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On the genericity of cuspidal automorphic

forms of SO(2n + 1), II
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Abstract

This paper is a continuation of our previous work (D. Jiang and D. Soudry, On the
genericity of cuspidal automorphic forms on SO2n+1, J. reine angew. Math., to appear).
We extend Moeglin’s results (C. Moeglin, J. Lie Theory 7 (1997), 201–229, 231–238)
from the even orthogonal groups to old orthogonal groups and complete our proof of
the CAP conjecture for irreducible cuspidal automorphic representations of SO2n+1(A)
with special Bessel models. We also give a characterization of the vanishing of the
central value of the standard L-function of SO2n+1(A) in terms of theta correspondence.
As a result, we obtain the weak Langlands functorial transfer from SO2n+1(A) to GL2n(A)
for irreducible cuspidal automorphic representations of SO2n+1(A) with special Bessel
models.

1. Introduction

Let G be a reductive algebraic group defined over a number field k. Assume that G is k-quasi-
split. It is known that irreducible cuspidal automorphic representations π of G(A), where A is the
ring of adèles of k, may not be generic, i.e. may not have a nonzero Whittaker Fourier coefficient.
It is interesting to know how close, in terms of near equivalence, the non-generic cuspidal
automorphic representations are to irreducible generic cuspidal automorphic representations.
Two irreducible automorphic representations π1 and π2 are nearly equivalent if, at almost all
places ν of k, the local components π1,ν and π2,ν are equivalent, as representations of G(kν).
In [JS], we state the CAP conjecture, which says that, for an irreducible cuspidal automorphic
representation π of G(A), there exists generic cuspidal data (P, σ), where P = MN is a parabolic
k-subgroup of G and σ is an irreducible generic cuspidal automorphic representation of the Levi
subgroup M(A), such that π is nearly equivalent to an irreducible constituent of the induced repre-
sentation IndG(A)

P (A)(σ) (see [JS, Conjecture 1.1]). Further remarks on this conjecture and its relation
to the Arthur conjecture can be found in [JS].

In [JS], we study the CAP conjecture for G = SO2n+1, the k-split odd special orthogonal group.
More precisely, we study the CAP conjecture for irreducible cuspidal automorphic representations
of SO2n+1(A) with a nonzero special Bessel model. From its definition [JS, § 2] a special Bessel
model is attached to the sub-regular nilpotent orbit of the corresponding Lie algebra, while a Whit-
taker model is attached to the regular nilpotent orbit. Hence, the family of irreducible cuspidal
automorphic representations of SO2n+1(A) that have special Bessel models is expected to be very
close to irreducible generic cuspidal automorphic representations. Indeed, in Proposition 2.2 and
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Theorems 4.1 and 4.6 of [JS], we show almost completely that the CAP conjecture holds for
irreducible cuspidal automorphic representations of SO2n+1(A) that have special Bessel models.
What remained to be done was to check the genericity of the cuspidal data involved in the CAP
conjecture for this case. In order to determine the genericity of the cuspidal data, we need to
know certain basic results about the theta correspondence for the reductive dual pair (S̃p2m(A),
SO2n+1(A)). Such results for the theta correspondence for the pair (Sp2m(A),SO2n(A)) were
established by Moeglin in [Moe97a, Moe97b]. One of the main ingredients of the proofs of Moeglin’s
theorems is the regularized Siegel–Weil formula [KR94] and its variants. Thanks to the work of
Ichino [Ioh01] on the regularized Siegel–Weil formula for S̃p2m(A), we are able to apply the argu-
ments in Moeglin’s proofs to our current case.

In order to make the paper self-contained, as much as possible, we summarize in §§ 2.1 and 2.2
the details of basic facts about both the local and global Rao cocycles and metaplectic groups.
In § 2.3, we prove a variant of the regularized Siegel–Weil formula for S̃p2n(A) (Corollary 2.2)
based on the work of Ichino [Ioh01] and the local theory of the Siegel–Weil formula [Ral84, KR90a,
Zhu07], and then extend the theorem of Moeglin on the regularized Siegel–Weil formula for SO2n

to any number field, by using the regularization in terms of local p-adic Hecke elements
(Theorem 2.4).

In § 3, we establish certain basic properties of the theta correspondence for the reductive dual pair
(S̃p2m,SO2n+1), which are analogues of Moeglin’s theorems for the reductive dual pair (Sp2m,SO2n).
Since our proofs are very similar to Moeglin’s in [Moe97a, Moe97b], we either indicate briefly, for
the sake of completeness, Moeglin’s proof for our case or just refer directly to [Moe97a, Moe97b],
for the parts which carry over, word for word. To state these theorems, we need further
notation.

Let Z be a symplectic vector space of dimension 2n defined over k, and let V be a quadratic
vector space of odd dimension m defined over k. For a positive integer b, denote by Zb the direct sum
of the space Z and b copies of two-dimensional k-symplectic vector spaces. Similarly, denote by Vb
the direct sum of the space V and b copies of k-hyperbolic planes. Denote by S̃p(Z)A (or S̃p(Zb)A) the
corresponding adelic metaplectic group attached to Z (or Zb, respectively) and, similarly, by O(V )A
(or O(Vb)A) the adelic orthogonal group attached to V (or Vb, respectively). Let ψ be a non-trivial
character of k\A. We denote by θVψ,Z the ψ-theta correspondence from S̃p(Z)A to O(V )A, and by
θZψ,V the ψ-theta correspondence in the other direction.

Theorem 1.1. Let π̃ be an irreducible, genuine, cuspidal, automorphic representation of S̃p(Z)A.
Assume that θVψ−1,Z(π̃) is cuspidal.

(1) The following identity holds

θZψ,V (θVψ−1,Z(π̃)) = π̃.

(2) Let b be a positive integer. Then θZbψ,V (θVψ−1,Z(π̃)) is orthogonal to all cusp forms on S̃p(Zb)A.

(3) Let b be a positive integer, and let Z ′ be a symplectic subspace of Z, such that Z = Z ′
b. Put,

for brevity, Z ′ = Z−b. Then

θ
Z−b
ψ,V (θVψ−1,Z(π̃)) = 0.

Theorem 1.2. Let σ be an irreducible, cuspidal, automorphic representation of O(V )A.
Assume that θZψ−1,V (σ) is cuspidal.

(1) The following identity holds

θVψ,Z(θZψ−1,V (σ)) = σ.

(2) Let b be a positive integer. Then θVbψ,Z(θZψ−1,V (σ)) is orthogonal to all cusp forms on O(Vb)A.
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(3) Let b be a positive integer, and let V−b be a quadratic subspace of V , such that V = (V−b)b.
Then

θ
V−b
ψ,Z (θZψ−1,V (σ)) = 0.

The following theorem is deduced from Theorems 1.1 and 1.2, in exactly the same way as
in [Moe97a, § 3].

Theorem 1.3. Let π̃ (respectively, σ) be as in Theorem 1.1 (respectively, Theorem 1.2).

(1) The representation θVψ−1,Z(π̃) (respectively, θZψ−1,V (σ)) is irreducible, and for all positive inte-

gers b, θVb
ψ−1,Z

(π̃) (respectively, θZb
ψ−1,V

(σ)) is orthogonal to all cusp forms on O(Vb)A (respectively,

S̃p(Zb)A).

(2) Let π̃′ (respectively, σ′) be an irreducible cuspidal automorphic representation of S̃p(Zb)A
(respectively, O(Vb)A), where b is a non-negative integer; we assume that π̃′ is genuine.
Then θVψ−1,Zb

(π̃′) = θVψ−1,Z(π̃) (respectively, θZψ−1,Vb
(σ′) = θZψ−1,V (σ)), if and only if b = 0

and π̃ = π̃′ (respectively, σ = σ′).
(3) Let π̃, π̃′ (respectively, σ, σ′) be two isomorphic, irreducible cuspidal automorphic representa-

tions of S̃p(Z)A (respectively, of O(V )A). We assume that π̃, π̃′ are genuine. Then

θVψ−1,Z(π̃) �= 0 ⇔ θVψ−1,Z(π̃′) �= 0,

and

θZψ−1,V (σ) �= 0 ⇔ θZψ−1,V (σ′) �= 0.

In § 4, we discuss several applications of Theorems 1.1, 1.2, and 1.3. First we establish a
criterion for the non-vanishing of the central value of the standard L-function, L(σ, 1

2) attached
to an irreducible generic cuspidal automorphic representation σ of SO2n+1(A) in terms of the
ψ-theta lift of σ to the Witt tower S̃p2m(A) (Theorems 4.1 and 4.2). We prove the following.

Theorem 1.4. Let σ be an irreducible cuspidal automorphic representation of SO2n+1(A).
Assume that σ is generic, i.e. has a nonzero Whittaker Fourier coefficient. Then the ψ-theta lift
of σ to S̃p2n(A), θ̃nψ,n(σ)+, is non-trivial if and only if L(σ, 1

2) �= 0, where L(σ, s) is the standard
L-function attached to σ.

See § 4 for comments on the relation of this theorem to Furusawa’s work [Fur95] and to the work
of Howe and Piatetski-Shapiro [HP83].

In the rest of § 4 we complete our proof of the CAP conjecture for irreducible cuspidal auto-
morphic representations of SO2n+1(A) with special Bessel models. In fact, we obtain additional
information about the generic cuspidal data in terms of the central value of standard L-functions.
We state this now. Here, for λ ∈ k∗, which is not a square, αλ denotes the global Hilbert symbol
(·, λ), and χλ denotes the character of SO2n+1(A), which is the composition of the spinor norm with
αλ. For other unexplained notation, see [JS].

Theorem 1.5. Let σ be an irreducible cuspidal automorphic representation of SO2n+1(A).
Assume that σ has a nonzero Bessel model of special type, i.e. of type (Dλ, 1, ψn,n−1;λ). Then either
σ is nearly equivalent to an irreducible generic cuspidal automorphic representation, or σ is CAP
with respect to generic cuspidal data. More precisely, the following hold.

(1) If the special Bessel model is k-split, i.e. λ ∈ k× is a square, then σ is generic.

(2) Assume that the special Bessel model is not k-split. Then the first occurrence, m0,ψ(σ), in the
ψ-theta lifting tower satisfies

n− 1 � m0,ψ(σ) � n.
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(a) Assume that m0,ψ(σ) = n. Then either σ is nearly equivalent to an irreducible generic
cuspidal automorphic representation σ′, such that L(σ′ ⊗ χλ,

1
2) �= 0, or σ is CAP with

respect to the generic cuspidal data of the form

(P1;αλ| · |
1
2 ⊗ σn−1),

where P1 is the standard parabolic subgroup, whose Levi part is isomorphic to GL1 ×
SO2n−1, and σn−1 is irreducible generic cuspidal automorphic representation of SO2n−1(A),
such that L(σn−1 ⊗ χλ,

1
2 ) = 0.

(b) Assume that m0,ψ(σ) = n − 1. Then σ is a CAP representation. It is CAP either with
respect to the generic cuspidal data

(P1; | · |
1
2 ⊗ σn−1),

such that L(σn−1 ⊗ χλ,
1
2 ) �= 0; or with respect to the generic cuspidal data

(P1,1; | · | 12 ⊗ αλ| · |
1
2 ⊗ σn−2),

where P1,1 is the standard parabolic subgroup, whose Levi part is isomorphic to GL1 ×
GL1 × SO2n−3, and L(σn−2 ⊗ χλ,

1
2) = 0.

It is not hard now to figure out from Theorem 1.5 the possible global Arthur parameters for
irreducible automorphic cuspidal representations of SO2n+1(A), which have a Bessel model of special
type. We will show, in a future work, that the relevant global Arthur packets can be constructed
by theta correspondences.

2. Notation and preliminaries

2.1 The metaplectic group over a local field
Let F be a local field of characteristic 0 and let W be a vector space of dimension 2f over F ,
equipped with a non-degenerate anti-symmetric form 〈, 〉. Let Sp(W ) denote the corresponding
symplectic group acting from the right on W . For F �= C, Sp(W ) has a unique (up to isomorphism)
non-trivial twofold cover S̃p(W ) (the metaplectic group). In this paper, we use the realization of
S̃p(W ) in terms of a Rao normalized cocycle cW (see [Ran93]), which may be simply called a Rao
cocycle. Thus, the metaplectic group S̃p(W ) is realized as

{(g, ε) | g ∈ Sp(W ), ε = ±1},
with the group law

(g1, ε1)(g2, ε2) = (g1g2, ε1ε2cW (g1, g2)).

