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Abstract

A well-known theorem of Hardy and Littlewood gives a three-term asymptotic formula, counting
the lattice points inside an expanding, right triangle. In this paper a generalisation of their
theorem is presented. Also an analytic method is developed which enables one to interpret the
coefficients in the formula. These methods are combined to give a generalisation of a "height-
counting" formula of Gyory and Petho which itself was a generalisation of a theorem of Lang.

1991 Mathematics subject classification (Anter. Math. Soc.): 11 H 16, 11 M 41, 11 R 45.

In their paper [5] Hardy and Littlewood consider the lattice points inside a
right triangle, two of whose sides lie on the x-y axis , the third lying on
the line x + By — Q. Here Q is a real parameter and 6 > 0 is a real,
irrational number. They obtained a three-term asymptotic formula counting
the number of lattice points when Q is large. If TQ denotes this triangle
they showed that

(1) Q l 2

In fact their interest in this problem lay in the relationship between the
precise order of the error in (1) and the continued fraction expansion for 6 .
For example, they showed that if 6 has bounded convergents then the error
is

(2)

Several authors (see [2], [10], [11]) have considered generalisations of (1). In
[2] the author applied such a generalisation to the study of the values taken
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40 G. R. Everest [2]

by a general sum of 5-units. Since it appears that these techniques will find
other applications it seems worthwhile to present a general formulation of a
lattice point counting theorem which may be of independent interest.

For applications it is often desirable to have explicit formulations of the
coefficients of an asymptotic formula in terms of invariants of the underlying
data. The class-number formula is a classical example (see [7]). In Theorem
1 below the constant A is easy to interpret, being the volume of the region p.
In Section 2 an analytic method will be presented which in principle gives an
explicit interpretation of the constant B. In Section 3 a concrete example is
presented, one which has been applied to count solutions of the norm-form
equation (see [3]). It is a generalisation and refinement of a Theorem of
Gyroy and Petho [4], who in turn had generalised a Theorem of Lang in [9].

1. Lattice points

Suppose r > 1 is an integer and p is a bounded region of Rr defined by
a system of linear inequalities

(3) L.(JC) < 1, 1 < i < k

and

(4) <Pj(x)<0, l < j < l ,

where it is assumed that
(i) Lr, ... , Lk and tp{, ... , <pt have real coefficients,
(ii) Lx, ... , Lk have rank r,
(iii) for every 1 < i < k the coefficients of Lt(x) span a Q-vector space

of dimension greater than or equal to 2. Write

(5) M{x)= max {£,.(*)}.

For real Q > 0, define

(6) pQ = {x£Rr:M(x)<Q, <Pj(x)<0, ; = 1, . . . , / } .

THEOREM 1. There exist constants A and B with

(7) #(ZrnpQ) = AQr + BQr-l + o(Qr~l), as Q^oo.

Obviously Theorem 1 is a generalisation of the result of Hardy and Little-
wood because one may take

Ll(x) = xl+8x2, L2(x) = x{-dx2, <pl{x) = -xl, <p2(x) = -x2,

(the form L2(x) playing no role at all).
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(8)

, = Q

A simple case of (3) and (4) is show in Diagram (8) and this turns out to be
the induction step required later.
Here a , k R u { o o } (> 0) and 0 < 6 < 1 is irrational. Let WQ denote
the shaded region.

LEMMA 1. There are constants cox, co2 such that

COROLLARY. Suppose TQ is a triangle bounded by the linesaixi
= Q,

Provided ajbi £ Q for i = 1, 2, 3, there is a formula

(10) *{z2nrQ) = tl(f + t2Q + o{Q), as Q

The proof of the corollary is trivial; TQ is a union of differences of regions
like WQ.

Consider the lattice points x e Z2 together with the unit square Cx cen-
tered at x. Write CQ for the Cx with JC e Z2, with positive coordinates
which intersect the line x2 + 6xx = Q non-trivially. Write d{x) for the
distance from x to the line along the x2-axis, and d = (0 + l)/2 so that

(11) -d<d(x)<d for xeCQ.

LEMMA 2. The sequence d(x) for x e CQ is dense and uniformly dis-
tributed (u.d.) in the interval [-d, d] if and only if (9) holds.

PROOF. We will use freely the equivalent formulations of u.d. as given in
[1]. Suppose (9) holds. Replace Q by Q + e . The number of lattice points
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caught in the strip is 2Ae + o(Q). Thus the number with d(x) lying in the
region

-d<P< d{x) <a<d

is 2A(a - P)Q + o(Q), compared with 4AdQ + o(Q) in total. The ratio
tends to (a - 0)/2d as expected.

