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ON THE BEHAVIOR OF THE SOLUTIONS OF
DEGENERATE PARABOLIC EQUATIONS

KAZUHIRO ISHIGE

Abstract. In this paper we consider degenerate parabolic equations, and obtain
an interior and a boundary Harnack inequalities for nonnegative solutions to
the degenerate parabolic equations. Furthermore we obtain boundedness and
continuity of the solutions.

§1. Introduction

We consider the degenerate parabolic equation

9 1 ZN 9 9
ad 0
+ ZE 1 bi(x, t)a—xzu —V(z,t)u

in D =Q x (—1,1), where Q is a domain in R". Here w is a nonnegative
function in €, and a;j, b;, and V', 7,5 = 1,..., N, are measurable functions
defined on D. In this paper we study the behavior of solutions of the equa-
tion (1.1), and give an interior and a boundary Harnack inequalities for

nonnegative solutions of (1.1).

An interior Harnack inequality for parabolic equations was first ob-
tained by J. Moser [Ms], and was extended to more general parabolic equa-
tions by many authors (cf. [CS1,2,3], [GW1,2], [Mr], [Se|, [Sta], [T] and
references therein). F. Chiarenza and R. Serapioni [CS1,2,3] obtained the
interior Harnack inequality of nonnegative solutions of degenerate parabolic

equations of the types, u; = L,u and u; = w™ ' Lyu, where

(1.2) Lou = i 0 (aij(x,t)w(x) 0 u)

- O0x; Ox;
ij=1"" ‘
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2 K. ISHIGE

Subsequently, the results of [CS1,2,3] were extended to more general de-
generate parabolic equations (cf. [CW], [GW1,2], [SaC1,2], and references
therein).

A boundary Harnack inequality for parabolic equations was first ob-
tained by J. K. Kemper [K]. He obtained the boundary Harnack inequality
for nonnegative solutions of the heat equation in Lipschitz domains. Fur-
thermore, P. Salsa [Sa] extended the result of [K] to the parabolic equation
ut = Lyu in Lipschitz domains for the case that w is constant (cf. [FGS]).

In this paper we extend the results of [CS3] and [Sa], and obtain the
interior and the boundary Harnack inequalities for nonnegative solutions of
the degenerate parabolic equation (1.1). Furthermore, we obtain bounded-
ness and continuity of solutions of (1.1).

We introduce some notations. For any (x,t) € RV*! and p > 0, set

B(z,p) ={y € R ||z — y| < p},
Quit(p) = B(x,2p) x (t — p*,t + p*),

_ 3 1
Q:t,t(p) = B([L‘,p)x <t - 1[)2,15 - ZP2)7
+ L 3 o
zt(p) = Bz, p)x | t+ 205t + 07 ).

For simplicity, we put Q(p) = Qoo(p), @ = Qoo(1), and Qt = Q(jfo(l).
Furthermore, for any measurable set £ C R”Y, we denote by |E| the the

Lebesgue measure of E.

N

We impose the following conditions on the coefficients {a;;(x,?)};_4

and w:
(A1) There exists a constant A > 0 such that

N
AP <> ag(n, )66 < AYEP, EeRN, (a,t) € D;
i,j=1

A2 Let w be an Ay weight in €, that is, w,w™" € LI (Q), and there
loc

exists a constant ¢y such that

S 1 / d / dx <
up —s wax — < ¢p.
ECQ \EP E E W

E is a cube
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DEGENERATE PARABOLIC EQUATIONS 3

We denote by LP(Q, wdx), 1 < p < oo, the Banach space of all measur-
able functions f defined on ) such that

TP, z( / \f(sc)rpw(x)dx); .

Furthermore, we denote by HE(Q,wdz) and H'(Q,wdz) the closure of
C§°(2) and C*°(2) under the norm

([ 1o [ |Vf<x>|2w<x>dx>%,

respectively. For measurable sets E C Q, F C D and f € Lloc(Q’ wdx), set

w(E) = / w(w)dz, / / 2)dedr,
][ fwdx = / fwdz.

We recall the Sobolev inequality with weight: There exist constants
c1 > 0 and k > 1 depending only on ¢y such that

1 1

2k 2

(1.3) (][ W%(y)dy) sC1p<f |Vu|2w<y>dy>
B(z,p) B(z,p)

for all functions u € HY(B(x,p),wdr) and all B(z,p) C Q. It is known
that k > =5 for N > 2 and & is any number for N = 1. (cf. See [FKS].)
Furthermore, for the case that w=1on Q, Kk = m if N > 3 and k is any
number for N = 1,2. For further details on weight functions, see [HKO]

and [Ste].
Throughout this paper, we assume that there exists a positive constant
e such that
be L™((—1,1) : L (Q, wdz)),
(A3) )
Ve L>®((—1,1) : LFT¢(Q, wdx)),
where b = (by,...,by) and £’ is a constant with % + % = 1. We say that u

is a solution of (1.1) in D when u is a measurable function in D belonging
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to L°°((—1,1) : L?(Q,wdx)) N L?((—1,1) : HY(Q,wdz)) and satisfies
Jp al ou Oy
ARG 2 i) g

- Z bi(x, T)%QO + V(z,7)up|w(z)dzdr =0
i=1 !
for any ¢ € C§°(D).

