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1. Introduction

Let Tm, Vmn be Hermitean linear operators on complex Hilbert spaces Hm,m = l ...k. A
nonzero column vector k = [XQ..Ak]

TeUk + 1 satisfying

WJk)xm=O*xmeHm, (1.1)

where

will be called an eigenvalue. This type of problem has been studied extensively by
Atkinson [2] from the viewpoint of determinantal operators on the tensor product
H® = <S>m = i Hm- We shall connect his work with more recent investigations [5,7] of
eigenvalue indices based on minimax principles for W(X) = (W1(i),..., Wk(X)), which can
be viewed as an operator on Hx = XJ, = x Hm.

We should perhaps point out that the distinction between the Tm and the Vmn reflects
the relative simplicity of the Vmn in certain differential equation problems, with
corresponding implications for finite dimensional (e.g. difference equation) approxim-
ations. Indeed Atkinson's results in ff® have their roots in multiple Fourier expansion
theorems for linked Sturm-Liouville problems, going back to Hilbert. Likewise the
indicial results in H" are developments of corresponding oscillation theorems dating
back to Klein and Bocher. Incidentally, an oscillation theory for linked difference
equations can be found in [1; Chapter 6].

From now on, we shall assume that

dm = dimHm (1.2)

is finite. We shall discuss (1.1) under certain "definiteness conditions" which have
received much recent attention. Our aim will be to relate the H® and Hx theories,
together with certain geometrical equivalents of these definiteness conditions [2; Chapter
9], [3]. In particular, we shall demonstrate equivalence of some of the definiteness
conditions with certain indicial properties of the eigenvalues X of (1.1).

The simplest case is that of right definiteness (RD) which requires
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n(xy]^mtnSk whenever each xm¥=0,
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284 P. BINDING

where x = (xl,...,xk) and vmn(x) = (xm, Vmnxm). 80 is clearly an H* construction, and we
label the corresponding definiteness condition AQ. The corresponding H® construction
involves the determinantal operator

A0: = ® d e t [ K , J 1 S l l l j l l g k , (1.3)

and AQ is easily seen to be equivalent to definiteness of Ao on decomposable tensors of
H®. The following fundamental result is due to Atkinson.

Theorem 1.1. [2; Theorem 7.8.2 and Section 8.6] AQ is equivalent to definiteness of
Ao on H®.

Remark. In [3] these conditions were labelled RDa and RDA, respectively. The
notation here is chosen for unification with other conditions. Also, since we wish to
discuss the logical status of Theorem 1.1, we shall retain the distinction between the two
forms of the condition.

Major results of the H® and H * theories under RD are as follows.

Theorem 1.2. [2; Theorem 7.6.2] If Ao is definite on H® then for each T=(Tu...,Tk)
the following property of (1.1) obtains:

(a*) there exists a complete orthonormal basis of H® consisting of decomposable
tensors x® = xl®...®xk where the xm are eigenvectors satisfying (1.1) with Xo¥=0, an&
H® is H® endowed with the inner product [_x,y~\0={x,|A0|y), where (,) is the Hilbert
space inner product and |A0| is the positive square root of AQ.

We remark that Atkinson's proofs (the only ones to date) of Theorem 1.1 depend on the
above result.

Theorem 1.3. [6; Theorem 2] AQ implies the following property of {11), for each T:

(Bo) for each i=(i1,...,ik) where the im are nonnegative integers, there exists an
eigenvalue X = X' satisfying (1.1) with Xo^0 and

pi,"(A) = O, m=l...k, (1.4)

where

denote the eigenvalues of Wm(X), repeated according to multiplicity.

