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THE STONE-CECH COMPACTIFICATION OF Prim A

MAY NILSEN

For a C*-algebra A, we give simple proofs of the following: C»(Prim A) is isomor-
phic to the centre ZM(A) of the multiplier algebra, Cp(Prim A) is isomorphic to
C(Prim M(A)) and Prim ZM(A) is the Stone-Cech compactification of Prim A.

INTRODUCTION

THE DAUNS-HOFMANN THEOREM. (2, III Lemma 8.15] Let A be a C*-algebra
and let Prim A be the primitive ideal space of A with the hull-kernel topology. For
each a € A and f € Cy(Prim A4), there is a unique element f-a € A such that

(1) f-a— f(P)ag€ P for all P € Prim A.

It is easy to see how the Dauns-Hofmann theorem gives an injection from Cj(Prim A)
into the centre ZM(A) of the multiplier algebra. It is not evident why this map should
be onto. Dixmier [3, Theorem 5(iii)] proved that it was, as did Pedersen (8, Corol-
lary 4.7]. But, we believe that the natural way to view the problem is the reverse
of that commonly thought. The easy part is getting the injection from ZM(A) into
Cu(Prim A). Then the Dauns-Hofmann theorem is exactly what you need to show that
this map is onto (Theorem 1.2). The simplicity of our technique means our proof is
much more direct than those given before. An easy corollary of our technique provides
an isomorphism from Cp(Prim A) onto Cy(Prim M(A)) (Theorem 1.4).

‘Since Prim A is not necessarily Hausdorff, we carefully define the Stone-Cech com-
pactification and the complete regularisation of such spaces. In Section 2 we deduce
from Theorem 1.2 that Prim ZM(A) is the Stone-Cech compactification of Prim 4,
specifying the formula for the canonical mapping (Theorem 2.2). This result is a gen-
eralisation of an assertion of Becker [1, p.269]. (We also discuss a problem in Becker’s
proof.) |

The key idea in all our arguments is the continuity of the map Res, from ideals of
B toideals of A, dual to a homomori)hism t:A — M(B). The map Res,, and the map
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Ext, from ideals of A to ideals of B, were first introduced by Green [6, Proposition
9], and have been predominantly used in the study of crossed products and induced
representations [5, Section 2]. However, in this paper we have used these maps in the
trivial case; by letting ¢ be the identity map, the elementary properties of Res and Ext
lead to short, elegant proofs.

In [7], we used Res, and Ext, to help give a short self-contained proof of the
sectional representation theorem {7, Theorem 3.1). This result says that a C*-algebra
can be represented as the section algebra of an upper semi-continuous C*-bundle over
the primitive ideal space of its centre. In [1], Becker asked for a simple necessary and
sufficient condition on a C*-algebra A, which ensures that the C*-bundle produced by
the sectional representation theorem will be continuous [1, p. 268]. This is answered
by [7, Theorem 3.1], which says that this happens only when Res;q is open. In Section
3 we show that our condition is equivalent to the condition Becker gave (Proposition
3.1).

1. DIXMIER’S THEOREM

Let A be a C*-algebra and let Z(A) denote the ideal space of A with the topol-
ogy which has as subbasic open sets Oy = {I:T 2 J}, where J is a closed ideal in
A. The relative topology on Prim(A) in Z(A) is the usual hull-kernel topology. All
representations will be non-degenerate, and the extension of a representation p of A to
the multiplier algebra M(A) will be denoted by 5.

DEFINITIONS: Let A and B be C*-algebras and «: A — M(B) a homomorphism.
Define Res,: I(B) — I(A) by Res, (kero) = ker(a o), where o is a representation of

B. Define Ext,:T(A) — I(B) by Ext,(I) = By(I)B [6, Proposition 9(i)].

In (7, Lemma 1.1] we showed that Res, (kero) = {a € A : 1(a)B C kero}. This
says that Res, is well-defined, and that our definition is equivalent to [6, Proposition
9(i)]. It also implies that Res, preserves containment and arbitrary intersections. Using
this characterisation, we also showed that I C Res, (K) < Ext,(I) C K. It follows
easily from these facts that Res, is continuous (7, Lemma 1.1(iii)}, [6, Proposition 9(i)].

