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The field of boundary limit theorems in analytic function
theory is usually considered to have begun about 1906, with the
publication of Fatou's thesis [8]. In this remarkable memoir
a theorem is proved, that now bears the author's name, which
implies that any bounded holomorphic function defined on the
unit disk possesses an angular limit almost everywhere
(Lebesgue measure) on the frontier. Outstanding classical
contributions to this field can be attributed to F. and M. Riesz,
R. Nevanlinna, Lusin, Privaloff, Frcstman, Plessner, and
others. During the past decade, there have been serious
attempts to generalise the classical theory in such a way as
to include analytic functions from a hyperbolic Riemann
surface R (that is, one which tolerates a Green's function)
into an arbitrary Riemann surface R'. The most elaborate
results in this direction can be found in two papers, one by
Constantinescu and Cornea [6], henceforth to be designated
by C-C, and the other by Doob [7]. Since the term ''cluster
set' is fundamental through this discussion, we briefly define
this term. Let f be a function from R into R' and F a
filter of subsets of R. The cluster set of f along *,
denoted by «(—:9.’(—{1’ is defined in such a way that p' € C}(f) if

and only if p' is a member of the closure of f(Fa) for every
F e
o
Both C-C and Doob employ the boundary of R.S. Martin
[10], as a fundamental tool, but Doob makes use of the fine
cluster set of Cartan-Brelot-Naim [11], and its associated
limit, whereas C-C apparently introduce their own cluster set

and limit. In Math. Reviews (Vol. 23, A1025), Doob commented
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that the cluster set of C-C was actually the fine cluster set of
Cartan-Brelot-Naim. In this article, we shall show that the
fine cluster set is always contained in the C-C cluster set,
and that the two sets are identical for a continuous function.
Doob' s remark is therefore true for analytic functions, but
not in general. For example, the C-C cluster set of a super-
harmonic function may strictly contain the fine cluster set.
The following notation shall be employed throughout:

R, a hyperbolic Riemann surface.

A, the Martin boundary of R, [10].

:\1, the subset of A consisting of the minimal points.
R, the compact metric space consisting of the set

R (U A, endowed with the Martin metric,

([10], p.147).
R', any Riemann surface.

A', the Martin boundary of R' as defined by C-C
([6], p.44).

R', the compact Martin space R' U a'.

f, an analytic function from R into R'.

1. The C-C Cluster Set and Associated Limit. Let G
be a region in R, 9 G its frontier in R, and n the identity

mapping from G into R. Following C-C, we define HP(G)
to be the set of non-negative harmonic functions on G.

The Set HP(n), ([6], pp.9,10): In this section, F is
defined tc = an open subset of G such that F is relatively
compact in R. We denote the frontier of F, (which is entirely
contained in R), by 9 F. For any u¢ HP(G) we define u on
9F zas follows: *

uon O9F M G

G
i

o on 9F M 3G
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At the non-isolated points of 9 F, the function u is lower

*

semi-continuous and therefore resolutive ([12], p. 111).

F

Let H denote the generalised solution of the Dirichlet problem
u
3k

(Wiener function) on  which is defined by the boundary
function u. We now define HP{) C HP(G) to be
*
F
HP(n) ={ue HP(G): uzH onevery F }.
u
*

The Operator I 6], p-18). For any v e HP(R), we

A
define __IGV =sup {ue HP(n): u<v on G}. C-C have shown

that IGv is itself a member of the set HP(n). The term

"inverse extremalisation' employed to describe this operator
comes from Kuramochi ([9], p.577).

The Set 4 ,(G) C A, ([6]. p.40).

Let Pe Ai’ and K13 the associated minimal harmonic

function. Following C-C, we define A1(G) ={pean K. £ 0}.
P

!
-1 G
For a given pDe Ays we define {Ga} to be the family of open
subsets of R possessing the propecrty that Pe Al(Ga) for
every G in this family. C-C have shown that {G } satisfies

03 [ed

the axioms of a filter base on R ([6], p.25). The filter on R,

whose base is {G }, shall be denoted by the symbol @C c’
o -

The C-C Cluster Set I\//‘If(ﬁ) ([6], p.46).

We recall that f is an analytic function from a hyperbolic
Riemann surface R into an arbitrary Riemann surface R'.