We shall say that any k satisfying (1.1) and (1.4) has index i.
In Section 2, we shall show, roughly, that Bo is central to the RD theory, Bo for all T

being equivalent to AQ. We shall also show that Bo can be replaced by a "stable"
version b0+ where for each /, the X', normalised to A'0 = l, are unique and continuously
dependent on the Tm and Vmn. As a consequence we shall deduce a} from AQ using a
minimum of tensor product machinery. In doing so, we shall reprove Theorem 1.1 via
bs

0+, thereby shortening the existing proofs.
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As regards equivalence with AQ, we shall use the following result, which follows
directly from [4; Lemma 2.3(i) and Corollary 4.4].

Theorem 1.4. A£ is equivalent to the following condition on the Vmn:

(c0) 04RBfor each a = (al,...,ak)eUk such that |<rm| = l, m=l...fc.

Here Ra, which was labelled Va in [4], is defined by

R, = co U amRm, Rm = co {vm{xj:Q + xmeHm} (1.5)
m = l

where co denotes convex hull and

»m(xJ = (vm i(xm),..., vmt(xm)) e Uk.

We shall establish the converse of Theorem 1.3 by identifying T{a) and i(a) such that no
eigenvalue of index i(a) exists if 0 e Ra.

The remaining sections are devoted to further definiteness conditions which, in
general, involve both T and the Vmn. Atkinson [2; Chapters 7-10] has analysed (1.1)
under three such conditions, the second and third being equivalent, essentially because
of Theorem 1.1 [2; Theorem 7.8.2]. Consequences of the first condition [2; p. 117],
which we label A, will be studied in Section 3. We shall use analogues of Theorems 1.1
and 1.2 to prove an analogue of Theorem 1.3. As far as the author is aware, there are
no previous indicial results under condition A. The key changes from So are (i) Xo may
vanish, although some eigenvalue-independent linear combination pk will not do so (ii)
S0{x) may vanish, and even if fik = k0 (in which case we denote A by Ao) then S0(x) may
still be indefinite. We can circumnavigate (i) by a preliminary rotation of eigenvalue
axes in Uk + 1 so as to ensure Ao, at the cost of destroying the special status of T. As
regards (ii), we may attach signs to the eigenvalues either by sgn(50(x) as in [5] or by
<r = sgn(A0(50(x)), assuming Ao. These two methods differ in general, and it turns out that
a has certain advantages. In particular, Ao implies

(b0) for each signed index (i, a), an eigenvalue k = ki'-a) exists with A0^0.

This will be shown in Corollary 3.7, where we shall also deduce uniqueness and
continuous dependence on the data Tm and Vmn of each eigenvalue k = k{i'a), normalised
to|A0| = l.

In Section 4, we prove equivalence of Ao, b0 and a "stable" version BS
Q of £0. We also

give indicial equivalents for A, and for Atkinson's second condition A + where change (i)
above occurs, but (ii) does not. It turns out that one can retain the special status of I at
the indicial level, and that the difference between A and A+ reduces to the difference
between the methods described above for attaching signs to the eigenvalues. One
consequence of this analysis is a new set of equivalents for RD, in some ways more
useful than those of Section 2. Finally we discuss left definiteness which is a
combination of conditions on the cofactors of <50 and "definiteness" of T[3; p. 321], [8;
pp. 62-3]. We shall relate the cofactor condition to A+ for all "definite" T, and then
deduce indicial equivalents from the theory for A+.
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Remark. Equivalents of weaker conditions on the Ra (1.5), involving the "funda-
mental" index i = ( l , . . . , l ) for all T satisfying various definiteness conditions, can be
found for k = 2 in [7], and they remain valid in infinite dimensions.

2. Right definiteness

In the first part of this section, we discuss some indicial equivalents for RD, beginning
with a sufficiency property.

Lemma 2.1. 7/0eRff then there are T=T(a) and i = i{6) so that no k = k' exists as in
Bo, i.e. (1.1), A o #0 and (1.4) are incompatible.

