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Abstract

Let A be a semiprime superalgebra over a commutative ring F with % and f:A— A a skew-
supercommuting map on A. We show that f =0. This gives a version of BreSar’s theorem for
superalgebras.
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1. Introduction

Let R be an associative ring. For any x, y € R, we shall define [x, y] =xy — yx and
xoy=uxy+ yx. Let S be a subset of R. A mapping f : S — R is said to be skew-
commuting on S if f(x) ox =0 for all x € S. A number of authors have discussed
the skew-commuting maps and their generalizations [8, 12—14]. In these papers the
authors have showed that nonzero derivations and ring endomorphisms cannot be
skew-commuting on certain subsets of prime rings (for example, ideals). In [4] Bresar
obtained theorems of this kind for general additive maps. He proved that there are
no nonzero additive maps that are skew-commuting on either ideals of prime rings of
characteristic not 2 [4, Theorem 1] or semiprime rings of 2-torsion free [4, Theorem 2].
In [5] Bresar obtained a different proof of [4, Theorem 1].

In recent years, some results on maps of associative rings have been extended to
superalgebras by several authors (see, for example, [1, 2, 7, 9—11, 17]). In the present
paper, we shall give a version of Bresar’s theorem mentioned above for superalgebras.

2. Preliminaries

Throughout the article, algebras are over a unital commutative associative ring F.
We shall assume without further mention that % € F. Although this requirement is not
always needed, it is assumed for the sake of simplicity.
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We use standard terminology and refer the reader to [15] for background
information on the constructions of graded algebras and superalgebras. A
superalgebra A over F is a Zj-graded associative algebra over F; that is, A is
the direct sum of two F-submodules Ay and A; such that A% C Ag, AgA1 C Ay,
A1Ag C Ay and A% C Ap. We call Ag the even part and A the odd part of A. Elements
in H= AgU A are said to be homogeneous. We define o : A — A by (ap + a1)?
=ap —aj. Note that o is an automorphism of A such that o=1. Conversely,
given an algebra A and an automorphism o of A with 2 =1, A then becomes a
superalgebra by defining Ag={a€ A|a° =a}and Ay ={a€ A|a®° =—a}. Ao-
invariant F-submodule B of A is just a graded F-submodule, that is, B C B if and
only if B = By @ B where Bo = B N Ap and By = B N Aj. For instance, the center Z
of A is clearly invariant under any automorphism of A and hence Z = Zy & Z; where
Zo=ZNAgand Z; =Z N A;.

A superalgebra A is said to be prime if the product of any two nonzero graded ideals
is nonzero. A is said to be semiprime if it has no nonzero nilpotent graded ideals. One
can see readily that A is a prime superalgebra if and only if every nonzero graded ideal
of A has zero annihilator in A. A superalgebra A is called a trivial superalgebra if
A1 =0, orequivalently o = 1.

For a, b € H, the skew-supercommutator of a and b is defined to be a oy b = ab
+ (=Dlaliblpg, Note that we have a oy b=ab — ba=]|a,b], the ordinary
commutator, if both a and b are odd, and a o, b =ab + ba = a o b, if either a or b
is even. The definition can be extended linearly to arbitrary a, b € A, namely,

aogb=agyos by + ag oy b1 + aj og bg + ay o by

fora =ag + ay and b = by + by witha;, b; € A;,i =0, 1.

Let S be a subset of A. We say that a mapping f : S — A is skew-supercommuting
on Sif f(x)ogx =0forall x € S.

Let A be a semiprime superalgebra. It is well known that A and Ag are semiprime
as algebras [16, Lemma 1.2]. So we can construct the maximal right quotient ring
Q and the extended centroid C of A. All these notions are explained in detail in the
book [3, Ch. 2].

Since o can be extended to Q such that 62 =1 on Q [3, Proposition 2.5.3], thus Q
is also a semiprime superalgebra. Since C? = C we see that C = Cy @ C; is a graded
subalgebra of Q. It is well known that for any a € Q there exists an essential ideal I of
A such that al € A. We may assume that / is graded since otherwise we can replace
itby I N I°. This fact will be used later.