Conversely the area of WQ is clearly AQ2 . This can be written as

(12) AQ2 = £ l
x : CXCW Q

The area of CxnWQ is a continuous function on d(x) (piecewise polynomial
in fact) and since d.x is u.d. in \-d, d] it follows that the sum in (12) can
be replaced by an integral (see [1]) to yield

(13) AtQ + oiQ).

Counting those x with x € WQ n CQ is the same as counting 1 every time
d{x) > 0 . Again the u.d. of d(x) allows the sum to be replaced by an integral
and it follows that

(14) £ l=A2Q + o(Q).
xewgncQ

The counting techniques for those x with Cx intersecting either of the lines
x2 = ax{ or x2 — bx{ is similar. The only difference is that a and b are
not necessarily irrational. If one is rational then close to that line a sequence
of distances is obtained which is discrete in the interval. However the u.d.
property is still valid. Notice that in this case there could be lattice points
sitting on the lines x2 — axl, x2 = bxx.

To summarize, we have

(15)

(16)

xecQ

Putting (12), (15), (16) together yields

A4Q + AQ2= Y, l+A3Q +

xez2nwQ

and this is the form of (9).

LEMMA 3. The sequence d(x) is u.d. in the interval [-d, d].

PROOF. Treat first the case a = oo, b = 0. Consider the values of

(17) Q-x2-0x{
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in the range [-d, d], that is,

(18) 0< <2-0*i + d-x2<2d = 1 + 0.

Notice that 1 < Id < 2. Let {t} = t - [t], [t] denoting the integer part of
t. As xx runs from 1 to [Q/6] = N the expression {Q - 6x{ + d} is u.d. in
[0, 1] and there are N values. Asymptotically 6N lie in the range [0,6].
We are counting all values {Q - 6x{ +d} for 1 < xx < N together with the
values 1 + {Q - 6xx + d) for {Q - 6xi + d) < 6. This gives a sequence of
(1 + d)N points (asymptotically) in the interval [0, 1 + 6] and this sequence
is u.d.

For b > 0 it suffices to count as before but with xx running from 1 to
[cN] for some c > 0. Now the result for WQ is obtained as the difference
between two regions with b > 0, a = oo.

PROOF OF THEOREM 1. The faces Ft of pQ correspond to sections of
the hyperplanes Lt{x) = Q. Fix i and consider those x e Zr for which
Cxf) F{ / 0 . There must be a pair of coefficients in Lt(x) say ax and
a2 with 6 = al/a2 £ Q (by condition (iii)). Then Diagram (8) applies.
Here though Q = Q{x3, ..., xr) depends on the other variables. Let (as in
Lemma 3) d(x) denote the distance along the Jt2-axis. We claim that these
distances are dense and uniformly distributed within an interval

a2

Use Weyl's criterion and set
(19) S= y el*ikd{x)/d]

where k is a nonzero integer. Every ( r -2 ) tuple (x3, . . . , xr) which occurs
in x = (x{, ... , xr) in the sum in (19) gives rise to a value Q{x%, ... , xr)
and then to a diagram (8). The sum over the resulting pairs xx, x2 is
therefore o(#S), where #5 denotes the number of terms in the sum, because
of Lemma 3. Thus the sum in (19) must be o{#T) where #T denotes the
total number of terms and this shows Weyl's criterion is satisfied.

Now Theorem 1 follows from exactly the same counting argument as in
the proof of Lemma 2. The key point is that discrete sums may be replaced
by integrals, using the uniform distribution property just established.

2. Analytic theory

In this section the analytic theory of counting lattice points in regions
defined by (3) and (4) will be developed. It turns out that when condition

https://doi.org/10.1017/S1446788700035370 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035370


44 G. R. Everest [6]

(4) is vacuous a very simple interpretation of the constant B in (7) can be
given. This is sufficient for the applications in [2] and [3].

Given the notation in Section 1, define

<*» "M- £ &
xez'nD

where D denotes that region of Rr defined by (4). Let || || denote the
'max-norm' on Rr,

\\x = (xlt . . . , xr)\\ = max{\xt\}.

LEMMA 4. The boundedness of p implies

(21) AT(JC) > C||x|| forallxeD,

where C > 0 is constant.

PROOF. Define F(p) to be those x e p with M(x) = 1. Notice that
M(x) > 0 always since if M(x) < 0 and X > 1 then

= XM(x) < M(x).

