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Introduction

The goal of this paper is to formulate and prove a Sato–Tate law for Drinfeld

modules. The proof, based on an idea of Drinfeld, is not difficult. The formulation

is not quite obvious. We will elaborate the motivation in this long introduction.

For this introduction, let A ¼ Fq½t�, K ¼ FqðtÞ, and 1 the ‘infinite’ place of K,

defined as the pole of the function t.

Let E be a Drinfeld A-module over an A-field L. It is well known that the theory

of Drinfeld modules is analogous to that of elliptic curves or abelian varieties in

many ways. In particular, when L is a finite field, there is a Frobenius characteristic

polynomial

PE=LðX Þ ¼ detð1� XFrLjT‘ðE ÞÞ

associated to E=L, where ‘ is any prime of A not equal to the A-characteristic of L,

FrL is the geometric Frobenius, and T‘ is the Tate module. The polynomial

PE=LðX Þ has coefficients in A, independent of ‘. Its roots satisfy the ‘Riemann

hypothesis’ ([2, 5, 12]).

When L is a global A-field, the Drinfeld module E has good reduction at almost

all places v of L, and therefore we get a Frobenius characteristic polynomial

PvðX Þ ¼ P ~E=kðvÞ for almost all places v of L.

In a recent paper of L.-C. Hsia and J. Yu [7], an equidistribution law is obtained

for the leading terms of the coefficients of PvðX Þ as v varies. We notice that the ‘lead-

ing term’ of an element of Fq½t� is an 1-adic concept. Therefore, their result should

be regarded as a contribution toward understanding the distribution of the

polynomial PvðX Þ with 1-adic coefficients as v varies. The analogous question for

an elliptic curve E=L (without complex multiplications) is to understand how
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detð1� XFrvjT‘ðE ÞÞ varies as a polynomial with real coefficients. The answer is the

so-called Sato–Tate law, which is proved by Deligne in the function field case, but

unknown for any single elliptic curve over a number field.

We refer to [1] or [8] for the precise formulation of the Sato–Tate law for an elliptic

curve E over a global field L without complex multiplications, following Deligne.

For the purpose of motivation, we state it slightly vaguely as follows: the Sato–Tate

law for E=L is as if the following were true:

– There is a continuous surjective group homomorphism Galð �L=LÞ ! SUð2Þ,

unramified at all but finite many places, such that the induced map

Galð �L=LÞ\ ! SUð2Þ\ is simply

Frv 7!xv ¼ iðFrvðNv�1=2ÞjT‘Þ
s:s::

– Chebotarev density theorem holds as if SUð2Þ were a (pro)finite quotient of

Galð �L=LÞ.

Here, ‘ is a prime invertible in L, and i is a fixed embedding from Q‘ to C, G\

denotes the set of conjugacy classes in G, and gs:s: denotes the semisimple part of

an element g in a complex algebraic group.

Hsia and Yu considered

�PvðX Þ ¼ Pvðt
�deg v=rX Þ ðmodulo p1 ¼ t�1Þ:

They describe the distribution of �Pv 2 Fq½X �
deg¼r in terms of a homomorphism

�r: Galð �L=LÞ ! ðZ=rZÞdF�
q r ;

which comes from certain extension LðFq r ; d
1=ðq r�1Þ

Þ=L via Kummer theory. In fact,

their main result can be reformulated as follows: the polynomial �Pv can be read-off

from �rðFrvÞ. Therefore, the distribution of �Pv can be read-off via Chebotarev density

theorem. See (4.1) for more details.

Observe that

ðZ=rZÞdF�
q r ’ D�=K�

1ð1þmDÞ;

where D is the division algebra over K1 with invariant �1=r via local class field

theory, and mD is the maximal ideal in the ring of integers in D. Therefore, the result

of Hsia and Yu suggested that the Sato–Tate law should be formulated using D.

Notice that D� is almost compact: D�=pZ
1 is compact.

Recall that there is a bijection (Skolem–Noether)

fweakly elliptic elements in GLrðK1Þg\ $ ðD�Þ
\;

where we say that g is weakly elliptic if K1ðgÞ is a field. Recall also that Pv does define

an elliptic element ([2, 12]).
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The above discussion suggests: the Sato–Tate law for the Drinfeld module E=L is

as if the following were true:

– There is a group homomorphismWL ! D�, unramified at all but finitely many

places, such that the induced map W \
L ! ðD�Þ

\ is simply Frv 7!xv ¼ the class

corresponding to Pv by the Skolem–Noether theorem.

