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Abstract

Let A be a semiprime superalgebra over a commutative ring F with 1
2 and f : A→ A a skew-

supercommuting map on A. We show that f = 0. This gives a version of Brešar’s theorem for
superalgebras.
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1. Introduction

Let R be an associative ring. For any x, y ∈ R, we shall define [x, y] = xy − yx and
x ◦ y = xy + yx . Let S be a subset of R. A mapping f : S→ R is said to be skew-
commuting on S if f (x) ◦ x = 0 for all x ∈ S. A number of authors have discussed
the skew-commuting maps and their generalizations [8, 12–14]. In these papers the
authors have showed that nonzero derivations and ring endomorphisms cannot be
skew-commuting on certain subsets of prime rings (for example, ideals). In [4] Brešar
obtained theorems of this kind for general additive maps. He proved that there are
no nonzero additive maps that are skew-commuting on either ideals of prime rings of
characteristic not 2 [4, Theorem 1] or semiprime rings of 2-torsion free [4, Theorem 2].
In [5] Brešar obtained a different proof of [4, Theorem 1].

In recent years, some results on maps of associative rings have been extended to
superalgebras by several authors (see, for example, [1, 2, 7, 9–11, 17]). In the present
paper, we shall give a version of Brešar’s theorem mentioned above for superalgebras.

2. Preliminaries

Throughout the article, algebras are over a unital commutative associative ring F .
We shall assume without further mention that 1

2 ∈ F . Although this requirement is not
always needed, it is assumed for the sake of simplicity.
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We use standard terminology and refer the reader to [15] for background
information on the constructions of graded algebras and superalgebras. A
superalgebra A over F is a Z2-graded associative algebra over F ; that is, A is
the direct sum of two F-submodules A0 and A1 such that A2

0 ⊆ A0, A0 A1 ⊆ A1,
A1 A0 ⊆ A1 and A2

1 ⊆ A0. We call A0 the even part and A1 the odd part of A. Elements
in H = A0 ∪ A1 are said to be homogeneous. We define σ : A→ A by (a0 + a1)

σ

= a0 − a1. Note that σ is an automorphism of A such that σ 2
= 1. Conversely,

given an algebra A and an automorphism σ of A with σ 2
= 1, A then becomes a

superalgebra by defining A0 = {a ∈ A | aσ = a} and A1 = {a ∈ A | aσ =−a}. A σ -
invariant F-submodule B of A is just a graded F-submodule, that is, Bσ ⊆ B if and
only if B = B0 ⊕ B1 where B0 = B ∩ A0 and B1 = B ∩ A1. For instance, the center Z
of A is clearly invariant under any automorphism of A and hence Z = Z0 ⊕ Z1 where
Z0 = Z ∩ A0 and Z1 = Z ∩ A1.

A superalgebra A is said to be prime if the product of any two nonzero graded ideals
is nonzero. A is said to be semiprime if it has no nonzero nilpotent graded ideals. One
can see readily that A is a prime superalgebra if and only if every nonzero graded ideal
of A has zero annihilator in A. A superalgebra A is called a trivial superalgebra if
A1 = 0, or equivalently σ = 1.

For a, b ∈ H , the skew-supercommutator of a and b is defined to be a ◦s b = ab
+ (−1)|a||b|ba. Note that we have a ◦s b = ab − ba = [a, b], the ordinary
commutator, if both a and b are odd, and a ◦s b = ab + ba = a ◦ b, if either a or b
is even. The definition can be extended linearly to arbitrary a, b ∈ A, namely,

a ◦s b = a0 ◦s b0 + a0 ◦s b1 + a1 ◦s b0 + a1 ◦s b1

for a = a0 + a1 and b = b0 + b1 with ai , bi ∈ Ai , i = 0, 1.
Let S be a subset of A. We say that a mapping f : S→ A is skew-supercommuting

on S if f (x) ◦s x = 0 for all x ∈ S.
Let A be a semiprime superalgebra. It is well known that A and A0 are semiprime

as algebras [16, Lemma 1.2]. So we can construct the maximal right quotient ring
Q and the extended centroid C of A. All these notions are explained in detail in the
book [3, Ch. 2].