LEMMA 1.1. Let A be a C*-algebra and id: ZM(A) — ZM(A) the identity
map. Then Resiq: Prim A — Prim ZM(A4) is a continuous map with dense range, and
Res;q (ker p) = ker (5| zam(a)) -

PROOF: An irreducible representation p of A extends to an irreducible represen-
tation p of M(A4). Also p(ZM(A)) is in the centre of Imp, which is contained in
the commutant C1. Thus p|zam(a) determines a complex homomorphism, which must
be non-zero because 1 € ZM(A). So kerp|za(a) is primitive and Res maps primi-
tive ideals to primitive ideals. The range is dense because Res(PrimA) = {Q : @ 2
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QRes (P)} ={Q:Q D Res (Q P)} = Prim ZM(A). 0

THEOREM 1.2 DIXMIER. Let A be a C*-algebra. Then there is an isomor-
phism : ZM(A) — Cy(Prim A) such that (z)(ker p) = Z(ker (p|zam(a))) , where * is
the Gelfand transform.

PROOF: Define Res(y: C(Prim ZM(A)) — Cp(Prim A) by Resy (g9) = g o Resia,
where Resjq is as in Lemma 1. We show that Resj o” is the required isomorphism
1. Since Resjq has dense range, Res)y is an injection. The Gelfand transform is an
isomorphism from ZM(A) onto C(Prim ZM(A)), so it is enough to show that Resjy
is onto. Define Ly: A — A by L¢(a) = f-a,and Rs: A —> A by Rj(a) = f-a, where
f - a is the unique element given by the Dauns-Hofmann theorem. One can check that
(Ly, Ry) is a multiplier zy of A. Equation (1) implies that zfa = azy for all a € 4,
so zy € ZM(A). Also from (1) we have (zy — f(P))a = f-a— f(P)a€ P forall a € A.
Since Resjq (P) = {z € ZM(A): zA C P}, zy — f(P)1 € Res;a (P) forall P € PrimA4.
Equivalently, zy(Resiq (P)) = f(P), for all P. Thus Res{ (7)(P) = zj(Resia (P)) =
f(P), and Res;; is an isomorphism.

REMARK. The following lemma is more than we need for Theorem 1.4, but it says that
Prim M(4) is a compactification of Prim A, in the sense of [10, p.1].

LEMMA 1.3. Let A be a C*-algebra, and i: M(A) — M(A) the identity map.
Then Res;: Prim A — Prim M(A) is a continuous injection with dense range satisfying
Res; (ker p) = ker p, which is a homeomorphism onto its range.

PROOF: If p isirreducible the extension p is also irreducible, so Res; maps between
primitive ideal spaces. Suppose kerp = kera. Then kergo. = ker& o+, where ¢ is the
natural embedding of 4 into M(A). But po. = p, and similarly for o, so kerp = kero
and Res; is one-to-one. A calculation similar to that in Lemma 1.1 shows that Res; has
dense range. It remains to check that Res; is open onto its range. In [7, Lemma 1.1(iv)],
we showed that Res; is open onto its image if and only if Ext; |1 (res) is continuous. So
it suffices to show that Ext;: Z(M(A)) — Z(A) is continuous. We have the embedding
¢, so define Res,: I(M(A)) — I(A) as usual. To show Ext; is continuous we shall show
that Ext; = Res,, that is AK 4 = {a:¢(a)M(A) C K}. Suppose i(a)m € K for all
m € M(A). Then «(a) € K because 1 € M(A). So a € AK 4 since a ~ pxi(a)ua,
where p is an approximate identity in A. Conversely, suppose a,b € A and k € K.
Then ¢(a)kt(b)m € K for all m € M(A). Thus AK A C Res, (K), and since Res, (K)
is closed, AK A is in there too. 0

THEOREM 1.4. Let A be a C*-algebra. Then there is an isomorphism

1: C(Prim M(A)) — Cy(Prim A)
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satisfying ¥(g)(ker p) = g(kerp).

PROOF: Lemma 1.3 gives us a continuous map Res;: PrimA — Prim M(4), so
define Res}: C(Prim M(A)) — Cy(Prim 4), by Res} (g) = g o Res;, which is injective
because Res; has dense range. Let M:ZM(A) — ZM(A) be the identity map, and
define Resps: Prim M(A) — Prim ZM(A) as usual. From Lemma 1.1 we have the map
Resia: Prim4 — Prim ZM(A). From the definitions, Resia = Resps o Res;, so that
Res; = Res} oResy;. By the proof of Theorem 1.2, Res; is onto, so Res] must be
onto. Choose ¥ = Res; . ' 0

2. STONE-CECH COMPACTIFICATION AND COMPLETE REGULARISATION

DEFINITION: The Stone-Cech compactification of a topological space X is a com-
pact Hausdorff space B X together with a continuous map #: X — X such that, for
every compact Hausdorff space Y and every comtinuous map k: X — Y, there is a
unique continuous map k': X — Y with k =k'0 8 [9, 14.1.1].