Let us recall briefly some facts about the Rao cocycle cW . See [Ran93] for the details.
The definition of a Rao (normalized) cocycle depends on a choice of a symplectic basis

B = {ε1, . . . , εf , ε−f , . . . , ε−1}
of W , i.e. W+ = Spank{ε1, . . . , εf} and W− = Spank{ε−1, . . . , ε−f} are totally isotropic sub-
spaces of W , and 〈εi, ε−j〉 = δij , for 1 � i, j � f . In particular, W+ and W− are transversal
Lagrangians of W . (So, we should denote the cocycle by cB , but this will make future notation
quite cumbersome. Later on, we even drop W from cW .)

Let P ⊂ Sp(W ) be the Siegel parabolic subgroup, which preserves W−. Let us now list some
properties of the Rao cocycle [Ran93].
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(a) There is a function x : Sp(W ) −→ F ∗/(F ∗)2, satisfying (1)–(5) as follows.

(1) We have x(p) ≡ detW−(p) mod (F ∗)2, p ∈ P .

(2) We have x(p1hp2) = x(p1)x(h)x(p2), for p1, p2 ∈ P and h ∈ Sp(W ).

(3) For
(
A B
C D

) ∈ Sp(W ), according to the polarization W = W+ ⊕W−, with detC �= 0,

x

(
A B
C D

)
≡ detC mod (F ∗)2.

(4) Let (·, ·) denote the Hilbert symbol of F . Then, for p1, p2 ∈ P , h1, h2 ∈ Sp(W ),

cW (p1h1, h2p2)
cW (h1, h2)

=
(x(p1), x(h1))(x(p2), x(h2))

(x(p1), x(p2))(x(p1p2), x(h1h2))

and
cW (h1p

−1
1 , p1h2)

cW (h1, h2)
= (x(p1),−x(h1)x(h2)).

(5) For each subset S ⊂ {1, . . . , f}, consisting of j elements, let τS be the element of Sp(W ),
defined by εiτS = −ε−i and ε−iτS = εi, for i ∈ S, and, otherwise, τS fixes the remaining
elements of the basis B. Then the double coset PτSP depends only on j = |S|. Let τj be a
choice of τS, for |S| = j. Then {τj}fj=0 is a set of representatives for P\Sp(W )/P . We have

x(τj) = 1.

Note that the Rao function g �→ x(g) is unique by [Ran93, Lemma 5.1].

(b) Let W1,W2 be two symplectic spaces of dimensions 2n1, 2n2, respectively. Denote the cor-
responding symplectic forms by 〈, 〉W1 and 〈, 〉W2 . Let W = W1 ⊕W2 be the direct sum of these
two spaces, with the symplectic form 〈, 〉 = 〈, 〉W1 ⊕ 〈, 〉W2 . Let, for l = 1, 2, il : Wl −→ W be
the embedding of Wl in the lth coordinate, and let jl : Sp(Wl) −→ Sp(W ) be the corresponding
embedding of symplectic groups. Let j : Sp(W1) × Sp(W2) −→ Sp(W ) be the corresponding direct
sum embedding, i.e.

j(g1, g2) = j1(g1)j2(g2) = j2(g2)j1(g1), for gl ∈ Sp(Wl).

Choose symplectic bases

Bl = {ε(l)1 , . . . , ε(l)nl , ε
(l)
−nl , . . . , ε

(l)
−1}

for Wl, l = 1, 2. Let B = B1 ∪B2, and order B as follows. Take, first, the image, by i1, of the first
n1 elements of B1, then the image, by i2, of all elements of B2, then the image, by i1, of the last n1

elements of B1. This is a symplectic basis of W . Let cl be the Rao normalized cocycle on Sp(Wl),
corresponding to Bl (l = 1, 2), and let cW be the Rao normalized cocycle on Sp(W ), corresponding
to B. Denote by xl the corresponding x-functions on Sp(Wl) (l = 1, 2). Then [Ran93, Corollary 5.6]
states that, for g1, g′1 ∈ Sp(W1) and g2, g′2 ∈ Sp(W2),

cW (j(g1, g2), j(g′1, g
′
2))

c1(g1, g′1)c2(g2, g′2)
= (x1(g1), x2(g2))(x1(g′1), x2(g′2))(x1(g1g′1), x2(g2g′2)). (2.1)

In particular, for g, h ∈ Sp(Wl), with l = 1, 2

cW (jl(g), jl(h)) = cl(g, h). (2.2)

Thus, the restriction of the Rao normalized cocycle cW to Sp(Wl) is the Rao normalized cocycle cl.
Hence, we can lift, for l = 1, 2, jl to an embedding j̃l : S̃p(Wl) −→ S̃p(W ) by j̃l(g, ε) = (jl(g), ε).
We have

j̃1(g̃1)j̃2(g̃2) = j̃2(g̃2)j̃1(g̃1),
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and this defines a homomorphism j̃ : S̃p(W1) × S̃p(W2) −→ S̃p(W ), defined by j̃(g̃1, g̃2) =
j̃1(g̃1)j̃2(g̃2). Its kernel is {(IW1 , ε), (IW2 , ε) | ε = ±1}.

(c) Assume that our local field F is non-archimedean of odd residual characteristic. Denote
by O its ring of integers and by W (O) the lattice over O spanned by the symplectic basis B.
Let K ⊂ Sp(W ) be the stabilizer of W (O). This is a maximal compact subgroup (standard with
respect to B). It is known that there is an embedding ε : K −→ S̃p(W ) of the form ε(r) = (r, ε(r)).
See [MVW87, p. 43] for a proof. Note that this means that, for r1, r2 ∈ K,

cW (r1, r2) =
ε(r1r2)
ε(r1)ε(r2)

.

This embedding is unique, if the residual field has at least four elements. It is not hard to see that,
for r ∈ P (O),

ε(r) = (r, 1). (2.3)

(d) We will be interested in dual pairs Sp(Z)×O(V ), inside Sp(W ), where O(V ) is the orthogonal
group corresponding to a non-degenerate symmetric bilinear form Q on a vector space V of odd
dimension m = 2l+1, over F , and Sp(Z) is the symplectic group, corresponding to a 2n-dimensional
vector space over F , equipped with a symplectic form 〈, 〉Z . We view O(V ) as acting from the left
on V and Sp(Z) as acting from the right on Z. Thus, W = Z ⊗ V is of dimension 2mn over F and
is equipped with the symplectic form 〈, 〉 = 〈, 〉Z ⊗Q. Let

α : Sp(Z) × O(V ) −→ Sp(W )

be the natural homomorphism; it is given by (z⊗ v)α(g, h) = zg ⊗ h−1v. Let dQ and hQ be the dis-
criminant and the Hasse invariant, respectively, of Q. Choose an orthogonal basis {e1, . . . , em} of V ,
and put ai = Q(ei, ei), for 1 � i � m. Choose a symplectic basis BZ = {z1, . . . , zn, z−n, . . . , z−1},
for Z. Denote by B+

Z the first n elements of BZ and by B−
Z the last n elements. We also denote by

X and Y the transversal Lagrangian subspaces of Z spanned by B+
Z and B−

Z , respectively. Let c
denote the corresponding Rao normalized cocycle on Sp(Z). Let

B = B+
Z ⊗ e1 ∪ · · · ∪B+

Z ⊗ em ∪ a−1
m B−

Z ⊗ em ∪ · · · ∪ a−1
1 B−

Z ⊗ e1.

This is a symplectic basis forW . Let cW denote the corresponding normalized Rao cocycle on Sp(W ).
Then, from [Kud96, pp. 20 and 35] one can get the following equivalence of c and the restriction
of cW on α1(Sp(Z)) × α1(Sp(Z)), where α1(g) = α(g, IV ). (From [Kud96] one sees clearly that
the double cover of Sp(W ) does not split over Sp(Z) exactly due to the fact that m is odd; α1 is
equivalent to cm.) We have, for g1, g2 ∈ Sp(Z),

cW (α1(g1), α1(g2)) =
e(g1g2)
e(g1)e(g2)

c(g1, g2), (2.4)

where
e(g) = h

u(g)
Q (x(g), (−1)

1
2
m(m−1)d

u(g)+1
Q )(dQ, (−1)

1
2
u(g)(u(g)−1)). (2.5)

Here u(g) is determined by writing g in the form p1τSp2, with |S| = u(g), as in property (a) part (5).
Note, also, that

x(α1(g)) ≡ d
u(g)
Q x(g)m mod (F ∗)2. (2.6)

The restriction of cW to α2(O(V )) × α2(O(V )), where α2(h) = α(IZ , h) is very simple (and the
following relation is valid also if m were even). For h1, h2 ∈ O(V ),

cW (α2(h1), α2(h2)) = (deth1,deth2)n. (2.7)

Let Õ(V ) be the group of all pairs {(h, ε) | h ∈ O(V ), ε = ±1}, with the group law

(h1, ε1)(h2, ε2) = (h1h2, ε1ε2(deth1,deth2)).
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Then α̃ : S̃p(Z) × Õ(V ) −→ S̃p(W ), given by

α̃((g, ε1), (h, ε2)) = (α(g, h), ε1εn2e(g)(d
u(g)
Q x(g),det h)n) (2.8)

is a homomorphism, which lifts α. This follows from (2.4), (2.5), (2.7), and the fact that

cW (α1(g), α2(h)) = cW (α2(h), α1(g)) = (du(g)
Q x(g),det h)n, (2.9)

which follows from (2.1) and (2.6).
We denote α̃1(g, ε) = α̃((g, ε), (IV , 1)) and α̃2(h, ε) = α̃((IZ , 1), (h, ε)). These homomorphisms

from S̃p(Z) and Õ(V ) into S̃p(W ) lift α1 and α2, respectively. For other dual pairs in the symplectic
group, see [Kud94].

(e) We keep the notation of property (d). Let ψ be a non-trivial character of F . Let ωψ be the
Weil representation of S̃p(W ), corresponding to ψ. We realize it in the Schrödinger model S(X⊗V ).
We will identify X ⊗ V ∼= V n, through z1 ⊗ v1 + · · · + zn ⊗ vn �−→ (v1, . . . , vn). Then we have the
following formulae (see [Kud96, p. 37]).

ωψ

(
α̃1

((
a

a∗

)
, ε

))
φ(v1, . . . , vn) = εγ(det a, ψ

1
2 )−1(det a, (−1)

1
2
m(m−1)dQ)

· |det a|m/2φ((v1, . . . , vn)a); (2.10)

ωψ

(
α̃1

((
In x

In

)
, ε

))
φ(v1, . . . , vn) = εψ(1

2 tr(Gr(v1, . . . , vn)xwn))φ(v1, . . . , vn);

ωψ(α̃2(h, ε))φ(v1, . . . , vn) = εnγ(deth−n, ψ
1
2 )−1φ(h−1v1, . . . , h

−1vn).

Here, the elements of Sp(Z) are written as matrices with respect to the basis BZ . The element
wn in (2.10) is the n × n matrix which has 1 in the second main diagonal and zeroes elsewhere.
Gr denotes the Gram matrix. Finally, γ(t, ψx) is the Weil factor, with respect to the character ψx

(x �= 0). As is traditional, we normalize ωψ ◦ α̃ so that the action of O(V ) becomes linear. Thus, we
define the following representation, which we still denote by ωψ, of S̃p(Z) × O(V ),

ωψ(g̃, h) = γ(deth−n, ψ
1
2 )ωψ(α̃(g̃, (h, 1))), (2.11)

for g̃ ∈ S̃p(Z) and h ∈ O(V ). Note that the first two formulae in (2.10) remain the same, and the
last formula in (2.10) becomes

ωψ((IZ , 1), h)φ(v1, . . . , vn) = φ(h−1v1, . . . , h
−1vn). (2.12)

Sometimes, when we want to emphasize the dual pair, we will re-denote ωψ in (2.11) by ωψ,Z,Q
or ωψ,Z⊗V .