We begin with some basic properties of prime superalgebras.

LEMMA 2.1. Let A be a prime superalgebra and I a graded ideal of A. If alp =0
(Ioa =0), where a € A, thena=0o0r 1 =0.

PROOF. Suppose thataly = 0. Since Agl1A; C lpand A1l € Ip, we getaAl1A1 =0
and soa =0 or I{A] =0 since A is a prime superalgebra. If /{A; =0, then I; =0
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by [10, Lemma 2.1(i)] and so I = Iy. Hence, we get by assumption that a/ = 0, which
results in a = 0 or I = 0. The case of Ipa = 0 is proved in a similar way. O

LEMMA 2.2. Let A be a prime superalgebra and I a nonzero graded ideal of A. If
ali =0 (la=0), wherea € A, thena =0 o0r A1 =0.

PROOF. Suppose that al{ = 0. Since IpA; C I} we get alpA; =0 and so alp =0 or
A; =0 by [10, Lemma 2.1(1)]. If alp =0, then a =0 by Lemma 2.1. The case of
Ira =0 is proved in a similar way. O

LEMMA 2.3. Let A be a prime superalgebra and I a graded ideal of A. Let a € A be
such that axg + xoa = 0 for all xy € Iy. Thena =0o0r 1 =0.

PROOF. Suppose that I # 0. For any xg, yo € Io,
—X0Yyoa = axoyp = —xpayo for all xg, yo € Ip.

Hence Iy[a, Ip] =0 and so [a, Ip] = 0 by Lemma 2.1. Thus axg = %(axo + xpa) =0
for all xg € Iy. By Lemma 2.1 again we obtain a = 0. O

LEMMA 2.4. Let A be a superalgebra with 1 over F. Let [ be an F-linear map of A
into itself such that f(x) oy x =0 forall x € A. Then f =0.

PROOF. Note that 1 € Ag. Then we have 2 f (1) = f(1) o 1 =0, from our assumption,
and so f(1) =0. Since

fA4+x)os (1+x)=0 forallxeA,

we have f(x)ol+ f(x)osx=0. Since f(x)os;x =0 for all x € A, we have
2f(x)=f(x)ol=0andso f(x) =0forall x € A. d

LEMMA 2.5. Let A be a noncommutative prime superalgebra and I a graded ideal of
A. Let g1, g2 : A — A be F-linear maps. Suppose that one of the following conditions
are satisfied:

) x081(y) + yg2(x0) =0 forall xo € In, y € I;

(i) xog1(y) + y7g2(x0) =0 forall xo € Iy, y € 1.

Then g1 (1) = g2(lp) =0.

PROOF. Suppose first that (i) is fulfilled. If A; =0, the result follows from [5,
Lemma 4.4]. So we may assume that A; # 0. By assumption we have roxog1(y)
= —royg2(xo) for all rg, xg € Iy, y € I. But, on the other hand, since roxg € Iy, we

have roxog1(y) = —yg2(roxo). Thus, royg2(xo) = yg2(roxo) forall ro, xo € Iy, y € 1.
In particular,

roryga(xo) =ryga(roxg) forallrg,xgely, yel, r € A.
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If yga(xg) # 0 for some xg € Iy, y € I, then ry and 1 are C-dependent for any rg €

Ip by [10, Theorem 3.3]. This implies that [Ip, A;j]=0 and so [Ag, A;] =0 by

[16, Lemma 1.8(1)]. It follows from [10, Lemma 2.1(vii)] that A is commutative

or Ay =0, contradicting our assumption. Thus 7/g>(lp) =0 and so g>(lp) =0 by

Lemma 2.1. According to (i) we have lpg1 (/) =0 and so g1 (/) = 0 as desired.
Suppose next that (ii) is fulfilled. Thus

x081(y?) + yg2(x0) =0 forallxo e lp, y €1

since 02 =1 and I° = I. Then the assertion of (ii) follows from the assertion of (i). O

LEMMA 2.6. Let A be a prime superalgebra and I a graded ideal of A. Then Iy is a
semiprime subalgebra of A.

