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Abstract

Quasi-dual-continuous modules, which generalize the concept of dual-continuous modules, are studied
Mohamed, Muller and Singh had obtained some decomposition theorems and their partial canvwsfts,
for dual-continuous modules. It is shown that these results can be extended to quasi-dual-continuous
modules. Further, a short proof of a decomposition theorem for quasi-dual-continuous modules
established recently by Oshiro is given. Some more structure theorems for such modules are
established. Finally, quasi-dual-continuous covers are studied, and duals for results of Muller and
Rizvi are derived.

1980 Mathematics subject classification (Amer. Math. Soc): primary 16 A 51; secondary 16 A 50, 16 A
53.

Consider the following conditions on a module MR.
(Dx) For any submodule A of M, there exists a decomposition M = M1 ffi M2

such that Mxa A and A n M2 is small in M2.
(D2) If for any submodule N of M, M/N is isomorphic to a summand of M,

then N is a summand of M.
(D3) If for two summands A, B of M, M = A + B holds, then A n B is a

summand of M.
(D4) If for two summands A, B of M, M = A + B holds and A n B is small in

M, then M = A ® B.
Utumi [18] studied continuous rings. The concept of continuous rings was

extended to that of continuous modules by Jeremy [5] and by Mohamed and
Bouhy [10]. Since the conditions (Dx) and (D2) are dual to those defining
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288 Saad Mohamed, Bruno J. Muller and Surjeet Singh [2 ]

continuous modules, a module satisfying (Dj) and D2) was called a dual-continu-
ous (in short d-continuous) module, by Mohamed and Singh [13]. In [11] and [13]
Mohamed, Muller and Singh established a decomposition theorem for J-continu-
ous modules. Then dual continuous modules, and modules satisfying (Dx) only,
were further studied by Abdul-Karim, Mohamed, Muller and Singh in [8], [9],
[12], [16], [17]. Jeremy [5] defined the concept of quasi-continous modules.
Dualizing it, we call a module MR satisfying conditions (D{) and (D3) quasi-dual-
continous (in short ^-continuous). Now [13, Lemma 3.6] shows that condition
(D2) implies (D3); so any ^-continuous module is ^-continuous. In Section 1 we
show that most of the techniques or results given for d-continuous modules in [13]
hold for ^-cont inuous modules. Recently Oshiro [15] has introduced the concept
of semi-perfect and quasi-semi-perfect modules. These concepts are precisely the
same as that of ^-continuous modules and ^-continuous modules respectively.
He has established a decomposition theorem for ^-continuous modules which
improves upon that for ^-continuous modules established in [11] and [13]. In
Section 2, we give a short proof of this theorem. Other interesting results for
^-cont inuous modules are in Propositions 2.8 and 2.9. We extend [12, Theorems
2.2 and 2.4] to ^-continuous modules. In Section 3, ^-continuous covers are
studied.

The notations and terminology used in [13] are also used here. Thus for the
definition of a small submodule, rf-complement of a submodule, local module and
other undefined terms we refer to [13]. A module MR is said to be supplemented if
for any submodule A of M, any submodule B, such that M = A + B, contains a
^-complement of A. Supplemented modules are precisely the perfect modules
defined by Miyashita [7]. A nonzero module M is said to be hollow if every
proper submodule of M is small in M. Clearly any indecomposable module
satisfying (Dx) is a hollow module. A decomposition M = T.A ffi Ma of a module
M as a direct sum of nonzero submodules (Ma)aeA is said to complement
summands (complement maximal summands) in case for every (every maximal)
summand K of M there exists a subset B c A with M = (LB ffi Mp) ffi K. For
properties of such decompositions we refer to Anderson and Fuller [1]. For the
definition and properties of M-projective modules, where M is any module, we
refer to Azumaya [2].

1. Some general results

PROPOSITION 1.1. Under condition (Dx), the conditions (D3) and (D4) are
equivalent.