2.2 The metaplectic group over an adèle ring

Let k be a number field. Let W be a vector space, of dimension 2f over k, equipped with a symplectic
form 〈·, ·〉. Let

B = {ε1, . . . , εf ; ε−f , . . . , ε−1}
be a symplectic basis of W , over k, as before. For each place ν of k, let Wν = kν ⊗kW . We will re-
denote kν ⊗ εj = kνεj, for |j| = 1, . . . , f . Denote by 〈·, ·〉ν the corresponding symplectic form on Wν .
Here B serves as a symplectic basis of Wν as well. Denote by cWν the Rao normalized cocycle on
Sp(Wν) corresponding to B. For each finite odd place ν, we have an embedding εν : Kν −→ S̃p(Wν)
as in property (c) of § 2.1.
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(a) Let A be the ring of adèles of k and let Ŝp(W )A be the restricted product
∏′
ν S̃p(Wν) with

respect to {εν(Kν) | ν is finite and odd}. Let

C ′ =
{∏

ν

(I, εν) ∈ Ŝp(W )A

∣∣∣∣ ∏
ν

εν = 1
}
.

Then

S̃p(W )A := C ′\Ŝp(W )A (2.13)

is a twofold central cover of Sp(W )A. The projection

pr : S̃p(W )A −→ Sp(W )A

satisfies

pr
(
C ′ ∏

ν∈S
(gν , εν)

∏
ν /∈S

εν(kν)
)

=
∏
ν∈S

gν
∏
ν /∈S

kν ,

where S is a finite, large enough set of places. The kernel of the projection is

C2 =
{
C ′ ∏

ν

(I, εν) ∈ S̃p(W )A

}
∼= {±1} = µ2.

Note that the natural projection Ŝp(W )A −→ S̃p(W )A is injective on each S̃p(Wν) and gives a
commutative diagram

S̃p(Wν) −→ S̃p(W )A
↓ ↓

Sp(Wν) −→ Sp(W )A
where the vertical arrows are the natural projections.

(b) Let γ ∈ Sp(W ). Let S be a finite set of places, including those at infinity and the even ones,
such that γ ∈ Kν , for all ν /∈ S. Then there is a finite set of places S′ ⊃ S, such that

εν(γ) = (γ, 1), (2.14)

for all ν /∈ S′. This follows from the decomposition γ = p1τjp2 as in property (a) part (5) of § 2.1,
where now p1, p2 are in P , the Siegel k-parabolic subgroup of Sp(W ) which stabilizes the subspace
W−
ν = Spank{ε−1, . . . , ε−f}. Thus, we can take S′, such that p1, p2 ∈ P (kν)∩Kν , so that x(pi) ∈ O∗

ν ,
for all ν /∈ S′ (i = 1, 2). By parts (2), (4) and (5) of property (a) in § 2.1, and by (2.3), we get that
there is aj = ±1, such that, for ν /∈ S′,

εν(γ) = εν(p1)εν(τj)εν(p2) = (p1, 1)(τj , aj)(p2, 1) = (γ, aj).

To show that aj = 1, we write τj as a product of elements of the form τ2. By [Ran93, Corollary 5.5],
we may assume that τj = τ2 and, then, it is a simple calculation in a SL2 to show that aj = 1.

(c) As a corollary, we get that the map

γ �→ C ′ ∏
ν

(γ, 1), (2.15)

from (the k-rational points) Sp(W ) goes to S̃p(W )A. It is an injective group homomorphism, since
for all γ1, γ2 ∈ Sp(W ), we have ∏

ν

cWν (γ1, γ2) = 1,

as follows from Rao’s explicit formula in [Ran93, Theorem 5.3]. We view Sp(W ) as a subgroup of
S̃p(W )A, via (2.15). We re-denote the right-hand side of (2.15) by (γ, 1).
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(d) Let Pν be the Siegel parabolic subgroup of Sp(Wν) stabilizing the subspace W−
ν as in part (6)

of this section and let PA be the restricted product of all Pν , with respect to {Pν ∩Kν | ν < ∞}.
Denote by P̃A, the inverse image of PA inside S̃p(W )A. By (2.13), it is easy to see that P̃A ∼= {(p, ε) ∈
PA × {±1}}, with the group law

(p1, ε1)(p2, ε2) =
(
p1p2, ε1ε2

∏
ν

(det p1,ν ,det p2,ν)ν

)
, (2.16)

where the determinants of pi,ν are taken as linear operators on the vector space W−
ν . The isomor-

phism is given by

C ′ ∏
ν∈S

(pν , εν)
∏
ν /∈S

εν(pν) −→
(∏

ν

pν ,
∏
ν

εν

)
. (2.17)

Here S is a large enough finite set, and pν ∈ Pν ∩Kν , for ν /∈ S, so that by (2.3), εν(pν) = (pν , 1)
for ν /∈ S. In this case, we also re-denote, for brevity, the elements of P̃A via (2.16) and (2.17) by
(p, ε), where p ∈ PA and ε = ±1.

(e) Assume that W is the (orthogonal) direct sum of two symplectic subspaces W1 and W2.
Then, as in property (6) of § 2.1, we have the direct sum embedding j : Sp(W1)×Sp(W2) −→ Sp(W ),
and its restriction to each component is given by jl : Sp(Wl) −→ Sp(W ), l = 1, 2. Similarly, we have
the corresponding local embeddings jν , jl,ν , and global embeddings jA, jl,A. Let us fix symplectic
k-bases B1, B2 and B = B1 ∪ B2 of W1, W2, and W , respectively, as in property (b) of § 2.1.
Then for each place ν, we have obtained the embeddings j̃l,ν : S̃p(Wl,ν) −→ S̃p(Wν), l = 1, 2, and
the homomorphism j̃ν : S̃p(W1,ν)×S̃p(W2,ν) −→ S̃p(Wν), which lift jl,ν , l = 1, 2, and jν , respectively.
Let us denote, for finite and odd places ν, the standard maximal compact subgroup of Sp(Wl,ν)
by Kl,ν (l = 1, 2). Consider the embeddings, as in property (c) of § 2.1, εl,ν : Kl,ν −→ S̃p(Wl,ν).
Then, by (2.2) (if the residue field contains at least four elements),

j̃l,ν(εl,ν(r)) = εν(jl,ν(r)),

for l = 1, 2, and r ∈ Kl,ν . Thus, the collection {j̃l,ν}ν defines an embedding j̃l,A : S̃p(Wl)A −→
S̃p(W )A, which lifts jl,A, and a homomorphism j̃A : S̃p(W1)A × S̃p(W2)A −→ S̃p(W )A, which lifts
jA. We have

j̃A(g̃1, g̃2) = j̃1,A(g̃1)j̃2,A(g̃2).

Note that (with our conventions) for γl ∈ Sp(Wl) (l = 1, 2),

j̃A((γ1, 1), (γ2, 1)) = (j(γ1, γ2), 1).

(f) Let α : Sp(Z) × O(V ) −→ Sp(W ) be a dual pair, as in property (d) of § 2.1, and we
use the same notation, except that here we assume that the vector space Z (respectively V ) and
the corresponding non-degenerate anti-symmetric (respectively symmetric) form are defined over the
number field k. Recall that dimk V = m = 2l + 1 is odd. Let ψ be a non-trivial character of k\A.
For each local place ν of k, consider the local Weil representation ωψν of S̃p(Zν) × O(Vν), realized
in the Schrödinger model S(Xν ⊗ Vν) ∼= S(V n

ν ). Then the restricted tensor product ωψ =
⊗′ ωψν

defines the global Weil representation of S̃p(Z)A×O(V )A on the Schrödinger model S(V n
A

). It pulls
back to Ŝp(Z)A × O(V )A. (Of course, it is obtained from the Weil representation of S̃p(Z ⊗ V )A.)
Let θ be the theta distribution on S(V n

A
),

θ(φ) =
∑
x∈V n

φ(x)
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and denote, for (g̃, h) ∈ S̃p(Z)A × O(V )A and φ ∈ S(V n
A

),

θφψ(g̃, h) = θ(ωψ(g̃, h)φ),

and sometimes, more precisely,

θφψ,Z⊗V (g̃, h) = θ(ωψ,Z⊗V (g̃, h)φ).

Due to the Sp(Z ⊗ V )-invariance of θ, we know that θφψ is Sp(Z) × O(V )-left invariant. The func-

tion θφψ(g̃, h) is of moderate growth in each variable [HP83]. Thus, for an irreducible automorphic
representation σ of O(V )A, if either the quadratic form Q on V is anisotropic or σ is cuspidal, then
the integrals

θφψ(ϕσ)(g̃) =
∫

O(V )\O(V )A

θφψ(g̃, h)ϕσ(h) dh (2.18)

converge absolutely, for each ϕσ , in the space of σ, and φ ∈ S(V n
A

). These automorphic functions
θφψ(ϕσ) generate a subspace of automorphic forms on S̃p(Z)A, which is denoted by θ̃Zψ,V (σ). It is

stable under right translations by S̃p(Z)A. We use the same notation, for the automorphic repre-
sentation of S̃p(Z)A, thus obtained. This is the automorphic representation of S̃p(Z)A obtained by
the ψ-theta correspondence from σ, which may of course be zero. Similarly, we consider the ψ-theta
correspondence in the reverse direction, starting with an irreducible genuine cuspidal automor-
phic representation π̃ of S̃p(Z)A. The subspace of automorphic functions on O(V )A thus obtained
is denoted by θVψ,Z(π̃). It is an automorphic representation of O(V )A in the space generated by
the integrals

θφψ(ϕπ̃)(h) =
∫
C2Sp(Z)\S̃p(Z)A

θφψ(g̃, h)ϕπ̃(g̃) dg̃, (2.19)

as φ and ϕπ̃ vary in S(V n
A

) and the space of π̃, respectively.

2.3 The Siegel–Weil formula

We keep the notation of § 2.2. We establish some simple variants of the regularized Siegel–Weil
formulae based on the works of Kudla and Rallis [KR94], Ichino [Ioh01], and Moeglin [Moe97a,
Moe97b].

Let (V,Q) be the nondegenerate quadratic vector space over k with Witt index r. If r = 0,
the ψ-theta lifting of the trivial representation of O(V )A to S̃p(Z)A does not need regularization.
In the following we may assume that r > 0. We first recall Ichino’s formulation [Ioh01] of the
Siegel–Weil formula. Assume that dimk V = m is odd, and that

m = dimk V < 1
2 dimk Z + 1 = n+ 1. (2.20)

Since V has Witt index r > 0, we may write V = V0 ⊕ Hr, where V0 is k-anisotropic and Hr is
the direct sum of r hyperbolic planes. Let (V ′, Q′) be the nondegenerate quadratic space over k
in the same Witt class of (V,Q), and of dimension m′ = 2n+ 2 −m. In this case we may write

V ′ = V0 ⊕Hn+1−r−dimk V0 .

From (2.20), we have

n+ 1 − r − dimk V0 > m− r − dimk V0 = r > 0.

Ichino’s theorem now applies with our m′ replacing m in [Ioh01, p. 203]. Indeed, let r′ = n+1− r−
dimk V0 denote the Witt index of V ′. Then we clearly have n+1 < m′ � 2n+2, and m′−r′ � n+1,
which are two of the conditions in Ichino’s theorem (the regularized Siegel–Weil formula).
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We recall some details of the regularized Siegel–Weil formula from [Ioh01]. In the case under
consideration, the theta integral ∫

O(V )\O(V )A

θφψ(g̃, h) dh (2.21)

diverges in general. In [KR94], the regularization is carried out using a certain differential operator
from the universal enveloping algebra at real archimedean local places. In [Ioh01], the regularization
is obtained by using a certain element of a local p-adic Hecke algebra. The advantage of the approach
in [Ioh01], whose possibility was mentioned in [KR94], is that it applies to any number field.

Let us describe Ichino’s regularization. Fix a finite place ν0 of k, where the number of elements of
the residue field is congruent to 1 modulo 4. Assume also that ψν0 is unramified, and the quadratic
form is unimodular at ν0. Assume that φ ∈ S(V n

A
) is fixed by ωψν0 (εν0(K

Z
ν0 ×K ′

ν0)). Here, KZ
ν0 is

a (standard) maximal compact subgroup of Sp(Zν0), and K ′
ν0 is a hyper-special maximal compact

subgroup of O(Vν0). Then there is an element αν0 , which depends only on the place ν0, in the spher-

ical Hecke algebra (genuine functions) of S̃p(Zν0) with respect to KZ
ν0, such that θ

ωψν0
(αν0 ,1)φ

ψ (g̃, h)
is rapidly decreasing in h, and hence the integral∫

O(V )\O(V )A

θ
ωψν0

(αν0 ,1)φ

ψ (g̃, h) dh (2.22)

converges absolutely. There is a non-zero constant cν0 , such that if the integral (2.21) converges
absolutely, then ∫

O(V )\O(V )A

θφψ(g̃, h) dh = c−1
ν0

∫
O(V )\O(V )A

θ
ωψν0

(αν0 ,1)φ

ψ (g̃, h) dh.

