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Abstract

This paper reports on a facility of the ANU NQ program for computation of nilpotent groups that satisfy
an Engel-« identity. The relevant details of the algorithm are presented together with results on Engel-n
groups for moderate values of n.
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1. Introduction

A group G is called an Engel-n group if [g, nh] = 1 for all g, h e G. Here, a
commutator [g, h) denotes the expression g~lh~lgh and [g, nh) is defined recursively
by [g, \h] — [g, h] and [g, n+lh] = [[g, nh], h]. With his solution of the restricted
Burnside problem, Zel'manov [11] proved that Engel-» Lie rings are locally nilpotent.
This implies that a finitely generated Engel-ra group has a largest nilpotent factor
group. It is unknown if Engel-n groups are locally nilpotent. For a discussion of
recent progress on this question see the introduction of Vaughan-Lee [10]. We denote
the largest nilpotent factor group of the free ^-generator Engel-n group by E(d, n).
In this paper we report computations of E(d, n) for small values of d and n.

In the rest of this introduction the relevant facts about nilpotent groups and then-
computation as factor groups of finitely presented groups are sketched. Robinson [7,
Chapter 5] gives a general introduction into nilpotent and polycyclic groups. For
detailed information on polycyclic presentations consult Sims [8, Chapter 9].
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[2] Computation of nilpotent Engel groups 215

A finitely generated nilpotent group G is polycyclic and has a central series

G = G, > G2 > • • • > Gn > Gn+1 = {1}

with cyclic factors. Set

I = {i\l <i <n, Gt/Gi+i finite}

and let m, be the order of G;/G,+i for / e / . If one chooses an element aK € G* for
1 < i < n such that

Gi/Gi+i — (a,-G(-+i),

then each element of G can be expressed uniquely as a word of the form

with e{ e Z for 1 < i < n and 0 < e, < m, for i € / .

Such a word is called normal. The sequence A = (aj, . . . , an) is called a polycyclic
generating sequence for G.

For 1 < / < j < n, the commutator [ay, a,] is an element of Gy+) and can be
expressed as a normal word Wy in the elements {<2J+i, . . . , an}. Likewise, a™' is an
element of Gi+i for i 6 / and can be expressed as a normal word u»,-,- in {<2,+1,... ,an}.

Let Kt(G) denote the k-th term of the lower central series of G with G = Y\(G).
The weight wt(a;) of <2( is defined to be the smallest positive integer k such that
a, € K*(G). If the central series above refines the lower central series, then Wy is a
word in generators of weight at least wt(<a,) 4- wt(<2y) for 1 < / < j < n. In this case,
A is called weighted. Note that wy = 1 if wt(a,) + wt(<2;-) exceeds the nilpotency
class of G.

With these relations one obtains the following presentation for G on A:

(au... ,an | a,m' = wu for i e I;

[as, at] = ivy for 1 < / < j < n } .

A presentation of this form, together with the weight function wt, is called a weighted
polycyclic presentation and can be used to perform explicit computations in G by
using a collection algorithm to transform words in A into normal words in A (see
Sims [8, Section 9.4]). If each element of a group defined by a presentation of this
form is equal to a unique normal word, then the presentation is called consistent.

There exist algorithms to compute a weighted polycyclic presentation of H/yc+1 (H)
for a group H given by a finite presentation. An implementation of such an algo-
rithm is the ANU Nilpotent Quotient program (Nickel [6]). The program computes
epimorphisms from H onto H/yk(H) for k = 2, 3, The first step of the algo-
rithm calculates a weighted polycyclic presentation for the largest Abelian quotient

https://doi.org/10.1017/S144678870000118X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000118X


216 Werner Nickel [3]

H/H' = H/y2(H) together with an epimorphism H -> H/y2(H). Given an epi-
morphism H -> H/yk{H) and a consistent weighted polycyclic presentation for
H/yk(H), the k-th step has three stages: The polycyclic presentation is extended
to a weighted polycyclic presentation for the largest central (downward) extension
of H/yk(H) which is a homomorphic image of H. Then the resulting presentation
is changed into a consistent presentation. Finally, the relations of H are enforced
yielding a consistent weighted polycyclic presentation for H/yk+l(H) together with
a lifting of the epimorphism onto H/yk+l(H). The whole step can be performed
for increasing values of k until the largest nilpotent factor group of H is found or
a specified bound on the nilpotency class is reached. A detailed description of the
algorithm is given in Nickel [6].