PROOF. It is clear that (D3) implies (D4). Assume (D4) and let A and B be
summands of M such that M = A + B. By (Dx), M = Mx ffi M2 such that
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M1 c A n B and A n B n M2<zM. Now 5 = Afx © 5 n Af2. Hence 5 n M2 is

a summand of M. Also

M = ,4 + 5 = , 4+ (M 1 © J Bn A/2) = A + B n Af2.

As ̂  and B n M2 are summands of Af and 4̂ n 5 n M2 c M, we get (v4 n 2?) n
M2 = 0. Hence M = (A n B) ® M2, and the result follows.

The above proposition shows that quasi-semi-perfect modules as defined by
Oshiro are exactly the ^-continuous modules.

The following is easy to prove.

PROPOSITION 1.2. Any summand of a module M satisfying any condition (D,) also
satisfies (D,-). In particular a summand of a qd-continuous module is qd-continuous.

In [13, Lemma 3.6] it was proved that a module with condition (D2) satisfies
(D3). It is obvious that Lemma 3.6 in [13] also holds for ^-continuous modules.
Then a number of results were proved using only condition (Dx) and Lemma 3.6.
Therefore these results hold for ^-continuous modules. In particular Proposition
3.7, Corollary 3.9, Proposition 4.1 and Corollary 4.2 in [13] give respectively the
following four results.

PROPOSITION 1.3. A qd-continuous module M is supplemented (perfect in the
sense of Miyashita [7]), and every d-complement submodule of M is a summand.

COROLLARY 1.4. Let Mx be a summand of a qd-continuous module M. If M2 is a
d-complement of Mx, then M = Mx® M2.

PROPOSITION 1.5. If A ffi B is qd-continuous, then A is B-projective.

COROLLARY 1.6. If M X M is qd-continuous, then M is quasi-projective.

It was pointed out in the proof of [13, Theorem 2.3] that a quasi-projective
module always satisfies (D2). Hence for a quasi-projective module, the notions of
^J-continuity and ^-continuity coincide.

In [5, Definition 3.2], Jeremy mentioned that a module M is quasi-continuous if
and only if M = A © B for any two submodules A and B which are complements
of each other. The following dual result is an easy consequence of Proposition 1.3
and Corollary 1.4.

PROPOSITION 1.6. A module M is qd-continuous if and only if M is supplemented
and M = A © B for any two submodules A and B which are d-complements of each
other.
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2. Decomposition theorems

Mohamed, Muller and Singh [11] and [13] proved the following decomposition
theorem for ^-continuous modules.

THEOREM 2.1. A d-continuous module M has a decomposition, unique up to
isomorphism, M = T.ie/®Ai® N where each At is a local module and N = Rad N.

Recently, Oshiro [15] obtained a decomposition theorem for qd-continuous
modules which improves the above theorem. The following comprises Theorem
3.5, Theorem 3.10 and Corollary 3.11 in [15].

THEOREM 2.2 (Oshiro). A qd-continuous module M has a decomposition M =
E , G / ©//, where each Hi is a hollow module; further, this decomposition comple-
ments summands.

In this section we give a short and simplified proof of Oshiro's theorem. We
also give some partial converses of this theorem, which extend analogous results
for ^-continuous modules due to Mohamed and Muller [11,12].

We need the following three results.

LEMMA 2.3. Let M = M1 © M2 be a qd-continuous module, and w,: M -* Mi be

the associated projections. Ifir2N
 c M2for some summandNofM, then N n M2 = 0

and N © M2 is a summand.

PROOF. Let S = IT^. By (D^ , Mx = A © B such that A c S and S n B c M.
Let IT denote the projection A © B © M2 -* B. Then ITN = TTTT^N = irS = S D
BczM. Now N C\(B ® M2) c irN © n2N C M. Since M = N + (B © M2), we
get by (D3) that N n (B © Af2) = 0. Hence M = N © B © M2, proving the
result.

PROPOSITION 2.4. The union of any chain of summands of a qd-continuous module
M is a summand of M.