Proof. If 0 e Rc then there exist nonnegative anm and nonzero xnm e Hm, such that

k k

m, n = 1 n = 1

in the notation of (1.5). Assuming / l o #0 and choosing T=T(a) so that each X0omTm is
negative definite, we deduce

X <*nm(xnm,(JmWm(k)xnJ= X «nmGm*otm(XnJ<0 (2.1)
m, n m, n

where we write

Now choose i=i{a) so that im = l if <rm = l and im = dm (1.2) if am= —\. If k = k' exists
as in £0 then (1.4) forces each amWm(k) to be nonnegative definite, and this contradicts
(2.1).

We shall improve Theorem 1.3 by means of the following general perturbation result,
which requires no definiteness conditions.

Lemma 2.2. The set of eigenvalues k' of index i depends upper semi-continuously on
the data Tm and Vmn.

Remark. We use the Euclidean Ck{k + l) topology for the data.

Proof. The quadratic forms tm and vmn depend continuously on the data. By the
minimax principle, the same goes for the eigenvalues pi,(k) (1.4) for each k. Thus the pi,
functions have closed graphs, and the conclusion is now immediate.

We are now ready for the first indicial equivalences. We write bs
0+ to mean existence,

uniqueness and continuous dependence on the data of each k\ normalised to k'0 = 1.

Theorem 2.3 The following are equivalent: (i) AQ, (ii) B0for all T, (iii) bs
0+for all T.
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Proof. Since (iii)=>(ii) is trivial, and Lemma 2.1 proves (ii)=>(i), it suffices to establish
(i)=>(iii). Evidently Ag is equivalent to |<50(u)| being positively bounded below over
||Mm|| = l, m = l...k, so continuity of 80 in the data implies that AQ persists under small
perturbations.

Let 7^,(£)->Tm as £->0, eeU, and similarly for Vmn(e). Now the proof of Theorem 1.3
actually gives uniqueness of eigenvalues of fixed index, normalised to A 0 =l . By
persistence of A$, there exist k'(e) for all suitably small £, with A'0(e) = l. Let k' be any
limit point of k'(e) as e—>0—necessarily A'o = 1. Lemma 2.2 then yields uniqueness of the
limit point k\ whence continuity of k'(e) at e = 0.

The remainder of this section is devoted to consequences for H® of the indicial
theory. The first step is to show that b%+ implies an Hx version of a^.

Theorem 2.4. / / bs
0+ holds then there exist xm=x'm satisfying (1.1) with k = k\ ko=i~

and such that detF'-^O if ij^j, where ViJ is the kxk matrix with (m,n)th entry
(V v xJ )

Proof. If k = k' corresponds to x"m then (1.1) yields

(WmWm, xi.) = 0 = (xi,, Wm(H)xfm)

whence
9 i i i ) = 0 (2.2)

so the conclusion is immediate if the k' are all distinct.
In the case of multiple eigenvalues, we follow Atkinson [2; Section 7.5] and perturb

Tm to Tm(e) so that (i) Tm(e)->Tm as e->0 and (ii) all the eigenvalues of (1.1) are distinct if
Tm is replaced by Tm(s). With x*m(e) as corresponding unit eigenvectors, we choose any
limit points as e->0 for the x^. By bs

0+, the x'm do satisfy (1.1) with k = k'. From the
perturbed version of (2.2) we have det V'\B) = 0 in an obvious notation, and we now let
£-•0.

Remark. Although Atkinson's arguments depend explicitly on definiteness of Ao on
H®, an inspection, together with the above use of indexed eigenvalues, shows that bs

0 +

in fact suffices.
We are now ready to draw the principal conclusions for H*. The following simple

observation will be used at various points in the sequel.

Remark 2.5. The number of indices / equals the dimension of H®.

Corollary 2.6. Theorem 1.1 holds.

Proof. Setting x1'® = x\ ® ... (g> x[, we deduce

(V®,Aox'"®) = 0 if iVy (2.3)
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from Theorems 2.3 and 2.4. The result now follows immediately from Remark 2.5 and
the expansion

—see [2; Lemma 7.8.1].

Corollary 2.7. A} implies a^.

