
4 Optimal Low-Thrust Transfer Using
Variable Bounded Thrust

4.1 Introduction

The problem of minimum-fuel time-fixed orbit transfer and rendezvous using contin-
uous low thrust, bounded from above and below, is analyzed here. The formulation is
based on the use of the variation of parameters equations, which are written in terms of
a set of nonsingular equinoctial elements, where the mean longitude represents the fast
element. The consideration of maximum and minimum bounds on the thrust magnitude
with constant power is equivalent to constraining the specific impulse of the propulsion
system, such that this particular variable is optimized during the transfer. The thrust
vector orientation is also optimized in order to minimize fuel consumption. Exact non-
linear dynamics for state vector propagation and constraint inequalities on the thrust
magnitude are considered in the formulation of this low-thrust transfer problem.

Specific impulse or Isp is no longer considered to be a fixed quantity during the
transfer, and is now allowed to vary between user-defined minimum and maximum
bounds, such that both thrust magnitude and direction are optimized to yield the overall
minimum-fuel solution. Assuming that power remains constant, the thrust magnitude is
inversely proportional to the specific impulse, which is continuously adjusted by varying
the beam voltage. We first revisit the fundamentals of flight mechanics and low-thrust
propulsion developed in [1–3], and derive the equivalent expression for the optimal con-
trols for the thrust magnitude unconstrained case, using equinoctial elements instead of
the usual Cartesian coordinates. The necessary conditions for optimality for the thrust-
bounded case are derived following [4] and [5], and the problem of low-thrust transfer
and rendezvous of [6–8] and Chapter 3 of this book extended to the case of continu-
ously varying Isp. An example of minimum-fuel time-fixed rendezvous with different Isp

bounds is solved numerically and compared with earlier results generated with constant
thrust.

As the fixed transfer time approaches infinity, the solutions will approach the optimal
multi-impulse chemical transfer solution with an infinite number of negligibly small
thrust arcs replacing each impulse. In this case, the thrust magnitude will approach zero,
and Isp will approach infinity, or in practice, a lower and upper bound respectively. How-
ever, for finite transfer times, both the lower and upper bounds on the thrust magnitude
will effectively act as constraints to shape the transfer trajectory, in order to minimize
the fuel expenditure.
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136 Optimal Low-Thrust Transfer

4.2 The Optimization of the Thrust Magnitude

From rocket propulsion fundamentals, and using Newton’s law for a variable-mass body,
the equation of motion of a rocket-powered vehicle is given by

mr̈ = ṁc + mg (4.1)

where r is the vehicle position vector, g is the acceleration of gravity, c is the exhaust
velocity, and ṁ < 0 is the rate at which mass is expelled from the engine. The thrust
vector f = ṁc is directed opposite the exhaust velocity vector, such that the acceleration
can be written as

a = f
m

= r̈ − g (4.2)

For a solar electric-powered ion thruster, the exhaust stream or beam power can be
written as

PB = fc

2
(4.3)

and, because f = −ṁc, it can be written as

PB = f 2

2ṁ
(4.4)

It can also be expressed in terms of the beam voltage VB and the beam current IB as

PB = VBIB (4.5)

Equation (4.3) can be derived from the following two expressions based on electrostatics
considerations

VBe = mi

2
c2 (4.6)

IB =
(

e

mi

)
(−ṁ) (4.7)

The first expression states that if a particle of mass mi and charge e, and negligible
initial velocity, passes through a potential difference VB it will acquire a kinetic energy
of 1/2mic2, where c is the exhaust velocity. The second expression is the definition of
the current such that the beam power PB is written as

PB = IBVB = 1

2
(−ṁ) c2

and, because f = −ṁc, then

PB = 1

2
fc

Alternatively, from Equation (4.6), an expression relating the Isp to the beam voltage can
be obtained, because, with c = Ispg

c =
[

2

(
e

mi

)
VB

]1/2

Isp = 1

g

[
2

(
e

mi

)
VB

]1/2

(4.8)

https://doi.org/10.1017/9781108560061.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108560061.005


4.2 Optimization of the Thrust Magnitude 137

For a given beam power PB, the thrust versus mass flow rate curve of an ion rocket is
parabolic, because, from Equation (4.4)

f = √−2ṁPB (4.9)

This behavior is very different from that of a constant exhaust velocity rocket, because
in the latter case the curve is linear

f = −ṁc (4.10)

Conversely, the mass flow rate expressions for both types of vehicle are

ṁ = − f

c
(4.11)

ṁ = −f 2

2PB
(4.12)

It is therefore advantageous from a propellant consumption point of view to have high
exhaust velocity or high power.