In other words, the regularization (2.23) is a natural extension of (2.21), in its domain of convergence.
Moreover, there is an element α′

ν0 = θ(αν0) in the spherical Hecke algebra of O(Vν0), with respect
to K ′

ν0 , such that

ωψν0 (αν0 , 1) = ωψν0 (1, α′
ν0), (2.23)

as endomorphisms of S(V n
A

)ωψν0 (εν0 (KZ
ν0

)×K ′
ν0

). Here θ is the homomorphism from the Hecke algebra
of S̃p(Zν0) to the Hecke algebra of O(Vν0), given in [Ioh01, Proposition 1.1]. For φ ∈ S(V n

A
) and

g̃ ∈ S̃p(Z)A, the regularized theta integral is denoted by

Ireg,V,ψ(g̃, φ) = c−1
ν0

∫
O(V )\O(V )A

θ
ωψν0

(αν0 ,1)φ

ψ (g̃, h) dh. (2.24)

It is independent of the choice of ν0, as above, or the choice of αν0 . Finally, for φ′ ∈ S((V ′
A
)n), s ∈ C,

and g̃ ∈ S̃p(Z)A, the Siegel section attached to φ′ is denoted by

fφ
′

s (g̃) = |a(g̃)|s−(n+1−m)/2ωV
′

ψ,Z(g̃, IV ′)φ′(0). (2.25)

Here a(g̃) is defined as follows: if g ∈ Sp(Z)A is the projection of g̃ and g = pk is its Iwasawa de-
composition with p ∈ PA and k ∈ KZ

A
(with self-evident notation), then a(g̃) = a(g) =

∏
ν detYν pν .

By comparing with [Ioh01, p. 202] we note that

m′ − n− 1
2

=
n+ 1 −m

2
.

By (2.10) and using part (d) of § 2.2, we have

fφ
′

s

(((
a x

a∗

)
, ε

)
g̃

)
= εχ

V ′,ψ(det a)|det a|s+(n+1)/2fφ
′

s (g̃), (2.26)
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where

χ
V ′,ψ(x) =

∏
ν

χ
V ′
ν,ψν

(xν) =
∏
ν

γ(xν , ψ
1
2
ν )−1(xν , (−1)

1
2
m′(m′−1)dQ′)ν . (2.27)

Note that
χ
V,ψ

= χ
V ′,ψ . (2.28)

Indeed, (−1)
1
2
m′(m′−1)dQ′ = (−1)

1
2
m(m−1)dQ. We view χ

V,ψ
as a character of P̃A. From (2.27), we

see that

fφ
′

s ∈ IndS̃p(Z)A
P̃A

(χ
V,ψ

|det|s).
Consider the Eisenstein series, which is the analytic continuation of the following absolutely con-
vergent series when Re(s) > n+ 1/2,

E(g̃, fφ
′

s ) =
∑

γ∈P\Sp(Z)

fφ
′

s ((γ, 1)g̃).

It has at most a simple pole at s = (n+ 1−m)/2. Finally, Ichino defines a map rV ′,V : S(V ′
A
)n −→

S(V n
A

), which is S̃p(Z)A-intertwining (this is ‘πQQ′πK ’ in [Ioh01]). Now, we can state the following.

Theorem 2.1 (Ichino [Ioh01]). In the notation above, assume that m < n + 1 (and m is odd).

Then there is a non-zero constant c0, such that, for all φ′ ∈ S((V ′
A
)n) and g̃ ∈ S̃p(Z)A,

Ress=(n+1−m)/2 E(g̃, fφ
′

s ) = c0Ireg,V,ψ(g̃, rV ′,V (φ′)). (2.29)

We derive the following corollary, which will be used in the following sections.

Corollary 2.2. Assume that m < n+1 (m odd). Then, for all φ ∈ S(V n
A

), there is φ′ ∈ S((V ′
A
)n),

such that for all g̃ ∈ S̃p(Z)A,

Ireg,V,ψ(g̃, φ) = Ress=(n+1−m)/2 E(g̃, fφ
′

s ). (2.30)

Proof. By checking the definition of rV ′,V (which is ‘πQQ′πK ’ in [Ioh01, p. 203]), it is easy to see that
at almost all finite places ν, the local map rV ′

ν ,Vν takes the characteristic function of the standard
lattice in (V ′

ν)
n to the characteristic function of the standard lattice of V n

ν . Let ν be an arbitrary
place of k, and φ =

⊗
ν′ φν′ be a factorizable function in S(V n

A
), whose local components φν′ are

fixed at all places, except at the given local place ν, where we let it vary. Consider the linear
functional

lν(φν) = Ireg,V,ψ(1̃, φ).

Here, 1̃ denotes the identity element of S̃p(Z)A. We recall from (2.24) in the case ν0 = ν that

lν(ωψν ,Zν ,Qν(g̃ν , hν)φν) = Ireg,V,ψ(g̃ν , φ).

In particular, lν is O(Vν)-invariant, i.e. it factors through the space of co-invariants S(V n
ν )O(Vν).

This last space is isomorphic to Rn(Vν), which is the space of functions on S̃p(Zν) generated by
fφν (g̃) = ωψν (g̃, 1)φν(0), as φν varies in S(V n

ν ). Note that

Rn(Vν) ⊂ IndS̃p(Zν)

P̃ν
(χ

Vν ,ψν
|det|(m−n−1)/2).

The isomorphism
d′ν : S(V n

ν )O(Vν) → Rn(Vν)

is induced from dν(φν) = fφν . See [Ral84] for ν finite, [KR90a] for ν real, and [Zhu07] for ν complex.
Thus, if fφν = 0, then lν(ωψν (g̃, 1)φν) = 0 for all g̃ ∈ S̃p(Zν). Consider the map

dν ◦ rV ′
ν ,Vν : S(V ′n

ν ) → Rn(Vν).

732

https://doi.org/10.1112/S0010437X07002795 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002795


On the genericity of cuspidal automorphic forms of SO(2n + 1), II

This map is S̃p(Zν)-intertwining and O(Vν)-invariant [Ioh01, Lemma 5.5]. By [Ioh01, Lemma 5.1]
for ν finite, [KR90a, Corollary 2.7] for ν real, and [Zhu07] for ν complex, and by our assumption
that m < n + 1, Rn(Vν) is an irreducible S̃p(Zν)-module. Hence the map dν ◦ rV ′

ν ,Vν is surjective.
It follows that for a given φν ∈ S(V n

ν ), there is φ′ν ∈ S((V ′
ν)n) such that fφν = f

rV ′
ν,Vν

(φ′ν), and hence

lν(ωψν (g̃ν , 1)φν) = lν(ωψν (g̃ν , 1)rV ′
ν ,Vν (φ

′
ν)),

for all g̃ν ∈ ˜Sp(Zν). Therefore, for a given factorizable φ =
⊗

ν φν ∈ S(V n
A

), there is a factorizable
φ′ =

⊗
ν φ

′
ν ∈ S((V ′

A
)n), such that

Ireg,V,ψ(g̃, φ) = Ireg,V,ψ(g̃, rV ′,V (φ′)),

for all g̃ ∈ ˜Sp(Z)
A
. Now, the identity (2.31) follows from (2.30).

Next, we are going to establish a regularized Siegel–Weil formula characterizing residues of
Siegel Eisenstein series on the k-split even orthogonal group O(l, l). This was done by Moeglin for
totally real number fields by using the regularization at real archimedean local place [Moe97a, § 3.2].
We use the regularization in terms of elements in a p-adic Hecke algebra as in [Ioh01], which extends
the results of Moeglin to all number fields. This result will be used in the next section. We give the
details very briefly. Once we introduce the regularization, the rest follows exactly as in [Moe97a,
§ 3.2].

Let (U, b) be a non-degenerate quadratic space over k, which is k-split and even dimensional.
Put dimk U = 2l. In this case, the double cover S̃p(U ⊗ Z)A splits over Sp(Z)A × O(U)A. Denote,
again, by ωψ or ωψ,Z⊗U the Weil representation of Sp(Z)A × O(U)A obtained by composing the
ψ-Weil representation of S̃p(U ⊗ Z)A with an embedding

Sp(Z)A × O(U)A → S̃p(U ⊗ Z)A.

Consider the corresponding theta series θφψ(g, h), where φ is in a corresponding Schrödinger model
S(Un

A
). The theta integral involved in the regularized Siegel–Weil formula characterizing residues of

Siegel Eisenstein series on O(U)A is given by∫
Sp(Z)\Sp(Z)A

θφψ(g, h) dg,

which is divergent in general if n < l, so that regularization is necessary.
First, we fix a local finite place ν0, such that ψν0 is unramified and the local quadratic form bν0

is kν0-unimodular. Assume that φ is fixed by ωψν0 (KZ
ν0 ×KU

ν0), where KZ
ν0 (respectively, KU

ν0) is a
(standard) maximal compact subgroup of Sp(Zν0) (respectively, O(Uν0)). (Thus, the choice of ν0

depends on φ.) The local Howe duality asserts that ωψν0 (HO(Uν0 )) and ωψν0 (HSp(Zν0 )) coincide as

algebras of operators on S(Unν0)
ωψν0

(KZ
ν0

×KU
ν0

), where HSp(Zν0 ) (respectively, HO(Uν0 )) is the spherical
Hecke algebra of Sp(Zν0) (respectively, O(Uν0)) with respect to KZ

ν0 (respectively, KU
ν0); see [How79]

and [MVW87]. Following the explicit calculation of the local theta correspondence (Howe duality)
for unramified representations by Rallis in [Ral82], one has the following.

Proposition 2.3. Assume that n � l. Let θ = θl,n,ν0 be the Hecke algebra homomorphism

C[q±s1, . . . , q±sl ]WO(U) ∼= HO(Uν0)
θ−→ HSp(Zν0 )

∼= C[q±t1 , . . . , q±tn ]WSp(Z) ,

which is given by

θ(qsi) =

{
qti , if 1 � i � n,

q−l+i, if n < i � l.
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Then for all α ∈ HO(Uν0 ),

ωψν0 ,Zν0 ,bν0 (1, α) = ωψν0 ,Zν0 ,bν0 (θ(α), 1)

as endomorphisms of S(Unν0)
ωψν0

(KZ
ν0

×KU
ν0

).

We have

C[q±s1, . . . , q±sl ]WO(U) ∼= C[X1, . . . ,Xl]Sl ,

whereXi = qsi+q−si, i = 1, . . . , l; Sl is the symmetric group on l letters. Similarly, for Yi = qti+q−ti ,
i = 1, . . . , n,

C[q±t1 , . . . , q±tn ]WSp(Z) ∼= C[Y1, . . . , Yn]Sn .

Let σ1, . . . , σl denote the elementary symmetric polynomials in X1, . . . ,Xl. We have, as in [KR94,
Corollary 5.1.2] and [Ioh01, Lemma 1.3] that, for n < l, there is a unique element αl,n,ν0 ∈ HO(Uν0 ),
of the form

αl,n,ν0 = σn+1 −
n∑
i=1

aiσi,

such that

θl,n,ν0(αl,n,ν0) = 0.

Define, for n � l,

αν0 = αl,n−1,ν0.

This defines an element of HO(Uν0 ). We have θl,n−1,ν0(αν0) = 0, which means that

αν0(Y1, . . . , Yn−1, q
−l+n + ql−n, q−l+n+1 + ql−n−1, . . . , q−1 + q, 2) = 0.

Note that αν0 is of degree n and is Sl-invariant. Consider the element θ(αν0) = θl,n,ν0(αν0). Then

θ(αν0)(Y1, . . . , Yn) = αν0(Y1, . . . , Yn, q
−l+n+1 + ql−n−1, . . . , q−1 + q, 2).

This is a polynomial of degree n in C[Y1, . . . , Yn]Sn = HSp(Zν0 ). Since it is symmetric and satisfies
θ(αν0)(Y1, . . . , Yn−1, q

−l+n + ql−n) = 0, we conclude, as in [KR94, Lemma 5.5.4] and as in [Ioh01,
(1.1)] that

θ(αν0)(Y1, . . . , Yn) =
n∏
i=1

(Yi − (q−l+n + ql−n)).