PROOF. Let {Na} be a chain of summands of M and let N = UaNa. By (DJ ,
M = M1 © M2 such that Mlc N and Af n M2 c M. Let m2 be the projection
Mx © M2 ->• M2. Then w2A^ = N n M2. For any a, 7r2iVa c w2Af c M. It follows
by Lemma 2.3 that NaCi M2 = 0. Consequently N n M2 = 0 and N ® M2 = M.
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LEMMA 2.5. Let M be a qd-continuous module. For every nonzero x e M, there
exists a decomposition M = Ml © M2 such that M2 is hollow and x £ Mv

PROOF. By Zorn's Lemma and Proposition 2.4, we can find a summand Mx of
M maximal with the property x £ Mx. Write M = Mx © M2. If M2 is not hollow,
then it contains a nonzero summand by (Dt). Let M2 = A © B. Then M = M1 ©
A ® B. Now maximality of Mx implies that x e Mx ® A and x e A/j © fi.
However this implies x e Mx, a contradiction. Hence M2 is hollow.

PROOF OF THEOREM 2.2. Let M be a ^-continuous module. By Zorn's Lemma
and Proposition 2.4, we can find a maximal direct sum N = T.ieI ffi.//, of hollow
summands Ht such that N is a summand of M. Then N = M by Proposition 1.2
and Lemma 2.5. Hence M = H/ 6 / ffii/,.

Let A be a summand of M. Again by Zorn's Lemma and Proposition 2.4, we
can find a maximal subset J of I such that A n E,«=y ®Hj = 0 and A" = v4 ffi
T.j^jHj is a summand of M. If possible, assume that K ¥= M. Then by Lemma
2.5, M = T © //, where / / is a nonzero hollow summand and K <z T. Let w be the
projection T ffi i / -> H. If w.tfa = H for some a e /, then M = T + Ha. As
Tn Hac. M, we get by (D3) that J n Ha = 0. So that M = T ® Ha. However
this contradicts the maximality of / . Therefore, •nHi ¥= H for every / e /. Let
{i1; i2, . . . , /„} be a finite subset of / and let

L = Ht ffi # , ffi ••• ® H t .
' l ' 2 ' n

Then

As / / is hollow, we get irL c /^. Then it follows by Lemma 2.3 that L n H = 0.
This proves that (E,e / ©#,•) n /f = 0. Consequently / / = 0, a contradiction.
Hence K = M, and the result follows.

REMARK. Let M = E,G/ ffi#, = E y e / ©A, be any two decompositions of a
^/-continuous module M into hollow submodules. Since these decompositions
complement summands, by Anderson and Fuller [1, Theorem 12.4] the two
decompositions are equivalent, in the sense that there exist a bijection o: I -> J
such that 77, = ivo(l) for every /' e /.

We now prove some more results which are related to the decomposition of
<jrj-continuous modules.

PROPOSITION 2.6. Let M be a qd-continuous module, and B a d-complement of a
submodule A of M. If C is a summand of M contained in A, then C f l f l = 0 and
C © B is a summand of M.
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P R O O F . By Proposition 1.3, M = A' ffi B for some A' c A. Let IT denote the
projection A' ffi B -> B. Then wC c vA = A C\ B <z M. Hence the result follows
by Lemma 2.3.

The following is an immediate consequence of the above proposition.

T H E O R E M 2.7 (Oshiro [14]). Let {Na}a^, be an independent family ofsubmodules

of a qd-continuous module M. If for every finite subset F of I, L a e F ® J V a is a

summandof M, then Y.aef®Na is a summand.

P R O O F . Let A = E n e / ®JVa and B be a ^-complement of A. Then M = A ffi B

by Proposit ion 2.6.

The following extends [13, Proposition 4.5].

P R O P O S I T I O N 2.8. Let M be a qd-continuous module. Let N be any summand and

A be a hollow summand of M. Then either N n A = 0 and N ffi A is a summand of

M, or, N + A = JV ffi S for some small submodule S of M and A is isomorphic to a

summand of N.

PROOF. Write M = N © L. Then N + A = N © [(N + A) n L] yields (N + A)

n L = A/{A n N). Consequently as A is hollow. (N + A) O L is indecomposa-

ble. Two cases arise.