Proof. By the previous result, we may assume definiteness of Ao, so H® is
constructible. Since the x1® may be scaled to unit norm in H® by |<50(x)| = l, the result
follows from (2.3) and Remark 2.5.

Remark. By utilising only [2; Lemma 7.8.1] for Corollary 2.6, we have shortened the
proof of [2; Theorem 7.8.2]. Similarly the proof of Corollary 2.7 is more direct than that
of [2; Theorem 7.6.2], and can be viewed as a generalisation of the procedure outlined
on [2; p. 135] for a special case.

3. Some consequences of Condition A

Atkinson's "Definiteness Condition I" [2; p. 117], which we label A here, is defined as
rank W(x) = k whenever each xm # 0 , where W(x) is the k x (k + 1) matrix with mth row

»>m(Xm) = [tm(xm)vml(xm) . .. Vmk{xJ]. (3.1)

Closely associated with this condition is the determinant

where ft = [/i0... nk~] e Uk + 1 . The analogous H® construction is

where W has mth row [TmVml... Vmk]. Evidently

and it is easily seen that A forces positivity of this expression for each nonzero xm, for
some ft which in general depends on the xm.

We start with a similar result from the H® theory, but where ft is fixed.

Theorem 3.1. [2; Theorem 10.4.1] A implies nonsingularity ofA(ft)for some ft.
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To make a closer parallel with Theorem 1.1, we use eo,...,ek to denote the coordinate
basis of Uk + 1, and we write An = A(en)> in agreement with (1.3). Condition Ao will mean
A and nonsingularity of Ao.

Corollary 3.2. A implies Ao after a nonsingular linear eigenvalue transformation.

Indeed it suffices to rotate axes in Uk + i so that p in Theorem 3.1 becomes e0.
Two remarks are pertinent here. First, definiteness of Ao (or A(n) in Theorem 3.1)

cannot be guaranteed, at least when k>2 [2; Section 9.9]. Second, the transformation of
Corollary 3.2 may destroy the special status of T. We shall return to these points in
Section 4.

Our present purposes will be served by the following analogue of Theorem 1.2, where
a0 means a$ except that the inner product (x,y)0=(x,A0y) may be indefinite, so the
eigenvector basis is only H® — orthogonal and not normalised to |(x®,x®)0j = 1.
(Actually such normalisation is possible under Ao, as will be seen later.) We write a if
the eigenvalues satisfy / I A ^ O where ft is eigenvalue-independent and the (perhaps
indefinite) inner product in H® is induced by A(/i) instead of Ao.

Theorem 3.3. Ao implies a0 and A implies a.

Proof. By [2; Theorem 10.6.1], an orthogonal basis exists as required, assuming A,
and it remains to prove that the eigenvalues A satisfy /iA#0. Now [2; Theorem 6.4.2]
gives

X 0 A n x 9 = A n A 0 x * , n = l...k (3.2)

whenever (1.1) is satisfied. Then Ao and A#0 force i o ^ 0 . This establishes the first
contention, and the second follows from

For the indicial theory in H®, it turns out to be convenient to normalise Ao (or pX) to
+ 1 , and to specify the sign via the following construction. We define

and we set

In particular, 5(fi, x) = pS(x).

Lemma 3.4. A is equivalent to S(x)^0 whenever each x m # 0 . If in addition AeR* + 1

satisfies W(x) A = 0 ^ A then A = <x£(x) for some aeU, and the sign of a depends only on A,
i t oi.e. not on x.
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Proof. The first contention follows from the definition of determinant rank. For the
second, A implies that the wm{xm) (3.1) span a fe-dimensional subspace S c R ' + 1. Thus
k e S1, and it suffices to prove d(x) e S1. Now

so indeed W(x)5(x) = 0.
For the final contention, we note that W{x)k = 0 if and only if

(xm,Wm(X)xm) = 0, m=l...k. (3.3)

The set of nonzero xm satisfying (3.3) for each fixed m is arcwise connected [2; Theorem
2.7.1]. Suppose k = ocS{x) = pd(y)^O — say 2 n / 0 . Continuity of d along an arc joining x
to y and the hypothesis a.p ̂  0 force the contradiction Xn = 0. Thus a/? > 0.