In order to state our results, we furthermore impose some conditions
on b. In this Introduction, for simplicity, we assume the following condition,
and state our results.

(A4)  There exist measurable functions ¢ and d defined on D such that

(i) bz, t) =c(z,t) + d(z,t), for almost all (z,t) € D,
(i) ceC([-1,1]: L>* (Q,wdzx)), de L®((-1,1): L2 +)(Q, wdz)).

THEOREM A. Assume (Al)—(A4). Let Q C D and u be a nonnegative
solution of (1.1) in Q. Then there exists a constant C such that

14 supu < C'inf u.
(1.4 < Ol

THEOREM B. Assume (A1)—(A4) and the following condition:
(A5)  If|b| 4+ |V| £ 0 on D, there exists a positive constant co such that

CQPQHI < w(B(x,p)), pE (0)1)’ B(ﬂ?,p) C Q.

Let u be a solution of (1.1) in D. Then wu is a locally Hélder continuous
function in D. Furthermore, there exist positive constants C' and § such

that 5
p 7
1.5 osc u<C|+ osc u+ o7 T |lul oo >
15 oo uso( L) ose wt ol ullimiguion)
for all 0 < p < p1 < 1 with Qu4(p1) C D. Here osc u = SUPQ, ,(p) U —

' Qz,t(p)
infg, ,(p) u-

THEOREM C. Letxg € 0N). Assume that there exist a positive constant
ro and an orthonormal system such that QN B(xg,10) is described as follows:

(1.6) QN B(zg,r0) = {(z/,2,) | 2" € RN 2, > o(2)} N Bz, 70),
(1.7) 99N B(zg,m0) = {(2,0(2") | 2" € RY=1Y N B(x,10),
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where o(+) is a Lipschitz continuous function on RN~ with Lipschitz con-
stant m. Assume (A1)—(A5). Let u be a nonnegative solution of (1.1) in D
vanishing continuously on [0 N B(xg,70)] X (—1,1). Then there exists a
positive constant C' such that

(1.8)  ulw,t) < Cul(z, ¢(0) + 1), 5 +2r%),
1
se(—-1,1),r< Zmin{ro,%/l —Is|},
for (z,t) € DN {(x,t) € RN ||z — 20| < 7, |t — 5| < r?}.

We remark that the condition (A3) is a necessary one for Theorems
A, B, and C to hold. Let N > 3, and set ui(x) = \:L'F% and ug(r) =
—log |x|. Then u; € L?(B(0,1)) N H(B(0,1)) and u; ¢ L¥(B(0,1)), i =
1,2. Furthermore, u; and ug satisfy the elliptic equations,

(4N — 9)z .

Au——""VYu=0 in B(0,1 —_ZILN(B(0,1

U 4’$|2 VU/ m ( 9 )7 |ﬂf|2 g ( ( 9 ))7
N -2 1 N

Ay— ——— =0 in B(0,1 — e L2(B(0,1

respectively. Therefore, for the equation

(1.9)  w = Au+b(x)Vu—V(z)u in B(0,1) x (—1,1),
be LP(B(0,1)), V € LY(B(0,1)),

if p< N orgq= %, the results of the theorems don’t necessary hold. If
p> N and ¢ > &, the equation (1.9) satisfies the conditions (A3), and the
results of the theorems hold.

We modify the arguments of [CS3], [LSU], [Ms], [Sa], [Se], and [Sta],
and prove our theorems. However, for the case b € [L®((—1,1) : L*'(Q)) \
L>((-1,1) : LP(Q))], p > 2+/, it seems difficult to apply their arguments
directly. The main difficulty is to obtain L®°-estimates of solutions of the
equation (1.1). To overcome this difficulty, we first prove the boundedness
of solutions by using De Giorgi’s iteration method. Next we obtain an L°°-
estimate of solutions by using boundedness of solutions and De Giorgi’s
iteration method.

The rest of this paper is organized as follows. In Section 2 we obtain
an L*>-estimate of nonnegative solutions of (1.1). In Section 3 we use the
L*>°-estimate of nonnegative solutions obtained in Section 2, and prove the
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interior Harnack inequality. Furthermore, we obtain some inequalities of
solutions by using the interior Harnack inequality, and prove the continuity
of solutions. In Section 4 we use the results of Section 3, and prove the
boundary Harnack inequality.

§2. Lff)c estimates of solutions

In this section, by using De Giorgi’s iteration method, we obtain L>°-
estimates of solutions of the degenerate parabolic equation (1.1).
Throughout this section, we will prove the following proposition.

PROPOSITION 2.1. Let Q C D. Assume (A1)—(A3), and the following
condition:
(Ad.a)  There exist a constant o and measurable functions ¢ and d defined
on @ such that

(1) b(z,t) = c(x,t) + d(x,t), for almost all (x,t) € Q,

(ii) sup ][ le(z, ) > w(z)dz < o,
B(0,2)

—1<t<1
(iii) d € L®((~1,1) : L2&'+9)(B(0,2), wdz)).