Case I. (N + A) n L is not small in M. By (Dx), (JV + A) n L contains a

nonzero summand of M. Consequently (N + A) n L itself being indecomposable,

is a summand of M. This in turn gives that N + A is a summand of M. By

condition (D3), N C\ A is & summand of M. However A indecomposable and

A <t N yield N n A = 0 and so JV ffi A is a summand of M.

Case U. S = (N + A) n L c. M. Write A/ = ^ ffi A'. Then

M = (JV + A) + A' = JV + (JV + A) n L + A' = N + A'.

By (D3), JV nA' is a summand of M. So write N = N' <B (N n A'). Then

M = N' ® A', and ,4 s JV'. This completes the proof.

As a consequence we get the following result which extends [12, Lemma 2.3].

PROPOSITION 2.9. Let {JVa}o e / be a set of mutually non-isomorphic hollow

summands of a qd-continuous module M. Then Ea e /JVa is direct and is a summand

ofM.
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PROOF. By the above proposition Ea 6 E f Na is direct and is a summand of M, for
every finite subset F of / . The result now follows by Theorem 2.7.

LEMMA 2.10. LetM = S®T = A + T such that S is T-projective. Then M =

S" ffi T where S" c A.

PROOF. The hypothesis gives the following commutative diagram:

nat.

Let S' = {x - </>(JC): x e S). Then S' c ^ and M = S' ffi T.

THEOREM 2.11. Le? Af = E?_! ffi A/, SMC/J f/iaf M, is hollow and Mj-projective
whenever i ¥= j . Then M is qd-continuous.

PROOF. Let irt: M -» Af, be the associated projections.
(i) First consider a non-small submodule B of M. As 2? c E"_x ffi w,5, and each

Af, is hollow, we get 7^5 = Mk for some A: e {1 ,2 , . . . , «} . Then M = B +
E/ # < : ©A/,. As Mk is (L/ # A ©A/,)-projective by [3, Proposition 1.16], using Lemma
2.10, we get M = M'k © E ^ * ©A/,, A/̂ ' c B. Thus any non-small submodule of
M contains a hollow summand of M.

(ii) Next, let M = H © K where # is indecomposable. By the above argument,
there exists a e { l ,2 , . . . , n} such that M = H © E1>ta ©Af,. As H = Ma, H is
hollow. Also A" = E,^a © Af, implies that H is /sT-projective.

Let IT denote the projection H © K -* H. Then # = Ef=1 irAf,-. Since /f is
hollow, H = wAf̂  for some B e {1 ,2 , . . . , «} . Then Af = Af̂  + K. Applying
Lemma 2.10, we get Af = H' © K, H' c Mp. As Mp is indecomposable, /f' = M^.
Hence Af = Af̂  ffi K. This proves that the decomposition Af = E"_x © Af, comple-
ments maximal summands.

(iii) Let N be a submodule of Af. If JV is not small in Af, then it contains a
hollow summand Hr of M, by (i). Write M = H1 ffi Tv Then by (ii), M = Mh ffi 7\
for some ij e {1,2, . . . ,n } . If iV O 7\ is not small in Af, then N n 7\ contains a
hollow summand i/2 of M. Then M = Hx® H2® T2 = Mh ffi A/,2 ffi T2. Repeat-
ing the process and noting that this can continue for at most n steps we get
Af = i/x ffi # 2 ffi • • • ffi Hk ffi Tk such that Ef=i ®/f, c AT and N n Tkis small in
Af. This proves that M satisfies condition (Dj).

(iv) Let M = C ffi D. By (iii) C = Cx ffi C2 ffi • • • ffi C, for some hollow sub-
modules Cj. Then as the decomposition M = E"=1 ©Af, complements maximal
summands, we get Af = Af(i ffi Mt ffi • • • ffi A/, ffi D. Thus D = E y C f © M} where
F = {/j, i2,...,/,}. Then by [3, Proposition 1.16] C is Z>-projective.
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(v) Let A and B be summands of M such that M = A + B. Write M = B' © B.