Following C-C, we define }\:/If(_f_\)_} to be the cluster set (contained

in R') of f at p along the filter & Actually C-C defined

c-C’
I(\/If(f)) = Q f(Ga) where closure is relative to R'. Henceforth,
we shall refer to fdf(ﬁ) as the C-C cluster set of f at P, and

A A .
in the special circumstance where Mf(p) reduces to a singleton

subset of R! , we say that f possesses a C-C limit at p and
denote this limit by £(p).
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2. The Fine Cluster Set of Cartan, Brelot, and Naim.
While it is true that some of the following definitions were

originally given in relation to classical Euclidean space, such
definitions extend naturally to hyperbolic Riemann surfaces.

Thin Sets ([1]., p. 327).
ILet R be a hyperbolic Riemann surface, p € R and
o

E C R. Following Brelot, we define E to be thin (effilé)
at p if one of the following conditions is satisfied:
o

(i) p_ 1is isolated (relative to the usual topology) with
o

respect to the set E (U {po} .

(ii) There exists a non-negative, superharmonic function
V(p) on R possessing the property that V(po) < lim  V(p);
{P > Po
pekE
(lim means limit inferior).

Pseudo- Limit ([2], p.29).
Brelot {([1], p.327) observed the following properties of

thin sets:

(i) f E isthinat p and E' C E then E' is thin at P,
(o]

(11) ¥ E, is thinat p , and E_ is thin at p , then
1 o 2 o

E U E, isalso thinat p .

Let {E} be the family of subsets of R such that every
member of {E} isthinat p ¢ R, and {R - E} the family
o

of the complements of {E}. Then {R - (E (U {po} )}

satisfies the axioms of a filter on R. Following Brelot, we
define the pseudo-limit of f at p to be the limit of f along
—_— o

the filter {R - (E (U {p })} provided that such a limit exists.
o

The Fine Topology of H. Cartan ([5], pp.236-237).

Cartan introduced a topology on R defined to be the least
topology that makes the superharmonic functions on R continuous.
He called this topology the fine topology, and noticed that a set
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N C R is a fine neighbourhood of p € R if and only if (R - N)
o]

is thin at po in the sense of Brelot. The cluster set of f at

P, along the filter of deleted fine neighbourhoods is defined to

be the fine cluster set of f at p , and if the fine cluster set
o

at p_ is a singleton subset, say {$'} C R', then we say
o
that f)i) is the fine limit of f at p . A function f has a fine
_— o
limit at p in the sense of Cartan if and only if it has a pseudo-
o

limit at p in the sense of Brelot and the two limits are equal.
o

The Fine Topology of L. Naim ([11], Chapt. 2).
Let G(p,q) be the Green's function of R and

_G(p,q)
Kip.a) = G(p.q )

on (R - {qo} ) X R. The Martin kernel function, denoted by

be the normalized Green's function defined

K(p,q) is defined on (f{ - {qo}) X R where K(P,q) is the
normalized Green's function on (R - {qo} ) X R. For any

mass distribution p on R, (a non-negative Borel measure),
we define the function

O = [K(B, q)dp
R q

to be the Martin potential of the mass distribution p. We must
A
keep in mind that (J is defined on R -~ {q }. On the subset
o

R - {g } of its domain of definition, however,
o

G(p,q) V(p)
Jp) = f——— dp = ————
R G(p,qo) q G(P,qo)

where V(p) is the Green potential of p, and in particular a
positive superharmonic function. '

In her thesis, L. Naim defined a set E R to be thin
at a point fSo ¢ R if one of the following conditions is satisfied:
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(i} p is an isolated point (in the Martin topology) of the

O

set. £ U {P).

(1iY There exists a Martin potential U(f)) of some mass
distribution w on R suchthat{J(p )< lm (J(p).
o =
{p - ﬁo
pe E

A set EC R isthinat p € R in the sense of Naim if
o

and cnly if it is thin there in the sense of Brelot. Naim proved
that R itself is thin at pe A if and only if § is not a minimal
point of A, thatis Pe (A - 51) ([11], p-25).

Ir order to be able to define potentials of a mass distribu-~
tion or. R - {q }, Naim ([11], pp.28-32) introduced a new
Q

kernel function. denoted by ©(p,d), defined on (R - {q }) X
o
(R - {q }) This function has the pleasant property of being
Q
symmetric in both arguments. On the subset (R - {qo} ) X
(R- {q }) of its domain of definition, © is defined to be
)
G(p, 9)

©p.a) = G(p.q_) Gla,q ) ’

and or (R- {q }) X (R - {a_}), © is defined to be
O

A K(p,q)
o(p,q) = ———— .
G(q,qo)

Naim ([11], p. 30-32) shows how © can be extended in the
second argument to (R - {qo} ) so that ©(p,§) is lower semi-

continuous in each argument.