The ANU NQ has the option to enforce an Engel-n identity on the quotient groups
it calculates. It does this by evaluating, in addition to the given relations, a finite set of
instances of the Engel-n identity in the last stage of each step and adds those instances
that do not evaluate to the identity as relations. In particular, it is possible to start
with a free group of finite rank d and compute a weighted polycyclic presentation of
E{d, n) for a given positive integer n. The set of instances used is described in the
next section.

2. Checking identities in nilpotent groups

Let G be a finitely generated nilpotent group of nilpotency class c and a> (£i , . . . , £*)
a k-variable identity. The task of checking if G satisfies the identity <w (£i, . . . , £t) can
be reduced to checking a finite set of instances by an approach based on a result of
Higman [3]. For a convenient formulation of this result, let F be the free group on a set
X = {xi,... , xi) and, for Z C J , let nz be the endomorphism of F which maps each
element in Z to the identity in F and fixes every other element of X. The following is
a slightly less general version than Higman's result, see Sims [8, Proposition 11.7.3]
for the general statement.

LEMMA 1 (Higman's Lemma). An element w of a free group F onX can be written
as

w = uv

where v is a non-empty product of commutators each involving every element of X
and u is a product of words of the form nz(w) or nz(w~l) with 0 7̂  Z c i

Note that nz(w) is a word in X \ Z. Lemma 1 is the key step in proving that a
nilpotent group satisfies an identity if the identity is satisfied for a certain finite set of
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instances. More precisely, Higman proved that, if E is a generating set for G, then
G satisfies co(t;u . . . , &) if the identity is satisfied for all ^-tuples (hu ... ,hk) of
words in E such that the sum of their lengths does not exceed c. Vaughan-Lee [9]
used this approach for checking exponent laws in finite p -groups. Here, we will prove
the corresponding result in the context of finitely generated nilpotent groups that are
given by a weighted polycyclic presentation. The weight of a normal word af • • • ae

n"
is defined as \e\ \ wt(ai) H \-\en\ wt(an).

LEMMA 2. Let G be a group of nilpotency class c given by a weighted polycyclic
presentation with generating sequence A = (a\, . . . , an). Then G satisfies the iden-
tity <y(£i,... , £t) if co(u\,... , uk) = 1 for all normal words u\,... , uk in A with
Wt(Mj) + h Wt(Mt) < C.

PROOF. Every element of G can be expressed as a normal word in A. Therefore,
we need to show that a>(u\,... , uk) = 1 for all normal words uu • • • ,uk without the
weight restriction. This is done by induction onw = w t ^ ) + • • • + wt(M,t) which can
be assumed to be larger than c. The induction hypothesis is that w{v\,... ,vk) = 1
for all ^-tuples (vu . . . , vk) of normal words in A with wt(i>i) + • • • + wt(y^) < w.

The concatenation ux • • • uk of U\,... , uk, performed without applying free reduc-
tion, is a (not necessarily normal) word b\bi- • • bi with &, 6 A*1. Let F be the free
group on X = {xlt... , xt} and h,... , tk words in X such that U{b\,... ,bi) = ut.
Consider the homomorphism (p : F -*• G mapping x, i-> bt and note that (p(nz(h)),
for any non-empty Z c X, is a normal word in A whose weight is less than wt(«,).

By Higman's Lemma co(tu . . . , tk) can be written as a product of words of the
form nz(co(ti,... , tk))

±l and of commutators which each involve every xt. By the
induction hypothesis,

<p(nz(co(tu ... , /*))) = to(<p(7Tz(h)),... , (p(nz(tk))) = 1.