REMARK. It is well known that Prim Cy(X) is the Stone-Cech compactification of X
in the case where X is Hausdorff. The point of the next lemma, is that this is so even
when X is not Hausdorff. Although this proof is similar the standard existence proof
(9, 14.1.2], this shows how our techniques give a neat exposition.

LEMMA 2.1. Let X be a topological space and define e: X — Prim Cy(X) by
e(z) = kere,, where €, is evaluation at z. Then (Prim Cy(X),e) is the Stone-Cech
compactification of X .

PROOF: Let k: X — Y be a continuous map, with Y compact Hausdorff. Define
k*:C(Y) — Cy(X) such that k*(f) = fok, and define Resg+: I(Co(X)) — Z(C(Y))
as usual. Lemma 1.1 tells us that it restricts to a map between primitive ideal spaces,
so we have Resg+:PrimCy(X) — PrimC(Y). Since Y is compact Hausdorff, there
exists a homeomorphism h:PrimC(Y) — Y. Define k":PrimCy(X) — Y by k' =
h o Resg«. We need to show that k(z) = k'(e(z)) for all ¢ € X. Well, k'(e(z)) =
hoResg« (kere;) = hlkere; o k*), so it suffices to see that kereg(;) = ker (e 0 k*). But
ez 0 k*(f) = e(fok) = fok(z) = f(k(z)), so f € ker(e; o k*) means f(k(z)) =0,
which is equivalent to f € ker (€x(z)) . The map k' is unique, because the range of ¢ is
dense in Prim Cp(X). 0

THEOREM 2.2. Let A be a C*-algebra. Then (Prim ZM(A),Resiq) is the
Stone-Cech compactification of Prim A, where Resiq: Prim A — Prim ZM (A) satisfies
Resia (ker p) = ker (ﬁlZM(A)) , for all kerp € Prim A.

PROOF: Theorem 1.2 gives an isomorphism %: ZM(A) — Cy(Prim A), so one can
show that Resy: Prim (Cy(Prim A)) — Prim ZM(A) is a homeomorphism. Lemma 1.2
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says that for every continuous map k:PrimA — Y (Y compact Hausdorff), there
is a unique continuous map k":Prim (C(Prim 4)) — Y with k = k" oe. So define
k':Prim ZM(A) —» Y by k' = k" o (Resy) . It remains to show that k = k' o Resia,
and for this it is enough to verify Resy oe = Resjq:

Resy oe(kerp) = {2z € ZM(A) : ¢¥(z)f € e(kerp) for all f € Cy(Prim A)}
= {z: Y(z)f(kerp) =0 forall f}
= {z : zZ(Res;a (ker p)) = 0} = Resjq (ker p).

Thus (Prim ZM(A),Resiq) is the Stone-Cech compactification. 1]

DEFINITIONS: A topological space X is completely reqular if singleton sets are
closed and, given a closed set C' and a point = ¢ C, there exists an f € Cy(X) such
that f(z) =0 and f(C)= {1} [10, p.4].

The complete regularisation of a topological space X is a completely regular space
pX together with a continuous surjection p: X — pX such that, for every completely
regular space Y and every continuous surjection k: X — Y, there is a unique continuous
surjection k':pX — Y with k=k'op.

LEMMA 2.3. Let X be a topological space. There is an equivalence relation
on X defined by z, ~ z3 & f(z1) = f(22) for all f € Cy(X), and (X/~,q) is the
complete regularisation of X, where q: X — X/~ is the quotient map.

PROOF: Suppose k: X — Y is a continuous surjection into a completely regular
space. We claim that the map k': X/~ — Y satisfying k'(q(z)) = k(z) is well defined.
Suppose g(z;) = g(z2), that is, f(z1) = f(z;) for all f € Cp(X). Since go k € Cp(X)
for all g € Co(Y), g(k(21)) = g(k(z2)) for all g. But Y is completely regular, so k()
must equal k(zz), and k' is well-defined. The map k' is continuous by the definition
of the quotient topology. 1]

REMARKS. I. When A is unital, Prim 4 is compact, so the Stone-Cech compactifi-
cation of Prim 4 is the complete regularisation by definition. Thus, Theorem 2.2 says
that (Prim ZA,Res;iq) is the complete regularisation of Prim A. Since the complete
regularisation map is a surjection, when A is unital Res;q maps onto Prim Z 4.