This enables us to attach the sign of a to any k e Uk + 1 satisfying the conditions of
Lemma 3.4. In particular, any eigenvalue satisfies those conditions under A (cf. [2; p.
174]) and we refer to (/, <r) as the signed index of k if (1.4) holds and cr = sgna. If Ao

holds then

for any xm satisfying (1.1), so since AOT^0 by Theorem 3.3, we have

a = sgn (2.0d0(x)). (3.4)

Similarly under A the sign is given by the formula

)] (3.5)

for fixed n whose existence is guaranteed by Theorem 3.1.
Our analogue of Theorem 1.3 for A will depend on the following uniqueness property.

Theorem 3.5. Assuming Ao [/I], at most one eigenvalue k of a given signed index,
normalised to |A0| = l[||iA| = l ] can exist.

Proof. We shall assume Ao—the proof under A is analogous. Suppose k and v both
have signed index (i,a) and |A0| = |v0| = l. Let Um denote the unit sphere of Hm and set
t/ = X£, = i Um. Let ym minimise wm(um)k = (um, Wm{k)um) over umeUm and orthogonal to
the first im — 1 eigenvectors of Wm(v)> i.e. those corresponding to pi(v),...,p^1~1(v).

The minimax principle yields

coordinatewise—cf. [6; p. 1057]. Writing kp for (l—P)k—Pv we deduce

£0 whenever O^jS^l . (3.6)

https://doi.org/10.1017/S0013091500022410 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022410


EQUIVALENTS OF CONDITIONS IN FINITE DIMENSIONS 291

Similarly one may find z e U to reverse these inequalities, so

W(z)kp^0 whenever 0 ^ j ? ^ l . (3.7)

Define S(j5) = Xk
m = l SJP) <= [/ by the condition

W(u) ;." = <). ' (3.8)

Convexity of the numerical ranges of Wm(kp), m=l...k, together with (3.6) and (3.7),
guarantee S(P)^0 for each J?e[0,1]. If Â  = 0 then ft and v are positively proportional,
and the normalisation | Ao | = | v01 = 1 forces A = v as required.

To complete the proof it will therefore suffice to contradict the assumption ^ ^ 0 for
each /?e[0,1]. By Lemma 3.4 and (3.8), we may attach a well defined sign a(fi) to each
kp. When /? = 0, we use the fact that k has signed index (i,a) to deduce o(0) = o, and
similarly we obtain <r(l)= — a from the sign of v. Define

If p'>0, then we may choose y?JT/3' and uJeS(PJ) (3.8) so that uJ
m->um as J-KSO.

Evidently A"J-a" and 5(MJ')->«(") as ;->oo. Thus if Af'#O then o(P') = sgn{Af'8Q(u)) =
sgn(XfJ50{uj)) = (x(Pi) for large;. It follows that a(P') = a, so j8' = l contradicts u( l)=-ff .
If 0 ^ / ? ' < l then we may use a sequence yJ|/?' satisfying <r(yJ).= — <r to derive the
contradiction a(P') = — a.

It is now straightforward to obtain our indicial consequence of A.

Corollary 3.6. Ao [A] implies the existence, uniqueness and continuous dependence on
the data Tm and Vmn of an eigenvalue kfor any signed index, normalised to |/lo| = l[|/<A| = l
for fixed fi\.

Proof. By Theorem 3.3 there are dim#® eigenvalues, repeated according to
multiplicity. Again we shall assume Ao, so each eigenvalue k may be normalised to
l0 = 1 in the cited result, and each possesses a signed index by virtue of Lemma 3.4.
Moreover the transformation A->— k changes the signed index (/,a) to (d+l—i,—a),
where the dm satisfy (1.2) and 1 = (1 ,1 , . . . , 1). Thus 2dimH® signed indices can be
derived this way from eigenvalues, and by Remark 2.5 there are precisely 2dimH®
signed indices. Existence and uniqueness now follow from Theorem 3.5.