Then B' is 5-projective by (iv). Then by Lemma 2.10, M = A' © B such that

A' a A. Hence A = A' © A n B, proving that A n B is a summand of Af. Thus

condit ion ( D 3 ) holds.

T H E O R E M 2.12. Let M = L , e / ®At such that A{ is local and A~projective for

i # j , and R a d M c Af. Then M is qd-continuous.

P R O O F . Tha t M satisfies condition (D x ) follows as in [12, Theorem 2.4]. Let

M = C © D. Then by Warfield [19, Theorem 1], there exist two disjoint sets /

and K such that / = J U K and C = E , 6 / ®A,, D = L , 6 A : ®At. Since each At is

cyclic, it follows by [2, Propositions 1 and 5] that C is D-projective. Then

condit ion (D 3 ) follows as in Theorem 2.11.

R E M A R K . Consider any free module F = T.fLx ®Ri,Ri = RR, a discrete valua-

tion ring of rank one. Clearly each Rt is /?y-projective. However F is not

^ - c o n t i n u o u s , as Rad F is not small in F.

3. Covers and {/-continuous modules

We start with the following general result.

LEMMA 3.1. Let M be a qd-continuous module. If M = HieIMi is an irredundant
sum of indecomposable submodules A/,, then M = E / e / ©M,.

PROOF. That the sum E,e/Af, is irredundant implies that no Mt is small in M.
Then M, contains a summand of M by (Dx). As Af, is indecomposable, M, is a
summand of M. So M, is hollow. Let F be a finite subset of /. Let K be a maximal
subset of .F such that E,eJf Af, is direct and is a summand of M. Suppose that
K # F. Let a e f such that a € ^ . By Proposition 2.8, we have (LieK ®Mi) +
Ma = (L,eR- © A/,-) + 5, for some small submodule S of A/. However this implies
that M = E,# o Af,, which is a contradiction to the irredundancy of the sum.
Therefore K = F and E,Gf Af, is direct. This completes the proof.

Next we prove the dual of [14, Theorem 4].

THEOREM 3.2. Let Ax and A2 be two submodules of a qd-continuous module M.
Let Q1 and Q2 be summands of M admitting epimorphisms irt: Qt -* M/At with
Ker v, c Qt, i = 1,2. IfM/A1 = M/A2, then Ql s Q2.

https://doi.org/10.1017/S1446788700026069 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026069


[9] Quasi-dual-continuous modules 295

PROOF. Let AT, = Ker w(., i = 1,2. Then Ql/K1 = Qi/K2. As Q2 is ^-continu-
ous, Q2 — E , e / ®Bj where each 2?, is a nonzero hollow submodule of Q2- Let (?,
denote Qt/Kt. Let 0 be an isomorphism of Q2 onto g^ We have Qx = E , e / ^ , ,
where 0(2?,) = ^4,. Let 4̂, be the full inverse image of At in Qv It is clear that
Hi^lAi is irredundant.

As Q1 is ^/-continuous, Q1 = Af, © Af/ such that Af, c ,4, and S, = Af,' n At is
small in Qj. Hence At = Af, © St. Now ,4, = i?, is hollow. This implies that
Ai = 5, or At = Af,. However At = S, implies At = 5, + Kl c g1; which is a
contradiction of the ^redundancy of the EieE/v4,. So At, = Af,, and hence At = Mt

+ Kv Then

Ci = I 4• - E (A/,. + ^ ) = E Ms + ^ .
IE/ /£/ IE/

As Â x c g l t we get Qx = E,e/Af,. It is also clear that the sum E,G/Af, is
irredundant.

We claim that Af, is hollow. Assume that Af\, = X + Y. Then At = M,, = X + Y.
As At is hollow, Ai, = Xot Ai, = y. Let us assume that v4, = X Then 4̂,, = X + K1

and hence
Qx = Af, © Af/ = At + M! = X + A"i + Af,' = X © Af,'.

This implies that X = Af,. Similarly At = Y implies that Y = Af,. This proves our
claim.