PROOF. Suppose that aglpag =0 for some ag € [p. We want to prove ag =0.
Since aglpAgagly =0, we get aglyp = 0 by the semiprimeness of Ag. So ap =0 by
Lemma 2.1. O

LEMMA 2.7. Let A be a prime superalgebra with extended centroid C. If C1 #0,
then Ag is a prime subalgebra of A.

PROOF. Suppose that agApbo = 0, where ag, bg € Ag. We want to show that either
ap=0 or bp =0. Pick a nonzero A; in C; and a nonzero graded ideal J of A
such that A;J C A. Write J = Jo ® J; where Jo=J N Ag and J; =J N A;. Thus,
apr1J1bo =0 and so agJ1bgp =0. On the other hand, we have by assumption that
aoJobo = 0. This implies that agJbg = 0 and so agAJ by = 0. Hence, either agp = 0 or
Jby = 0; but if Jby = 0, then by = 0. This proves our lemma. O

LEMMA 2.8. Let A be a prime superalgebra and I a nonzero graded ideal of A. If
a1, Ip] =0, where ay € Ay, then a; € C.

PROOF. For any xg € Iy, yo € Ag, since xgyg € lp, by assumption we have
[ar, xoyo] =0 and so xplaj, yo] =0. It follows from Lemma 2.1 that [a;, Ag]
=0. Thus [a1,a1ApA1]=0 and so ajApla;, A;]=0. Similarly, we can get
[a1, A1]Aga; =0. By [10, Lemma 2.1(iii)] we get [a;, A1] =0. Hence [a;, A]=0
as desired. O

LEMMA 2.9. Let A be a prime superalgebra and I a nonzero graded ideal of A. If
[Lo, Ip] =0, then [Ag, Ag] = 0.

PROOF. Since Ip[Ag, lo] = [1pAo, Ip] =0, we get [Ag, [p]=0 by Lemma 2.1.
Furthermore, [Ag, Aollo = [Ao, Aolp] =0, which implies that [Ag, Aol =0 as
desired. O

The following result is of crucial important for the proof of our main result.
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LEMMA 2.10. Let A be a prime superalgebra with extended centroid C and I a
graded ideal of A. Suppose that C1 =0. If F : 1o — Ay is an F-linear map such
that

[F(rg), rol=0 forallrg € Iy. 2.1
then F (Iy) =0 or[Ag, Ag] =0.

PROOF. We may assume without loss of generality that both 7 #0 and A; #0. A
linearization of (2.1) yields

[F(x0), Yol = [x0, F(y0)] forall xg, yo € Io.

Therefore the map D : Iy x Ip— Ay defined by D(xg, yo) = [F(x0), yo] is a
biderivation, so it follows from [6, Lemma 3.1] that

[F (x0), yolwolxg, zo]l = [x0, yolwo[F (xg), zo] for all xo, x(., yo, z0. wo € lo.

Right-multiplying by #; € A and substituting wg with woug where ug € Ag, we get

([F (x0), yolwo)uo([x4, zolt1) = ([x0, yolwo)uo([F (xg), zolt1).

Since C; =0, it follows from [10, Lemma 3.4] that
[F (x0), yolwouolxg, zolti = 0 = [xo, yolwouolF (x(), zolt

and so

[F(x0), yolwouolxy, zol = 0 = [xo, yolwouol F (x{), zo]

in view of [10, Lemma 2.1(i)]. This implies that
[F1(x0), yolwoAolx(, zolwy = 0 = [x(), zolwyAo[Fi(x0), yolwo =0

for all xq, x(/), Y0, 20, W0, w6 € Ip. It follows from [10, Lemma 2.1(iii)] that either
[F1(x0), yolwo = 0 or [x{, zo]w, = O for all xo, yo, wo, X, 20, w(, € Ip. Thatis, either
[F1(lp), Io]lp = 0 or [y, Ig]lp = 0. Hence, either [F(lp), Ip] =0 or [1y, Ip] =0 by
Lemma 2.1. If [F(Ip), Ip] =0, we get F1(lp) € C; = 0 by Lemma 2.8. Otherwise, if
[Zo, Ip] =0, then [Ag, Ap] = 0 by Lemma 2.9. This completes the proof. d

The following lemma is a slight generalization of [4, Theorem 1] and can be verified
by the same proof.