Let u be a nonnegative solution of (1.1) in Q. Then there exists a constant
o1 = 01(N,co, €) such that, if o < o1, u is an LS. (Q) function satisfying

(o —p
(2.1) llullzee (@) §<( // w wdmdr) ,

for all % <p<p<landd<p<l1+ ’%/ Here C is a constant depending
only on N, X, cg, €, and

(2.2) D= s ][ (d(z, )2 + [V (2, ) [F +w(z)da.
—1<t<1 JB(0,2)

In order to prove Proposition 2.1, we recall the following lemma (see

[CS3]).
LEMMA 2.2. Assume (A2) and B(xzg,p) C Q. Then

1 b _ Er
< /][ ]u\%wd:cd7>
b—a Ja JB(zo,p)
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DEGENERATE PARABOLIC EQUATIONS 7

3(1-%)
i 2 "
< (c1p)* ( sup ][ u wd:v)
a<t<b J B(zo,p)

1
1 =
X ( / ][ |Vu|2wdxd7') ’
b—aJq B(zo,p)

for u € L=((a,b) = L*(B(xo, p),wda)) N L2((a,b) : HY(B(xo, p), wde)),
% > 1 and c; is a constant appearing in (1.3).

where K =

By using Lemma 2.2, we prove the following two lemmas, in which we
prove boundedness of nonnegative solutions of (1.1).

LEMMA 2.3. Assume the same conditions as those of Proposition 2.1.
Let u be a nonnegative subsolution of (1.1) in Q. Then there exists a con-
stant p = p(co,€) such that if u belongs to LY. (Q,wdxdr), then u is a
function in LS (Q).

Proof of Lemma 2.3. Let % < p < p <1, and consider a sequence
pn = p+27"(p'—p),n =0,1,2,.... We denote by (,, a nonnegative piecewise
smooth function in Q(p,) such that ¢, =1 on Q(pn+1), supp ¢, C Q(pn),
and

(2.3) IVGal? +1(Ga)r| < 220D /(o — p)?.

Let fi = max(f,0) for any measurable function f in D. For any k& > 0, put
up = (u— k)4 and k, = k(1 — 2=(+1),

Let p be a constant to be chosen later such that p > 1 + ’% We mul-
tiply the equation (1.1) by uanC,%, r = ’% Then we obtain by standard
calculations (see [LSU, Chapter 3, §2]

1 / 1 42 r
sup u wdx +
L+r —p2<r<p? JB(0,pn) Fnt13m ( + 1)

// ]Vuk ] CEwdzdr
pn

<O+ /Q e + e 7P
on

+ |V (2, 7)|uuy,, | 1 2wdzdr

(2.4)

+C 1+ 4 (T4 7)”
/ / s [Vl + Gl (G- Tz
Q(pn)
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for some constant C; = C1(A, N, cg). On the other hand, by the doubling
property of the As weight w, there exists a constant c¢3 depending only on
¢ such that

(2.5) w(B(0,2)) < csw(B(0,2py,)), n=0,1,....

By (1.3) and (2.5),

(2.6) // c(z, 7) ], H C2wdfvdr
Q(pn)
i
<  sup (/ |c(:L‘,7')|2“/wd:13>rc
—pR<T<p3 \JB(0,2pn)
pgl r+1 K

x/ (/ (u,> Cn)%wdx> dr

B(02on)

2 o (1w(B =5
: 401,0n( (B(0, 2ﬂn > //Q (pn) Vi +1<”]| wdzdr
< 4c2(o1c3) // uk e Cal|Pwdadr.

If o7 is a sufficiently small constant such that

=

|

r

4C101(1+T )(0'163) m,

<

then there exists a constant Cy > 0 such that

(2.7) Sup / uZ""l andaz—f—// |Vuk | CCwdxdr
B(0,2p,) " Qlpn)

—PR<T<P}

< (Y // [d(z,T) |2 r+1 g% + \V(w,7)|uuzn+1g%]wdxd7
Q(pn

e // Uﬁil WC”‘? + (ol (Cn) 7| Jwdadr.
Q(pn)

By the Holder inequality and the similar way to (2.6), for any v > 0, there
exist constants C3(v) and Cy(co, D) such that

(2.8) // (|d(z, 7)|*uf, T“ Lt ]V(:U,T)\uuznﬂ]ggwd:ch
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< y// [ld]> + [V = ukJrl Cwdxdr
Q(pn)
+ Cs // ur+1x{u>kn+1}g%wdxd7'
Pn
<vCy // uk +1Cn]|2wdscd7'
Pn

+ Cs // ur+1x{u>kn+1}ggwdxd7'.
Q(pn)

We take a sufficiently small v > 0 such that vC>Cy < 3. By (2.7)-(2.8),

41
(2.9) sup / uptt Czwdx—k// \Vu, 2 [*Cwdrdr
B( m Q(pn) "

—p%<T<p7

for some constant Cs > 0. Let p = ¢g(r + 1), where ¢ is a constant to be
chosen later such that ¢ > 1. Then, by the Holder inequality

(2.10)

// X{u>kn+1}ded7_
1 1—1
q q
(// 240+ wdmd7'> <// X{u>kn+l}wdl’)
Pn pﬂ
1 1—1
q q
( / / uQ(TH)wd:UdT) (yan fep |~ HD) / / T+1wdwd7> ,
Q(Pn) Pn
(r+1)(n+1) 1-1
(// UQ(TH)wda:dT) <2T // ZJrlwdxdT) q.
Q(pn) k Q(pn)

By Lemma 2.2, there exists a constant Cg such that

(2.11) // u,gi:?ﬁwdxdT
Q(pn+1)