Let θ(αν0) act on the trivial representation of Sp(Zν0) by the scalar cαν0 . Then

cαν0 = θ(αν0)(q
−n + qn, q−n+1 + qn−1, . . . , q−1 + q).

We conclude that, for 2n < l, cαν0 �= 0.
Let us return to the global set-up. Recall that we choose the finite place αν0 , dependent on the

function φ ∈ S(Un
A
). Assume that n � l, so that αν0 = αl,n−1,ν0 is defined. Then, as in [KR94,

Proposition 5.3.1] and [Ioh01, Proposition 1.5], we have that θ
ωψν0

(1,αν0 )φ

ψ (g, h) is rapidly decreasing
in g ∈ Sp(Z)\Sp(ZA), for all h ∈ O(UA). For this, it is enough to take g as a Siegel domain and
h ∈ ∏

ν �=ν0 O(Uν) (since O(U)
∏
ν �=ν0 O(Uν) is dense in O(UA)). Then, it is enough to show that

ωψν0 (1, αν0)φν0(y1, . . . , yn) = 0, for linearly dependent y1, . . . , yn ∈ Uν0 . We assume, for simplicity,
that φ is decomposable. As in [Ioh01, p. 210] we can find a ∈ GLn(Oν0) and x1, . . . , xn−1 ∈ Uν0
such that (y1, . . . , yn) = (x1, . . . , xn−1, 0)a, and then, since φν0 is fixed by KZ

ν0 × 1 and the action of
αν0 (via ωψν0 ) commutes with the action of (the Siegel parabolic subgroup of) Sp(Zν0), we get that

ωψν0 (1, αν0)φν0(y1, . . . , yn) = ωψν0 (1, αν0)φν0(x1, . . . , xn−1, 0).
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The last expression is zero, since θl,n−1,ν0(αν0) = 0. Indeed, let

{z1, . . . , zn, z−n, . . . , z−1},
be a symplectic basis of Z, as in property (d) of § 2.1. Put

Z ′ = Spank{z1, . . . , zn−1, z−n+1, . . . , z−1}.
Denote by ω′

ψ the Weil representation for the dual pair Sp(Z ′)×O(U), and let us realize ω′
ψ in the

Schrödinger model S(Un−1
A

). Denote the restriction of φν0 to Un−1
ν0 by φ′ν0 . Then

ωψν0 (1, αν0)φν0(x1, . . . , xn−1, 0) = ω′
ψν0

(1, αν0)φ
′
ν0(x1, . . . , xn−1)

= ω′
ψν0

(θl,n−1,ν0(αν0), 1)φ
′
ν0(x1, . . . , xn−1)

= 0.

This proves that

θ
ωψν0

(1,αν0 )φ

ψ (g, h) =
∑

x∈Un,rank(x)=n

ωψ(g, h)ωψν0 (1, αν0φ(x)),

where, for x = (x1, . . . , xn), rank(x) is the dimension of the subspace of U , spanned by x1, . . . , xn.
Now, the rapid decrease in g follows as in [KR94, Proposition 5.3.1]. Moreover, if∫

Sp(Z)\Sp(ZA)
θφψ(g, h) dg

converges absolutely, then∫
Sp(Z)\Sp(Z)A

θ
ωψν0

(1,αν0 )φ

ψ (g, h) dg = cαν0

∫
Sp(Z)\Sp(Z)A

θφψ(g, h) dg.

As before, we define, for 2n < l (so that cαν0 �= 0)

Ireg,ψ(h, φ) = c−1
αν0

∫
Sp(Z)\Sp(Z)A

θ
ωψν0

(1,αν0 )φ

ψ (g, h) dg.

This definition is independent of the choice of the place ν0.

Next, consider a Siegel parabolic subgroup P ⊂ O(U), whose Levi part is isomorphic to GLl.
Take a standard section ξs in the space of the normalized induced module IndO(U)A

PA
(|det|s) and form

an Eisenstein series E(h, ξs) as usual. By [KR90b, Theorem 1.0.1], the Eisenstein series E(h, ξs)
converges absolutely when the real part of s is greater than (l− 1)/2; it has a meromorphic contin-
uation to the complex plane C and, after normalization, it has at most simple poles occurring only
at s = (l − 1)/2 − j �= 0 with j ∈ {0, 1, . . . , l − 1}.

Assume now that n < (l− 1)/2. Then s = (l− 1)/2 is a simple pole of the normalized Eisenstein
series, and it is also a pole of E(h, ξs). Now, we can repeat the proof of Moeglin, in [Moe97a, § 3.2], to
get the following version of the regularized Siegel–Weil formula, which is valid for arbitrary number
fields.

Theorem 2.4. Assume that n < (l − 1)/2. Then, for every Schwartz function φ as above, there is
a section ξs as above, such that∫

Sp(Z)\Sp(Z)A

θ
ωψν0

(1,αν0 )φ

ψ (g, h) dg = Ress=(l−1)/2−nE(h, ξs). (2.31)
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3. The theta correspondence

We are going to prove Theorems 1.1, 1.2, and 1.3 as stated in the introduction. The main task
is to give an explicit description of various spaces of automorphic functions via the theta corre-
spondences. In § 3.1, we start with an irreducible genuine cuspidal automorphic representation π̃ of
S̃p(Z)A, and in § 3.3, we start with an irreducible cuspidal automorphic representation σ of O(V )A.
Theorem 1.1 is proven in § 3.2 and the proofs of Theorems 1.2 and 1.3 are discussed in § 3.3.

3.1 Certain subspace of automorphic forms on S̃p(Z)A
Let π̃ be an irreducible genuine cuspidal automorphic representation of S̃p(Z)A. The ψ−1-theta lift of
π̃ to O(V )A is denoted by θVψ−1,Z(π̃) as before. Assume that θVψ−1,Z(π̃) is a cuspidal representation
of O(V )A. For any integer a � 0, define a symplectic vector space Za by

Za = Z ⊕ la, (3.1)

where la denotes the 2a-dimensional symplectic space over k. We consider the ψ-theta lift
θZaψ,V (θVψ−1,Z(π̃)), which is a subspace of automorphic functions on the metaplectic group S̃p(Za)A.

To fix a Rao normalized cocycle for S̃p(Za)A (at each place), we fix a symplectic k-basis

B′
a = {z′1, . . . , z′a, z′−a, . . . , z′−1}

of la, and a symplectic k-basis

BZ = {z1, . . . , zn, z−n, . . . , z−1}
of Z. Then we take the symplectic k-basis

Ba = {z′1, . . . , z′a, z1, . . . , zn, z−n, . . . , z−1, z
′
−a, . . . , z

′
−1}

for Za. Put

l±a = SpanF {z′±1, . . . , z
′
±a}.

Denote by Pa the standard Siegel parabolic subgroup of Sp(Za ⊕ Z), with respect to the basis
i1(Ba) ∪ i2(BZ), ordered as in property (b) of § 2.1, where i1 (respectively, i2) is the embedding
of Za (respectively, Z) in the first (respectively, second) coordinate of Za ⊕ Z. Consider, also, the
homomorphism as in part (e) of § 2.2 (which we now shorten to j̃, instead of j̃A),

j̃ : S̃p(Za)A × S̃p(Z)A → S̃p(Za × Z)A.

Let c be the k-linear automorphism of Z, such that zic = zi and z−ic = −z−i for all 1 � i � n.
Clearly, c ∈ GSp(Z), and has similitude factor −1. Let c act by conjugation on Sp(Zν), i.e.

g �→ gc = cgc−1.

Then one can lift this conjugation to an automorphism of S̃p(Zν) by

(g, ε) = g̃ �→ g̃′ = (g, ε)′ = (gc, ε(x(g), (−1)u(g)+1)(−1,−1)
1
2
u(g)(u(g)−1)),

in the notation of (2.5). See [Szp06] for details. This gives an automorphism of S̃p(Z)A, g̃ �→ g̃′,
which lifts the conjugation c on Sp(Z)A. Finally, we denote by KZ the standard (with respect to BZ)
maximal compact subgroup of Sp(Z)A, and we let K̃Z denote its inverse image in S̃p(Z)A. We use
similar notation for other symplectic spaces.

Proposition 3.1. Let π̃ be an irreducible genuine cuspidal automorphic representation of S̃p(Z)A
with dimk Z = 2n. Assume that θVψ−1,Z(π̃) is cuspidal on O(V )A with dimk V = m. Let a � 1 be

an integer such that m < n+ a+ 1. Then the subspace θZaψ,V (θVψ−1,Z(π̃))0 consisting of all K̃Za-finite
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functions of the space θZaψ,V (θVψ−1,Z(π̃)) is contained in the subspace of automorphic forms on S̃p(Za)A
generated by the automorphic functions

g̃a �→
∫
C2Sp(Z)\S̃p(Z)A

ϕπ̃(g̃)Ress=(n+a+1−m)/2E(j̃(g̃a, g̃′), fs) dg̃,

where E(x̃, fs) is the Eisenstein series corresponding to a K̃Za⊕Z-finite section fs in I2n+a(χV,ψ , s) =

IndS̃p(Za⊕Z)A
P̃a

(χ
V,ψ

|det|s).

Proof. We repeat [Moe97a, § 2.1]. By definition, the space θZaψ,V (θVψ−1,Z(π̃)) is spanned by∫
O(V )\O(V )A

θφ
′
ψ (g̃a, h)

∫
C2Sp(Z)\S̃p(Z)A

θφ
ψ−1(g̃, h)ϕπ̃(g̃) dg̃ dh, (3.2)

where ϕπ̃ is a cusp form in the space of π̃, φ ∈ S(V n
A

), φ′ ∈ S(V n+a
A

) and g̃a ∈ S̃p(Za)A. We have
(see [MVW87, p. 36]) that for g̃ ∈ S̃p(Z)A,

θφ
ψ−1(g̃, h) = θφψ(g̃′, h).

Viewing φ′ ⊗ φ as an element of S(V 2n+a
A

), we have (see [MVW87, p. 37]) that

θφ
′
ψ (g̃a, h)θ

φ
ψ(g̃′, h) = θφ

′⊗φ(j̃(g̃a, g̃′), h).

Hence, the integral (3.2) becomes∫
O(V )\O(V )A

∫
C2Sp(Z)\S̃p(Z)A

θφ
′⊗φ
ψ (j̃(g̃a, g̃′), h)ϕπ̃(g̃) dg̃ dh. (3.3)

In order to interchange the order of the integrations with respect to g̃ and h, we have to regularize
the integration with respect to h. To this end, we choose a finite place ν0, which satisfies all of the
requirements as given in § 2.3. Take an element αν0 in the spherical Hecke algebra of S̃p((Za⊕Z)ν0)

as in § 2.3. Then θ
ωψν0

(αν0 ,1)(φ
′⊗φ)

ψ (j̃(g̃a, g̃′), h) is rapidly decreasing in h, where ωψν0 denotes, for
brevity, the Weil representation of

S̃p((Za ⊕ Z)ν0) × O(V )ν0 .

Hence, we can interchange the order of integrations in (3.3) and obtain, by using (2.25), that
(3.3) equals

c−1
ν0

∫
C2Sp(Z)\S̃p(Z)A

∫
O(V )\O(V )A

θ
ωψν0

(αν0 ,1)(φ
′⊗φ)

ψ (j̃(g̃a, g̃′), h) dhϕπ̃(g̃) dg̃,

which can be written as ∫
C2Sp(Z)\S̃p(Z)A

Ireg,V,ψ(j̃(g̃a, g̃′), φ′ ⊗ φ)ϕπ̃(g̃) dg̃. (3.4)

Finally the proposition follows from Corollary 2.2.