In the particular case where R ={z: |z| <1}, a, = 0; then

2 -
1 16 1~ |z 1 - wz
G(z,0) z log+,, K(el ,2z) = , G(z,w) zlog |———
iz ! i6 2 zZ - W
1z }e 'Zl
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Then

Oz, w) = f(z'w) — on (R-{o}) X(R- {o}),
fes T, P00% o
, o
o™, w) zﬁ‘?—i’—“—) on A X(R-{o}),
log T——’
0
o 19 Kle' ,w) _ 2
e(e s € ) = llm 10 1 = 16 1¢ 2 on A'l Xﬁi .
w—e log l—w—,- }e -e |

For any mass distribution p on R-{q}, Naim defined
)

the function

J e, &)du,

VA
(p) 4

(ﬁ—{qo})

to be the O potential of p on R - {q }. Incase p is only
Al dbtlbblobl o
defined on R - {q }, then V(P) is a Martin potential of some
o

mass distribution on R - {qo} .

Following Naim ([11]), p.40) we now define the fine topology
on R to be the least topology that makes the © potentials
continuous. The fine topology of Naim induces on R the fine
topology of H. Cartan, and the frontier of R relative to this
topology is the minimal Martin boundary A1. Any set N C R

is a fine neighbourhood of pe 61 if and only if R - N is thin

at }3 For an analytic function f from R into R' we denote
the cluster set of f at De A, along the filter of fine neighbour-

hoods as the fine cluster set of f at p. In case this fine cluster
- e RUees
set reduces to a singleton subset of R' we say that f possesses

a fine limit at D.
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3. The & Operator of Brelot and its Relation to the
I Operator of C-C. A set E C R is defined to be polar if
there exists a non-negative superharmonic function V on R
such that lim V(q) =+ x for every pe¢ E, and V(q) £ + .

q—p

A function { on R that possesses a given property everywhere
on R except on (at most) a polar subset of R 1is said to possess
this property quasi-everywhere on R. For instance, we define
V' to be quasi-superharmonic on R if V 1is superharmonic on
R quasi-everywhere.

Let ue HP(R), and G a regionin R. We now consider
the set {V} of positive superharmonic functions on R posses-
sing the property that every member of { V} dominates u on
(R - G). The lower envelope of {V} is a quasi-superharmonic

G
function on R denoted by T ([3], pp. 4, 6).
u

Gs EG on S C R where S 1is the set on
u u

We now define T

G = . G
which < 1is superharmonic, Z (p) =1lim Z (q) for every

u u
q-p
pe R - S.
The superharmonic function TV is said to regularize
a Bl = bttt
L . . . G
T 7, and coincides with the superharmonic function Z,’ called
u u

the extremal of u on G by Brelot ([3], pp.6,10). The function

G .G

u u

£

1l
I
O
3
Q

z u quasi-everywhere on R - G

G ..
where H~ is the generalized solution of the Dirichlet problem
u

ori G defined by the boundary function
u =z u on 9G (boundary of G in R) .

o on (one point compactification of R).
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It is common nowadays to refer to & as the extremalisation

operator of Brelot.

We now prove a theorem that relates the I Operator of C-C
with the & operator of Brelot.

It is to be noted that C-C ([6], p. 21, Hilfsatz 4) have proved
a similar result.

THEOREM 1. For any ue HP(R), it follows that

u =z IGu + é'G on G, where G is any region in R.
u

G
Proof. Let us define Vzu- & on G, remembering
u
G
that £u EHS on G, andlet F be an open subset of G which
is relatively compact in R. We shall first establish that
Ve HP(n) and hence V < IGu.