< Cg // uk +1Cn]|2wd:cd7
Pn

r—1
Dl [ — sup u/m T+& CnlUdf) .
( (B (0 20n)) _p2<r<pp JBO20,)

IN IN

Q=

IN
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Set
Yy // T“wdxdT.
" 0 2p” Q(pn)
By the Holder inequality, (2.3) and (2.9)—(2.11), there exists a constant C7
such that

=

2.12 a1 < r“ wdazdr)
( ) y +1 —( 0 2pn+1 // pn+1 n —+1
17
X —m— X sk, wdxd7'>
(cmmzmm [y, Koose

(r+1)(n+1) 1-¢ (T+1)(n+1) 1-2
o200, ) (e

==

kr+l kr+1
< C7K2bn k—(r+1)(1+;¢1)y711+1“ ’

where b, = 2(n+1) +2(n +1)(r + 1)(1 + 1), pp =1 — 7 — =, and

1
sty )

Let ¢ be a constant such that p; > 0. By Lemma 5-6 of Chapter II in
[LSU], there exists a constant Cg > 0 such that if

(r+D)A+p1) 1

yo < Cgk m K m,

then lim, o yn, = 0. So we have

My

N ) (e
] oo S<C1Ku17// u”‘lwd:vdT) .
l[ull Lo (Q(p)) 8 w(B(0,20) J Jo

By the arbitrariness of p and o/, ifu € Li’(rﬂ)(Q, wdzdr), then u € Lye C(Q)
Therefore the proof of Lemma 2.3 is complete.

LEMMA 2.4. Assume the same conditions as those of Proposition 2.1.
Let w be a nonnegative subsolution of (1.1) in Q. Then w is a function in

Lige(Q)-
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Proof of Lemma 2.4. Let % < p<p <1 Let ¢ be a piecewise smooth

function in Q(p) such that 0 < ¢ <1, {(z,t) =1 on Q(p), supp¢ C Q(p'),
and

IVCP 416 < 4(p' — p) 72

For [ > 0, set u; = min{w,}. Let § > 0. We multiply the equation (1.1) by
u(uy +6)"¢2, r > 0. By calculating it in the similar way to (2.4) and letting
6 — 0, we have

ur+2
2.13 d
( ), /qup /)2 /B(O,Qp)r+2< wax

(p')?<7<(p
+ // [u] |[Vul* + ruf | Vg |*) CCwdedr

<14 // lle(z, 7)? + |d(z, 7))

+ |V (2, ) [JuPuf Cwdxdr
+C1 (147 4 (r+2)7h)

2T 2 . dxdr.
[ Ve il

In the similar way to (2.5) and (2.6), we have

(2.14) // [P uPu) Cwdzdr < 4¢3 (o1c3) // gg)\de:cdr
Q(p")
<123 (o1c3) ™ // [ ul [ Vul?
Q)

—uT]Vul\ N2+ uQuﬂVQQ} wdzdr.
In the similar way to (2.8), for any v > 0, we have

(2.15) / / ld(z, )2 + |V (@, 7)ot Cwdzdr

<vCy // % wdxdT
2 12
+C3 // u*uy C“wdzdr.
Qp")

https://doi.org/10.1017/50027763000006978 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006978

12 K. ISHIGE

By (2.13)-(2.15), if oy is sufficiently small such that

1
12C1 (1 —1—7”_1)0%(0103)5 < -,
(2.16) 2
3C1(1 —1—7"_1)0%(0163)% re < 5

then we take a sufficiently small v > 0, and have

(2.17)  sup / uy 2 wdx
—(p")2<T<(p')? / B(0,20')

—I—// [uf |[Vul? + ruf |V |!]¢CwdrdT
Q(p")
<20y [ [ i+ (V6P + ¢lellwdsds

Q(p")

for some constant Cf > 0. Letting | — oo, if u € LHQ(Q, wdxdT), we have

(2.18) sup / ur+2C2wdx—|—// |V[u En
—(p")2<r<(p)? JB(0,2p) Q")

805 // w2 wdzdr.
(' —p)? Qo)

Therefore, by Lemma 2.2, if u € LTS_CQ(Q,wd.’EdT), then u € L{:;Q)F"(Q,
wdxdT).

By the definition of the solution of (1.1) and Lemma 2.2, u € LfgC(Q,
wdxdT). Then, if o is a sufficiently small constant so that the equali-
ties (2.16) hold with » = 2(R — 1) > 0, we have u € L“ (Q, wdzdr).
Repeating this argument, if o1 is a sufficiently small constant we have

¢|Pwdzdr

U € LfOC(Q, wdxdT), where p is a constant given in Lemma 2.3. By Lemma
2.3, we have u € Li‘;c(Q), and the proof of Lemma 2.4 is complete. 0

LEMMA 2.5. Assume the same conditions as those of Proposition 2.1.
Let u be a nonnegative subsolution of (1.1) in Q. Then for any p" € (0,14,
there exist positive constants C' and 1 such that

— Hl
(2.19) HuHLoo(Q(p)) S(C( p ,0 // upwd:ch)

f0rallp’§p§2and%§p<p’§l.
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Proof of Lemma 2.5. For n € (0,1], we set p, = p+ n27"(p' — p).
We denote by (, a nonnegative piecewise smooth function in Q(p,) =
B(0,2py) x (—p2, p2) such that ¢, =1 on Q(pn+1), suppln C Q(pn), and

VGl +1(Ga)r| < 22040 /2 (0 = ).