In order to further describe the structure of the subspace θZaψ,V (θVψ−1,Z(π̃)) as in Proposition 3.1,
we have to investigate the following integral∫

C2Sp(Z)\S̃p(Z)A

ϕπ̃(g̃)E(j̃(g̃a, g̃′), fs) dg̃. (3.5)

Consider the polarization

Za ⊕ Z = Z+
a,∆ + Z−

a,∆,
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where Z±
a,∆ = i1(l±a ) + {(v,±vc) | v ∈ Z}. Note that for g ∈ Sp(Z), j(g, gc) acts as identity

on i1(l±a ), and (v,±vc)j(g, gc) = (vg,±(vg)c). Here, we use notation as in properties (b) and (e)
of § 2.1. Let Pa,∆ be the Siegel parabolic subgroup of Sp(Za ⊕ Z), which preserves the maximal
totally isotropic subspace Z−

a,∆. Write its Levi decomposition Pa,∆ = Ma,∆Ua,∆, where Ma,∆ is the
Levi part, which is isomorphic to GL(2n+ a). Thus, β(g) = j(g, gc) defines an embedding of Sp(Z)
into Ma,∆. Let δ0 ∈ Sp(Za ⊕ Z) be such that it acts as the identity on i1(la) and δ0Pa,∆δ

−1
0 = Pa,

the standard Siegel parabolic subgroup of Sp(Za⊕Z) defined before Proposition 3.1. For a standard
section fs in I2n+a(χV,ψ , s), we define f ′s(b̃) = fs((δ0, 1)b̃). Then

f ′s ∈ I ′2n+a(χ
′
V,ψ
, s) = IndS̃p(Za⊕Z)A

P̃a,∆(A)
(χ′

V,ψ
· |detZ−

a,∆
|s),

where χ′
V,ψ

(p̃) = χ
V,ψ

((δ0, 1)p̃(δ0, 1)−1). We have

E(x̃, fs) = E((δ0, 1)x̃, fs) = E′(x̃, f ′s), (3.6)

where E′ denotes the Eisenstein series corresponding to I ′2n+a(χ
′
V,ψ
, s). It is easy to check that at

each place ν, we have, for pν ∈ Pa,∆(kν),

(δ0, 1)(pν , ε)(δ0, 1)−1 = (δ0pνδ−1
0 , ενcν(δ0, pν)(detZ−

a,∆
(pν), xν(δ0))ν), (3.7)

where cν is the Rao normalized cocycle on S̃p((Za ×Z)ν) with respect to the basis above. Note the
following properties of f ′s.

Lemma 3.2. Let Ra ⊂ Sp(Za) be the parabolic subgroup which preserves l−a , and its Levi decom-
position Ra = MRaURa . We identify MRa with GL(l+a ) × Sp(Z). In the following, ε = ±1 and

b̃ ∈ S̃p(Za)A.

(1) Let u ∈ URa(A). Then

f ′s(j̃1(u, ε)b̃) = εf ′s(b̃).

(2) Let d ∈MRa(A) correspond to an element of GL(l+a )A. Then

f ′s(j̃1(d, ε)b̃) = ε · χ
V,ψ

(detl+a d)|detl+a d|s+n+(a+1)/2f ′s(b̃).

(3) Let g ∈ MRa(A) correspond to an element in Sp(Z)A and let g̃ be an inverse image of g in

S̃p(Z)A. Then

f ′s(j̃1(g̃)b̃) = f ′s(j̃2(g̃
′)−1b̃).

Proof. By (3.7) and the fact that j1(URa) ⊂ Ua,∆, we have

f ′s(j̃1(u, ε)b̃) = ε · c(δ0, j1(u))f ′s(b̃).
It is clear that u �→ j̃1(u, 1) = (j1(u), 1) is an embedding of URa(A) inside S̃p(Za×Z)A. This implies
that u �→ c(δ0, j1(u)) is a µ2-valued character of URa(A), and hence is trivial. This proves part (1).

For part (2), since δ0 is the identity on j1(la), it follows that δ0 and j1(d) commute. Hence (δ0, 1)
and j̃1(d, ε) commute. It follows that

χ′
V,ψ

(j̃1(d, ε)) = χ
V,ψ

(j̃1(d, ε)) = ε · χ
V,ψ

(detl+a d).

Now the assertion follows.
Finally, we have f ′s(j̃1(g̃)b̃) = f ′s(j̃(g̃, g̃′)j̃2(g̃′)−1b̃). Note that j(g, gc) lies in MRa(A) and its

determinant on either of Z±
a,∆(A) is det g = 1. It follows that f ′s(j̃1(g̃)b̃) = χ′

V,ψ
(j̃(g̃, g̃′))f ′s(j̃2(g̃′)−1b̃).

Clearly, g̃ �→ χ′
V,ψ

(j̃(g̃, g̃′)) is a µ2-valued character of S̃p(Z)A, trivial on C2(A), and hence, it is
trivial. This proves part (3).
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Motivated by the global integral (3.5), we define, as in [Moe97a, p. 211],

fϕπ̃,s(g̃a) =
∫
C2\S̃p(Z)A

ϕπ̃(g̃)f ′s(j̃(g̃a, g̃
′)) dg̃. (3.8)

As in [Moe97a, § 2.1], the previous lemma implies that, if the integrals (3.8) converge absolutely at
a point s, then fϕπ̃,s is a K̃Za-finite element of the representation

J(π̃, s) = IndS̃p(Za)A
R̃a(A)

(µψ|detl+a |
s ⊗ π̃),

where µψ|detl+a |s ⊗ π̃ is the representation of R̃a(A), which is trivial on (URa(A), 1) and acts as

ε · χ
V,ψ

(detl+a d)|detl+a d|sπ̃(g̃) (3.9)

for an element (d, ε)g̃ in the Levi part MRa(A) with d ∈ GL(l+a )A and g̃ ∈ S̃p(Z)A. Note that

|detl+a d|n+(a+1)/2 = δ
1
2
Ra

(d).

Proposition 3.3. The integral (3.8) converges absolutely for Re(s) > n+ (a+ 1)/2, and continues
to a meromorphic function in the whole plane. Its poles are contained in the set of poles of an
Eisenstein series corresponding to a certain fixed (independent of π̃) degenerate principal series for

S̃p(Z ⊕ Z)A, induced from a Siegel parabolic subgroup.

Proof. As in [Moe97a, § 2, (2)], let us rewrite

fϕπ̃,s(g̃a) =
∫
C2\S̃p(Z)A

ϕπ̃(g̃)f ′s(j̃2(g̃
′)j̃1(g̃a)) dg̃

=
∫
C2Sp(Z)\S̃p(Z)A

ϕπ̃(g̃)
∑

γ∈Sp(Z)

f ′s((j2(γ), 1)j̃2(g̃
′)j̃1(g̃a)) dg̃. (3.10)

Note that (γ, 1)′ = (γc, 1), for γ ∈ Sp(Z). Since γ �→ j2(γ) is an embedding of Sp(Z) inside
Pa,∆\Sp(Za × Z), the inner sum in the integral (3.10) is a sub-series of the series defining the
Eisenstein series E′(j̃(g̃a, g̃′), f ′s) as in (3.4), and hence it converges absolutely for Re(s) > n +
(a+ 1)/2.

In order to obtain the analytic continuation, we may assume that g̃a = h̃ lies in S̃p(Z)A ⊂
M̃Ra(A). Then we saw that h̃ �→ fϕπ̃,s(h̃) lies in the space of π̃. Thus, it is enough to show the
analytic continuation of ∫

C2Sp(Z)\S̃p(Z)A

fϕπ̃,s(h̃)ξ̄π̃(h̃) dh̃, (3.11)

for every cusp form ξπ̃. By using part (3) of Lemma 3.2, the integral (3.11), in its convergence
domain, is equal to∫

C2Sp(Z)\S̃p(Z)A

∫
C2\S̃p(Z)A

ϕπ̃(g̃)ξ̄π̃(h̃)f ′s(j̃1(h̃)j̃2(g̃
′)) dg̃ dh̃

=
∫
C2Sp(Z)\S̃p(Z)A

∫
C2\S̃p(Z)A

ϕπ̃(g̃)ξ̄π̃(h̃)f ′s(j̃2(h̃
−1g̃′)) dg̃ dh̃

=
∫
C2Sp(Z)\S̃p(Z)A

∫
C2\S̃p(Z)A

ϕπ̃(h̃g̃)ξ̄π̃(h̃)f ′s(j̃2(g̃
′)) dg̃ dh̃

=
∫
C2\S̃p(Z)A

f ′s(j̃2(g̃
′))〈π̃(g̃)ϕπ̃, ξπ̃〉L2 dg̃,
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where 〈 , 〉L2 is the standard L2-product of cuspidal automorphic forms on C2Sp(Z)\S̃p(Z)A.
Note that the switch of order of integrations dg̃ and dh̃ is justified, since ϕπ̃ and ξπ̃ are rapidly
decreasing. Thus, the integral (3.11), using (3.8), is equal to∫

C2\S̃p(Z)A

f ′s(j̃1(g̃))〈ϕπ̃, π̃(g̃)ξπ̃〉L2 dg̃. (3.12)

We recognize (3.12) as the result of unfolding the Rankin–Selberg integrals of the doubling method
applied to metaplectic groups. This unfolding is quite formal, and is obtained exactly as in the
linear case. See [PR86] and [LR05]. Thus, let f∗s be the restriction of f ′s to S̃p(Z ⊕Z)A. Then f∗s is
a holomorphic K̃Z×Z-finite section in

IndS̃p(Z⊕Z)A
P̃∆(A)

(χ′
V,ψ

|det|s+a/2).

Here P∆ = P0,∆, and we think of Sp(Z ⊕ Z) as Sp(Z0 ⊕ Z). Let E∗(h̃, f∗s ) be the corresponding
Eisenstein series on S̃p(Z ⊕ Z)A. Then (3.12) equals∫

C2Sp(Z)×C2Sp(Z)\S̃p(Z)A×S̃p(Z)A

ξ̄π̃(g̃)ϕπ̃(h̃)E∗(j̃(g̃, h̃), f∗s ) dg̃ dh̃. (3.13)

This integral is meromorphic in the whole plane, and its poles are included in the set of poles
of E∗(x̃, f∗s ).

Remark 3.4. Note that the integral (3.12) is Eulerian, and its computation at unramified places was
carried out by Li in [Li92]. Also, it is easy to see that integral (3.5) is (for a = 0) an inner integral
of (3.13).

Let ERa(h̃, fϕπ̃,s) denote the Eisenstein series on S̃p(Za)A corresponding to the section fϕπ̃,s
given by (3.8). This Eisenstein series will give another description of the subspace θZaψ,V (θVψ−1,Z(π̃)).

Theorem 3.5. In the notation above, we have∫
C2Sp(Z)\S̃p(Z)A

ϕπ̃(g̃)E′(j̃(g̃a, g̃′), f ′s) dg̃ = ERa(g̃, fϕπ̃,s). (3.14)

Proof. The proof is exactly as in [Moe97a, § 2], which is a generalization of the doubling method.
The reason for the exact similarity is the fact that Sp(Z) (respectively, Sp(Za ⊕ Z)) is a subgroup
of S̃p(Z)A (respectively, S̃p(Za ⊕ Z)A), and similarly for unipotent radicals (over A). Thus, when
we unwind the left-hand side of (3.14), we have to examine the double coset space

Pa,∆\Sp(Za ⊕ Z)/j(Sp(Za) × Sp(Z)).

This is described in [PR86] and used in [Moe97a, § 2], and exactly as in [Moe97a, § 2] only one double
coset has a non-trivial contribution to the left-hand side of (3.14), and it is the double coset of the
identity element: Pa,∆j(Sp(Za) × Sp(Z)). Again, the reason is that for the other double cosets, we
get a stabilizer in Sp(Za) × Sp(Z), whose projection on Sp(Z) contains a unipotent radical, which
contributes an inner integration of a cusp form of π̃ along this radical, and hence results in zero.
Thus, we get, as in [Moe97a, § 2], that the left-hand side of (3.14) equals∑
γ∈Ra(k)\Sp(Za)

∫
C2\S̃p(Z)A

ϕπ̃(g̃)f ′s(j̃((γ, 1)g̃a, g̃
′)) dg̃ =

∑
γ∈Ra(k)\Sp(Za)

fϕπ̃,s((γ, 1)g̃a) = ERa(g̃a, fϕπ̃,s).

This proves the theorem.