Furthermore, Equation (4.9) shows that the same level of thrust can be achieved by
different combinations of ṁ and PB because, if a lower power level is selected, an
appropriate increase in ṁ will maintain f constant.

However, from Equation (4.12), and for a given f , it is seen that ṁ is at a minimum if
PB is chosen at its maximum level.

This means that at each instant of time the selection of PB at its maximum value,
namely PBmax , will achieve the required thrust for minimum ṁ or minimum fuel con-
sumption. In other words, from all the possible ways of flying a required trajectory,
meaning an acceleration time history a(t) = r̈(t)−g(t), the selection of PBmax is the only
one that results in minimum fuel expenditure [3].

Ion rockets must therefore always operate at PBmax . Then, it is clear from Equation
(4.3), with PB = PBmax , that as the thrust is decreased, Isp will increase and vice versa.
Because the Isp is dependent on the beam voltage VB, it can be obtained by adjust-
ing VB, provided that IB is also adjusted to obtain the required PBmax power, because
PB = IBVB. All these fundamental ideas are encapsulated in Figures 4.1, 4.2 and 4.3.
In Figure 4.1, the thrust versus mass flow rate curve for a low-thrust rocket with con-
stant exhaust velocity is depicted. Because c cannot be varied in this type of rocket, the
thruster operates at fmax only [3].

Figure 4.2 corresponds to the variable c case, with f = (−2ṁP)1/2 for a given
P. The power levels below Pmax result in Region II, with Region I being completely
inaccessible, because it corresponds to P > Pmax, which is impossible.

As pointed out by Marec [3], it is not optimal to operate these types of thrusters at a
power level P1 < Pmax, because for the same thrust f1, the operation at Pmax depicted
by point 2 results in the minimum mass flow rate or propellant expenditure.

In Figure 4.3, and for a given Pmax, any operating point A corresponds to a unique
combination of beam voltage VB and beam current IB. If VB is increased, the Isp

or c will also increase according to Equation (4.8), and, because power is held at
Pmax = constant, the thrust will decrease accordingly, because P = 1/2fc. Conversely,
decreasing Isp or VB will result in increasing thrust and IB.
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138 Optimal Low-Thrust Transfer

Figure 4.1 Thrust versus mass flow rate for a constant exhaust velocity.

Source: [3].

Figure 4.2 Selection of optimal thrust.

Source: [3].

In Figure 4.4, the unreachable Region I is extended further by the inclusion of the
boundary 00′, which corresponds to the equation f = −ṁcmax, where cmax is the maxi-
mum exhaust velocity achieved by the rocket. This boundary is necessary to prevent the
exhaust velocity or the Isp from growing to very large values, as the thrust is decreased
toward its minimum value. This minimum is conveniently defined at point 0, such that
the operating arc is the arc 03 on the Pmax parabola.

Edelbaum’s analysis of the optimization of the thrust magnitude using the Cartesian
formulation is first shown for the sake of completeness. This analysis is next trans-
lated to the formulation using the nonsingular equinoctial orbit elements, which is then
extended to the case of constrained thrust magnitude. Following Edelbaum and letting r
and v stand for the spacecraft position and velocity vectors, the second-order differential
equation of motion is reduced to the following first-order form:

v̇ = f
m

+ g(r, t) (4.13)
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4.2 Optimization of the Thrust Magnitude 139

Figure 4.3 Beam voltage and current variation for a given power Pmax.

Figure 4.4 Thrust versus mass flow rate for a variable exhaust velocity rocket.

Sources: [1–3].