Since σ can be extended to Q such that σ 2
= 1 on Q [3, Proposition 2.5.3], thus Q

is also a semiprime superalgebra. Since Cσ
= C we see that C = C0 ⊕ C1 is a graded

subalgebra of Q. It is well known that for any a ∈ Q there exists an essential ideal I of
A such that aI ⊆ A. We may assume that I is graded since otherwise we can replace
it by I ∩ I σ . This fact will be used later.

We begin with some basic properties of prime superalgebras.

LEMMA 2.1. Let A be a prime superalgebra and I a graded ideal of A. If a I0 = 0
(I0a = 0), where a ∈ A, then a = 0 or I = 0.

PROOF. Suppose that aI0 = 0. Since A0 I1 A1 ⊆ I0 and A1 I1 ∈ I0, we get a AI1 A1 = 0
and so a = 0 or I1 A1 = 0 since A is a prime superalgebra. If I1 A1 = 0, then I1 = 0
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by [10, Lemma 2.1(i)] and so I = I0. Hence, we get by assumption that aI = 0, which
results in a = 0 or I = 0. The case of I0a = 0 is proved in a similar way. 2

LEMMA 2.2. Let A be a prime superalgebra and I a nonzero graded ideal of A. If
a I1 = 0 (I1a = 0), where a ∈ A, then a = 0 or A1 = 0.

PROOF. Suppose that aI1 = 0. Since I0 A1 ⊆ I1 we get aI0 A1 = 0 and so aI0 = 0 or
A1 = 0 by [10, Lemma 2.1(i)]. If aI0 = 0, then a = 0 by Lemma 2.1. The case of
I1a = 0 is proved in a similar way. 2

LEMMA 2.3. Let A be a prime superalgebra and I a graded ideal of A. Let a ∈ A be
such that ax0 + x0a = 0 for all x0 ∈ I0. Then a = 0 or I = 0.

PROOF. Suppose that I 6= 0. For any x0, y0 ∈ I0,

−x0 y0a = ax0 y0 =−x0ay0 for all x0, y0 ∈ I0.

Hence I0[a, I0] = 0 and so [a, I0] = 0 by Lemma 2.1. Thus ax0 =
1
2 (ax0 + x0a)= 0

for all x0 ∈ I0. By Lemma 2.1 again we obtain a = 0. 2

LEMMA 2.4. Let A be a superalgebra with 1 over F. Let f be an F-linear map of A
into itself such that f (x) ◦s x = 0 for all x ∈ A. Then f = 0.

PROOF. Note that 1 ∈ A0. Then we have 2 f (1)= f (1) ◦ 1= 0, from our assumption,
and so f (1)= 0. Since

f (1+ x) ◦s (1+ x)= 0 for all x ∈ A,

we have f (x) ◦ 1+ f (x) ◦s x = 0. Since f (x) ◦s x = 0 for all x ∈ A, we have
2 f (x)= f (x) ◦ 1= 0 and so f (x)= 0 for all x ∈ A. 2

LEMMA 2.5. Let A be a noncommutative prime superalgebra and I a graded ideal of
A. Let g1, g2 : A→ A be F-linear maps. Suppose that one of the following conditions
are satisfied:

(i) x0g1(y)+ yg2(x0)= 0 for all x0 ∈ I0, y ∈ I ;
(ii) x0g1(y)+ yσ g2(x0)= 0 for all x0 ∈ I0, y ∈ I .

Then g1(I )= g2(I0)= 0.