Next we note from Lemma 3.4 that A is equivalent to ||£(«)|| being positively
bounded below on ||wm|| = l, m=l...k. This condition obviously persists under small
perturbations of the data, and the proof of continuous dependence of eigenvalues now
follows essentially as for Theorem 2.3.

4. Indicial equivalents

It turns out that the implication of Corollary 3.6 is reversible. Moreover the full force
of existence, uniqueness and continuous dependence of the A(I> a) in not needed, and we
shall explore some of the possibilities in the first part of this section. Let us begin by
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showing that existence alone, of eigenvalues A of all possible indices i (Theorem 1.3 ff.)
and admitting all possible signs of ko3o, is not enough for A.

Example 4.1. Let k=l, H 1 = C 2 , T,=0 and Vll(x\x2) = (x\ -x2) for x =
(x \x 2 )eC 2 .

Evidently w^l, l) = [00] so A fails. On the other hand let A = [10]r. Then Wl(i) = 0
so k is an eigenvalue for (1.1) with eigenspace C2. Moreover 80 = Vu so
(50(1,0)>0><50(0,1) and therefore all four possible combinations of index and sgnA0<50

are attained by k. Note that k does not have a sign in the sense of (3.4).
It is time to detail some of the indicial conditions we shall need. By 8 we mean

existence, for each /, of an eigenvalue k = k' of index /. If A0#0 can be ensured (for some
k for each i) then as before we write Bo. By Example 4.1, Bo does not imply A, although
Bo for all T implies AQ by Theorem 2.3.

Two strenthenings of B that do imply A are now considered.
Firstly, we assume that there exists / ieRl + 1 such that fiS(x) is non-zero for all

eigenvectors xm satisfying (1.1). Then, for the eigenvalue k = k', we can define a sign by
(3.5). Indeed, elementary manipulation yields

—cf. [2, (6.8.7)]. Since fid(x)j=0 and A'=/=0 it easily follows that pk'^0. We write b if, for
each /, at least one such signed eigenvalue k' exists. The sign may in principle depend
on k', although in practice Corollary 3.6 limits the possibilities.

Secondly, we write 8s if the set of eigenvalues X' of index i is nonempty and depends
continuously on the data Tm and Vmn. By Lemma 2.2, this is equivalent to lower semi-
continuity, i.e. if (1.1) is embedded in a perturbation family then each k' is a limit point
of perturbed eigenvalues of index i. The various strenthenings of B may be applied
simultaneously—e.g. b0 means that signed eigenvalues k' exist satisfying A'o#0, and bs

means that the set of such eigenvalues k' as in b is nonempty and depends continuously
on the data.

Our central result for A is as follows.

Theorem 4.2. A, b, 8s and bs are equivalent.

Proof. By Corollary 3.6 and the trivial implications bs=>b and bs=>Bs, we need prove
only (i) 8s =>A and (ii) b=>A.

Ad (i): we use the analogue of Theorem 1.4 for A. By [2; Theorem 9.8.1], if A fails
then there exist asUk with |<rm| = 1, nonnegative a.Km and nonzero xnmeHm such that

I anm<7mM>m(xnJ = 0, X « n m > ° . (4-1)
m, nm = 1 nm = 1

in the notation of (3.1). With i=i{a) as in the proof of Lemma 2.1, let us suppose that
an eigenvalue k exists with index i.