A commutator that involves every xt is mapped by <p to a commutator of weight at
least w > c in G. This shows that

O)(Ui, ... ,Uk)= <p(0)(ti, ... ,tk)) = l. •

Since there are only finitely many normal words of a given weight, the previous
lemma gives a finite set of instances of co{%\,... , tjk) that need to be checked.

A version of Lemma 2 was used by Havas and Newman [2] to obtain a practical test
set for checking the exponent of finite groups of prime power order, see also Sims [8,
Section 11.7].

In an infinite nilpotent group, the following observation can be used to reduce the
set of instances to be checked further:
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LEMMA 3. In the statement of Lemma 2, it suffices to check the identity co (£1, . . . , £*)
for normal words with non-negative exponents.

PROOF. It is well known that a finitely generated nilpotent group is residually finite
(see Robinson [7, Section 5.4]). Suppose co(ui,... , uk) = 1 in G for all normal
words « i , . . . , uk in A with non-negative exponents.

If co(vu ... , vk) ^ 1 for some normal words vlt... , vk in A, then there is a
normal subgroup N of G of finite index such that co(vi,... , vk) g N. Since G/N is
finite, there are normal words u\,... , uk in A with non-negative exponents such that
v/N = utN. This gives

... , vk)N — co(ui, ... , uk)N = N

because co(u\,... , uk) = 1 in G. This contradicts co(vi,... , vk) $ N. •

COROLLARY 4. Let G be a group ofnilpotency class c given by a weighted poly-
cyclic presentation with generating sequence A = (<2i,... , an). Then GisanEngel-n
group if and only if[u,nv] = 1 for all normal words u and v in A with non-negative
exponents and wt(«) + wt(u) < c.

The ANU NQ uses the set of instances described by the corollary to enforce the
Engel-« identity in each step of computing nilpotent factor groups of a given finitely
presented group,

3. Free Engel groups

In this section we present results on the largest nilpotent quotients of free Engel-n
groups for small values of n. More detailed information about the groups presented
is available from the author's home page on the World Wide Web. All timings were
obtained on an Intel Pentium II-333MHz processor with 128 MB running Linux
2.0.36.

3.1. EngeI-4 groups The group E(2,4) is torsion free, has nilpotency class 6 and
Hirsch length 11. The terms of the lower centrals series are

The computation was completed in about 0.2 seconds. The following is a weighted
polycyclic presentation for E(2,4). Trivial commutator relations between two gener-
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ators are omitted.

[a2,

[a3,

[a4,

[as,

[O7,

• •• , a i 2 |

at) — a3,

a.\] = a4,

a{\ = a-j,

a,] = ag,

<

[a3,

[a4.

[as,

[a6,

[a-,,

Computation of nilpotent Engel groups

a2] —
th\ =

a2] =
a2] =

a2] =

as,
a7Og~3al0an

6, [a4, a3] = alana
6
n,

as, [as, a3] — a^an, [a5, a4] =
ag2ama\2

6,

am,
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[a9, a2] = a
[al0, a{] — a12 )

The weights of the generators are

generator
weight

a\
1

a-i

1
^3

2
At

3
as
3

Of,

4
On

4 4
Og

5 5
Oil

5 6

The power relation in the presentation above can be removed. Forthisset^n = anal2
2,

which implies <3!2 = b^l and a n = b\y, and apply the obvious sequence of Tietze
transformations.

The following is a defining set of instances of the Engel-4 identity for E(2, 4) as a
nilpotent group.

[a,4b], [b,4a], [a2,4b], [b2,4a]
[a-\4ab], [a,4ab-1], [a,4ab2], [b,4ab2], [a,4a

2b].

The group E(3,4) has nilpotency class 9 and Hirsch length 88. The torsion
subgroup of E(3,4) is isomorphic to

Cp x C10 x Cj0 x C^Q.