– Chebotarev density theorem applies to Galð �L=LÞ ¼ ŴL!!H, where H is the

profinite completion of the image of WL ! D�.

Here, WL � Galð �L=LÞ is the Weil group of L (see 1.3).

Now we are ready to state the main result of this paper.

THEOREM. The conjectural Sato–Tate law is true. In fact, the ‘as if ’ statement is

really true.

We conclude the introduction with a few remarks.

Remark. In the classical case, the ‘as if ’ statement can not be true: (i) the group

Galð �L=LÞ, being profinite, can never map surjectively to SUð2Þ; (ii) SUð2Þ is certainly

not profinite.

In the Drinfeld case, both obstructions disappear. So the above result, which is a

bit surprising at first, is indeed possible.

Remark. Let us compare the ways of attaching to Pv a conjugacy class in an

(almost) compact, Q1- or K1-Lie group. In the classical case, the main facts used

are: (i) Hasse’s theorem (‘Riemann hypothesis’ for elliptic curves over a finite field),

(ii) Cartan’s conjugacy theorems about compact elements and maximal compact

subgroups.

In the Drinfeld case, the main facts used are: (i) Pv defines an elliptic conjugacy

class—a fact apparently weaker than the Riemann hypothesis, (ii) the Skolem–

Noether theorem.

Remark. In the classical case, the Sato–Tate law is about the equidistribution of a

sequence fxvg of points in the space SUð2Þ\, relative to the Haar measure of SUð2Þ\.

The space does not depend on the elliptic curve. In the Drinfeld case, the analogous

space is H \, again equipped with the Haar measure. But it does depend on the

Drinfeld module.

1. Notations

1.1. Let K be a global function field of characteristic p (i.e. a finitely generated field of

transcendence degree 1 over Fp). Single out a place 1 of K and let A � K be the

subring consisting of functions regular away from 1. The completion of K at 1

is denoted by K1.
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Let p be a fixed prime element of K1 and k the constant field of K1. Thus

K1 ¼ kððpÞÞ. Let q be the cardinality of k, �k the algebraic closure of k, and n the inte-
ger such that q ¼ pn.

1.2. For a ring L in characteristic p, we let Lftg (resp. Lfftgg) be the ring of twisted

polynomials (resp. twisted formal power series) in t, with the rule tx ¼ xpt. If L
is perfect in the sense that x 7! xp is an isomorphism from L to L, we let Lðfft�1ggÞ

be the ring of twisted formal Laurent series in t�1. We define a function

ord: Lðfft�1ggÞ ! Z [ fþ1g by setting ordð
P
akt�kÞ ¼ minfk : ak 6¼ 0g.

1.3. We define the Weil group WL of a field L of characteristic p as a subgroup of

Galð �L=LÞ byWL ¼ fs 2 Galð �L=LÞ j sj �Fp 2 sZg, where s 2 Galð �Fp=FpÞ is the arithmetic

Frobenius x 7!xp. We define ord :WL ! Z be such that sj �Fp ¼ s�ordðsÞ for all s2WL.

1.4. The central division algebra over K1 of Brauer invariant �1=r is denoted by D

or Dr. For any central simple algebra R of degree r over a field F (i.e. ½R : F � ¼ r2),

and any x 2 R, we define the characteristic polynomial of x to be charðxÞ ¼

detð1� Xðx�F 1ÞÞ, computed in R�F
�F ’Mrð �FÞ.

2. A Construction of Drinfeld

2.1. This section is a detailed exposition of the construction in [2, Section 1]. Only

K1 intervenes in the discussion. We assume that L is a perfect k-algebra. We fix

an integer r5 1 and give K1 the valuation ord such that ordðK�
1Þ ¼ nrZ.

DEFINITION 2.2. An embedding of rings i : k ! Lðfft�1ggÞ is called admissible if

iðaÞ � a ðmod t�1Þ for all a 2 k. An embedding of rings i : K1 ! Lðfft�1ggÞ is called

admissible if it is valuation preserving and ijk is admissible.

Admissible embeddings K1 ! Lðfft�1ggÞ exist. In fact, choose any p 0 in �Lðfft�nggÞ
of order rn, there is a unique admissible i such that ijk ¼ id and iðpÞ ¼ p 0. The fol-

lowing lemma is due to Drinfeld, cf. [3, Section 2, Lemma] for an analogous result.

LEMMA 2.3. ðiÞ Any two admissible embeddings i : k ! Lðfft�1ggÞ are conjugate by

an element of Lfft�1gg�.

ðiiÞ Any two admissible embeddings i : K1 ! Lðfft�1ggÞ are conjugate by an element

of �Lfft�1gg�.