PROOF. Suppose first that (i) is fulfilled. If A1 = 0, the result follows from [5,
Lemma 4.4]. So we may assume that A1 6= 0. By assumption we have r0x0g1(y)
=−r0 yg2(x0) for all r0, x0 ∈ I0, y ∈ I . But, on the other hand, since r0x0 ∈ I0, we
have r0x0g1(y)=−yg2(r0x0). Thus, r0 yg2(x0)= yg2(r0x0) for all r0, x0 ∈ I0, y ∈ I .
In particular,

r0r yg2(x0)= r yg2(r0x0) for all r0, x0 ∈ I0, y ∈ I, r ∈ A.
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If yg2(x0) 6= 0 for some x0 ∈ I0, y ∈ I , then r0 and 1 are C-dependent for any r0 ∈

I0 by [10, Theorem 3.3]. This implies that [I0, A1] = 0 and so [A0, A1] = 0 by
[16, Lemma 1.8(i)]. It follows from [10, Lemma 2.1(vii)] that A is commutative
or A1 = 0, contradicting our assumption. Thus Ig2(I0)= 0 and so g2(I0)= 0 by
Lemma 2.1. According to (i) we have I0g1(I )= 0 and so g1(I )= 0 as desired.

Suppose next that (ii) is fulfilled. Thus

x0g1(y
σ )+ yg2(x0)= 0 for all x0 ∈ I0, y ∈ I

since σ 2
= 1 and I σ = I . Then the assertion of (ii) follows from the assertion of (i). 2

LEMMA 2.6. Let A be a prime superalgebra and I a graded ideal of A. Then I0 is a
semiprime subalgebra of A.

PROOF. Suppose that a0 I0a0 = 0 for some a0 ∈ I0. We want to prove a0 = 0.
Since a0 I0 A0a0 I0 = 0, we get a0 I0 = 0 by the semiprimeness of A0. So a0 = 0 by
Lemma 2.1. 2

LEMMA 2.7. Let A be a prime superalgebra with extended centroid C. If C1 6= 0,
then A0 is a prime subalgebra of A.

PROOF. Suppose that a0 A0b0 = 0, where a0, b0 ∈ A0. We want to show that either
a0 = 0 or b0 = 0. Pick a nonzero λ1 in C1 and a nonzero graded ideal J of A
such that λ1 J ⊆ A. Write J = J0 ⊕ J1 where J0 = J ∩ A0 and J1 = J ∩ A1. Thus,
a0λ1 J1b0 = 0 and so a0 J1b0 = 0. On the other hand, we have by assumption that
a0 J0b0 = 0. This implies that a0 Jb0 = 0 and so a0 AJb0 = 0. Hence, either a0 = 0 or
Jb0 = 0; but if Jb0 = 0, then b0 = 0. This proves our lemma. 2

LEMMA 2.8. Let A be a prime superalgebra and I a nonzero graded ideal of A. If
[a1, I0] = 0, where a1 ∈ A1, then a1 ∈ C1.

PROOF. For any x0 ∈ I0, y0 ∈ A0, since x0 y0 ∈ I0, by assumption we have
[a1, x0 y0] = 0 and so x0[a1, y0] = 0. It follows from Lemma 2.1 that [a1, A0]

= 0. Thus [a1, a1 A0 A1] = 0 and so a1 A0[a1, A1] = 0. Similarly, we can get
[a1, A1]A0a1 = 0. By [10, Lemma 2.1(iii)] we get [a1, A1] = 0. Hence [a1, A] = 0
as desired. 2

LEMMA 2.9. Let A be a prime superalgebra and I a nonzero graded ideal of A. If
[I0, I0] = 0, then [A0, A0] = 0.

PROOF. Since I0[A0, I0] = [I0 A0, I0] = 0, we get [A0, I0] = 0 by Lemma 2.1.
Furthermore, [A0, A0]I0 = [A0, A0 I0] = 0, which implies that [A0, A0] = 0 as
desired. 2

The following result is of crucial important for the proof of our main result.
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LEMMA 2.10. Let A be a prime superalgebra with extended centroid C and I a
graded ideal of A. Suppose that C1 = 0. If F : I0→ A1 is an F-linear map such
that

[F(r0), r0] = 0 for all r0 ∈ I0. (2.1)

then F(I0)= 0 or [A0, A0] = 0.