Because the Engel-4 identity has weight 5, the first 4 factors of the lower central
series of Zs(3,4) are isomorphic to the corresponding factors of the free nilpotent
group of class 4 and have respective free Abelian ranks 3, 3, 8, and 18. The other
terms of the lower central series are:

C2 x C l o x C30 x C ^ , C5 x CJQ x CJX,,

C f x C,o x C3
3

0 x C*,, C3
5 x C3

3
O, C 3 .

There is a defining set of 278 instances of the Engel-4 identity for E(3,4) as a
nilpotent group. The computation took about 16 hours CPU time and about 9 MB
memory.
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Vaughan-Lee [10] has proved that the 2- and 3-generator exponent-5 Engel-4 groups
are finite of order 5' ' and 5145, respectively. This corresponds to the fact that the Hirsch
length of £(2,4) is 11 and that the sum of the Hirsch length of £(3,4) and the number
of occurrences of the prime 5 in its torsion subgroup is 145.

3.2. EngeI-5 groups The group E(2, 5) has nilpotency class 9 and Hirsch length
23. The torsion subgroup is isomorphic to

°3 x "-30 * u180-

The (non-free) terms of the lower central series are

Cj x C(, x C ^ , C6 x CI 8 x Cgg, Ci x C30 x CQO, C3 x C15.

The computation took 388 seconds of CPU time and used 456 kB of memory. There is
a defining set of 32 instances of the Engel-5 identity for E(2, 5) as a nilpotent group.

3.3. Engel-6 groups The nilpotency class of E(2, 6) is 12 and the Hirsch length is
70. The computation was performed in two parts.

First the class-10 quotient of E(2, 6) was computed taking about 21 hours of CPU
time and 1.3 MB of memory. This yielded a defining set of 113 instances of the
Engel-6 identity for the class-10 quotient. This computation was continued in an
attempt to complete the computation of the class-11 quotient. However, checking the
Engel identity turned out to be very time consuming. Therefore, this computation was
not be expected to finish within a reasonable amount of time. During this computation,
3 further necessary instances of the Engel-6 identity were found. The group defined by
this set of 116 instances has a largest nilpotent quotient G of class 12. The computation
of this quotient took about 100 hours of CPU time and used about 10 MB of memory.

In a second step, it was checked if G satisfies the Engel-6 identity. From the
weighted polycyclic presentation for G the Hall polynomials were computed in GAP 4
(cf. [1]) using Merkwitz' [5] implementation of Deep Thought (Leedham-Green &
Soicher [4]). This took about 19 hours with about 110 MB of GAP workspace. Using
Hall polynomials, arithmetic in a nilpotent group can be performed much more rapidly
than by collection. With the help of these polynomials, it was possible to check the
Engel-6 identity in G. It turned out that one further instance was necessary in order to
satisfy the Engel-6 identity. The effect of this instance was to force a central generator
in G to be trivial. The total time for checking the Engel-6 identity was about 7 hours.

The torsion subgroup of E(2, 6) is isomorphic to:

cs v r1'5 Y cl° v- c3 v c2 v c v c3 v c2

»-7 * <-i4 * *-84 * <-i68 •* <-840 x <--2520 x ^nffft x H21564600-
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The prime factorisation of 321564600 is 23 33 52 7 47 181. The (non-free) factors of
the lower central series of E(2, 6) are

C2 x Cl x c;2,

r 3 v c1 v r 3 v r13

r« v r6 x r2 x r14

C2 X C H X C42 X C1050 x Q300 X Qo>

c1 y r 1 0 v r 2 v r 2

<-2 A ^ 1 4 A ^210 A '"'53594100'

C2 X C]o,

where 53 594 100 = 22 32 52 7 47 181.
It is surprising to see that the 11th factor of the lower central series of E(2, 6)

involves the, in this context rather large, primes 47 and 181 and it would be interesting
to obtain an explanation why these primes play a role here.
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