LEMMA 2.11. Let R be a prime ring of characteristic not2 and I an ideal of R. If an
additive mapping f : I — R is skew-commuting on I, then f(I) = 0.
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3. A result for prime superalgebras

Throughout this section A = Ag @ A; will be a prime superalgebra over F,
I =1y @ I a graded ideal of A and f: A — A will denote a skew-supercommuting
F-linear map on /, that is

f(x)osx=0 forallx el. 3.1
A linearization of (3.1) yields
f&x)osy+ f(y)osx=0 forallx, yel. 3.2)

Our goal is to prove f (/) = 0. Without loss of generality we may assume that both
I #0 and [Ag, A1] #0. Indeed, if I = 0, there is nothing to prove; if [Ag, A1] =0,
then either A is commutative or A; = 0 [10, Lemma 2.1(vii)]. In the former case, any
nonzero element of H has zero annihilator in A. It follows from (3.1) that
2 f(x0)xo = f(x0)x0 + x0f (x0) =0 forall xg € Iy

and so f(xp) =0 for all xg € Ip. According to (3.2) we have 2 f(y)xo = f(y)xo
+ xof(y) =0. Hence, f(y) =0forall y € I as desired. In the latter case that A; =0,
A is a prime algebra and f is skew-commuting on /, so the assertion follows from
Bresar’s theorem [4, Theorem 1].

We begin with two useful lemmas.

LEMMA 3.1. If f(Ip) =0, then f(I)=0.
PROOF. We only need to prove f (/1) =0. By assumption we get from (3.2) that

fOvxo+xof(y1) =0 forall xg € Iy, y1 € I.
It follows from Lemma 2.3 that f(y;) = 0 for all y; € I} as desired. O

LEMMA 3.2. Suppose that [Ag, Ag] = 0. Then f(I)=0.

BROOF. According to [16, Lemma 1.9], we get that Zg # 0 and the central closure
A=2Z, 'A is a field, or the direct sum of two fields, or a quaternion algebra. By

assumption we easily see that A = Z; 11 is a four-dimensional central-simple algebra.
We define
g(Z(?lx) = Z(;lf(x), 20€Zy, xel.

We claim that g is well-defined map of ‘A. Indeed, if 2y Iy =0forsomex eI , then
x =0and so z,, ! f(x) =0 as desired. Next, since

2(zg'x) o5 25 x = (25 N2 (f(x) 0y x) =0 forall x € 1,

we see that g is skew-supercommuting on A. Then Lemma 2.4 tells us that g = 0 on
A and so, in particular, f(/) = 0 as desired. O

We now consider two special cases of the map f.
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LEMMA 3.3. If f(Ag) C Ag and (A1) C Ay, then

[ro, f(yro) — fF(Wrol =0 forallrge ly, y € 1.

PROOF. Set

m(x0, y) = f(x0)y + yf(x0) + f(¥)xo +xof(y) forallxo € lo, y €l
Following the same argument as that of [5, Corollary 2.5], we can check that
xolro, f(yro) — f(»)rol + ylro, f(xoro) — f(xo)rol
=7 (x0, Y)rg — (w(x0ro, ¥) + 7 (X0, yro))ro + 7 (xoro, yro)

for all xg, ro € Iy, y € I. On the other hand, we see from (3.2) that 7 (xg, y) = 0 for
all xg € Iy, y € I. Hence,

xolro, f(yro) — f(y)rol + ylro, f(xoro) — f(x0)ro] =0

for all xg, ro € Iy, y € I. So the result follows from Lemma 2.5(i). O

LEMMA 3.4. If f(Ag) € Ag and f(A1) C Ay and [ f(xg), xol =0 for all xqy € Iy,
then f(I)=0.