ṙ = v (4.14)

with f and g representing the thrust and acceleration of gravity vectors, respectively. The
mass flow rate obeys the general form

ṁ = ṁ(r, t, f) (4.15)

The Hamiltonian of such a system is given by

H = λv · f
m

(r, t) + λv · g(r, t) + λr · v + λmṁ(r, t, f) (4.16)
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140 Optimal Low-Thrust Transfer

The Euler–Lagrange equations are therefore

λ̇v = −∂H

∂v
= −λr (4.17)

λ̇r = −∂H

∂r
= −λv

m
· ∂f
∂r

− λv · ∂g
∂r

− λm
∂ṁ

∂r
(4.18)

λ̇m = −∂H

∂m
= λv · f

m2
(4.19)

The application of Pontryagin’s maximum principle requires that the control vector,
namely the thrust vector f, must be selected in such a manner as to maximize H at each
instant of time. Because f appears in ṁ, this necessary condition translates into

λv · f(r, t)

m
+ λmṁ(r, t, f) = maximum (4.20)

This can be simplified further if ṁ is a function of thrust magnitude but not direction.
This is the case of the unconstrained transfer with free yaw, pitch and roll. In these cases,
ṁ = ṁ(r, t), such that the above condition reduces to

λv · f(r, t)

m
+ λmṁ(r, t) = maximum (4.21)

This requires that the thrust vector f remains aligned with λv at all times, because λv · f
is then maximum. This results in

λvf

m
+ λmṁ = maximum (4.22)

From Equation (4.12), ṁ can be replaced by −f 2/2P, which reduces the expression in
Equation (4.22) to

f − λmm

2λvP
f 2 = max (4.23)

Maximizing this expression with respect to the thrust magnitude f results in

f ∗ = λvP

λmm
(4.24)

and from Equation (4.3), the optimal I∗
sp is then

I∗
sp = 2P

gf ∗ = 2mλm

gλv
(4.25)

Let us now carry out the optimization of f for the equinoctial formulation, using the
equinoctial orbit elements represented by the vector z = (ahkpqλ)T instead of the r and
v formulation used above.

These nonsingular elements are defined as before in terms of the classical elements
by the following relationships, namely a = a, h = e sin (ω + �), k = e cos (ω + �),
p = tan(i/2) sin�, q = tan(i/2) cos� and λ = M+ω+�, with λ standing for the mean
longitude. Letting û represent a unit vector in the direction of the thrust, the variation of
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4.2 Optimization of the Thrust Magnitude 141

parameters equations for the thrust perturbation are given by Equation (4.26) with the
addition of an n term to λ̇. Here, n stands for the orbit mean motion at the current time t:

ż =
(
∂z
∂ ṙ

)
ûft = Mûft (4.26)

ft = f /m represents the instantaneous perturbation acceleration with ∂z/∂ ṙ and û
expressed in the direct equinoctial frame defined in [7] and Chapter 3 of this book.
The M matrix above is given as before by

∂a

∂ ṙ
= 2a−1n−2

(
Ẋ1 f̂ + Ẏ1ĝ

)
= M11 f̂ + M12ĝ + M13ŵ (4.27)

∂h

∂ ṙ
= Gn−1a−2

[(
∂X1

∂k
− hβ

Ẋ1

n

)
f̂ +

(
∂Y1

∂k
− hβ

Ẏ1

n

)
ĝ
]

+ k (qY1 − pX1) n−1a−2G−1ŵ

= M21f̂ + M22ĝ + M23ŵ (4.28)

∂k

∂ ṙ
= −Gn−1a−2

[(
∂X1

∂h
+ kβ

Ẋ1

n

)
f̂ +

(
∂Y1

∂h
+ kβ

Ẏ1

n

)
ĝ
]

− h (qY1 − pX1) n−1a−2G−1ŵ

= M31f̂ + M32ĝ + M33ŵ (4.29)

∂p

∂ ṙ
= KY1

n−1a−2G−1

2
ŵ = M41 f̂ + M42ĝ + M43ŵ (4.30)

∂q

∂ ṙ
= KX1

n−1a−2G−1

2
ŵ = M51 f̂ + M52ĝ + M53ŵ (4.31)