We multiply the equation (1.1) by u}(2, r = ’% In the same way as in
Lemma 2.3, if o7 is sufficiently small, then we have

(2.20) [lullzoo(Q(pae)) <

K1
L 1 [CESHIGESTE)
(CglK;17// u”‘lwd:vdT) T ,
w(B(072p0)) Q(po)

1 :
K = 7// uQ(TH)wdxdT) n2(p —p)2.
(w<B<o,2po>> 200 (o =)

By Lemma 2.4, u € L5 (Q). By (2.3) and (2.17), there exists a constant
Cg > 0 such that

where

(2:21)  [Jullpoe(Q(pno )

K1
T (n(p' — p 41 (CEREETTE
< Cg”UHLOOH(lQ (ko)) ((w ® 1)( // v wdmdr)

(r+1-p)py+r+1
et (- ,0 CFD D
< CQ” HLOO(Q pO)SLl <(w ® 1 // upwd:vdr>

for any p € (0,1 + ’%)
Next we use the method of iteration with respect to n. Put n, = 1 —

Yo 27 s =1,2,.... Set Qs = Q(p' — ns(p' — p)) and X, = |l oo (Qs)-
Applying (2.21) to the pair of Qs C Qsy1, we obtain

XS§C9{2#1XS+1 (wp®—1/) B0 // upwd:vdr} , s=1,2...

where a = (’% + 1)1:% By the Young inequality, for any v > 0, there exists
a constant C'g > 0 such that

_2 1
X, SZ/X5+1+0102% <('0/_—'0)M, // upwdxdT)p, s=1,2....
(we 1)(Q)) J Jou
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Iteration of these inequalities yields
5. 2 (p’ — ,0)_% %
X1 <v¥Xo1 4+ Cyp v'2mp <— // upwdxdT)
: 2 we DQW) J Jow

2 _
Choosing v = 2#1» " and taking the limit s — oo, we obtain the inequality

N 1

(W =p) // )E
ll <C <— uPwdzdr >
lull oo Qo)) H (we 1)(Q)) J Jou

where (17 is a constant depending on p. So the proof of Lemma 2.5 is
complete. 0

LEMMA 2.6. Assume the same conditions as those of Proposition 2.1.
Let v be a nonnegative supersolution in ). Then then there exist positive
constants C' and ps such that for any p € (0, %), there exists a positive
constant p’ € (%, 1) such that

1
Y

(2.22) ((w®1 // uP wdazd7> <

(@t L o)

=

foralli<p<p <1
Proof of Lemma 2.6. Let v(z,t) = u(xz,—t), (x,t) € Q. In the same

way as in Lemma 2.4, we have

1
sup / v Cwda
r+ 1 _(ye<r<o)2 JBO2)

T C|Pwdzdr

<Ci(1+|r|” 1 // c(x,T) |2 + |d(x T)| )UT—HCQ + |V|UT+1C2]wd$dT

PO 0™ [ [ o9 e
p

https://doi.org/10.1017/50027763000006978 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006978

DEGENERATE PARABOLIC EQUATIONS 15

for r € (—=1,0). Let =1 < 7 < 1 — 1. In the same way as (2.9), if o is
sufficiently small, then there exists a constant C79 > 0 such that

(2.23) sup / T—HCZU}dﬂ?—f—// Vv = C [Pwdzdr
—(p')2<r<(p")? JB(0,20)
< Chy // "1+ |VC? + ¢¢ Jwdadr.
Q")

Here the constant Cis is independent of r. We remark that, by —1 < r <
% — 1, there exists a constant og independent of r such that if o < g, then
the inequality (2.23) holds. By Lemma 2.2 and (2.23), we have

(2.24) (( // D) wdxdT)ﬁ

(% [y ese)

for some constant Cy3 > 0.
Let p be a positive constant such that p € (0,1). Let n € NU {0} such
that K"p < = L and 7" *1p > 1. Set pj =p+277(p' — p) and

o
zj—< // “pwd:cd7>n 0,...,n.
(w Q(pj)) Q(pj)
)

Applying (2.24) to the pair of Q(pj+1) C Q(p] , we have

(2.25) Zi+1 < (01323(j+1)(p/ — p) 2) *‘]P Zj, j = O, R N
By (2.25),

n 1 1 n 3it+1

< = o5 n
Znt1 < (Clg(pl — p)72)p Zi:o 7P 2ui=0 w® g,

and so there exist constants po and Ch4 independent of p such that

(2.26) 2n1 < (Cua(p — p)~2#2)7 2.

Furthermore, by (2.5),

1
]. En«kl En+1 —n+1
(227) (m // v p’ll)dSUdT) < 63 ZTL+1

Since " *1p > L1 by (2.26) and (2.27), we obtain the inequality (2.22), and
so the proof of Lemma 2.6 is complete. b

By Lemmas 2.5 and 2.6, we have Proposition 2.1.
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§3. Interior Harnack inequality

In this section we give the interior Harnack inequality for the degenerate
parabolic equation (1.1) by using Proposition 2.1. Furthermore, we obtain
some inequalities and prove the continuity of solutions of (1.1).

