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1. Introduction. Let F[a,b] be the linear space of all
real valued functions defined on [a,b]. A linear operator
L : Cla,b] ~ F[a,b] is called positive (and hence monotone)
on Cla,b] if L(f) > 0 whenever f> 0. There has been a
considerable amount of research concerned with the convergence
of sequences of the form {Ln(f)} to f where {Ln} is a

sequence of positive linear operators on C[a,b]. Much of the
recent research has made use of the following theorem of
Korovkin [4]:

THEOREM. Let {Ln} be a sequence of positive linear

operators on C[a,b]. Let e e C[a, b] be defined by el(x) = x .
for i=0,1,2. Then lim Ln(f)(x) = f(x) uniformly on [a,b]

n-=+oo

for each fe Cl[a,b] if and only if lim Ln(el)(x) = x uniformly

n->w
on [a,b] for i=0,1,2.

A natural collection of operators which are defined on
subclasses of C[0,1] are those of the form

o0
Ln(f)(x) = X ank(x)f(k/n),
k=0

where the matrix (a k(x)) is generated by a function ¢ (x, w)
n

by means of the relation

™ 8

a k(x)wk,
o

[¢ (%, w)]n =
k

1
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The matrices (an (x)) which are defined in this manner were

k
introduced by Sonnenschein [6], and have important applications
in summability theory when the function ¢ satisfies certain
regularity conditions.

It is the object of this note to establish a convergence
theorem for a wide class of positive linear operators of this
form, to point out that the complex analogs of these operators
have interesting convergence properties, and to demonstrate
that the summability matrix associated with the operators is a
regular matrix if the operators have the proper convergence
properties.

n
Operators of the form L (f)(x) = =
n
k=0
recently been studied by Jakimovski and Leviatan [2]. In [2],
however, the coefficients are of the form

1 n-k k n-k k
g(x-1) (-1) x (1-x) gn-k (-k-1), where the

ank(x)f( 'E‘ ) have

ank(x) -

gn . are generalized Boole polynomials and g is the uniform

limit of a certain sequence of analytic functions. The matrix
A= (a k(x)) which determines the operator of [2] is, consequently,
n

not a Sonnenschein matrix and the results of [2] are, therefore,
not directly related to those of this paper.

Even more recently, Jakimovski and Leviatan [3] have
considered sequences of positive linear operators of the form
o0
L (f)(x) = = a (x)f(—L) where A = (a  (x)) is defined
n nk n+tk nk

k=0
in terms of generalized Boole polynomials in a manner similar
to that of [2]. The matrix A = (a k(x)) is again not a

n

Sonnenschein matrix so that the operators of [3] are not the
same as those considered in this article.

2. The operators and convergence theorem.

DEFINITION 1. Let ¢(z, w) be defined on SX {1 where
S and {1 are subsets of the complex plane with [0,1] C S
and 1 €} . Let ¢(z, w) be analytic on {1 for each z¢ S
For each z ¢ S let the matrix A = (ank(z)) be defined by
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o0
bz w)]” = = a (= n = 1,2,...,

1)

a (z) =1, a (z) =0, k =1,2,...
0o

DEFINITION 2. Let ¢ and A satisfy definition 1.
Let B denote the collection of functions which are bounded on
{x:x>0}. For each fe C[0,1]() B and xe [0,1] let Ln(f)

be defined by

)
2) L (f)(x) = £ a  (x)f(k/n), n = 1,2,.
n k=0 nk

LEMMA 1. The operator L defined by (2) is a positive
linear operator on C[0,1]\B for ®ach n = 1,2,... if and
only if ank(x)ZO for each Kk =0,1,..., n=1,2,..., and

x e [0, 1].