We claim that perturbations We
m of the Wm exist such that at least one of the
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amWe
m(v) fails to be nonnegative definite for all v satisfying

vTX>0. (4.2)

Note that (4.2) forces v to belong to an e-independent neighbourhood of k.
Let

T°m = Tm- eamkolm, V°mn = Vmn- eamknlm

where Im is the identity on Hm, and set

n = l

Then we have

K(Xm) = ^m(xm)-e(TmX\\xm\\2,

SO

I a.mam(xmm,W'm(v)xJ

by (4.1). For e > 0 and any v satisfying (4.2), this expression is negative. Thus a
neighbourhood of k exists containing no eigenvalue v of index /, and therefore 8s must
fail.

Ad (ii): again let an eigenvalue k exist with index i{a). By scaling and an axis rotation, if
necessary, we may assume k = e0, so omWm(k) = amTm has minimal eigenvalue zero. Let
R*be defined as for Ra (1.5) but for nonzero x m e ^ ( r j . The condition that k possesses
a sign forces <50 not to vanish on X 1̂ = 1 J / ' ( r m ) by (3.5), and by Theorem 1.4 this implies

On the other hand, suppose that A fails. It is convenient now to restrict the index set
of nm in (4.1) so that each aHm is positive. If

is positive for some m and nm in (4.1) then the sum of the other terms in (4.1) is
negative. This contradicts nonnegativity of the amtm, so it follows that each term tm(xnj
vanishes in (4.1). Thus each xnme^V(Tm), and so (4.1) forces the contradiction OeR*.

Corollary 4.3. Ao, b0, Bs
0 and bs

0 are equivalent.

Proof. By Corollary 3.6 and the previous result, it is enough to assume A and either
b0 or 8%, and then to deduce Ao. As in the proof of Corollary 3.6, A yields precisely
2dimH® eigenvalues k, normalised to ||iA| = l, with k as in Theorem 3.1. Thus either 8%
or b0 forces each eigenvalue p to satisfy k0 # 0.
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By [2; Theorem 6.7.2], the operators

A,,, n = 0...k (4.3)

commute. In particular, ^"(r0) = JV{&0) is invariant for each Tn. If ^V{T0) is nontrivial
then the Tn have a common eigenvector with eigenvalues vn, say, where vo = 0. By [2;
Theorem 6.8.1], v is an eigenvalue for (1.1) so vo = O gives a contradiction. It follows that

must be trivial.

We turn now to Atkinson's "Definiteness Condition II" [2; p. 121] which we label A +

here. This requires the existence of fteUk + 1 such that

S(fi,x)>0 for all nonzero xmeHm, m=l...k.

The corresponding analogue of Theorem 1.1 is [2; Theorem 7.8.2] that A+ implies
positive definiteness of A(p) on H®. When n=±e0, we write A$ for A+, in agreement
with Sections 1 and 2.

As we have seen, if b holds then so does A, and the eigenvalues k may be partitioned
into two subsets by the sign of either pk or (fik)(/id(x)), ft as in Theorem 3.1, xm as in
(1.1). Our specialisation b+ of b for A+ requires these methods of partitioning to
coincide. In other words, b+ means for each i the existence of at least one eigenvalue k
of index (/, +) such that /iA > 0, fi being independent of i. Suffix 0 continues to refer to
ft = e0, and superfix s to continuous dependence on the data.

Corollary 4.4. A + , b+ and b+s are equivalent.

Proof. By an axis rotation, we may assume fi = e0, and by Corollary 4.3, A£ implies
b0. As in the proof of Corollary 3.6, there is a (unique) eigenvalue k of signed index
(/, +). With xm as in (1.1), we have

sgn l0 = sgn (A0(50(*)) by AQ

= 1 by definition.

Thus b^ holds, and continuous dependence comes from Corollary 3.6.

Conversely, b^ implies A by Corollary 4.3. If k has index (i, +) and ko = 1 then

sgn 80{x) = sgn (ko5o (x)) = 1

so (50(x)>0. The proof of Corollary 2.6 then completes the argument.
We are now in a position to reexamine RD, and first we summarise some of its

equivalents. By b^ we mean b+ for p= ±e0 and fc^s is analogous.