∂λ

∂ ṙ
= n−1a−2

[
−2X1 + G

(
hβ
∂X1

∂h
+ kβ

Ẋ1

∂k

)
f̂
]

+ n−1a−2
[
−2Y1 + G

(
hβ
∂Y1

∂h
+ kβ

∂Y1

∂k

)]
ĝ + n−1a−2G−1 (qY1 − pX1) ŵ

= M61 f̂ + M62ĝ + M63ŵ (4.32)

where β = 1/(1+G), G = (1−h2 −k2)1/2, K = 1+p2 +q2, r = a(1−kcF −hsF) with
(f̂, ĝ, ŵ) representing the equinoctial frame and with the position and velocity vectors
given by

r = X1 f̂ + Y1ĝ (4.33)

ṙ = Ẋ1 f̂ + Ẏ1ĝ (4.34)

and where

X1 = a
[(

1 − h2β
)

cF + hkβsF − k
]

(4.35)

Y1 = a
[
hkβcF +

(
1 − k2β

)
sF − h

]
(4.36)

https://doi.org/10.1017/9781108560061.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108560061.005


142 Optimal Low-Thrust Transfer

Ẋ1 = a2nr−1
[
hkβcF −

(
1 − h2β

)
sF

]
(4.37)

Ẏ1 = a2nr−1
[(

1 − k2β
)

cF − hkβsF

]
(4.38)

with F representing the eccentric longitude, which is obtained from Kepler’s equation
by iteration

λ = F − ksF + hcF (4.39)

Finally,

∂X1

∂h
= a

[
− (hcF − ksF)

(
β + h2β3

(1 − β)

)
− a

r
cF (hβ − sF)

]
(4.40)

∂X1

∂k
= −a

[
(hcF − ksF)

hkβ3

(1 − β)
+ 1 + a

r
sF (sF − hβ)

]
(4.41)

∂Y1

∂h
= a

[
(hcF − ksF)

hkβ3

(1 − β)
− 1 + a

r
cF (kβ − cF)

]
(4.42)

∂Y1

∂k
= a

[
(hcF − ksF)

(
β + k2β3

(1 − β)

)
+ a

r
sF (cF − kβ)

]
(4.43)

The equation for the mass is as before given by

ṁ = − f 2

2P
= −2P

c2
= − f

c
The system equations can now be written as

ż = f

m
M (z, F) û (4.44)

ṁ = − f 2

2P(z, F, û)
(4.45)

Here, P is assumed to be a function of the vehicle orientation. Let us further assume that
the thrust magnitude is not constrained, such that the Hamiltonian of the system above
is written as

H = λT
z · ż + λmṁ = λT

z
f

m
M(z, F)û − λm

f 2

2P(z, F, û)
+ λλn (4.46)

If P is not a function of û, then

H = λT
z · f

m
M(z, F)û − λm

f 2

2P(z, F)
+ λλn (4.47)

H is maximized if û is chosen parallel to λT
z (f /m)M(z, F) or

û = λT
z

f
m M(z, F)∣∣∣∣λT

z
f

m
M(z, F)

∣∣∣∣ (4.48)

Then, H is reduced to

H =
∣∣∣∣λT

z
f

m
M(z, F)

∣∣∣∣− λm
f 2

2P(z, F)
+ λλn (4.49)
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and the optimal thrust magnitude is obtained from the optimality condition ∂H/∂f = 0,
which results in

f ∗ =
∣∣λT

z M(z, F)
∣∣P(z, F)

λmm
(4.50)

This is equivalent to the maximization of

f + mλm∣∣λT
z M(z, F)

∣∣ ṁ = max (4.51)

because ṁ is equal to −f 2/2P in Equation (4.49). Equation (4.50) is identical to Equa-
tion (4.24), where the r, v formulation was used. Here, |λT

z M(z, F)| replaces λv, because
the state variables are the equinoctial elements. Equation (4.51) is the equation of the
straight line in the (f , −ṁ) system, and the maximum takes place when the line is tangent
to the Pmax curve (Figure 4.4), such as at point 1. At a later time, the optimal operating
point is at 2, with f ∗