Using Proposition 3.1 and (3.6), we conclude as follows.
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Theorem 3.6. Let π̃ be an irreducible genuine cuspidal automorphic representation of S̃p(Z)A.
Assume that θVψ−1,Z(π̃) is cuspidal. Let a be a positive integer such that m < n + a + 1. Then the

space θZaψ,V (θVψ−1,Z(π̃)) is contained in the space of automorphic forms on S̃p(Za)A generated by
the residual automorphic forms

g̃a �→ Ress=(n+a+1−m)/2E
Ra(g̃a, fϕπ̃,s). (3.15)

3.2 Proof of Theorem 1.1
We are now ready to complete the proof of Theorem 1.1 stated in the introduction. The details are
exactly as in [Moe97a, Moe97b]. We indicate them briefly. Let us apply the constant term along
URa (as an operator) to the inclusion asserted in Theorem 3.6. For an automorphic form ξ, on
S̃p(Za)A, denote by ξURa its constant term along URa , restricted to the Levi part M̃Ra(A). For an
automorphic representation τ of S̃p(Za)A, we denote by τURa the automorphic representation of
M̃Ra(A) whose space consists all of the ξURa , as ξ varies in the space of τ . Recall that MRa is
isomorphic to GL(l+a ) × Sp(Z). By Rallis’ tower property [Ral84], for any cuspidal automorphic
representation σ of O(V )A,

Res
S̃p(Z)A

[θZaψ,V (σ)]URa = θZψ,V (σ). (3.16)

Here we view S̃p(Z)A as a subgroup of M̃Ra(A). Moreover, G̃L(l+a )A acts on [θZaψ,V (σ)]URa by the
character

(d, ε) �→ εχ
V,ψ

(detl+a d)|detl+a d|m/2 = µψ(d)|detl+a d|m/2. (3.17)

The main formula which explains (3.16) and (3.17) is that, for φ ∈ S(V n+a
A

), of the form φ1 ⊗ φ2,
where φ1 ∈ S(V a

A
) and φ2 ∈ S(V n

A
) (in the notation of (2.25)),

θφψ(ϕσ)URa ((d, ε)g̃) = εφ1(0)µψ(d)|det(d)|m/2θφ2

ψ (ϕσ)(g̃), (3.18)

for g̃ ∈ S̃p(Z)A, d ∈ GL(l+a )A, ε = ±1. From Theorem 3.6, we conclude that, over M̃Ra(A),

µψ|detl+a |
m/2 ⊗ θZψ,V (θVψ−1,Z(π̃)) ⊂ {[Ress=(n+a+1−m)/2E

Ra(·, fϕπ̃,s)]URa | ϕπ̃ ∈ Vπ̃}. (3.19)

Exactly as in [Moe97a, § 2], by expressing the constant term along URa , [ERa(·, fϕπ̃,s)]URa , of the
Eisenstein series ERa(·, fϕπ̃,s) in terms of intertwining operators, we can replace the right-hand side
of (3.19) by a certain sum of residues of certain intertwining operators, which take values in the
space of π̃. The details are exactly as in [Moe97a, § 2], only that we replace the characters

diag(t1, . . . , ta) �→ |t1|s1 · · · |ta|sa
there by (our) characters,

(diag(t1, . . . , ta), ε) �→ εχ
V,ψ

(t1 · · · ta)|t1|s1 · · · |ta|sa .
We then conclude from (3.19), by considering only the action of S̃p(Z)A, that

θZψ,V (θVψ−1,Z(π̃)) = π̃.

This concludes the proof of part (1) of Theorem 1.1.
The proof of part (2) of Theorem 1.1 now follows, as in [Moe97a, § 2], the only interesting case

being b � m−n−1. Otherwise, we just apply Theorem 3.6 for a = b. For a fixed integer a > m−n−1,
we follow the same process as in the proof of part (1) of Theorem 1.1 above. This time we apply
the constant term along URa−b (as an operator) to the inclusion asserted in Theorem 3.6, viewing
Za as (Za−b)b. This will prove part (2) of Theorem 1.1.

Finally, part (3) of Theorem 1.1 follows immediately from part (1) of Theorem 1.1 and the Rallis
tower property [Ral84]. Indeed, since θVψ−1,Z(π̃) is assumed to be cuspidal, then any irreducible
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sub-representation of it, σ, is cuspidal. Then θZψ,V (σ) is non-trivial and is a sub-representation
of θZψ,V (θVψ−1,Z(π̃)) = π̃, and hence equals π̃ and, in particular, is cuspidal. By the Rallis tower

property [Ral84], θZ−b
ψ,V (σ) = 0 for all positive integers b. This proves part (3) of Theorem 1.1 and

hence completes the proof of the whole theorem.

3.3 Proof of Theorems 1.2 and 1.3
The proofs of these two theorems can be directly inferred from [Moe97b]. For this, let us explain
how to proceed until we reach the point where we can directly use the results of [Moe97b].

Let σ be an irreducible cuspidal automorphic representation of O(V )A. Assume that θZψ−1,V (σ)

is cuspidal, as an automorphic representation of S̃p(Z)A. Let Vb be the orthogonal direct sum of
the quadratic space V (equipped with its symmetric form Q) and b hyperbolic planes kui + ku−i,
i = 1, . . . , b. As usual, ui and u−i are isotropic, and the Gram matrix of the pair (ui, u−i) is

(
0 1
1 0

)
.

Put �b =
⊕b

i=1(kui + ku−i) and �±b =
⊕b

i=1 ku±i. Denote by Qb the symmetric bilinear form
on Vb. Consider the theta lift θVbψ,Z(θZψ−1,V (σ)). Its space is generated by the following automorphic
forms on O(Vb)A ∫

C2Sp(Z)\S̃p(Z)A

θφ2

ψ (g̃, hb)
∫

O(V )\O(V )A

θφ1

ψ−1(g̃, h)ϕσ(h) dh dg̃. (3.20)

Here hb ∈ O(Vb)A, φ1 ∈ S(V n
A

), φ2 ∈ S(Vb(A)n), and ϕσ is a cusp form in the space of σ. Now, let us
view ωψ−1,Z⊗V as ωψ,Z⊗V ′ , where V ′ denotes the space V , equipped with the symmetric form −Q.
(See [MVW87, p. 36].) We have a natural embedding over k

O(Vb) × O(V ′) → O(Vb ⊕ V ′),

where the symmetric form of Vb ⊕ V ′ is Qb ⊕ (−Q). Note that Vb ⊕ V ′ is a totally split, even-
dimensional quadratic space over k. We have [MVW87, p. 37]

θφ2

ψ,Z⊗Vb(g̃, hb)θ
φ1

ψ,Z⊗V ′(g̃, h) = θφ2⊗φ1

ψ,Z⊗(Vb⊕V ′)(g, (hb, h)),

where g ∈ Sp(Z)A is the projection of g̃, and we think of φ2 ⊗ φ1 as an element of S((Vb ⊕ V ′)n
A
).

Thus, (3.20) becomes∫
Sp(Z)\Sp(Z)A

∫
O(V ′)\O(V ′)A

θφ2⊗φ1

ψ,Z⊗(Vb⊕V ′)(g, (hb, h))ϕσ(h) dh dg. (3.21)

Now, we are at the situation of [Moe97a, § 1]. Indeed, we assume that 2n < m+ b− 1. By applying
Theorem 2.4 with regularization in terms of a p-adic Hecke element α, which is the same as in the
proof in [Moe97a], the integral (3.21) has the form∫

O(V ′)\O(V ′)A
ϕσ(h)Ress=(m+b−1)/2−nE((hb, h), ξs) dh. (3.22)

Here ξs is a KVb⊕V ′-finite section of IndO(Vb⊕V ′)A
Lb,∆(A) |detVb,∆ |s, and E(·, ξs) denotes the corresponding

Eisenstein series. We denote by Lb,∆ the maximal parabolic subgroup of O(Vb⊕V ′), which preserves
the isotropic subspace

Vb,∆ =
b⊕
i=1

k(ui, 0) + {(v, v) ∈ V × V ′}.

The proof proceeds from this point on, word by word, as in [Moe97a, § 1]. Note that the parity of
m is no longer relevant to the rest of the proof. First, we conclude, as in the previous section, as
follows.

742

https://doi.org/10.1112/S0010437X07002795 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002795


On the genericity of cuspidal automorphic forms of SO(2n + 1), II

Theorem 3.7. Let σ be an irreducible cuspidal automorphic representation of O(V )A. Assume that
θZψ−1,V (σ) is cuspidal. Then θVbψ,Zθ

Z
ψ−1,V (σ) is contained in the space of residues at s = (m+b−1)/2−n

of the Eisenstein series corresponding to IndO(Vb)A
Db(A) |det
+b |

s, where Db is the parabolic subgroup of

O(Vb), which preserves �+b .

Now Theorem 1.2 in the introduction follows in exactly the same way as the proof of Theorem 1.1
in the previous section. Theorem 1.3 in the introduction follows from Theorems 1.1 and 1.2, exactly
as in [Moe97a, § 2]. We omit the details.

4. Applications

In this section, we let Hn = SO2n+1 = SO(V ), where (V,Q) is the column space of dimension
2n+1 over k, equipped with the non-degenerate k-split symmetric bilinear form in 2n+1 variables
associated to the symmetric matrix defined inductively by

J2n+1 =

0 1
J2n−1

1 0

 .

We denote by G̃n(kν) and G̃n(A) the local and the global metaplectic groups, respectively, cor-
responding to the symplectic group Gn = Sp2n over k, with respect to the standard symplectic
form on the 2n-dimensional row space. For an irreducible cuspidal automorphic representation σ of
Hn(A), we denote by θ̃mψ,n(σ)+ the ψ-theta lift of σ to G̃m(A); it is generated by the automorphic

forms θφψ(ϕσ)+, which are defined as in (2.18), only that the integration in (2.18) is replaced by an
integration over Hn(k)\Hn(A). Similarly, for an irreducible genuine cuspidal automorphic represen-
tation π̃ of G̃m(A), we denote by θnψ,m(π̃) the ψ-theta lift of π̃ to O2n+1(A). We denote by θnψ,m(π̃)+
the automorphic representation of Hn(A) obtained by restricting the functions of θnψ,m(π̃) to Hn(A).

Our first application is the proof of Theorem 1.4 in the introduction, which is part (4) of the
main theorem in [Fur95] without the assumptions made there.

Theorem 4.1. Let σ be an irreducible cuspidal automorphic representation of Hn(A). Assume that
σ is generic, i.e. has a nonzero Whittaker Fourier coefficient. Then the ψ-theta lift of σ to G̃n(A),
θ̃nψ,n(σ)+, is non-trivial if and only if L(σ, 1

2) �= 0, where L(σ, s) is the standard L-function attached
to σ.

Proof. Since σ is cuspidal and generic, the local components of σ are all unitary and locally generic,
and hence, by the exponent structure of the generic unitary dual [LMT04], L(σν , s) is holomorphic
at s = 1

2 , for all places ν. Thus, L(σ, 1
2) �= 0, if and only if LS(σ, 1

2) �= 0, for any finite set S of
places of k, which includes the set of all archimedean places of k. This can also be deduced from the
explicit Langlands functorial transfer from SO2n+1(A) to GL2n(A) for irreducible generic cuspidal
automorphic representations σ of SO2n+1(A), which has been established through [CKPS04, GRS01,
JS03, JS04].

Choose S, such that σ and ψ are unramified outside S. If LS(σ, 1
2) �= 0, then by

[JS, Remark 2.3], σ has a Bessel model of special type with respect to SO1,1. Then by [Fur95,
Proposition 1] (with λ = 1), θ̃nψ,n(σ)+ has a non-trivial ψ-Whittaker Fourier coefficient, and hence
θ̃nψ,n(σ)+ is nonzero. Note that, for this direction, we did not use any of the results proved in the
previous sections.

Conversely, assume that θ̃nψ,n(σ)+ �= 0. Then we claim that θ̃nψ,n(σ)+ is cuspidal. Indeed,
if this is not so, then the Rallis tower property [Ral84] (which is clearly valid for special
orthogonal groups as well) implies that, for the first integer m > 0 such that θ̃mψ,n(σ)+ �= 0, the
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representation π̃′ = θ̃mψ,n(σ)+ is cuspidal. Choose an irreducible summand π̃ of π̃′. In particular,
at a given finite place ν of k, we get that π̃ν is a local ψν-Howe lift of the generic σν , but this is
impossible by [JS03, Proposition 2.1], since m < n. This proves the claim.

Let us denote by Z2 = {±I2n+1} the center of O2n+1. Note that O2n+1 = Z2 × Hn. Let µ be
a character of Z2\Z2(A), and denote by σµ the extension of σ to O2n+1(A) by the character µ on
the center. This also allows us to extend cusp forms of σ from Hn(A) to O2n+1(A) in the same way.
The space of θ̃nψ,n(σ)+ is generated by the integrals θφψ(ϕσ)(g̃)+. It is clear that

θφψ(ϕσ)(g̃)+ =
∑
µ

∫
O2n+1(F )\O2n+1(A)

θφψ(g̃, h)ϕσµ (h) dh.