Proof. It is clear that Ln is linear for each n=1,2,....
If ank(x)_>_0 for each n=14,2,..., k = 0,1,2,..., and
x € [0,1] then f > 0 implies Ln(f) >0 .for each n = 1,2,...
so that Ln is a positive operator for each n = 1,2,.... Itis
also evident that ank(x) >0 foreach n = 1,2,..., k = 0,1,...,

and x e [0,1] implies that the series in (2) converges for each
fe C[0,1]NB, xe [0,1], and n = 1,2,..., since

)
n
ank(x) = [¢(x, 1)] .
k=0
Suppose that Ln is a positive linear operator on C[0,1]()B
for each n = 1,2,.... Let gze C[0,1] N B be defined by
1 t =0
n
3) g (L) =(-nt +1 0<t<1/n
0 1/n< ¢
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for each n = 1,2,..., Since gZZ 0 it follows that
n
)

L(g)x) = a (x>0 for n = 1,2,... and xe [0,1].
n-o on =

For each k = 1,2,... let gEe C[0,1] N B be defined
by

/
k+1
0 0<t <
- k
n¢ - k +1 ——1<t_,§—
n n n
4) g, (L) =<
« +k +1 E< <—+1
-1’1[_, n Z”— n

for each n = 1,2,.... Then g;l_>_0 so that

n
Ln(gk)(x) = ank(x)ZO fgreach n = 1,2,..., k = 1,2,...
and x e [0,1].

This proves the lemma.

THEOREM 1. Let ¢, A and Ln satisfy the conditions

of definitions 1 and 2. Let ¢(x,1) = 1 for each x e [0,1]
and suppose that there exists M such that |¢) (x, 1)] <M
A

for all x e [0,1]. Suppose that Ln is a positive linear

operator on C[0,1] {1 B for each n = 1,2,.... Then

lim Ln(f)(x) = f(x) uniformly on [0,1] for each C[0,1] (B
n--o0

if and only if ¢W(x, 1) = x for each x e [0,1].

Proof. Suppose that ¢ (x,1) = x. Since ¢(x,1) = 1,
—_— w

it follows that Ln(eo)(x) = 1 for each x ¢ [0,1] and

n = 1,2,.... Itfollows from (1) that

-1 ® k-1
5) n[qj;(x,w)]n p'(x, w) = T ka  (x)w

k=0 nk
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where the differentiation is with respect to w.

6)  nln-1)[p6x W)™ 2[p'(x, w)° + nlg(x w)]™ gr(x, w)

)
k-2
= T k(k-1 )ank(x)w

k=0
for each (x,w) e [0,1]X €. Hence
(¢ e}

+ng'(x,1) = kZ:)Ok(k— 1)ank(x),

7) n(n-1)[¢'(x, 1)]°

since ¢(x,1) = 1 for each xe¢ [0,1]. It follows from (1)
and (2) that

o0
8) L)) = 2 a ()= = ¢'(x 1),
k=0
Therefore (7) implies
) 1., 2 *
z k ank(x) = n(n—i)[Ln(e )x)]” +ne'(x, 1) + = kank(x),
k=0 k=0
and hence that
e 2
9 LD = T 5 a
k=0 n
L _(e')(x)
= AL (ehe)? poHBd  n
n n

Since ¢'(x,1) is uniformly bounded on [0,1] and ¢'(x,1) = x
for each’ x e [0,1], itfollows that

lim L (e9)(x) = x°
nvw O

uniformly on [0,1]. The sufficiency part of the theorem now
follows from Korovkin's theorem. The necessity follows from
8).
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Two classical examples of operators satisfying Theorem 1
are given below:

Example 1. Let ¢(z,w) = (2w +1 - z). In this case
¢'"(x,1) = 0, and

n
n, k n-k_k
L (f)x) = = ( )x (1-x) ()
n k n
k=0
is the nth Bernstein polynomial [5] for each n = 1,2,...,
Example 2. Let ¢(z,w) = ez(w-i). It follows that
2
¢'"(x,1) = 1 +x, and
[ k "
-x
L (E)x) = e = =f().
k=0 °
is the nth Szasz operator [7] for each n = 1,2,.