2 representing the optimal time-varying thrust magnitude [1, 3].
The corresponding mass flow rate at each instant of time is, of course, obtained from

ṁ = −f 2/2P, and the optimal I∗
sp from

I∗
sp = 2mλm

g
∣∣λT

z M(z, F)
∣∣ (4.52)

The Euler–Lagrange differential equations are given by

λ̇
T
z = −∂H

∂z
= −λT

z
∂M

∂z
f

m
û − λλ

∂n

∂z
(4.53)

λ̇m = −∂H

∂m
= λT

z M
f

m2
û (4.54)

where it is assumed that the power P is independent of the state vector z, being consid-
ered constant throughout the transfer. The ∂M/∂z partials have been derived in [7] and
in Chapter 3 of this book, and are not repeated here.

For the optimization of the thrust orientation, the maximum principle is used to get

û =
(
λT

z M
)T∣∣λT

z M
∣∣ (4.55)

and thereby the three components uf , ug and uw, which in turn provide the values of
ur, uθ and uh in the rotating r̂, θ̂, ĥ frame. The instantaneous pitch and yaw angles are
obtained from θt = tan−1 (ur/uθ ) and θh = tan−1 (uh/uθ ), as in [7] and in Chapter 3 of
this book.

If the thrust magnitude is unconstrained, its optimal value is obtained from the
optimality condition

∂H

∂f
= 0 = λT

z
M

m
û − f

P
λm (4.56)

which yields the optimal thrust f ∗:

f ∗ = P
(
λT

z Mû
)T

mλm
(4.57)
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144 Optimal Low-Thrust Transfer

The optimal value of the specific impulse is then given by

I∗
sp = 2P

f ∗g
(4.58)

because c = 2P/f = Ispg. Now the optimal acceleration program is obtained from

f ∗
t = f ∗

m
= λT

z Mû

m2λm
P (4.59)

If the thrust magnitude is bounded from above and below, then

fmin < f < fmax (4.60)

such that we have the following inequality constraints on the control variable f

C1 = f − fmax ≤ 0 (4.61)

C2 = −f + fmin ≤ 0 (4.62)

These constraints can be adjoined to the original Hamiltonian by way of Lagrange
multipliers, μ1 and μ2 such that

H = f

m
λT

z Mû − f 2

2P
λm + λλn + μ1 (f − fmax)+ μ2 (−f + fmin) (4.63)

The necessary condition on H is

Hf = ∂H

∂f
= λT

z
M

m
û − f

P
λm + μ1 − μ2 = 0 (4.64)

The multipliers μ1 and μ2 are such that μ1 > 0 when C1 = 0 or f = fmax, and μ1 = 0
when C1 < 0 or f < fmax, and similarly μ2 > 0 when C2 = 0 or f = fmin, and μ2 = 0
when C2 < 0 or f > fmin. When fmin < f < fmax assumes an intermediate value,
μ1 = μ2 = 0, and Hf = 0 reduces to λT

z (M/m)û − (f /P)λm = 0, yielding the optimal
control given by Equation (4.57). The values of μ1 and μ2 are readily obtained from

μ1 = fmax

P
λm − λT

z Mû

m
(4.65)

μ2 = − fmin

P
λm + λT

z Mû

m
(4.66)

The Lagrange multipliers are still given by Equations (4.53) and (4.54), and the optimal
f ∗ is selected by monitoring the value of λT

z MûP/(mλm). If it is less than fmin, then we
use f ∗ = fmin, and if it is larger than fmax, then we use, f = fmax, and finally, if it is
intermediate between fmin and fmax then we use f ∗ as given by Equation (4.57), which is
the presently calculated value of λT

z MûP/(mλm).
We can also use the simpler Hamiltonian H∗ without adjoining the constraints,

namely

H∗ = λT
z ż + λλṁ = f

m

(
λT

z Mû − mλm

c

)
+ λλn (4.67)
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This is equivalent to Equation (4.68) because c = 2P/f is a function of the control f :

H∗ = f

m
λT

z Mû − f 2

2P
λm + λλn (4.68)