Thus, it follows that there is µ such that π̃ = θ̃nψ,n(σµ) �= 0 and is, of course, cuspidal. By Theorem
1.2, we know that π̃ is irreducible and σµ = θnψ−1,n(π̃). By [Fur95, Proposition 3], we get that π̃
is ψ-generic since σ is generic. Note that by restricting to Hn(A), we get that σ = θnψ−1,n(π̃)+.
By [CKPS04], σ has a functorial lift to GL2n(A) and by [GRS01, Sou05], this lift has the form
τ = τ1 � · · · � τl, which is an isobaric sum of l pairwise non-equivalent, irreducible, cuspidal,
automorphic representations τi of GL2ni(A), with the property that LS(τi,Λ2, s) has a pole at
s = 1 for each i. It follows that with respect to ψ, π̃ lifts at almost all places to τ , and by [Sou05,
Theorem 13], we conclude also that LS(τi, 1

2) �= 0 for all i. This implies that LS(σ, 1
2) �= 0.

Next, we are going to consider the cases when the central value of the standard L-function
LS(σ, 1

2 ) is zero.
Let σ be an irreducible generic cuspidal automorphic representation of Hn(A). By [HP83,

Theorem 5.7], the ψ-theta lift of σ to G̃n+1(A), θ̃n+1
ψ,n (σ)+, is nonzero and admits non-trivial

ψ-Whittaker Fourier coefficients. The calculation of this ψ-Whittaker Fourier coefficient can also be
found in [Fur95, § 4]; its precise local variant appears in [JS03, Corollary 2.2]. The precise formula
for the ψ-Whittaker Fourier coefficient of automorphic functions in θ̃n+1

ψ,n (σ)+ is as follows.
Let U be the standard maximal unipotent subgroup of Gn. Since the Rao cocycle is trivial

on U at all places, we may regard UA as a subgroup of G̃n(A). Denote by ψU the standard non-
degenerate (or Whittaker) character of UA given by evaluating ψ at the sum of all simple root
coordinates of elements of UA. Let ϕσ be a cusp form in the space of σ. Let ωn+1

ψ,V denote the

restriction of the ψ-Weil representation to the subgroup G̃n+1(A)·Hn(A), realized in the Schrödinger
model S(V n+1

A
), where V is the (2n + 1)-dimensional column space, over k, on which Hn acts. Let

{v1, . . . , vn, v0, v−n, . . . , v−1} be the standard basis of V over k, i.e. the spans of the first n vectors
and of the last n vectors are maximal totally isotropic subspaces, both orthogonal to the vector v0,
Q(vi, v−j) = δi,j for i, j � n, and Q(v0, v0) = 1. For φ ∈ S(V n+1

A
), we denote, as before but with

more precision, by θ̃φ,n+1
ψ,n (ϕσ)+ the ψ-theta lift of the cusp form ϕσ in the space of σ to G̃n+1(A),

which is defined as in (2.18), but with the integration taking place over Hn(k)\Hn(A). Consider the
ψ-Whittaker Fourier coefficient of θ̃φ,n+1

ψ,n (ϕσ)+

Wψ

θ̃φ,n+1
ψ,n (ϕσ)+

(g̃) =
∫
U\UA

θ̃φ,n+1
ψ,n (ϕσ)+(ug̃)ψ−1(u) du.

Then we have the following expression

Wψ

θ̃φ,n+1
ψ,n (ϕσ)+

(g̃) =
∫
Cn(A)\Hn(A)

ωn+1
ψ,V (g̃, h)φ(v1, . . . , vn, v0)Wψ

ϕσ(h) dh. (4.1)

Here Wψ
ϕσ is the standard ψ-Whittaker Fourier coefficient of ϕσ, and Cn is the pointwise stabilizer

in Hn of v1, . . . , vn, v0. Clearly, the right-hand side of (4.1) is not identically zero, since σ is generic.
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Thus, if L(σ, 1
2) = 0, then by Theorem 4.1, the ψ-theta lift to G̃n(A), θ̃nψ,n(σ)+, vanishes. Then by

the Rallis tower property [Ral84] the ψ-theta lift to G̃n+1(A), θ̃n+1
ψ,n (σ)+ is cuspidal. As we did before,

there is a character µ of Z2\Z2(A) such that θ̃n+1
ψ,n (σµ) = π̃ is irreducible, cuspidal, and ψ-generic.

Conversely, let π̃ be an irreducible genuine cuspidal automorphic representation of G̃n+1(A).
Assume that π̃ is ψ-generic. If the ψ−1-theta lift of π̃ to O2n+1(A), σ′ = θnψ−1,n+1(π̃), does not
vanish, then σ′ is cuspidal, according to [JS03, Corollary 2.2(2)]. By Theorems 1.1 and 1.3, we get
that σ′ is irreducible, and hence it is of the form σµ with notation as above. We conclude that
π̃ = θ̃n+1

ψ,n (σµ). Since π̃ is ψ-generic, then we can compute the ψ-Whittaker Fourier coefficient on
π̃ as we did in (4.1), and obtain the same formula, except that, in the right-hand side of (4.1),
we integrate over Cn(A)\O2n+1(A). In particular, Wψ

ϕσ is not identically zero, and this means that
θnψ,n+1(π̃)+ is generic. From Theorem 4.1, we also conclude that L(σ, 1

2 ) = 0. Let us summarize the
above discussion as follows.

Theorem 4.2. With notation above, the following hold.

(1) Let σ be an irreducible generic cuspidal automorphic representation of Hn(A). Assume that
L(σ, 1

2) = 0. Then θ̃n+1
ψ,n (σ)+ is cuspidal and ψ-generic.

(2) Let π̃ be an irreducible genuine ψ-generic cuspidal automorphic representation of G̃n+1. Assume
that σ = θnψ−1,n+1(π̃)+ is non-trivial. Then σ is irreducible, cuspidal, and generic, such that

L(σ, 1
2) = 0.

Finally, we are ready to complete our proof of Theorem 1.5. We are going to use the notation
introduced in [JS] freely.

Let σ be an irreducible cuspidal automorphic representation of Hn(A), which has a nonzero
Bessel model of special type, i.e. of type (Dλ, 1, ψn,n−1;λ), with respect to the quadratic extension
of k generated by the square root of λ ∈ k× \ (k×)2. See [JS, § 2.2] for the definition of this notion.
By [JS, Theorem 4.1(1)], we know that θ̃kψ,n(σ)+ = 0, for k < n− 1, and by [Fur95, Proposition 1],
the last space is non-trivial for k = n.

Assume now that θ̃n−1
ψ,n (σ)+ �= 0. Then, as before, we can find a character µ of Z2\Z2(A) such

that τ̃ = θ̃n−1
ψ,n (σµ) is cuspidal and irreducible. Again it follows from Theorems 1.2 and 1.3 that

σµ = θnψ−1,n−1(τ̃ ), and then that σ = θnψ−1,n−1(τ̃)+. Now, we can compute explicitly the Bessel
model of special type of σ = θnψ−1,n−1(τ̃)+. It is defined by the integral in [JS, (2.11)], taking there
r = n − 1 and the automorphic form φ to be the constant function 1. Then the calculation is
exactly as in the p-adic case in [JS, Proof of Theorem 4.3]. We get that the Bessel model of special
type (given by the integral) of σ = θnψ−1,n−1(τ̃)+ can be expressed in terms of the ψλ-Whittaker
Fourier coefficient of τ̃ . Hence, τ̃ must be ψλ-generic. (This calculation shows that starting with an
irreducible, automorphic, cuspidal representation τ̃ of G̃n−1(A), which is ψλ-generic, θnψ−1,n−1(τ̃)+
has a non-trivial Bessel model of special type, with respect to λ, as above, and, in particular, this
theta-lift is nontrivial.) This proves the following theorem.

Theorem 4.3. Let σ be an irreducible cuspidal automorphic representation of Hn(A). Assume that
σ has a nonzero Bessel model of special type, i.e. of type (Dλ, 1, ψn,n−1;λ), with a nonsquare λ ∈ k×.

If the ψ-theta lift to G̃n−1(A), θ̃n−1
ψ,n (σ)+, does not vanish, then the automorphic representation

θ̃n−1
ψ,n (σ)+ of G̃n−1(A) is cuspidal and ψλ-generic.

We briefly recall, from [JS], what we have proved for irreducible cuspidal automorphic
representations σ of Hn(A), which have a nonzero Bessel model of special type, i.e. of type
(Dλ, 1, ψn,n−1;λ), with λ ∈ k×. We proved in [JS, § 2.3] that if this special Bessel model is
k-split, i.e. λ ∈ (k×)2, then the automorphic representation σ is generic [JS, Proposition 2.2].
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If the special Bessel model of type (Dλ, 1, ψn,n−1;λ) is not k-split, i.e. λ is not a square, then we
proved in [JS, Theorem 4.1] that the first occurrence of the ψ-theta lift of σ to the G̃m(A)-tower,
i.e. the first index m = mψ(σ), such that θ̃mψ,n(σ)+ is nonzero, satisfies the following inequalities

n− 1 � mψ(σ) � n.

Then we proved that if mψ(σ) = n, then there are two possibilities. The first is that σ is nearly
equivalent to an irreducible generic cuspidal automorphic representation σ′n of Hn(A), such that
σ′n ⊗ χλ is in the image of the ψ−1-theta lift, from irreducible, genuine, automorphic, cuspidal,
ψ-generic representations of G̃n(A). In this case, we conclude, by Theorem 4.1, that L(σ′ ⊗ χλ,

1
2)

�= 0. Here χλ is the composition of αλ with the spinor norm, and αλ is the character given by the
Hilbert symbol (·, λ)k.

The second possibility is that σ is a CAP representation with respect to the cuspidal data

(P1;αλ| · |
1
2 ⊗ σn−1),

where P1 is the standard parabolic subgroup of Hn, which preserves an isotropic line, and σn−1

is an irreducible cuspidal automorphic representation of Hn−1(A), such that σn−1 ⊗ χλ is in the
image of the ψ−1-theta lift from an irreducible, genuine, automorphic, cuspidal, ψ-generic represen-
tation of G̃n(A). Note that in [JS, Theorem 4.1(2)], we were unable to determine further explicit
properties of the cuspidal data, in particular, of σn−1, so that we were unable to complete the proof
of the CAP conjecture [JS, Conjecture 1.1] for this case. Now by Theorem 4.2, we conclude that
σn−1 is generic and that the central value of the standard L-function twisted by χλ, L(σn−1⊗χλ, 1

2),
is zero. This proves a little more than what the CAP conjecture asserts in this case.

Now, let us analyze the remaining case, where the first occurrencemψ(σ) is n−1. By Theorem 4.3,
we conclude that the cuspidal automorphic representation θ̃n−1

ψ,n (σ)+ is ψλ-generic. Thus, there

is an irreducible ψλ-generic cuspidal automorphic representation τ̃ of G̃n−1(A) such that σ =
θnψ−1,n−1(τ̃ )+ (by Theorems 1.2 and 1.3). In this case, we proved in [JS, Theorem 4.6] that either σ
is CAP with respect to the cuspidal data

(P1; | · |
1
2 ⊗ σn−1),

or σ is CAP with respect to the cuspidal data

(P1,1; | · | 12 ⊗ αλ| · |
1
2 ⊗ σn−2).

In the first case σn−1 is cuspidal and generic on Hn−1(A). The proof there shows, in this case,
that σn−1 ⊗ χλ is the image under the ψ−1-theta lift of the ψ-generic representation τ̃λ, which is
an outer conjugation of τ̃ by the similitude element diag(In, λIn). By Theorem 4.1, we get that the
central value of the standard L-function twisted by χλ, L(σn−1 ⊗ χλ,

1
2 ) is nonzero.

In the second case, P1,1 is the standard parabolic subgroup whose Levi part is isomorphic to
GL1 × GL1 × Hn−2, and σn−2 is an irreducible cuspidal automorphic representation of Hn−2(A).
By construction,

σn−2 ⊗ χλ = θ̃n−2
ψ,n−1(τ̃

λ)+.

Again, in [JS] we were unable to prove further properties for σn−2, so that the CAP conjecture can
be completely verified for this case. Now, by Theorem 4.2, σn−2 is also generic and the central value
of the standard L-function twisted by χλ, L(σn−2 ⊗ χλ,

1
2) must be zero.

The proof of Theorem 1.5 is finally completed.
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