Corollary 4.5. A$ is equivalent to (i) S0for all T (ii) bfor J = 0 (iii) b% for tiny fixed T
(iv) fc0

±s M all T.
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Proof. We note that AQ is equivalent to A when 7 = 0 . Thus the result follows from
Theorems 2.3 and 4.2 and Corollary 4.4.

Formally, (iv) includes the other consequences of RD, and even includes uniqueness of
the normalised eigenvalues (cf. 6Q+ m Theorem 2.3), by virtue of Corollary 3.6. Let us
compare (i), (ii) and (iii) as sufficient conditions for RD. (i) involves checking all
eigenvalues for all T (actually for the 2k choices T(a) in the proof of Lemma 2.1). (ii)
and (iii) both involve checking two scalars for all eigenvalues (actually for 2k indices
/(<T)) for a single choice of T). These checks are significantly easier than those in (i).

Remark 4.6. The formal transcription of Corollary 4.5 to A+ involves replacing Tby
a linear combination of the columns in W, so T loses its special status. This loss is not
explicit in Corollary 4.5, but is implicit because Ao plays a special role. In particular,
Ao = 0 changes the nature of (1.1) as far as T is concerned. One can circumnavigate this
by suppressing such eigenvalues, which correspond to JV(A0)—see (3.2). Then we may
scale Xo to unity, and write X for the "inhomogeneous" eigenvalue [Xt... Ak]r. We may also
rotate fi to say ek by what is now an affine transformation of X space—cf. [4; Lemma
5.1]. Then Hf may be constructed as H® under the inner product (x,y)k={x,Aky), and
the Fn (4.3) are Hermitian in Hf. Commutativity of the Tn implies that the eigenvectors
JC® corresponding to "inhomogeneous" eigenvalues span J/~{V0)

L = JV(A0)
X in Hf. The

sign of an eigenvalue X can be obtained from the sign of do(x), since

sgn 80(x) = sgn ( V o M ) = sgn (Ak<5t(x)).

Thus an indicial theory can be constructed for A+, via Corollary 4.4, preserving the
special status of T (and Ao and So). This extends a corresponding construction for the
left definite case—see [5] where a signed index was introduced for inhomogeneous
eigenvalues, based on <50.

We conclude with an indicial equivalent for left definiteness, which is the combination
[3; p. 321], [8; pp. 62-3] of:

(i) (definiteness of T) all Tm are nonnegative definite, with at least one positive
definite,

(ii) (cofactor condition) for some fieUk + l and for each m = 1. . . k, the determinant
<50(x), with with row replaced by [^i . . .^*], ' s positive for all nonzero xmeHm. It
is convenient to set the arbitrary n0 to zero.

Corollary 4.7. The cofactor condition is equivalent to b+ for all definite T, with the
proviso that fi in the definition ofb+ may be chosen with (io = 0 and independently of T.

Proof. A simple computation [3; equation (1.6)] shows that left definiteness implies
A+, with n as in the cofactor condition, so b+ for all definite T follows from Corollary
4.4. Conversely, b+ for all definite T implies A+ for all definite T by the same result,
with fi as in the definition of b + .

We claim that the cofactor condition holds for the same ft. Indeed if not then

I /vW*)=o
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for some / and some nonzero xmeHm, where S0ln(x) is the (/,n) cofactor of <50(x). Choose
Tt positive definite, with the other Tm = 0. Then

k

d(n,x) = ixo8o(x)+ £ tm(x)nn5Omn(x)
m, n = 1

= t,(x) £/vW*)^0
n = l

and this contradicts A+ for the given choice of fi.

Remark. Further equivalences involving uniqueness and continuous dependence of
the eigenvalues of index (/, +) follow from Corollaries 3.6 and 4.4.

Acknowledgement. Preliminary work on right and left definiteness for the case k — 2
was carried out in collaboration with Dr. L. Turyn, via the method of eigencurve
intersections.
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