THEOREM 3.1. Let Q C D. Assume (A1)—(A3) and (Ad.a). Let u be a
nonnegative solution of (1.1) in Q. If o < o1, then there exists a constant
C such that

supu < Cinf u.
Q- QF

Here oy s the constant given in Proposition 2.1 and C' depends only on N,
A, ¢p, €, and D.

In order to prove Theorem 3.1, by Proposition 2.1 and the arguments of
[CS1,2,3], we have only to prove the following lemmas.

LEMMA 3.2. Assume the same conditions as those of Theorem 3.1. Let
u be a nonnegative solution of (1.1) in Q. Then there exist positive constants
C4 and a such that

(3.1) (we)({(z,t) € Q| logu(z,t) < —s+a})
+ (we)({(z,t) € Q@ | logu(x,t) >s+a}) < %w(B(O, 1)).

Here the constant a depends on u.

LEMMA 3.3. Let u, Cs, and 0 € [%, 1) be some positive constants. Let
v be a positive function defined in a neighborhood of @ such that

(s P
3.2 up v vPwdzdr
32 smvs <pf—p>ﬂ<w®1><@(p'>>/cg<pf> ]

forall p, o', and p such that 3 <9< p<p' <1,0<p<2.
Moreover assume that

C
(33)  (wo({(x.1) €Q|logv>s}) < Z(w1)(Q), s>0.
Then there exists a constant v such that

(3.4) supv < 7.
Q(0)
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In the same way as in [CS1,2,3], we can prove Lemmas 3.2 and 3.3. There-
fore, we obtain Theorem 3.1.

Proof of Theorem 3.1. By Proposition 2.1, Lemma 3.2, and Lemma 3.3,
there exists a positive constant ~; such that

supe ‘u < 1.
o-

On the other hand, applying Lemma 2.5 to the function v(z,t) = u™P(x, ),
p > 0, we see that the inequality (2.1) holds with u replaced by u~!. By
Lemmas 3.2 and 3.3, there exists a positive constant v, such that

sup e®ut < .
Q+

Therefore, we have

supu(x,t) < y1y2inf u(zx,t),
Q- @

and the proof of Theorem 3.1 is complete. 0

Proof of Theorem A. By Theorem 3.1, it suffices to prove that (A4.a)
holds. By (A4), for any o > 0, there exist an integer n and a sequence
{tj}?:o with —1 <1 <ty < ... <t, <1 such that

e, t) = et pow (uoary S @ B <E<tjpa, j=0,1,...,n—1

Furthermore, for any j, there exists an L2(*+¢)(Q, wdz)-function ¢ such
that

”C(',t]‘) - éj(')HLQH/(Q,wd:v) <o

Put
5(33,t):éj($,t), x €€, tjgtgth, 7=0,1,...,n—1.
Then we have

sup [le(+,t) — ~('at)HL2~’(Q,wdx) < 2a.
—1<t<1

This together with the arbitrariness of « implies the condition (A4.a). So
the proof of Theorem A is complete. 0
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Next we consider the inhomogeneous degenerate parabolic equation

B 1 X9 B
N B
+ ; b (x, t)a—xiu — V(x, tyu+ f(x,t),

in D, where f € L®((—1,1) : L"t(Q,wdz)). Let Q@ C D and set
1

(3.6) v=u+F, F = sup <][ |f(x,t)\“/+ew(x)d1‘> -
B(0,2)

—1<t<1

Then we have
(3.7) | = Vu+ fI < ((VI+F [,

and

1

-1 K/ +e wte
(3.8) sup ( f oy VD4 P70 +w<x>dx)

—1<t<1
1
/ K/ +e
< sup <][ |V(x,t)|“+€w(az)da:> + 1.
—1<t<1\.JB(0,2)

By (3.7) and (3.8), we apply the same argument as in the proof of Theorem
3.1 to the function v, and obtain the following theorem (see also [Se]).

THEOREM 3.4. Let Q C D. Assume (A1)-(A3) and (Ad.a). Let f €
L®((~1,1) : L¥*¢(Q, wdz)). Let u be a nonnegative solution of (3.5) in Q.
If 0 < 01, then there exists a constant C' such that

sup [u + F] < C inf [u+ F],
Q- @r

where F' is a constant given in (3.6). Here C' depends only on N, X, cp, €,
and D.

Next, we give more general result than that of Theorem 3.1.

THEOREM 3.5. Assume (A1)—(A3), (A5), and the following condition:
(A4.b)  There exist a constant o and measurable functions c and d defined
on D and such that
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(i) b(z,t) = c(z,t) + d(z,t) for almost all (x,t) € D,
(ii) sup_j4<1 [ le(z,t) 2 w(z)dz < ocy, x €,
(iit) d € L®((~1,1) : L2 +9(Q, wdx)).