Thus p contains Xx for arbitrarily large X, contradicting the boundedness
of p. Notice also that p contains the origin. Thus, given x e D, project
x centrally onto F(p) by dividing by ft > 0 say. Thus M(x/n) = 1 and
x/n lies on F(p). This means that the coefficients of x/fi are uniformly
bounded so

||x|| < dn = dM(x) for d > 0,

are required.

LEMMA 5. M(z) converges absolutely in the half-plane Re(z) > r and
uniformly on compact subsets of Re(z) > r.

PROOF. This is trivial since we can use (21) to compare M(z) with the
series Eo

THEOREM 2. The series M(z) has meromorhpic continuation to the half-
plane Re(z) > r-l where it is analytic apart from simple poles at z = r and
z = r - \ .

NOTES 1. In fact Theorem 2 follows directly from Theorem 1. The residues
of the poles at z — r (respectively r-l) are given by rA (respectively
((/• - 1)2?). We will now prove Theorem 2 in a way which allows simple
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formulae for the residues to be given, at least in the case where condition (4)
is vacuous. See Note 1 after Theorem 4 for an example of the dichotomy.

2. If condition (4) is vacuous then the series M(z) has a continuation to
Re(z) > r — 2 with simple poles only as stated.

PROOF OF THEOREM 2. We will treat only the case where the condition (4)
is vacuous. Write

(22) / ( * ) = / M{y)-Zdy
JR'-F

where F is a compact ball about the origin. Notice that we are free to change
F because this only adds to I(z) an entire function and does not affect the
form of the results we seek.

The domain of integration can be decomposed into a finite union of regions
of the form

, ... , xr) > x, > vx(x2, ... , xr),

(23)

0 0 > xr > y > 0,

where vt, vj are linear forms in the variables shown and we can take for-
mally (if necessary) r\i = oo (respectively 0) or vj = 0 (respectively -oo) .
Then the integral can be evaluated directly as a multiple integral, and it is
analytic in the complex plane apart for simple poles at z = 1, . . . , r.

Compare the sum with the integral

(24) 71/(2) - 7(2) = Y, \M{xTz - f M(yy2 dy) ,
xer V Jcx )

where Cx denotes the unit cube centered at JC and where it is assumed that
those x have been omitted for which CXP\F / 0 , obviously a finite number.
Write this as

(25) £ \M{x)-z- I M(x + y)-zdy] ,

where Co denotes the unit cube about the origin. It is certainly true that

(26) M(x + y) = M{x) + 0(1)

for x € Zr and y e Co, the constant implied by 0(1) being uniform. In
fact it is true that

(27) M(x + y) = M(x) + Lt(y) for some 1 < i < k
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for all x e Z ' and all y e Co apart from those JC which cluster around a
finite number of hyperplanes in E r . let C denote those x which satisfy
(27), C' denoting the rest. Then

M(z)-I(z)= £ (Mix)'2 - M(x)~z f
X€C \ J C

f O(l)/M(x))-zdy) .
J

Expand the inner brackets by the binomial theorem. This gives the mero-
morphic continuation to Re(z) > r — 1. Apart from smaller order terms

(28)
\z+\ •

The second series converges for Re(z) > r - 2 because it is a sum over
lattice points clustered around a finite collection of hyperplanes. It follows
that apart from the addition of a function which is analytic in Re(z) > r - 2
the following formula holds:

(29) M(z) = I(z) + I(z+l) I

The case where there are auxiliary inequalities runs along similar lines.
We do not present the details because the resulting formulae do not allow
explicit computations of the residues.

NOTE. For a connection with the classical literature consider the case
(1) Ll(x) = dxl+x2,(2) ?l(x) = -xl, <p2(x) = -x2, q>i{x) = ax]-x1

{a > 1 say). Then we see that the proof of Theorem 2 proceeds in a similar
fashion, taking account of the inequalities in (4). The only difference is that
in equation (29) the following sum is introduced.

(30) —L_ f (izi^ii)
(30) («+*)'£ < •
This series has been studied in special cases by Hecke (see [6] or [8]).

Next we go on to establish a technical result which shows that the bulk of
the lattice lie inside easily described regions. These regions are important for
applications where general problems about counting solutions of equations
are reduced to counting lattice points inside regions described below (see [2]
and [3]).

Recall the definition (5) and define M*{x) to be the second largest of the
linear forms, M**(x) to be the third largest. Repetitions are allowed so we
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might have M{x) - M*(x), etc. Given constants 6{, 62 define

To = T0(d{, 62) = {xeZr: M*{x) + 0, logM(x) + 02 < M(x)}

f0 = fo(0, ,82) = {xeZr: M**(x) + 0, logM(x) + 02 < M(x)}.