It now follows by Lemma 3.1 that Q1 = E , e / © Af,. Let « e / . As Ba and Afa
are hollow summands of Af, it follows by Proposition 2.8 that Afa = Ba or
Afa + Ba is direct and is a summand of Af. In the latter case Afa is 5a-projective
by Propositions 1.2 and 1.5. Thus there exists a homomorphism g: Afa -» Ba such
that the following diagram is commutative:

nat. — —
Ma - Afo = Afo Aa

si I s

nat. —
K - Ba

Since B is hollow, g is onto. As Ba is Afa-projective, g splits. Then g is an
isomorphism as Afa is hollow. Thus one has Afa = Ba in either case. Hence

Q1 = E QM, = E ©5, = Q2.
iel i£/

COROLLARY 3.3. Let A1 and A2 be submodules of a qd-continuous module M. Let
Qx and Q2 be d-complements of Ax and A2 respectively. If M/Ax = M/A2 then
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P R O O F . A S Q( is a (/-complement of At, Qt is a summand of M by Proposition

1.3 and At D Qi c M. Now

1 n Qt) = M/A, = M/A2 = ^ ( ^ O fi2).

Hence the result follows by the above theorem.

For any factor module M/A of a (^-continuous module M, a summand Q of M
is called a ccwe/- of M/A in M if there exists an epimorphism IT: Q -* M/A with
Ker ir <z Q. Theorem 3.2 shows that any two covers in M of a factor module of M

are isomorphic.
Theorem 3.2 has the following

COROLLARY 3.4. A qd-continuous module M is d-continuous if and only if every
epimorphism M —» M with small kernel is an isomorphism.

PROOF. Necessity is obvious.

To prove sufficiency, consider any summand B of M and any epimorphism / :
M -* B. Let K = Ker/. Write M = P © Q such that P c K and # n Q c Af.
Let / * = / |Q . Then /* : Q -• fi is an epimorphism, and Ker/* = A" n <2 c M.
Also M = J4 © B for some submodule v4 of M. Now M/^T s B = M/A. Then,
by Corollary 3.3, the ̂ -complements of K and A are isomorphic; that is Q s 5.
Now

M = P ® <2 * P ® B = P ® Q = M.

This gives an epimorphism g: M -+ M with Ker g = Ker/* c M. By assumption,
g is an isomorphism. Hence K C\ Q = Ker/* = 0. So M = K © g and / splits.
Hence M is ^-continuous.

We apply the above theorem to determine when a ^-continuous module is
^-continuous.

THEOREM 3.5. Let M be a qd-continuous module. Then M is d-continuous if and
only if every hollow summand of M is d-continuous.

P R O O F . Necessity follows by Proposition 1.2. Conversely, assume that every

hollow summand of M is (/-continuous. By Theorem 2.2, M = E , e / ©Af, where

each M, is hollow. L e t / : Af -» Af be an epimorphism such that K e r / c Af. Then

Af = E i e / / ( Af() is an irredundant sum of hollow submodules / ( Af,). It follows by

Lemma 3.1 that Af = E , e / © / ( Af,). Again by Theorem 2.2, / (Af,) = Afy for some

j e / . L e t / * = /|Af,. Then as Af, is ^/-continuous and Afy is A/,-projective fory # i,
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the epimorphism Of*: Af, -> M} splits. Since Af, is hollow, Of* is an isomorphism,
and hence /* is an isomorphism. Consequently / is an isomorphism. The result
now follows by the above corollary.

LEMMA 3.6. Let M' be a qd-continuous module, and f be an epimorphism of any
module M onto M' with Ke r / c Af. Then Kerf is invariant under every idempotent
endomorphism ofM.

PROOF. Let M = A © B. Then M' = f(A) + f(B). As M' is ^-continuous, it
follows by Proposition 1.3 and Corollary 1.4 that M' = A1 © Bx for some
submodules A1 c f(A), Blaf{B). Then M = f~\Ax) +f~\B1). However
f'\Ax) c f-\Ax) C\A + Ker/ and /"H^i) c f~\B\) ^ B + Ker/. Conse-
quently M = f-\Ax) n A + f'\Bx) n B, as Ker/c M. We get

M = A ©5=/-1(^1)n^ ®f-\B1) nB.