Proof. (i) Let x be an element of Lðfft�1ggÞ such that FpðxÞ ’ k. Then clearly

ordðxÞ ¼ 0 and hence we can write x ¼
P1

k¼0 xkt
�k. We have x

pn

0 ¼ x0. Let m be the

smallest positive integer such that x
pm

0 ¼ x0. We claim that x is conjugate to x0 by an

element of Lfft�1gg�. In particular, m ¼ n and FpðxÞ is conjugate to Fpðx0Þ ¼ k.
We use induction to prove that there exists u 2 1þ t�1Lfft�1gg such that

uxu�1 � x0 ðmod t�ðkþ1ÞÞ. There is nothing to prove when k ¼ 0. In general, we
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may assume that x � x0 þ bt�k ðmod t�ðkþ1ÞÞ by induction hypothesis. Then x ¼ xp
n

is congruent to

x0 þ b
Xpn�1

j¼0

x
pn�1�j
0 x

j=pk

0

 !
t�k � x0 þ bdkt�k ðmod t�ðkþ1ÞÞ;

where dk ¼ 0 if m divides k, dk ¼ 1 otherwise. Thus we are already done when m

divides k. If m doesn’t divide k, the congruence formula

ð1þ vt�kÞðx0 þ bt�kÞð1þ vt�kÞ�1
� x0 þ ðbþ vðx

1=pk

0 � x0ÞÞt�k

modulo t�ðkþ1Þ shows that we can choose a suitable u ¼ 1þ vt�k such that

uxu�1 � x0 ðmod t�ðkþ1ÞÞ. This completes the proof the claim. Clearly, (i) follows

from the claim.

(ii) Let i1 and i2 be admissible embeddings from K1 to Lðfft�1ggÞ. By (i), we are

reduced to the case that i1jk and i2jk are both identities. Thus i1 is determined by

i1ðpÞ, which lies in Lðfft�nggÞ. The same goes for i2.
It is enough to choose w such that i2ðpÞ ¼ wi1ðpÞw�1. Let us write out the condi-

tions. Let

ijðpÞ ¼
X1
k¼r

a
ð j Þ
k t�nk; w ¼

X1
k¼0

ukt�nk:

Then the condition i2ðpÞw ¼ wi1ðpÞ is:

að2Þr u
q�r

0 ¼ u0a
ð1Þ
r ;

a
ð2Þ
rþ1u

q�ðrþ1Þ

0 þ að2Þr u
q�r

1 ¼ u0a
ð1Þ
rþ1 þ u1ða

ð1Þ
r Þ

q�1

;

a
ð2Þ
rþ2u

q�ðrþ2Þ

0 þ a
ð2Þ
rþ1u

q�ðrþ1Þ

1 þ að2Þr u
q�r

2 ¼ u0a
ð1Þ
rþ2 þ u1ða

ð1Þ
rþ1Þ

q�1

þ u2ða
ð1Þ
r Þ

q�2

; . . . :

It is clear that w can be found by solving a Kummer equation (for u0) and a series of

Artin–Schreier equations (for u1; u2; . . .). &

LEMMA 2.4. ðiÞ For any admissible i, the centralizer Di of iðK1Þ in �Lðfft�1ggÞ is

isomorphic to D ¼ Dr as K1-algebras.
ðiiÞ Any isomorphism f : Di ! D of K1-algebras satisfies ord fðxÞ ¼ ord x for all

x 2 Di, where the valuation ord on D is normalized so that ordðD�Þ ¼ nZ.

ðiiiÞ If iðK1Þ � �kðfft�1ggÞ, Di lies in �kðfft�1ggÞ.

Proof. By Lemma 2.3, it is enough to prove the result in the case ijk ¼ id,

iðpÞ ¼ t�rn. In this case, the centralizer is clearly krft�ng (where kr is the degree r

extension of k), and is isomorphic to D. Statements (ii) and (iii) are also clear. &

CONSTRUCTION 2.5. Now fix an admissible f : K1 ! Lðfft�1ggÞ, and choose an

admissible i : K1 ! �kðfft�1ggÞ. Define

Yi ¼ u 2 �Lðfft�1ggÞ
�� iðxÞ ¼ ufðxÞu�1 for all x 2 K1

� �
:
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It is clear that D�
i acts on the left of Yi by multiplying from the left, and this makes

Yi a principal homogeneous space of D�
i .