PROOF. Since f(xg) o xg = 0 for all xg € Iy, we get from our assumption that
fo)xo =x0f (x0) = 5(f(x0)xo + x0f (x0) =0 forallxo€lo.  (3.3)
A linearization of (3.3) yields
f(xo)yo+ f(yo)xo=0 for all xg, yo € Ip. (3.4

Right-multiplying (3.4) by f(yo), we get f(yo)lo f(yo) =0 for all yg € Ip. Since Iy
is a semiprime subalgebra of A by Lemma 2.6, we get f(yg) = 0 for all yg € Iy. But
then f(/) =0 by Lemma 3.1. O

LEMMA 3.5. If f(Ag) € Ag and (A1) Ay, then f(I) =0.

PROOF. We first assume that C; #£0. Then Ag is a prime subalgebra of A by
Lemma 2.7. It follows from (3.1) that

f(xp) oxog=0 forall xg € Iy.

Since Iy is an ideal of Ay, we get from [4, Theorem 1] that f(lp) =0andso f(I) =0
by Lemma 3.1.
We now consider the case when C; = 0. For any y; € I, we set

Fi(ro) = f(yiro) — f(ypDro forall rg € Ip.
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It follows from Lemma 3.3 that
[Fi(rg), rol =0 forall rg € Iy. 3.5)

By Lemma 2.10 we get that F1(Ip) =0 or [Ag, Ag] =0.
Suppose that F| (1) = 0, that is

firo) = f(yDro forall yi € I, o € Io. (3.6)
It follows from (3.2) that
F@xo)yt + y1f(xo) + f(yDxo +xof(y1) =0 forallxo€lo, yi€li.  (3.7)
Substituting y; with y;xg in (3.7) and making use of (3.6) we obtain

f (xo)y1xo + y1xo f (x0) + f(y1)xoxo + xof (y)xo =0 forall xg € Iy, y1 € I1.
(3.8)
On the other hand, right-multiplying (3.7) by xq yields

fxo)y1xo + y1.f (x0)xo + f(y1)xoxo + xof (y1)xo =0 forall xo € ly, y1 € I1.
(3.9
Combining (3.8) with (3.9) yields yi[xg, f(x0)] =0 for all xg € Iy, y; € I} and so
[x0, f(x0)] =0 for all xg € Ip by Lemma 2.2. But then f (/) = 0 by Lemma 3.4.
Finally, if [Ag, Ag] = O, then the result follows from Lemma 3.2. The proof of the
lemma is now complete. O

LEMMA 3.6. If f(Ag) € Ay and f(A1) C Ao, then
[ro, f(yro) — f(Wrol=0 forallryely, y € 1.
PROOF. According to (3.2),

J (x0)yo + yo f (x0) + f(y0)xo + x0f (yo) =0,

f@xo)yr — yif(xo) + f(y)xo +xof(y1) =0,
for all xo, yo € lo, y1 € I1. Adding the above two equations yields

F&xo)y +y° f(xo) + f(xo+x0f(y) =0 forallxg € lo, y €l
Set
72 (x0, ¥) = f(x0)y + ¥7 £ (x0) + f(¥)x0 + xof(y) forallxo € lo, y €l
Following the same argument as that of [5, Corollary 2.5], we easily check that
xolro, f(yro) — f(3rol + y7lro, f(xoro) — f(x0)rol
= 7 (x0. Y)rg — (w(x0r0, ¥) + 7 (xo, yro))ro + 7 (xoro, yro)

for all xg, ro € Iy, y € I. Note that (xg, y) = 0 for all xg € Iy, y € I. Hence,
xolro, f(yro) — f(rol + ¥7lro, f(xoro) — f(x0)rol =0 forall xo, ro € Ip, y € I.