PROOF. We may assume without loss of generality that both I 6= 0 and A1 6= 0. A
linearization of (2.1) yields

[F(x0), y0] = [x0, F(y0)] for all x0, y0 ∈ I0.

Therefore the map D : I0 × I0→ A1 defined by D(x0, y0)= [F(x0), y0] is a
biderivation, so it follows from [6, Lemma 3.1] that

[F(x0), y0]w0[x
′

0, z0] = [x0, y0]w0[F(x
′

0), z0] for all x0, x ′0, y0, z0, w0 ∈ I0.

Right-multiplying by t1 ∈ A1 and substituting w0 with w0u0 where u0 ∈ A0, we get

([F(x0), y0]w0)u0([x
′

0, z0]t1)= ([x0, y0]w0)u0([F(x
′

0), z0]t1).

Since C1 = 0, it follows from [10, Lemma 3.4] that

[F(x0), y0]w0u0[x
′

0, z0]t1 = 0= [x0, y0]w0u0[F(x
′

0), z0]t1

and so

[F(x0), y0]w0u0[x
′

0, z0] = 0= [x0, y0]w0u0[F(x
′

0), z0]

in view of [10, Lemma 2.1(i)]. This implies that

[F1(x0), y0]w0 A0[x
′

0, z0]w
′

0 = 0= [x ′0, z0]w
′

0 A0[F1(x0), y0]w0 = 0

for all x0, x ′0, y0, z0, w0, w
′

0 ∈ I0. It follows from [10, Lemma 2.1(iii)] that either
[F1(x0), y0]w0 = 0 or [x ′0, z0]w

′

0 = 0 for all x0, y0, w0, x ′0, z0, w
′

0 ∈ I0. That is, either
[F1(I0), I0]I0 = 0 or [I0, I0]I0 = 0. Hence, either [F1(I0), I0] = 0 or [I0, I0] = 0 by
Lemma 2.1. If [F1(I0), I0] = 0, we get F1(I0) ∈ C1 = 0 by Lemma 2.8. Otherwise, if
[I0, I0] = 0, then [A0, A0] = 0 by Lemma 2.9. This completes the proof. 2

The following lemma is a slight generalization of [4, Theorem 1] and can be verified
by the same proof.

LEMMA 2.11. Let R be a prime ring of characteristic not 2 and I an ideal of R. If an
additive mapping f : I → R is skew-commuting on I, then f (I )= 0.
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3. A result for prime superalgebras

Throughout this section A = A0 ⊕ A1 will be a prime superalgebra over F ,
I = I0 ⊕ I1 a graded ideal of A and f : A→ A will denote a skew-supercommuting
F-linear map on I , that is

f (x) ◦s x = 0 for all x ∈ I. (3.1)

A linearization of (3.1) yields

f (x) ◦s y + f (y) ◦s x = 0 for all x, y ∈ I. (3.2)

Our goal is to prove f (I )= 0. Without loss of generality we may assume that both
I 6= 0 and [A0, A1] 6= 0. Indeed, if I = 0, there is nothing to prove; if [A0, A1] = 0,
then either A is commutative or A1 = 0 [10, Lemma 2.1(vii)]. In the former case, any
nonzero element of H has zero annihilator in A. It follows from (3.1) that

2 f (x0)x0 = f (x0)x0 + x0 f (x0)= 0 for all x0 ∈ I0

and so f (x0)= 0 for all x0 ∈ I0. According to (3.2) we have 2 f (y)x0 = f (y)x0
+ x0 f (y)= 0. Hence, f (y)= 0 for all y ∈ I as desired. In the latter case that A1 = 0,
A is a prime algebra and f is skew-commuting on I , so the assertion follows from
Brešar’s theorem [4, Theorem 1].

We begin with two useful lemmas.

LEMMA 3.1. If f (I0)= 0, then f (I )= 0.

PROOF. We only need to prove f (I1)= 0. By assumption we get from (3.2) that

f (y1)x0 + x0 f (y1)= 0 for all x0 ∈ I0, y1 ∈ I1.