The optimality condition yields, with

∂H∗

∂f
= H∗

f = λT
z

M

m
û − f

P
λm (4.69)

the following relation

δH∗ = H∗
f δf ≤ 0 (4.70)

because this is equivalent to

δJ =
∫ tf

t0
H∗

f δfdt =
∫ tf

t0
δH∗dt ≤ 0

for the control f to be maximizing for all admissible values of δf . δJ is the variation
in J, the performance index, due to variations in f , for fixed z(t0). The optimal control
is selected by monitoring the value of H∗

f . If H∗
f as calculated by Equation (4.69) is

positive, then we use f = fmax, and if H∗
f is negative we use f = fmin and, finally, if

H∗
f = 0, then we use f ∗ from Equation (4.69):

H∗
f > 0 ⇒ δf < 0 ⇒ f = fmax (4.71)

H∗
f < 0 ⇒ δf > 0 ⇒ f = fmin (4.72)

H∗
f = 0 ⇒ f = f ∗ = λT

z
Mû

mλmP
(4.73)

In practice, the last condition for H∗
f = 0 is replaced by |H∗

f | < ε, where, ε is a small

number, say, 10−10. The Euler–Lagrange equations are still given by Equations (4.53)
and (4.54).

4.3 A Simple Example of Rendezvous in Near-Circular Orbit

Let us revisit our rendezvous example of [7], also shown in the previous chapter, in
which a minimum-time solution with a continuous constant acceleration was generated.
The mass equation was not used in [7] because the acceleration vector assumed effec-
tively the role of the control, and it was then sufficient to optimize its direction to achieve
the minimum-time solution. Under these assumptions, this solution was also equivalent
to the minimum-fuel solution as was demonstrated in [8] and also discussed in the pre-
vious chapter, in which the mass equation was used, and the minimum-fuel time-fixed
problem formulated using the same set of equinoctial nonsingular orbit elements. For a
given initial mass m0 = 6000 kg and a constant Isp = 3800 s, an equivalent power of
P = 39,112.3 W was used in order to obtain an average acceleration of ft = 3.5 × 10−7

km/s2, equal to the value of the constant acceleration used in [7] and Chapter 3 of this
book. We now attempt to solve the same problem by allowing the Isp to vary in order to
improve the fuel consumption. As in [8] and Chapter 3 of this book, we maximize the
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146 Optimal Low-Thrust Transfer

value of the mass at the fixed final time tf , such that the performance index J = φ = mf ,
with the optimal thrust direction given by Equation (4.55) obtained directly from the
maximum principle. Because the equations of motion given by Equations (4.44) and
(4.45) are not explicit functions of time, the Hamiltonian H in Equation (4.46) or H∗ in
Equation (4.68) is constant throughout the transfer. Given initial state parameters (a)0,
(h)0, (k)0, (p)0, (q)0, (λ)0 and (m)0, the initial values of the seven Lagrange multipliers
are guessed, namely (λa)0, (λh)0, (λk)0, (λp)0, (λq)0, (λλ)0, (λm)0, and the state adjoint
equations given by Equations (4.44), (4.45) and (4.53), (4.54) integrated forward from
t0 = 0 to tf = 86,402.453 s, by using the optimal thrust direction û in Equation (4.55),
and the thrust magnitude from Equations (4.71), (4.72) and (4.73). The initial values of
the multipliers are iterated until the desired terminal state given by (a)f , (h)f , (k)f , (p)f ,
(q)f , (λ)f and (m)f = (∂φ/∂m)tf = 1 are satisfied. This is achieved by minimizing the
following objective function:

F′ = w1
[
a − (a)f

]2 + w2
[
h − (h)f

]2 + w3
[
k − (k)f

]2 + w4
[
p − (p)f

]2
+ w5

[
q − (q)f

]2 + w6
[
λ− (λ)f

]2 + w7 [λm − 1]2 (4.74)