So the result follows from Lemma 2.5(ii1). O
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LEMMA 3.7. If f(Ao) € Ay and f(A1) C Aq, then f(I) = 0.

PROOF. We first assume that C; # 0. In this case, Ag is prime as an algebra by
Lemma 2.7. For 0# A1 € C}, there exists a nonzero graded ideal J of A such that
A1J € A and J C I. By assumption, we have

f()»le) oAlXg = 0 forall x0 € Jo.
Note that all nonzero homogeneous elements in C are invertible [10, Lemma 3.1]. So
f(A1xp) oxo =0 forall xg € Jy.

Thus, Lemma 2.11 tells us that f(A;Jy) = 0. We shall claim that f(/p) =0. Indeed,
according to (3.2) we see that

fFaxo)yo + yof (Aixo) + [ f(yo), A1xol =0 forall xg € Jo, yo € Io.
Since f(11Jo) =0 we get
[f(y0), A1xo]l =0 forall xg € Jo, yo € Ip

and so [ f(yg), Jo] =0 for all yg € Iy. It follows from Lemma 2.8 that f(Ip) < Cj.
But then
S (x0)xo = %(f(xo)xo + x0f(x0)) =0 forall xg € Iy.

If f(xp) #£ 0 for some x( € Iy, then xo = 0, which is a contradiction. Thus f(ly) =0
and so f(I) =0by Lemma 3.1.
We next consider the case when C; = 0. For any xg € I, we set

F>(ro) = f(xoro) — f(xg)ro forall rg € Iy.

According to Lemma 3.6 we see that [F,(rg), ro] =0 for all rg € Ip. Thus, by
Lemma 2.10 we infer that either F>(Iy) =0 or [Ag, Ag] =0.
Suppose that F>(lp) = 0, that is,

f(xoro) = f(xo)ro for all xg, ro € Ip. (3.10)
It follows from (3.2) that
f(x0)yo + yof(xo0) + f(yo)xo + xof (yo) =0 forall xo, yo € lo. (3.11)
Substituting yg with ygrg in (3.11) and making use of (3.10) we obtain

f(xo)yoro + yoro f (x0) + f(yo)roxo + xo f (yo)ro =0 for all xo, yo, ro € Io.
(3.12)

Right-multiplying (3.11) by rq yields

S xo)yoro + yo f (xo)ro + f(yo)xoro + xo f (yo)ro =0 for all xg, yo, ro € Io.
(3.13)
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Combining (3.12) with (3.13) we obtain

yolro, f(xo)]1 4+ f(yo)lro, xol =0 for all xg, yo, ro € Ip.

Substituting rg by worg with wq € I,

yowolro, f(xo)]+ f(yo)wolro, xol =0 for all xo, yo, ro, wo € lo.

Substituting wg by woug with ug € Ag and left-multiplying by #; € A1, we get

(t1yowo)uolro, f(xo)]+ (t1 f (yo)wo)uolro, xol = 0.

Since C1 = 0, we get from [10, Lemma 3.4] that

tiyowouolro, f(x0)]=0=1t1 f(yo)wouolro, xo] for all xo, yo, ro, wo € lo, ug € Ao

and so [rg, f(xg)] =0 for all xg, ro € Ip by Lemmas 2.1 and 2.2. Thus, Lemma 2.8
tells us that f(lp) € Cy, resulting in f(lp) = 0 since C; = 0. Therefore, f(I) =0 in
view of Lemma 3.1.

The case that [Ag, Ag] = 0 follows from Lemma 3.2. The proof of the lemma is
now complete. O

Now we are ready to prove the following important result.

THEOREM 3.8. Let A be a prime superalgebra over a commutative ring F with % and
I a graded ideal of A. Let f : A — A be an F-linear map such that f(x) oy x =0 for
all x € 1. Then f(1) =0.