It follows from Lemma 2.3 that f (y1)= 0 for all y1 ∈ I1 as desired. 2

LEMMA 3.2. Suppose that [A0, A0] = 0. Then f (I )= 0.

PROOF. According to [16, Lemma 1.9], we get that Z0 6= 0 and the central closure
A = Z−1

0 A is a field, or the direct sum of two fields, or a quaternion algebra. By
assumption we easily see that A = Z−1

0 I is a four-dimensional central-simple algebra.
We define

g(z−1
0 x)= z−1

0 f (x), z0 ∈ Z0, x ∈ I.

We claim that g is well-defined map of A. Indeed, if z−1
0 x = 0 for some x ∈ I , then

x = 0 and so z−1
0 f (x)= 0 as desired. Next, since

g(z−1
0 x) ◦s z−1

0 x = (z−1
0 )2( f (x) ◦s x)= 0 for all x ∈ I,

we see that g is skew-supercommuting on A. Then Lemma 2.4 tells us that g = 0 on
A and so, in particular, f (I )= 0 as desired. 2

We now consider two special cases of the map f .
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LEMMA 3.3. If f (A0)⊆ A0 and f (A1)⊆ A1, then

[r0, f (yr0)− f (y)r0] = 0 for all r0 ∈ I0, y ∈ I.

PROOF. Set

π(x0, y)= f (x0)y + y f (x0)+ f (y)x0 + x0 f (y) for all x0 ∈ I0, y ∈ I.

Following the same argument as that of [5, Corollary 2.5], we can check that

x0[r0, f (yr0)− f (y)r0] + y[r0, f (x0r0)− f (x0)r0]

= π(x0, y)r2
0 − (π(x0r0, y)+ π(x0, yr0))r0 + π(x0r0, yr0)

for all x0, r0 ∈ I0, y ∈ I . On the other hand, we see from (3.2) that π(x0, y)= 0 for
all x0 ∈ I0, y ∈ I . Hence,

x0[r0, f (yr0)− f (y)r0] + y[r0, f (x0r0)− f (x0)r0] = 0

for all x0, r0 ∈ I0, y ∈ I . So the result follows from Lemma 2.5(i). 2

LEMMA 3.4. If f (A0)⊆ A0 and f (A1)⊆ A1 and [ f (x0), x0] = 0 for all x0 ∈ I0,
then f (I )= 0.

PROOF. Since f (x0) ◦ x0 = 0 for all x0 ∈ I0, we get from our assumption that

f (x0)x0 = x0 f (x0)=
1
2 ( f (x0)x0 + x0 f (x0))= 0 for all x0 ∈ I0. (3.3)

A linearization of (3.3) yields

f (x0)y0 + f (y0)x0 = 0 for all x0, y0 ∈ I0. (3.4)

Right-multiplying (3.4) by f (y0), we get f (y0)I0 f (y0)= 0 for all y0 ∈ I0. Since I0
is a semiprime subalgebra of A by Lemma 2.6, we get f (y0)= 0 for all y0 ∈ I0. But
then f (I )= 0 by Lemma 3.1. 2

LEMMA 3.5. If f (A0)⊆ A0 and f (A1)⊆ A1, then f (I )= 0.

PROOF. We first assume that C1 6= 0. Then A0 is a prime subalgebra of A by
Lemma 2.7. It follows from (3.1) that

f (x0) ◦ x0 = 0 for all x0 ∈ I0.

Since I0 is an ideal of A0, we get from [4, Theorem 1] that f (I0)= 0 and so f (I )= 0
by Lemma 3.1.

We now consider the case when C1 = 0. For any y1 ∈ I1, we set

F1(r0)= f (y1r0)− f (y1)r0 for all r0 ∈ I0.
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It follows from Lemma 3.3 that

[F1(r0), r0] = 0 for all r0 ∈ I0. (3.5)

By Lemma 2.10 we get that F1(I0)= 0 or [A0, A0] = 0.
Suppose that F1(I0)= 0, that is

f (y1r0)= f (y1)r0 for all y1 ∈ I1, r0 ∈ I0. (3.6)

It follows from (3.2) that

f (x0)y1 + y1 f (x0)+ f (y1)x0 + x0 f (y1)= 0 for all x0 ∈ I0, y1 ∈ I1. (3.7)

Substituting y1 with y1x0 in (3.7) and making use of (3.6) we obtain

f (x0)y1x0 + y1x0 f (x0)+ f (y1)x0x0 + x0 f (y1)x0 = 0 for all x0 ∈ I0, y1 ∈ I1.