2. Becker proves that Resig is the complete regularisation for unital 4 [1, p.268].
But he seems to assert that if P;, P, € Prim A can be separated by open neighbourhoods
in Prim A, then there exists f € Cp(Prim A) such that f(P,) =0 and f(P,)=1. We
show that this can fail in general by providing an example of a C*-algebra 4, with P,
and P; in Prim A which can be separated, but there exists Py which can’t be separated
from either P; or P,. Thus a function in Cy(Prim A) must agree at P, and Ps, and
at P, and P;, and hence agrees at P; and P,. This example is due to Dana Williams.
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Let

0 0
A={reooumom): )= (5 Yo ), freomeaprecy
Let p; and p; be the projections id @ 0 and 0@id respectively. Then for each ¢ € [0,1),
let w}(f) = pi f(t). We also have representations defined by m-(f) = a, m(f) = 8
0 0
and 7 (f) = v, where f(1) = (‘(J)L ,3) ® (g ) These are all the irreducible
7
representations. Note that as ¢ — 1, 7} converges to both 7, and m,, while w} con-
verges to both 7, and =,. It follows that neither 7, and 7, nor 7, and 7., can
be separated by disjoint open sets. Since A is a Type I C*-algebra, neither ker =,
and kerm,, nor kerm, and kerw,, can be separated by disjoint open sets. Now let
I = {f € A: pf(t) = Oforallt € [0,1]}, and similarly for I,. Then O;, =
{Q € PrimA : Q p I}, for i = 1,2, are disjoint open sets with kerm, € Oy, and
kerm, € Oy, . Thus kerm; and kerm, can be separated.

3. BECKER ON SECTIONAL REPRESENTATION

Becker asks for a simple condition on A which ensures that the the C*-bundle
produced by the sectional representation theorem is continuous. From [7, Theorem 3.1]
we know that this happens only when Res;g: Prim A — Prim ZM(A) is open. We shall
now show that our condition is equivalent to the condition Becker gives [1, p.268].

ProPosIiTION 3.1. Let A be a C*-algebra and id: ZM(A) — ZM(A) be the
identity map. The map Res;q: Prim A — Prim ZM(A) is open, if and only if

12 ({7 € Prim ZM(A) : a € Extia (J)} = a € Extiq (1),

where a € A and I € Prim ZM(A).

PROOF: Suppose Resjq is open and I DO ({J : e € Ext(J)}. Dixmier says
{P € PrimA : a ¢ P} is open in PrimA [4, 3.1.2]. Since Res is open,
{Res(P) : a ¢ P} is open in Prim ZM(A). We claim that this open set is equal
to {J :a ¢ Ext(J)}. Suppose J is in the first set. That is, there exists a P such that
J = Res(P) and a ¢ P. This is the same as P D Ext(J) and a ¢ P, and this implies
a ¢ Ext (J). Conversely, suppose J is in the second set. That means a ¢ Ext (J). So,
there must exist at least one primitive ideal P D Ext(J) such that e ¢ P, because
every ideal is the intersection of all primitive ideals containing it. But P D Ext (J) is
equivalent to Res(P) = J (since J is maximal), so J is in the first set. Thus we have
that {J:a € Ext (J)} is closed. Since I D (){J : a € Extiq (J)}, I is in the closure of
the set, so I is actually an element of it, which means that a € Ext (I).
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Conversely, suppose I D (Y{J € Prim ZM(A) : a € Extia (J)} = a € Extia (I).
We begin by proving Ix — I in Im(Resiq) implies Ext(I) 2 (Ext(I»). Suppose
b

I, > I and @ € Ext(l)) for all A. Then In € {J : a € Ext(J)} for all }, so
ID>ONI»2N{J :a € Ext(J)}. By the assumption then, a € Ext(I) and Ext(I) 2
A

n Ext (IA).
A

To show Res, is open, its enough to show that CompRes(Ok) is closed. Suppose

I, — I in Im(Res) and I, € CompRes(Ok) for all A\. That means Ext(I)) €

Comp (Ok) for all X (since J € Res(Oxk) < Ext(J) € Ok [7, Equation 2]). That is,

Ext (I)) 2 K for all A, so (Ext(I,) D K, and then we have Ext(I) D K. Hence
p)

I € CompRes(Ogk) and CompRes(Ok) is closed. a
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