PROOF. For i =0 or 1, let m; be the canonical projection of A onto A; and let
Jo=mo fmo + 71 fm1 and f1 = mo fm1 + w1 fo. Then each f; is an F-linear map of
A into itself and f = fo + fi1. Moreover, fo(Ao) C Ao, fo(A1) € A1, f1(Ao) € Ay
and f1(A1) € Aop.

We claim that each f; satisfies the condition that f;(x) oy x =0 for all x € I. For
i=0orl,

Sf(xi) o5 xi = fo(xi) o5 xi + f1(xi) oy x; =0 forall x; € I;.
Since fp(x;) os x; is even and f7(x;) og x; is odd, we obtain that
fo(xi) oy x; =0 forall x; € [; (3.14)

and
fi(xij) o x; =0 forall x; € I;. (3.15)

For xo € Ag, x; € A1 we have f(xg) o5 x1 + f(x1) o5 xo0 = 0 and so

So(xo) o5 x1 + folxo) o5 x1 + f1(x1) o5 x0 + f1(x1) 05 x0 =0
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for all xg € Iy, x1 € I;. Thus the odd part is

fo(xo) o5 x1 + fo(xg) os x1 =0 forall xg € Iy, x; € I1 (3.16)
and the even part is

fi(x1) o5 xo + f1(x1) os x0 =0 forall xg € Iy, x1 € 1. 3.17)

Hence we have fp(x) og x =0 for all x € I by (3.14) and (3.16), and f1(x) oy x =0
for all x € I by (3.15) and (3.17).

Therefore, by Lemma 3.5, fo(/) =0 and by Lemma 3.7, f1(I) = 0. This proves
the theorem. O

4. Main result

In this section, we always assume that A is a semiprime superalgebra over F and
f 1A — Aisaskew-supercommuting F'-linear map on A, that is

f(x)ogx=0 forallx e A. 4.1)

A graded ideal P of A is said to be graded-prime ideal of A if A/P is a prime
superalgebra. One can see readily that P is a graded-prime ideal of A if and only if for
aAb C P,wherea,be H,thenae Porb e P.

We begin with the following useful result.

LEMMA 4.1. Let A be a semiprime superalgebra. The intersection of all graded-
prime ideals in A is zero.

PROOF. Since A is semiprime as an algebra, it is well known that the intersection of
all prime ideals in A is zero. For any prime ideal P of A, we claim that P N P? is a
graded-prime ideal of A. Indeed, it is obvious that P N P? is a graded ideal of A. If
aAb C PN P°%, where a, b € H, then aAb C P, which implies that a € P or b € P
since P is a prime ideal of A. If a € P, then a = 4a° € P?, thatis, ae PN P°.
Similarly, if b € P, then b € P N P°. This implies that P N P? is a graded-prime
ideal of A. It is obvious that the intersection of all P N P?, where P is a prime ideal
of A, is zero. This proves the lemma. O

We now give our main result as follows.

THEOREM 4.2. Let A be a semiprime superalgebra over a commutative ring F with
%. Let f : A — A be a skew-supercommuting F-linear map on A. Then f = 0.

PROOF. Pick any graded-prime ideal P. We want to show that P is invariant under f.
A linearization of (4.1) gives

f(xp)osy+ f(y)oxg=0 forall xg € Ag, y € A.
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Hence
f(p)oxge P forall p e P, xy € Ayp. “4.2)

In particular, f(p) o xgyg € P forall p € P, xg, yo € Ag. That is,

(f(p) oxp)yo — xol f(p), yol € P.

According to (4.2) we get that xo[ f(p), yol € P for all xg, yo € Ag, p € P. Since
A/ P is a prime superalgebra, we can get from Lemma 2.1 that [ f(p), yo] € P for all
p € P, yo € Ag. Combining this relation with (4.2) we obtain f(P)Ag C P and so
f(P)< PbyLemma?Z2.l.

Since f(P) C P and A/P is a prime superalgebra, we easily see that f induces a
skew-supercommuting F-linear map on R/P. Hence, we can get from Theorem 3.8
that f(A) € P and so f(A) € NP =0 by Lemma 4.1. This proves our theorem. O
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