Let u be a nonnegative solution of (1.1) in D. Let ' be a convex subdomain
of Q and set d = dist (§Y',00Q). Then there exists a constant oo = o2(N, co, €)
such that, if o < og, there exists a constant C' > 0 such that

(3.9)  uly,s) < ulwt) exp [C('i__ip 4! 4 1)]

k =min{l,s + 1,d*},
for all z,y € Q' and all s,t with —1 < s <t < 1. Here C depends only on
N, X\, co, €, and c2E(QY), where

£(Q) = sup /QHd(%t)IQ+|V(x,t)\]“'+€w(x)df&

—1<t<1

Proof of Theorem 3.5. Let (29,t0) € D and p € (0, %) with Qu.4,(p) C
D. For any measurable function g defined on Q, ¢, (p), we set

9y, s) = g(zo + py, to + p*s), (y,8) €

Then 4 satisfies the degenerate parabolic equation

N
o 1 0 0
10)  —i=— > —(ay(y, 5)d i
(3.10)  Ha= ) i]zjl o <a iy S)M(y)ﬁyiu>
N o 5 )
i=1 ¢
in @. Then by (A4.b) and (A5),
- !~ o
(3.11) sup [ Jocty )P ala)dy < 52
—1<s<1.JB(0,2)

Furthermore, by (A5), there exists a constant C' independent of zy and p
such that

312 sw | fod(os) P+ PV (o)) ()
—1<s<1 JB(0,2)

2¢
< soe- Sup /[|d(ac,t)\2 + [V (2, t)[]" Tew(z)dx < Cp?e.
2 €2 —1<t<1JQ
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If necessary, we take a sufficiently small o so that oo < 2¥ 1. By (3.11)
and (3.12), we apply Theorem 3.1 to the function v, and obtain

(3.13) sup u < C inf u,
Q;O,to (p) xo to ()

where C' is a constant independent of xg and p. By (3.13), we apply the
same argument as in [Ms] to the function u , and obtain the inequality (3.9).
So the proof of Theorem 3.5 is complete. b

By Theorem 3.4, we obtain the continuity of solutions of (1.1).

THEOREM 3.6. Assume (A1)—(A3), (A4.b), and (Ab5). Let u be a so-
lution of (1.1) in D. If o < o9, then there exist positive constants C' and §
such that

g 26
p
3.14 osc u<C|— osc u+ || oo (0, , )
10 Qu,t(p) (m) (Qmm) P el (@aton)

forall0 < p<p; < % with Qz+(p1) C D. Here C and § depend only on N,
A, co, €, and c2E(R).

Proof of Theorem 3.6. Let (xo,to) € D and p € (0, %) with Qg (p) C
D. In the same way as in the proof of Theorem 3.5, @ satisfies the parabolic
equation (3.10) in @. Set

(3.15) @' (z,t) =supa — u(z,t), a (x,t) = (x, t) — igfﬂ.
Q

Since @ and @~ are nonnegative functions, by (3.6), we apply Theorem 3.4
to the functions @ and @~ . Then there exists a constant C3 such that

sup(at —|—F1)<031nf(u + Fy),

1 @
(3.16) sup(a~ + Fy) < Cs 1nf (™ + F),
o-
where

1
~ / - K/ +e
(817) P =|supdl sup (f |p2v<y,s>|“+€w<y>dy)
Q —1<s<1\JB(0,2)

1
(3.18) F,= \mfu] sup <][ 1P?V (y, s)\“u“u?(y)dy) S
—1<s<1\JB(0,2)
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By (3.12), (3.17), and (3.18), there exists a constant Cy such that

2e 2e
(3.19) Fi < Cufsup|p=,  Fp < Cufinf o7,
Q
On the other hand,

(3.20) //_ 4 ) (z)de < sup( +F)

(3.21) //_ - + Fy)w(x)dr < sup (™ + F3).
v (3.16), (3.20) and (3.21),

3.22 osc u+ I+ Fy < Cs(osc uw—osc u+ Fy + Fy).
(3.22) s 1+ £ 3( 2 o 1+ F2)
Set § = == € (0,1). By (3.22), there exists a constant Cy such that

(3.23) osc u< c9< osc u+Fy+ F2>
Qa0 (P) Quq.to (P)

z(,to

2e
< 0{ osc u+ Cypr+e (\ sup u|+| inf u\) }
Qag.to () Quq,to (P) z0.to (P

By (3.23) and the arbitrariness of ¢y, we have

(3.24) osc u< 9{ osc  u-+ C’4pn’2—ie <| sup u|+| inf u|)}
on,to(g) on,tO(P) Qug .t (p) Qmo,to(p)

_2c
< 0{ 0scC )u+2040*‘“’6HUHL"O(QzO,tO(p))}‘

Qmo,to P

By (3.24) and the similar way to the argument of Theorem 2.2 in [T], we
get (3.14), and so the proof of Theorem 3.6 is complete. b

In the similar way as in the proof of Theorem A, we see that (A4) implies
(A4.b). Therefore, by Theorem 3.6, we have Theorem B.
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84. Boundary Harnack Inequality

In this section we modify the argument of [Sa], and obtain the boundary
Harnack inequality of nonnegative solutions of (1.1).

THEOREM 4.1. Let xg € 0. Assume that there exist a positive con-
stant ro and an orthonormal system such that QN B(x,ro) is described as
(1.6) and (1.7). Assume (A1)—(A3), (Ab), and the following condition:
(Ad.c)  There exist a constant o and measurable functions ¢ and d

defined on D such that

(i) b(z,t) = c(x,t) + d(z,t) for almost all (z,t) € (2N B(xo,r0)) X

)
(_L 1)
(i) sup_j 4y fQﬂB(mO,ro) e, 6) ¥ w(z)dz < o, r €,
(iii) d € L>®((=1,1) : L2 +9(Q N B(zg, o), wdz))).