(3.8)
On the other hand, right-multiplying (3.7) by x0 yields

f (x0)y1x0 + y1 f (x0)x0 + f (y1)x0x0 + x0 f (y1)x0 = 0 for all x0 ∈ I0, y1 ∈ I1.

(3.9)
Combining (3.8) with (3.9) yields y1[x0, f (x0)] = 0 for all x0 ∈ I0, y1 ∈ I1 and so

[x0, f (x0)] = 0 for all x0 ∈ I0 by Lemma 2.2. But then f (I )= 0 by Lemma 3.4.
Finally, if [A0, A0] = 0, then the result follows from Lemma 3.2. The proof of the

lemma is now complete. 2

LEMMA 3.6. If f (A0)⊆ A1 and f (A1)⊆ A0, then

[r0, f (yr0)− f (y)r0] = 0 for all r0 ∈ I0, y ∈ I.

PROOF. According to (3.2),

f (x0)y0 + y0 f (x0)+ f (y0)x0 + x0 f (y0)= 0,

f (x0)y1 − y1 f (x0)+ f (y1)x0 + x0 f (y1)= 0,

for all x0, y0 ∈ I0, y1 ∈ I1. Adding the above two equations yields

f (x0)y + yσ f (x0)+ f (y)x0 + x0 f (y)= 0 for all x0 ∈ I0, y ∈ I.

Set

π2(x0, y)= f (x0)y + yσ f (x0)+ f (y)x0 + x0 f (y) for all x0 ∈ I0, y ∈ I.

Following the same argument as that of [5, Corollary 2.5], we easily check that

x0[r0, f (yr0)− f (y)r0] + yσ [r0, f (x0r0)− f (x0)r0]

= π(x0, y)r2
0 − (π(x0r0, y)+ π(x0, yr0))r0 + π(x0r0, yr0)

for all x0, r0 ∈ I0, y ∈ I . Note that π(x0, y)= 0 for all x0 ∈ I0, y ∈ I . Hence,

x0[r0, f (yr0)− f (y)r0] + yσ [r0, f (x0r0)− f (x0)r0] = 0 for all x0, r0 ∈ I0, y ∈ I.

So the result follows from Lemma 2.5(ii). 2
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LEMMA 3.7. If f (A0)⊆ A1 and f (A1)⊆ A0, then f (I )= 0.

PROOF. We first assume that C1 6= 0. In this case, A0 is prime as an algebra by
Lemma 2.7. For 0 6= λ1 ∈ C1, there exists a nonzero graded ideal J of A such that
λ1 J ⊆ A and J ⊆ I . By assumption, we have

f (λ1x0) ◦ λ1x0 = 0 for all x0 ∈ J0.

Note that all nonzero homogeneous elements in C are invertible [10, Lemma 3.1]. So

f (λ1x0) ◦ x0 = 0 for all x0 ∈ J0.

Thus, Lemma 2.11 tells us that f (λ1 J0)= 0. We shall claim that f (I0)= 0. Indeed,
according to (3.2) we see that

f (λ1x0)y0 + y0 f (λ1x0)+ [ f (y0), λ1x0] = 0 for all x0 ∈ J0, y0 ∈ I0.

Since f (λ1 J0)= 0 we get

[ f (y0), λ1x0] = 0 for all x0 ∈ J0, y0 ∈ I0

and so [ f (y0), J0] = 0 for all y0 ∈ I0. It follows from Lemma 2.8 that f (I0)⊆ C1.
But then

f (x0)x0 =
1
2 ( f (x0)x0 + x0 f (x0))= 0 for all x0 ∈ I0.