3. Some complex operators. Let ¢ and A be as in
definition 1) and let Ln be defined by

8

10) L (f)(z) =
o k

N ™

k
, ank(Z)f(;)

for each ze¢ S and each f and n for which the series converges.

It is clear that the formal computations involved in
equations 5) through 9) hold for the complex operators
Ln(f)(z). It is also clear from equations 8) and 9) that if

¢ '(z,1) is a polynomial of degree less than or equal to 1, and
if ¢"(z,1) is a polynomial of degree less than or equal to 2,

1
then Ln(e )(z) and Ln(ez)(z) are, respectively, polynomials

of degree less than or equal to 1 and of degree less than or
equal to 2. These computations can be extended in a
straightforward manner to establish the following lemma:

LEMMA 2. Let ¢ and A satisfy definition 1 and let
Lrl be defined by 10). Suppose that ¢(z,1) = 1 and that

(

[ V)(z,1) is a polynomial of degree less than or equal to
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v for each v =1,2,..., where the differentiation is with

respect to w. Let em(z) = zm for each m = 1,2,....
m
)

Then Ln(e (z) is a polynomial of degree less than or equal

to m for each m = 1,2,..., n = 1,2,....

The following theorem was inspired by a similar result
of Cheney and Sharma [1] for the complex Szasz operator. The
proof follows from Lemma 1 and Bernstein's lemma [5, p. 90]
in exactly the same manner as the result of [1].

THEOREM 2. Let E be an ellipse with foci 0 and 1
and let R denote the bounded component of the complement of
E. Let ¢ and A satisfy definition 1 with RCS and
ank(z)ZO for each 0 <z<1 and:a =0 for k> n. ﬁgLn

(z)
nk
be defined by 10). Let ¢(z,1) = 1 and ¢'(z,1) = z for

each z e S. Let ¢(V)(z, 1) be a polynomial of degree not

greater than v for each v = 41,2,... and each z e S, where
the differentiation is with respect to w. Then lim Ln(f)(z = f(z)
n-+oo

uniformly on each compact subset of R.

4. The summability method associated with Ln(f)(x). The
operators Ln(f)(x) were defined in terms of the Sonnenschein
summability matrix (ank(x)). The following theorem shows
that if the operators satisfy the conclusion of Theorem 1 then

the associated matrix is regular.

THEOREM 3. Let Ln(f) be defined by 2) for each

n = 1,2,..., Suppose that Ln is a positive linear operator

on C[0,1] (N B for each n = 1,2,... and that
lim L (f)(x) = f(x) uniformly on [0, 1] for each
n—-w

fe C[0,1] (Y B. Then the matrix (ank(x)) is regular for

xe (0,1].
Proof. Since lim L (eo)(x) = 41 uniformly on [0,1], it
n—>cwo o
0
follows that lim Z ank(x) = 4 for each xe¢ [0,1]. Lemma 1

n->o

k

I

0
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implies that a_ (x) >0 for each n,k and x¢ [0,1]. Therefore

k
0
sup { Z |a (x)| : n = 1,2,...} is finite. Let x ¢ (0,1]
nk
k=0
and let k be a fixed non-negative integer. If k = 0 let N be

1
such that n> N implies that 0< < x. Let g;l = gz e C[0,1]()B
be defined by 3) for n> N. Then

0
L(e)x) = Za (xg ()= a(x

for n> N. So 0= goN(x) = lim Ln(gi\l)(x) lim ano(x).

n-+*oo n-*oco

- k k
If k# 0 let N be such that Os%<;<—:1—_<_x for

n> N. Let gE ¢ C[0,1] N B be defined by 4). Then

L(g)x) = = a (xg () = a_ (x)

T M8

0

for n> N. Hence 0 =g (x).

oz

N
(x) = lim L (g )Nx) = lim a
n-=+oo 0 n->oo n

k

The Silverman- Toeplitz theorem is, therefore, satisfied
Hence (a k(x)) is regular for each xe (0,1].
n

Example 1 shows that the associated matrix (a k(x)) may
n

not be regular at x = 0.
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