where wj are certain weights, and where the values of a, h, k, p, q, λ and λm are evaluated
at the fixed terminal time tf . Let a0 = 42,000,000 m, e0 = 0, i0 = 28.5 deg, �0 = 30
deg, ω0 = 10 deg, M0 = 0 deg, m0 = 6000 kg, P0 = 40,000 W, and af = 42,767,073 m,
ef = 1.64459 × 10−4, if = 28.343 deg, �f = 29.999 deg, ωf = 247.299 deg, Mf =
120.905 deg, and tf = 86,402.453 s. Because the power is assumed to remain constant,
let us select (Isp)min = 3000 s and (Isp)max = 4000 s, such that

fmin = 2P(
Isp
)

max g
= 2 × 40, 000

4000 × 9.80665
= 2.039432 N

fmax = 2P(
Isp
)

min g
= 2.719243 N

The values of fmax and fmin are used as input to the optimizer, and they correspond to
initial accelerations of (ft)max = fmax/m0 = 2.719243/6000 = 4.532071 × 10−4 m/s2,
and (ft)min = fmin/m0 = 2.039432/6000 = 3.399053 × 10−4 m/s2, or an average
of 3.965562 × 10−4 m/s2, or 3.965562 × 10−7 km/s2, which is slightly higher than the
constant ft = 3.5×10−7 km/s2 used in [7] and duplicated in [8] and the previous chapter,
by adjusting the power accordingly. Here we leave the power at 40,000 W, so that the
Isp bounds are exactly at the (Isp)min and (Isp)max values. Furthermore, the acceleration
being now variable, it will be optimized to achieve minimum-fuel consumption. The
solution is given by (λa)0 = 1.05651899 × 10−5, (λh)0 = −3.102865136, (λk)0 =
3.077180522, (λp)0 = −5.066278561×10−2, (λq)0 = −8.672939167×10−2, (λλ)0 =
−2.160048598, (λm)0 = 0.9984527097, where the various λs have units that are the
inverse of the corresponding element rates, namely s/m for λa, s/rad for λλ and s/kg for
λm, with the remaining λ units being seconds because h, k, p and q are unitless. This is
needed because the Hamiltonian is unitless.

The initial values of the elements are a0 = 4.2 × 107 m, h0 = 0, k0 = 0,
p0 = 1.269838 × 10−1, q0 = 2.199424 × 10−1, λ0 = 6.981317 × 10−1 rad, and
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Figure 4.5 Variation of h and k on an optimal trajectory.

Figure 4.6 Variation of p and q on an optimal trajectory.

m0 = 6000 kg. The final achieved parameters are a = 42, 767, 073 m, e = 1.64459 ×
10−4, i = 28.343 deg, � = 29.999 deg, ω = 247.299 deg, M = 120.905 deg,
mf = 5995.251893 kg and λm = 1.000000000, indicating a local optimum. The Hamil-
tonian stays constant at H = −0.959 × 10−4 or essentially near zero. Figures 4.5–4.7
show the variations of h, k, p, q, H, and λ as a function of time, while Figures 4.8–
4.10 depict the variations of the classical orbit elements. Figures 4.11–4.14 show how
λa, λλ, λh, λk, λp, λq, m and λm vary during the optimal transfer. The terminal mass
mf = 5995.251893 kg is as expected, higher than the final mass of 5995.022 kg obtained
with a constant Isp = 3800 s in [8] and Chapter 3 of this book, showing the benefit of
using a variable Isp, and resulting in a decrease in fuel consumption of 0.229 kg. Fig-
ure 4.15 shows the optimal thrust orientation given by the pitch and yaw angles θt and
θh, while Figure 4.16 depicts the acceleration program as well as the Isp as a function of
time. There are two arcs of constant maximum Isp in this particular example.

Now if we relax the Isp bounds or, equivalently, the thrust bounds, we could generate a
trajectory that uses only intermediate thrust levels. Let (Isp)min = 1000 s, and (Isp)max =
10,000 s, or equivalently (f )min = 8.157729 × 10−1 N, and (f )max = 8.157729 N
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Figure 4.7 Variation of λ and H on optimal Hamiltonian.