If f (x0) 6= 0 for some x0 ∈ I0, then x0 = 0, which is a contradiction. Thus f (I0)= 0
and so f (I )= 0 by Lemma 3.1.

We next consider the case when C1 = 0. For any x0 ∈ I0, we set

F2(r0)= f (x0r0)− f (x0)r0 for all r0 ∈ I0.

According to Lemma 3.6 we see that [F2(r0), r0] = 0 for all r0 ∈ I0. Thus, by
Lemma 2.10 we infer that either F2(I0)= 0 or [A0, A0] = 0.

Suppose that F2(I0)= 0, that is,

f (x0r0)= f (x0)r0 for all x0, r0 ∈ I0. (3.10)

It follows from (3.2) that

f (x0)y0 + y0 f (x0)+ f (y0)x0 + x0 f (y0)= 0 for all x0, y0 ∈ I0. (3.11)

Substituting y0 with y0r0 in (3.11) and making use of (3.10) we obtain

f (x0)y0r0 + y0r0 f (x0)+ f (y0)r0x0 + x0 f (y0)r0 = 0 for all x0, y0, r0 ∈ I0.

(3.12)
Right-multiplying (3.11) by r0 yields

f (x0)y0r0 + y0 f (x0)r0 + f (y0)x0r0 + x0 f (y0)r0 = 0 for all x0, y0, r0 ∈ I0.

(3.13)
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Combining (3.12) with (3.13) we obtain

y0[r0, f (x0)] + f (y0)[r0, x0] = 0 for all x0, y0, r0 ∈ I0.

Substituting r0 by w0r0 with w0 ∈ I0,

y0w0[r0, f (x0)] + f (y0)w0[r0, x0] = 0 for all x0, y0, r0, w0 ∈ I0.

Substituting w0 by w0u0 with u0 ∈ A0 and left-multiplying by t1 ∈ A1, we get

(t1 y0w0)u0[r0, f (x0)] + (t1 f (y0)w0)u0[r0, x0] = 0.

Since C1 = 0, we get from [10, Lemma 3.4] that

t1 y0w0u0[r0, f (x0)] = 0= t1 f (y0)w0u0[r0, x0] for all x0, y0, r0, w0 ∈ I0, u0 ∈ A0

and so [r0, f (x0)] = 0 for all x0, r0 ∈ I0 by Lemmas 2.1 and 2.2. Thus, Lemma 2.8
tells us that f (I0)⊆ C1, resulting in f (I0)= 0 since C1 = 0. Therefore, f (I )= 0 in
view of Lemma 3.1.

The case that [A0, A0] = 0 follows from Lemma 3.2. The proof of the lemma is
now complete. 2

Now we are ready to prove the following important result.

THEOREM 3.8. Let A be a prime superalgebra over a commutative ring F with 1
2 and

I a graded ideal of A. Let f : A→ A be an F-linear map such that f (x) ◦s x = 0 for
all x ∈ I . Then f (I )= 0.

PROOF. For i = 0 or 1, let πi be the canonical projection of A onto Ai and let
f0 = π0 f π0 + π1 f π1 and f1 = π0 f π1 + π1 f π0. Then each fi is an F-linear map of
A into itself and f = f0 + f1. Moreover, f0(A0)⊆ A0, f0(A1)⊆ A1, f1(A0)⊆ A1
and f1(A1)⊆ A0.

We claim that each fi satisfies the condition that fi (x) ◦s x = 0 for all x ∈ I . For
i = 0 or 1,

f (xi ) ◦s xi = f0(xi ) ◦s xi + f1(xi ) ◦s xi = 0 for all xi ∈ Ii .