Let u be a nonnegative solution of (1.1) in D wanishing continuously on
(092N B(xg,70)] X (—1,1). Then there exists a constant o3 = o3(N, cp, €, m)
such that, if o < o3, there exists a positive constant C' such that

u(@,t) < Cu((z, p(ag) + 1), 5 +2r7),
1
se(-1,1),r< Zmin{ro,Q\/l —Is|},

for (z,t) € DN {(x,t) € RN ||z — zo| < |t — s| < r?}. Here C depends
only on N, X, cg, €, m, and c2€(Q2 N B(xg,r0)).

(4.1)

Before starting the proof of Theorem 4.1, we introduce some notations. Let
d={(,zn) eRN |0 <y <8 |z| <4,i=1,2,...N — 1},
' ={(a/,2n) e RN |0 < zy < 2,|z| < 2,i=1,2,... N — 1},

U =& x (-2,2), and ¥' = &' x (—3, 2). Furthermore, we set

(4.2) v(x,t) = u((:cg, o(zp)) + fx, s+ 8r2t), (x,t) € U.

2
Then v satisfies the following degenerate parabolic parabolic equation
N
0 1 0 0
4.3 —v=— — | @i (x, t)w
9 g Lo (6ot 5-0)
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in W. Here, by the assumptions of Theorem 4.1, the -coefficients
{&ij(x,t)}%-:l, w satisfy the conditions (A1)—(A3), and (A5), respectively.
Furthermore, if necessary, we take a sufficiently small o3 so that the condi-
tion (A4.b) holds with b replaced by b.

In the same way as in [Sa], we set

Qkhj =
{(:U',:):N) cRY

1 1 h h+1 .
?<xn<ﬁ,F<xi<w,z—1,...,]\/’—1}

1 1 j+1
X(—g+4m7—g+ 4k+2}’

where k =1,2,---, h=—2F1 21 _1 and j=0,1,...,226*2 1. By
Theorem 3.5, there exists a constant H; such that

(44) ’U(ﬂ?,t) < Hlv(Pk,h,j)v ([L‘,t) € Qk,h,j7

where Py p, ; is the point whose coordinates are

2h+1 | 1 1 5+1 1
xi:77221,2,...,N—1, xn:F, t:—g—i—m—i—m
Moreover, if we consider for each k and each h = —2F=1 ... 2F=1 _ 1 the

point Py j, with j = 2k+2 _ 1 whose t—coordinate is % + 4%, we see, again
by Theorem 3.5, that

45) o) < B P, P= (0T =(02.7):

By (4.4) and (4.5), we set H = max{H;, Ha}, and obtain
(4.6) v(z,t) < H* 1y(P)

for all (z,t) € Qi  and all Qpp ;. Furthermore, if (z,t) € Qg j, then
TN < 22—k,

Proof of Theorem 4.1. Reflecting v across xny = 0 as an odd function
of zy, we obtain a function @, which is a weak solution of (4.3) in

U ={(2/,zn) RN ||an| <8, |zi| < 4,i=1,...,N —1} x (-2,2).
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Assume that Py = (xo,t0) = (2, Zon,to) is a point in ¥’ such that
v(Py) > HMy(P), where hg is a constant to be chosen later. Set

EPO = QPO (22_h0)7 E]@O = QPO(QZ_hO+2n)7

where n is a positive integer to be chosen later. If necessary, we take a
sufficiently large ho so that Ep, C W. By (4.6), for any [ € {0,1,...,n},
Supgr v > 0 and infp;g, v < 0. So we have

0 0

(4.7) \supv\—i—\irllfv\SQo?cv.
E

l
EPO Po Po

By (3.24) and (4.7), there exist constants 6 € (0,1) and C' > 0 such that

e/ (2—hg+21)
(4.8) osc v < 9(1 o2t ) 0sc v

B! Bl
for all 1 € {1,2,...,n}. By (4.8), we take a sufficiently large ho so that

osc  wv(z,t) <O osc w(x,t), le{1,2,...,n}
(@ )eBy ! (z,)€Ep,

for some constant 6’ € (0,1). So we have

(4.9) osc v < 6" osc v.
Ep, Ep

Here we choose and fix n so that /7" > H'. Then by (4.9),

osc v > 2Hho+2)y(P),
E}

Since v is extended symmetrically across xz = 0, there exists a point P, =
(z1, 21N, 1) € B N Q such that

v(Py) > Hho+2)y(P).

Furthermore, by (4.6),
0<ziy <2,

Repeating this argument, we see that there exists a point P, =
(ah, za N, t2) such that

v(Py) > HY Mot y(P), 0 <z <2702,
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By induction, we obtain a sequence {P,,} such that
v(Py,) > HYPot2my(P) 0 < ayy < 27 ho=2m,

We choose a sufficiently large hy so that
o0 3 o0
m—E%ﬁWw4m>—? xm—EQ?%%4m>—&i:L”wn—L
m= m=

Then the sequence {F,,} is contained in a fix subcylinder of ¥, and so this
leads to a contradiction. Therefore, there exists a constant C' > 0 such that

v(z,t) < Cu(P),  (z,1) €T,
and the proof of Theorem 4.1 is complete. 0

In the same way as in the proof of Theorem A, we see that (A4) implies
(A4.c). Therefore, by Theorem 4.1, we have Theorem C.
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