There is a natural way to make Galð �L=LÞ act on �Lðfft�1ggÞ, namely by the formula

s:ð
P
akt�kÞ ¼

P
sðakÞt�k. The set Yi is not invariant under this action. However, we

can define an action of the Weil group WL on Yi as follows:

WL � Yi ! Yi; ðs; uÞ 7! s�ðuÞ ¼ tordðsÞðs:uÞ:

It is easy to check that this is indeed a group action, and s�ðduÞ ¼ ds�ðuÞ for all

s 2WL, d 2 Di, u 2 Yi.

This implies immediately that the action of WL on Yi factors through a suitable

group homomorphism r :WL ! Di, unique up to conjugacy by an element of D�
i .

More precisely, we pick a base point u0 2 Yi and write s�ðu0Þ ¼ d�1s :u0 for each

s 2WL. Then r : s 7! ds is a group homomorphism. Changing the base point u0
amounts to changing this homomorphism by conjugation.

LEMMA 2.6. ðiÞ The homomorphism r :WL ! D�
i satisfies ord rðsÞ ¼ ord ðsÞ.

ðiiÞ The homomorphism r induces a continuous homomorphism from the profinite

completion of WL to the profinite completion of bDi.

ðiiiÞ Let i1; i2 : K1 ! �kft�1g be two admissible embeddings, w 2 �kft�1g be of order 0

such that i2ðxÞ ¼ wi1ðxÞw�1 for all x 2 K1. Then the maps Di1 ! Di2 , d 7!wdw�1 and

Yi1 ! Yi2 , u 7!wu are bijections.

The diagram

WL �! Di1
k #

WL �! Di2

is commutative if the horizontal arrows are constructed using compatible base points u0
and wu0.

Proof. Statements (i) and (iii) are easy. Let’s prove the continuity statement in (ii).

For this we may assume that L � �k and hence WL ¼ Galð �L=LÞ, rðWLÞ � O�
Di
. We

may also choose u0 to be such that ordðu0Þ ¼ 0.

Now the continuity statement amounts to the following: for any N > 0, the

subgroup U ¼ fs 2WL : sðu0Þ � u0 ðmod tNÞg is of finite index in WL. This follows

from the proof of Lemma 2.3: the first N coefficients of u0 generate a finite

extension of L. &

Thus given an admissible f : K1 ! Lft�1g, we obtain a homomorphism

r :WL ! D� by choosing an i, an isomorphism Di ! D, and a base point u0.

The homomorphism r :WL ! D� is canonically defined up to conjugacy by an

element of D�.
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3. The Main Theorem

3.1.We refer to [6] for basic definitions and facts about Drinfeld modules. From now

on, we assume that L is an A-field and E is a Drinfeld A-module of rank r. Thus L

is a field with the structure of an A-algebra and we are given an injection

f ¼ fE : A ! Lftg: It is easy to show that f extends by continuity to an injection

f : K1 ! L1=p1ðfft�1ggÞ: This implies that L1=p1 (hence L) has a unique structure

of k-algebra for which f is admissible (Cf. [Goss, Remark 7.2.13]). Therefore, we

can apply the construction of Section 2 to obtain a homomorphism r :WL1=p1 ¼

WL ! D�, canonically defined up to conjugacy.

LEMMA 3.2. If L is finite, and FL : X 7!X1=#L is the geometric Frobenius element in

Galð �L=LÞ, then the minimal polynomial of rðFLÞ in D is the minimal polynomial of tmn

in EndLðE Þ �A K1, where m ¼ ½L : k�.

Here, we recall that EndLðfÞ �A K1 can be embedded in D, unique up to conju-

gacy by D�. This allows us to compare the minimal polynomials.

Proof of the Lemma. We may choose i ¼ f, u0 ¼ 1. Then it is clear that rðFLÞ ¼
tmn. Notice that EndLðfÞ is simply the centralizer of fðAÞ in Lftg, and is contained

in the centralizerDi of fðK1Þ in �Lft�1g. This gives an embedding of EndLðfÞ �A K1

into D ’ Di. Finally, from [2] or [12], the minimal polynomials of tmn in

EndLðE Þ �A K1 and in EndLðE Þ �A K1 are the same. The lemma is now clear. &

3.3.Now assume that L ¼ FracR, where R is a discrete valuation ring with the struc-

ture of an A-algebra. Moreover, we assume that E=L has good reduction modmR. In

other words, E comes from a Drinfeld A-module over R: f : A! Rftg. This implies

that the coefficient of the lowest degree term of fðxÞ has valuation 0 for all x 2 K1.

LEMMA. Under the above hypothesis, the homomorphism r :WL ! D� is unrami-

fied. That is, it is trivial when restricted to the inertia group.