THEOREM 3. For 1 > e > 0,

(ii) #(f0 n pe) = J(2r + BQr~l + O(Qr~2+e).

PROOF, (i) Count those x with

M*(x) < M(x) < M*{x) + 0, log M(x) + 02, AT(JC) < (2.

The number of those points is bounded by the greater of the value (in r-
space) of this region and the volume (in (r - l)-space) of the boundary.
Clearly this is O(Qr~X(\o%Q)a) for some a > 0.

(ii) This is similar.

3. Application

Let K denote an algebraic number field of finite degree n over Q, n =
[K: Q]. Let OK denote the ring of algebraic integers in K and O*K, the
group of units of OK . The structure of O*K is known to be

(33) O*K^TxZr, for some r e N ,

where T denotes the group of roots of unity in K. (See [7] for definitions
and results in algebraic number theory.) Let ax, ... , an denote the embed-
dings of K into C. We will count complex embeddings in conjugate pairs
so we distinguish only r + 1 distinct embeddings. Define, for a e K,

(34)

Similarly H*(a) (respectively H**(a)) denotes the second respectively third)
largest member of the set. Also let a>K = \ T\, the number of roots of unity
in K.

Choose a basis for O*K modulo T. Then the collection of logla^w)!
becomes a set of r + 1 linear forms Ci(*), . . . , Cr+1(*) on Rr. Define the
regulator RK by

k , j > > • • • > , _ , • . • • • > 1 . . • • • »

j
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Notice that on Rr,
r+l

(36) £C,(x) = 0
i=\

so the definition of RK is independent of the choice of labelling for the £,,
also of the choice of basis for O*K .

For ease of presentation we are going to assume that K is totally real.

THEOREM 4. Take any totally real number field K.
(i) Let U(q) = #{u e O*K: H(u) < q} . Then

(37) U(q) = ^ t / '

/ 1 \f— 1

(ii) Let Ut(q) = #{M e O*K: H(u) = \at(u)\ < q). Then

(38) Ut{q) = "t^rt (lQgg)r + ".-aogg)'"1 + o((logq)r-1).

(iii) Let

(39)

NOTES. (1) It is a curious fact that we are unable to give «( explicitly in
formula (38). This is a feature of the phenomenon observed earlier. The
derivation of this formula involves nontrivial data in the definition (4). In
application we need to apply (38) as it stands so we consent ourselves with
the observation

(2) These formulae are generalisations and refinements of the theorems of
Gyory and Petho in [4] and Lang in [9] (see page 58).

(3) We could have counted instead those u&O*K with NK\Q(u) - 1. The
only difference would be to replace (OK by coK/iK, where iK is the index
of O*K of the norm-1 subgroup.

PROOF. This is simply a matter of identification. The forms £ t , . . . , £r+1

correspond to L , , . . . , Lk , so that logH(u) identifies with M(x), the vector
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x corresponding to the vector of exponents for u with respect to the chosen
basis for O*K (mod T). For example, the condition

.H{u) (log H{u)e<

is identified with

M*\u) + 6l \ogM(x) + 62< M{x)

so that 6X = 04 and d2 = - log 03.
Thus it is that formulae (i) and (ii) follow from Theorem 1 while formula

(iii) follows from Theorem 3. Theorem 2 can be applied in the following way
to find the explicit nature of the coefficients in the formulae. From equation
(29) we wish to find the residues of the function

/(z) = / Z(y)-Zdy, Z(y) = max {£,(>>)}

at its poles z — r, z = r - 1. Clearly

I(z) = (r+l)\f Cx
zdy

JR'-F

where we assume that d > C2 > • • • > Cr+1 = —d — - • * — Cr • Change the
variables so that y'. = £t{y) • The Jacobian is R^ . Now change again so
that

n i - i i

y. =y. + ... + 2y. + ...+yr.

The Jacobian this time is (r+1)~ .To ensure that a compact ball is removed,
integrate over the region y" > 1. Now the integral is

{ryx -y2 y2) dy ,
->y','>i

and this is an easy multiple integral. The residues of the poles of I(z) are

for z - r, and -̂ —-—— r̂r for z = r - 1.
/<„(?• — 2 ) !

Finally, observe that a factor of coK must be inserted in the formulae in
order to apply Theorem 2, because we worked modulo T and used the fact
that H is invariant under T is the sense that H(at) = H(a) for all a e K,
teT.
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