Figure 4.8 Evolution of a and e on an optimal rendezvous trajectory.

for our example at hand. The solution is given by (λa)0 = 1.087325882 × 10−5,
(λh)0 = −4.548851268, (λk)0 = 4.130745710, (λp)0 = −5.080206079 × 102,
(λq)0 = −8.719703291 × 102, (λλ)0 = −2.630702853, (λm)0 = 0.9984192335,
with mf = 5995.255825 kg, which is only slightly higher than the value obtained
in the example above. Figure 4.17 shows the acceleration program as well as the Isp

time history, which remains at intermediate values never reaching either the minimum
or maximum bounds. This solution represents therefore the thrust magnitude uncon-
strained case providing the overall minimum-fuel expenditure. As a final example, let
(Isp)min = 3700 s and (Isp)max = 4000 s, such that the transfer must now use a smaller
Isp bandwidth than our first example. These bounds correspond to (f )min = 2.039432 N,
and (f )max = 2.204791 N, and the solution is given by (λa)0 = 1.058971845 × 10−5,
(λh)0 = −3.140806779, (λk)0 = 3.401400619, (λp)0 = −5.071540433 × 102,
(λq)0 = −8.679605832 × 102, (λλ)0 = −2.307546419, (λm)0 = 0.9984514728, with
the final mass at mf = 5995.251875 kg. This value is slightly less than the corresponding
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Figure 4.9 Evolution of i and � on an optimal rendezvous trajectory.

Figure 4.10 Evolution of M and ω on an optimal rendezvous trajectory.

value obtained for the absolute minimum-fuel transfer of 5995.255825 kg with uncon-
strained thrust magnitude, and also slightly less than the value of 5995.251893 kg of the
first example. This is because, in this last example, both minimum Isp and maximum
Isp thrust arcs are generated as shown in Figure 4.18 due to the narrowing of the Isp

bandwidth, which further constrains the transfer. These examples validate the analytical
developments and verify that the code is error-free, because the correct trends are clearly
appearing, even though the savings in fuel are very small for this particular rendezvous
trajectory. The final state is met with a very small tolerance in order to produce the
exact trajectories for a meaningful comparison. Substantial savings in fuel are possible
especially with the higher values of specific power, or power to mass ratio, for highly
elliptical orbit transfers and for larger changes in the energy and angular momentum
vector.

Furthermore, because the thrust is continuously on, or otherwise the control is contin-
uous, it is much easier to generate a series of transfers with increasing Isp bandwidths,
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Figure 4.11 λa and λλ versus time.

Figure 4.12 λh and λk versus time.

such that, in the limit, the discontinuous thrust case can be produced with full thrust
cut-off arcs, which correspond to infinite Isp or, in practice, negligible thrust. These
coast arcs are beneficial for certain transfer geometries, especially, if the fixed transfer
time is further relaxed from its minimum-time value obtained with continuous thrust.
Finally, when a given engine design is used with specified Isp bounds, the thrust mag-
nitude unconstrained solution may not be possible to fly due to the engine limitations,
which in turn will necessitate the generation of the optimal Isp-constrained solution as
shown in these examples.

4.4 Conclusion

The use of the variation of parameters equations based on a set of nonsingular equinoc-
tial orbit elements is extended to the important case of minimum-fuel time-fixed transfer
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Figure 4.13 λp and λq versus time.

Figure 4.14 λm and m versus time.

Figure 4.15 Optimal thrust pitch and yaw program.
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Figure 4.16 Optimal acceleration and Isp program with (Isp)max = 4000 s and (Isp)min = 3000 s.

Figure 4.17 Optimal acceleration and Isp program with (Isp)max = 10, 000 s and
(Isp)min = 1000 s.

Figure 4.18 Optimal acceleration and Isp program with (Isp)max = 4000 s and (Isp)min = 3700 s.
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and rendezvous, where both thrust magnitude and orientation are simultaneously opti-
mized. Furthermore, minimum and maximum bounds on the thrust magnitude, or
equivalently Isp, are considered in order to allow the throttling of the propulsion system,
which in turn can result in substantial savings in propellant consumption, especially
when the fixed flight time is further relaxed. The limiting case of coasting arcs can be
approached by increasing the maximum Isp bound, such that the discontinuous control
transfer problem can later be solved after the proper thrust–coast sequence is essentially
guessed using the simpler and more robust continuous control algorithm developed in
this chapter.
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