We now define

V =V on 0FNG

o
*

0 on 9FMIG ,

[

F
and compare V with H_ on F. For any regular point

v
* G
pe 9G ([4], p-4) it follows that lim H =u(p), and therefore
u
9-pP =x
Ilim V =0. Therefore V =V on the regular points of 9 F,
3k
q-p F
and V _:.HV on F ([4], p.1). It follows that V ¢ HP(n), and
E3

that u - 555 IGu on G by definition of IGu‘

Proceeding in the other direction, we shall establish that
G
6115 u - IGu on G. Since IGu € HP(n), and since

Iim IGu <+ o for every p¢ 9G, (because IGuf u on G),
q-p
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therefore lim IGu =0 for every repular pe 3G ([3], p.10).
q-pP
Hence the boundaryv behaviour of (u - IGu) is the same as that

of u at the regular points of 9 G. By the (lower) extremal

) G G ..
property of £ (and hence H ) on G, it follows that
u u

b3
G G
£ <u-1_u on G, orthat u-& >1 _u.
u G u— G

Combining this last result with an earlier one, it follows

that u =l u‘é’o on G.
G u

4. The Relation Between the C-C Cluster Set and the
Fine Cluster Set. In order to prove our main result we require
the following theorem of Naim ([11], p.27, Theorem 5).

THEOREM 2. A set E ( R is thinat pe A, ifand
-E
only if K _ ¥ (f(KR ) on (R-E), where K. is the minimal
5 B p
harmonic function associated with P.

We zre now in a position to prove that the C-C cluster set
always contzins the fine cluster set.

THEOREM 3. The C-C cluster set contains the fine
cluster set of Naim at De Ay for any function g from R

into R'.

Proocf. ILet G be any region in R which is a member
f the filter & at p. Then I_K 0 on G, andb
o) e {ilte :C-C o) n G f’ i y

Theorem 1, Ka §£}C<' on G. Itis a consequence of Theorem 2
P A

that (R-G) is thin at P, and hence G is a deleted fine

A

neighbourhood of p. It follows that the filter éC c 2t p is

contzined in the filter cf fine neighbourhoods of p relativized

to R. Therefore the fine cluster set of g at p is contained
in the C-C cluster set of g at p.

We now observe that the two cluster sets are not in general
equivalent. Let R ={z: le <1}, and g(z) be defined as follows:
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g(z) = O on the rational points of R,

= 1 on the irrational points of R .

Since the set of rational points is thin at every boundary

i6 6
point e of R, g has the fine limit 1 at e . But the
rationals are dense in R, so the C-C cluster set of g at
i6

e is {0} QU {1}.

We now give an example of a superharmonic function
U(z) on R, where (J(z) has a fine limit at z =1, but the
C-C cluster set of U at z =1 strictly contains the singleton
fine cluster set. ILet p be a mass distribution on R such
that p({q.}) = c. >0 where q, is an arbitrary rational point

i i i

of R, and u(f) =0 where c/is the set of irrational points of
R. Then the Martin potential of this mass distribution is

0

Ulz) = Z < K(Z'qi)
i=1
on R where K(z,q.) is the normalized Green' s function on R.
i
If (U(z) ¥+ o then {J(z) is a superharmonic function on R.
e 0
)

. 0
On the Martin boundary of R, Q_)(e1 = T c. K(e ,q.) where
. i i

i=1
i6 . . .
K(e ,q.) is the Poisson Kernel function. We now choose the
1

set {Ci} such that
o0
U) = T c,—5
) i 2
i=1 |1 - qi,

is a finite number, say A.
Because (J(z) is continuous in the fine topology, therefore
the fine lim (J(z) = A, or the fine cluster set of (J(z) at z =1

z—1

is {A}. Since (U(q.) =+ o for all rational points, therefore
1
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We shall now prove that if g(p) is a continuous function
from R into R' then the fine cluster set of g at ﬁe ,51 is

A
identical 1o the C-C cluster set M (f)).

g
THEQRENMN! 4. Let g(p) be a continuous function from
R intc R’'. Then the fine cluster set of g at De A, is
A A
the C-C cluster set M (P) C R'.
. - A oA == N .
Prooi. Let g' ¢ M (p), and N a closed neighbourhood
— 2
. . . . -1 = .
of &' Since ¢ 1is continuous, g (N) is closed in R. If

- -

: - 1 —
the set ¢ (N) were thinat P, then R - g (N) would be a
fine, ope: (usual topology) neighbourhood of P, and this would

N -1 —
contrzdict the definition of q'. It follows that g (N) cannot

We row let F be anv fine neighbourhood of . Since

-1 by . . AL - N "1 =
g (N) is not thin at p it follows that ¢ (N) (Y F # ¢. The
equivalence of the two cluster sets follows immediately.
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