th Principles of Programming
Languages, pp. 177-188, Albuquerque, NM. New York: ACM.

Leroy, X. (1993) The Caml Light system, release 0.61. Software and documentation distributed
by anonymous FTP on f tp . inr ia . f r .

Lins, R. D. (1987) Categorical Multi-Combinators. In G. Kahn, editor, 3rd Functional
Programming Languages and Computer Architecture, LNCS 274, pp. 60-79, Portland, OR.
Berlin: Springer-Verlag.

Lins, R. D and Lira, B. O. (1993) FCMC: A novel way of implementing functional languages.
J. Programming Languages, 1(1), 19-39.

MacLachlan, R. A. (1992) CMU common Lisp user's manual. Technical report CMU-CS-
92-161, School of Computer Science, Carnegie Mellon University.

McGraw, J. R., Skedzielewski, S. K., Allan, S., Oldehoeft, R., Glauert, J. R. W., Kirkham,
C, Noyce, B. and Thomas, R. (1985) Sisal: Streams and iteration in a single assignment
language. Language reference manual version 1.2 M-146, Rev. 1, Lawrence Livermore
National Laboratory, Livermore, CA.

Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML. Cambridge, MA:
MIT Press.

Nikhil, R. S. (1991) ID version 90.1 reference manual. Computation Structures Group Memo
284-2, Laboratory for Computer Science, MIT, Cambridge, MA.

Peyton Jones, S. L., Hall, C. V., Hammond, K., Partain, W. D. and Wadler, P. L. (1993) The
Glasgow Haskell compiler: a technical overview. In Proc. Joint Framework for Information
Technology (JF1T) Technical Conference, pp. 249-257, Keele, UK. London: DTI/SERC.

Peyton Jones, S. L. and Launchbury, J. (1991) Unboxed values as first class citizens in a
non-strict functional language. In R. J. M. Hughes, editor, 5th Functional Programming
Languages and Computer Architecture, LNCS 523, pp. 636-666, Cambridge, MA. Berlin:
Springer-Verlag.

Plasmeijer, M. J. and van Eekelen, M. C. J. D. (1994) Concurrent Clean - version 1.0 -
Language Reference Manual, draft version. Department of Computer Science, University of
Nijmegen, The Netherlands.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

Pseudoknot benchmark 655

Ranelletti, J. E. (1987) Graph transformation algorithms for array memory memory optimiza-
tion in applicative languages. PhD thesis, Computer Science Deptartment, University of
California at Davis, CA.

Rees, J. A. and Clinger, W. (1991) Revised4 Report on the Algorithmic Language Scheme. MIT,
Cambridge, MA.

Rojemo, N. (1995) Highlights from nhc - a space-efficient Haskell compiler. In 6th Functional
Programming Languages and Computer Architecture, pp. 282—292, La Jolla, CA. New York:
ACM.

Schulte, W. and Grieskamp, W. (1991) Generating efficient portable code for a strict applicative
language. In J. Darlington and R. Dietrich, editors, Phoenix Seminar and Workshop on
Declarative Programming, pp. 239-252, Sasbachwalden, West Germany. Berlin: Springer-
Verlag.

Serrano, M. (1994) Bigloo user's manual. Technical report 0169, INRIA-Rocquencourt,
France.

Serrano, M. and Weis, P. (1994) 1 + 1 = 1: an optimizing Caml compiler. In ACM-
SIGPLAN Workshop on ML and its Applications, pp. 101—111. (Research report 2265,
INRIA Rocquencourt, France, June.)

Shao, Z. (1994) Compiling Standard ML for Efficient Execution on Modern Machines. PhD
thesis, Princeton Univ, Princeton, NJ.

Smetsers, S., Nocker, E. G. J. M. H., van Groningen, J. and Plasmeijer, M. J. (1991) Generating
efficient code for lazy functional languages. In R. J. M. Hughes, editor, 5th Functional
Programming Languages and Computer Architecture, LNCS 523, pp. 592-617, Cambridge,
MA. Berlin: Springer-Verlag.

Steele Jr., G. L. (1990) Common Lisp the Language. Bedford: Digital Press.
Thomas, S. (1993) The Pragmatics of Closure Reduction. PhD thesis, University of Kent at

Canterbury, UK.
Thomas, S. (1995) The OP-TIM - a better PG-TIM. Technical report NOTTCS-TR-95-7,

Department of Computer Science, University of Nottingham, UK.
Thompson, S. (1986) Laws in Miranda. In Lisp and Functional Programming, pp. 1-12,

Cambridge, MA. New York: ACM.
Thomsen, B., Leth, L., Prasad, S., Kuo, T.-S., Kramer, A., Knabe, F. and Giacalone, A. (1993)

Facile antigua release - programming guide. Technical report ECRC-93-20, European
Computer-Industry Research Centre, Munich, Germany. (The reference manual and license
agreement are available by anonymous ftp from ftp.ecrc.de.)

Turner, D. A. (1985) Miranda: A non-strict functional language with polymorphic types. In
J.-P. Jouannaud, editor, 2nd Functional Programming Languages and Computer Architecture,
LNCS 201, pp. 1-16, Nancy, France. Berlin: Springer-Verlag.

Turner, D. A. (1990) Miranda system manual. Research Software Ltd, 23 St Augustines Road,
Canterbury, Kent CT1 1XP, UK, April.

Wadler, P. L. (1990) Deforestation: transforming programs to eliminate trees. Theoretical
Computer Science, 73(2), 231-248.

Walters, H. R. and Kamperman, J. F. Th. (1995) Epic: Implementing language processors
by equational programs. Technical report in preparation, Centrum voor Wiskunde en
Informatica, Amsterdam, The Netherlands.

Weis, P. and Leroy, X. (1993) Le langage Caml. InterEditions.
Wentworth, E. P. (1991) Code generation for a lazy functional language. Technical report

91/19, Department of Computer Science, Rhodes University.
Wentworth, E. P. (1992) RUFL reference manual. Technical report 92/1, Department of

Computer Science, Rhodes University.

https://doi.org/10.1017/S0956796800001891 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001891