Hence f(A) = Alt f(B) = Bx, and M = f(A) ® f(B). This shows that Ker/ is
invariant under every idempotent endomorphism of M.

We now prove two theorems analogous to [20, Proposition 2.2] and [6, Theorem
5.6] respectively.

THEOREM 3.7. Let M be any qd-continuous module and f be an epimorphism of M
onto a module M' with K e r / c M. Then M' is qd-continuous if and only i /Ker/is
invariant under every idempotent endomorphism of M.

PROOF. Necessity follows from Lemma 3.6.
Conversely assume that Ker/ is invariant under every idempotent endomor-

phism of M. Let A be a submodule of M'. Write M = P © Q, with P c f~\A)
and f~\A) nQc.M. Then the hypothesis on Ker/ yields M' = f(P)®f(Q).
Clearly/(P) c A. Further

f~\A nf(Q))cf-l(A) nQ + Ker/c M

yields A n f(Q) c Af'. Therefore M' satisfies condition (Dx). Now^4 = f(P) © ,4
n f(Q), so if y* is summand of A/', we get A n /((?) = 0 and hence A = / (P ) .

Let 2? and C be summands of M' such that Af' = B + C. As seen above there
exist summands S, T of Af such that f(S) = B, / ( J ) = C. Then Af = 5 + T +
Ker /= S + T. As Af is ^-continuous, by (D3), 5 n J is a summand of Af.
Consequently M = S1®SnT®Tl with S = X 1 « S n r , T = 7\ © 5 n T.
The hypothesis on Ker/ yields Af' = /(5j) ©/(S n T) ©/(7\). This im-
mediately yields fin C = / ( S n T). Hence Af' is ^-continuous.
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THEOREM 3.8. Let M be any module every summand of which admits a projective

cover. Let P -* M -* 0 be a projective cover of M. Then M is qd-continuous if and

only if Kerf is invariant under every idempotent endomorphism of P and P satisfies

PROOF. Let P satisfy (Dx) and let Ker/ be invariant under every idempotent
endomorphism of P. As seen in the proof of [13, Theorem 2.3] any quasi-projec-
tive module satisfies (D2). Consequently P is ^-continuous. So by Theorem 3.7,
M is ^-continuous.

Conversely let M be ^-continuous. By Lemma 3.6, Ker/ is invariant under
every idempotent endomorphism of P. Let A be any submodule of P. Write
M = Nx © N2, such that Nx c f(A) and N2 n f(A) c M. This results in a decom-
position P = P1 © P2 such that

P/^N^ -> 0

f\Pi
P2-^N2-+0

are projective covers of Nx and N2 respectively. Since M = f{A) + f(P2) we have

P = A + P2 + Ker/ = A + P2 = Px © P2.

By Lemma 2.10, P = Ax © P2 for some Ax c A. Asf(A n P2) c f(A) r\N2ciM
and K e r / c P , we get A n P2c. P. Hence P satisfies (Dx). This proves the
theorem.

We end the paper with the following

REMARKS, (i) Consider any module MR such that every homomorphic image of
M has a projective cover. Let P -* M -* 0 be a projective cover of M. By [6,
Theorem 5.6], P satisfies condition (Dt) , and hence every homomorphic image of
P has a projective cover. Let L be the sum of all those submodules K of K e r /
which are invariant under idempotent endomorphisms of P. Let M = P/L. Then
P -* P/L -* 0 is the projective cover of M, where m is the natural mapping, and
we have the epimorphism f:M->M such that fir = f. By Theorem 3.7, M is
^-continuous. It can be easily seen that given any ^-continuous module QR

having a projective cover, and any epimorphism g: Q -» M, there exists an
epimorphism g: Q -* M such that fg = g. In this sense we can call M a
^/-continuous cover of M.

(ii) The same proof as that of [13, Proposition 5.1] shows that given any module
M and any two small submodules A and B of M, such that M/A © M/B is
^-continuous, then M/A = M/B. Thus in particular if two modules M and M'
have isomorphic projective covers and M © M' is ^-continuous, then M = M'.
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