Since f0(xi ) ◦s xi is even and f1(xi ) ◦s xi is odd, we obtain that

f0(xi ) ◦s xi = 0 for all xi ∈ Ii (3.14)

and
f1(xi ) ◦s xi = 0 for all xi ∈ Ii . (3.15)

For x0 ∈ A0, x1 ∈ A1 we have f (x0) ◦s x1 + f (x1) ◦s x0 = 0 and so

f0(x0) ◦s x1 + f0(x0) ◦s x1 + f1(x1) ◦s x0 + f1(x1) ◦s x0 = 0
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for all x0 ∈ I0, x1 ∈ I1. Thus the odd part is

f0(x0) ◦s x1 + f0(x0) ◦s x1 = 0 for all x0 ∈ I0, x1 ∈ I1 (3.16)

and the even part is

f1(x1) ◦s x0 + f1(x1) ◦s x0 = 0 for all x0 ∈ I0, x1 ∈ I1. (3.17)

Hence we have f0(x) ◦s x = 0 for all x ∈ I by (3.14) and (3.16), and f1(x) ◦s x = 0
for all x ∈ I by (3.15) and (3.17).

Therefore, by Lemma 3.5, f0(I )= 0 and by Lemma 3.7, f1(I )= 0. This proves
the theorem. 2

4. Main result

In this section, we always assume that A is a semiprime superalgebra over F and
f : A→ A is a skew-supercommuting F-linear map on A, that is

f (x) ◦s x = 0 for all x ∈ A. (4.1)

A graded ideal P of A is said to be graded-prime ideal of A if A/P is a prime
superalgebra. One can see readily that P is a graded-prime ideal of A if and only if for
a Ab ⊆ P , where a, b ∈ H , then a ∈ P or b ∈ P .

We begin with the following useful result.

LEMMA 4.1. Let A be a semiprime superalgebra. The intersection of all graded-
prime ideals in A is zero.

PROOF. Since A is semiprime as an algebra, it is well known that the intersection of
all prime ideals in A is zero. For any prime ideal P of A, we claim that P ∩ Pσ is a
graded-prime ideal of A. Indeed, it is obvious that P ∩ Pσ is a graded ideal of A. If
a Ab ⊆ P ∩ Pσ , where a, b ∈ H , then a Ab ⊆ P , which implies that a ∈ P or b ∈ P
since P is a prime ideal of A. If a ∈ P , then a =±aσ ∈ Pσ , that is, a ∈ P ∩ Pσ .
Similarly, if b ∈ P , then b ∈ P ∩ Pσ . This implies that P ∩ Pσ is a graded-prime
ideal of A. It is obvious that the intersection of all P ∩ Pσ , where P is a prime ideal
of A, is zero. This proves the lemma. 2

We now give our main result as follows.

THEOREM 4.2. Let A be a semiprime superalgebra over a commutative ring F with
1
2 . Let f : A→ A be a skew-supercommuting F-linear map on A. Then f = 0.

PROOF. Pick any graded-prime ideal P . We want to show that P is invariant under f .
A linearization of (4.1) gives

f (x0) ◦s y + f (y) ◦ x0 = 0 for all x0 ∈ A0, y ∈ A.

https://doi.org/10.1017/S0004972708000762 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000762


408 Y. Wang [12]

Hence
f (p) ◦ x0 ∈ P for all p ∈ P, x0 ∈ A0. (4.2)

In particular, f (p) ◦ x0 y0 ∈ P for all p ∈ P, x0, y0 ∈ A0. That is,

( f (p) ◦ x0)y0 − x0[ f (p), y0] ∈ P.

According to (4.2) we get that x0[ f (p), y0] ∈ P for all x0, y0 ∈ A0, p ∈ P . Since
A/P is a prime superalgebra, we can get from Lemma 2.1 that [ f (p), y0] ∈ P for all
p ∈ P, y0 ∈ A0. Combining this relation with (4.2) we obtain f (P)A0 ⊆ P and so
f (P)⊆ P by Lemma 2.1.

Since f (P)⊆ P and A/P is a prime superalgebra, we easily see that f induces a
skew-supercommuting F-linear map on R/P . Hence, we can get from Theorem 3.8
that f (A)⊆ P and so f (A)⊆ ∩P = 0 by Lemma 4.1. This proves our theorem. 2
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