Proof. This is easy to see from the construction of Section 2. The point is that the

Kummer extensions and Artin–Schreier extensions in the proof of Lemma 2.3 are

unramified. &

3.4. Now let L be a global field. We denote by r1 the homomorphism called r in

(3.1). For each prime ideal ‘ of A such that ‘ 6¼ A-charL, the Tate module T‘ðE Þ

gives rise to a homomorphism

r‘ : Galð �L=LÞ ! GLrðA‘Þ:

THEOREM. The continuous homomorphisms r1; r‘ are unramified at all

places of good reduction. For such a place v, the characteristic polynomials
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charðr1 ðFvÞÞ 2 K1½X � and charðr‘ðFvÞÞ 2 A‘½X � both have coefficients in A, and they

are identical.

Proof. This is immediate from Lemmas 3.2, 3.3, and [12]. &

We remark that the Skolem–Noether bijection mentioned in the introduction is

characterized by the fact that corresponding elements have identical characteristic

polynomial. Thus the above theorem is indeed the first part of the ‘as if ’ statement

in the introduction.

COROLLARY 3.5. Let H be the image of r 0 : Galð �L=LÞ ! bD�. Let m be the Haar
measure on H with total measure 1. Then for any open set U � H stable under con-

jugacy, the set of places fv : r1ðFvÞ 2 Ug has Dirichlet density mðUÞ.

3.6. We have tried to keep the exposition elementary. Drinfeld’s construction works

over a rather general base ring, and the discussion is this section can be rephrased

as follows: for L global and f defined over OL;S, the Galois representation

r : Galð �L=LÞ ! bD� factors through Galð �L=LÞ ! p1ðSpecOL;SÞ, and for any place

v, the composition GalðkðvÞ=kðvÞÞ ’ p1ðSpec kðvÞÞ ! p1ðSpecOL;SÞ ! bD� is the same

as the representation GalðkðvÞ=kðvÞÞ ! bD� associated to the reduction of f at v.

4. Comments

4.1. As an illustration, we sketch a derivation of the result of Hsia and Yu from the

current work. For simplicity, we assume that A ¼ Fq½t�, though everything works in

a completely general setting.

Assume that the multiplication-by-t map on E is

f ¼ fEðtÞ ¼ tt0 þ a1tn þ � � � þ artnr:

Put d ¼ ar; p ¼ t�1. Then fðpÞ � ð1=dÞ1=q
r

t�nr ðmod t�nðrþ1Þ) and the admissible

embedding f : Fqffpgg ! Lðfft�nggÞ is the identity on k ¼ Fq. Therefore, we can

choose i ¼ id on k, iðpÞ ¼ t�rn, u0 2 �Lfft�ngg� such that t�rn ¼ u0fðpÞu�1
0 . Then the

coefficient c0 of t0 in u0 satisfies the equation c
qr�1
0 ¼ d.

We would like to compute the composition

�r :WL ! D�=ðK1ð1þmDÞÞ ’ ðZ=rZÞdF�
q r :

This amounts to compute s�ðu0Þ modulo trnZð1þ t�n �Lfft�nggÞ. From the preceding

discussion, it is easy to see that �r : Galð �L=LÞ ! ðZ=rZÞdF�
q r is nothing but

the homomorphism associated to the Kummer extension LðFq r ; d
1=ðqr�1Þ

Þ=L.

Let g 2 GLrðK1Þ
\ and g 0 2 ðD�Þ

\ be classes related by the Skolem–Noether corre-

spondence, and let d ¼ �ordðdetðgÞÞ=n. It is easy to show that g 0 modulo

K1ð1þmDÞ determines detð1� t�d=rXgÞ modulo p ¼ t�1. Thus we conclude that

(with the notation of the introduction), �Pv is determined by �rðFvÞ and �r is described

by a Kummer extension. This is the result of Hsia and Yu.
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4.2. Let H1 (resp. H‘) be the image of the homomorphism r1 (resp. r‘). This is a
closed subgroup of D� (resp. GLrðA‘Þ). We raise a few questions about these groups.

4.2.1. How can we determine these groups?

4.2.2. Let G1 (resp. G‘) be the Zariski closure of H1 (resp. H‘). Can we determine

G1 and G‘? Can we determine their Lie algebras?

4.2.3. Is there any relation among G‘ for varying ‘, and G1? Cf. the work of Pink

and Larsen [11].

After the completion of the paper, the author found two articles of Pink [9, 10],

which determines H �
‘ . The referee also pointed out the the relevance of [4]. Hope-

fully, soon there will be more progresses toward these questions.
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