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Jordan Structures of Totally Nonnegative
Matrices

Shaun M. Fallat and Michael I. Gekhtman

Abstract. An n × n matrix is said to be totally nonnegative if every minor of A is nonnegative. In this

paper we completely characterize all possible Jordan canonical forms of irreducible totally nonnegative

matrices. Our approach is mostly combinatorial and is based on the study of weighted planar diagrams

associated with totally nonnegative matrices.

1 Introduction and Main Results

In this paper we give a complete solution to the inverse spectral problem for irre-

ducible totally nonnegative matrices. Recall that an n × n matrix A is called totally

positive, TP (totally nonnegative, TN) if every minor of A is positive (nonnegative). A

is called irreducible if there is no permutation matrix P such that

PAPT
=

[
B C

0 D

]

,

where 0 is an (n − r) × r zero matrix (1 ≤ r ≤ n − 1). The main results of the paper
are summarized in the following theorem

Theorem 1 Let A be an irreducible n × n TN matrix. Then

(1) A has at least one non-zero eigenvalue. Furthermore, the non-zero eigenvalues of A

are positive and distinct.

(2) Let p be the number of non-zero eigenvalues of A. For each i ≥ 1, let mi = mi(A)
denote the number of Jordan blocks of size i corresponding to the zero eigenvalue in

the Jordan canonical form of A. Then the numbers mi satisfy the following condi-

tions:

(a)
∑

imi = n − p .

(b) mi = 0 for i > p .

(c)
∑

mi ≥
n−p

p
.

(3) Conversely, let n ≥ 2, let 1 ≤ p ≤ n, let λ1, . . . , λp be arbitrary distinct positive

numbers and let m1, m2, . . . be nonnegative integers satisfying conditions in 2.
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Then there exists an irreducible TN matrix A having non-zero eigenvalues and such that

mi(A) = mi for all i ≥ 1.

The theorem above extends the classical result of Gantmacher and Krein [9, 10],
who introduced the concept of total positivity and proved that the eigenvalues of
every TP matrix are positive and distinct. The same is true for every oscillatory matrix,
that is a totally nonnegative matrix such that some positive integer power of it is

totally positive. Since the set of TN matrices coincides with the closure of the set of
TP matrices, it follows that the eigenvalues of a TN matrix are real and nonnegative.

Gantmacher and Krein also proved that a TN matrix is oscillatory if and only if
it is invertible and irreducible. Thus, their result on spectral properties of oscillatory

matrices coincides with the first statement of Theorem 1 with an additional assump-
tion that A is invertible. In its general form, part 1 of Theorem 1 was proved in our
earlier paper [6] with C. R. Johnson, where we also formulated several conjectures on
the possible structures of Jordan blocks corresponding to the zero eigenvalue in the

Jordan canonical form of an irreducible TN matrix. All of these conjectures will be
verified below and will also serve as steps in the proof of parts 2 and 3 of Theorem 1.

It should be noted that if one does not require irreducibility, the problem of de-
scribing possible Jordan canonical forms of TN matrices becomes trivial: a Jordan

canonical form of a matrix is TN if and only if all its eigenvalues are real and non-
negative.

The paper is organized as follows: in the next section we will discuss a combinato-
rial approach to TN matrices based on their realization as path matrices of weighted

planar diagrams. Section 3 reviews in more detail known results on nonzero eigen-
values of TN matrices. In addition, we give a description of nonzero spectrum of TN
matrices associated with a given planar diagram, and we verify item (1) of Theorem
1. In section 4 we prove conjectures formulated in [6] concerning necessary condi-

tions that must be satisfied by rank, principal rank and index of the zero eigenvalue
of an arbitrary irreducible TN matrix. Results in this section lead to a proof of item
(2) in Theorem 1. Finally, in Section 5, we complete the proof of the main theorem.

Readers interested in learning more about a vast array of applications pertaining

to TN matrices in various areas of pure and applied mathematics are encouraged to
consult the following books and review articles: [1, 3, 5, 7, 11, 17, 15].

2 Planar Networks, Bidiagonal Factorizations and
Total Nonnegativity

It is an easy corollary of the classical Cauchy-Binet identity for determinants that the

set of TN matrices forms a multiplicative semigroup. With this in mind, one way to
better understand TN matrices is through a study of generators of this semigroup. In
other words, one would like to find a decomposition of an arbitrary TN matrix into
a product of certain “basic” or “elementary” TN matrices.

The first result of this kind was obtained in 1952 by A. Whitney [18], who showed
that under a particular elimination scheme and assuming no accidental cancellation
(although this turns out not to be a difficult issue, see [4]), one can reduce a TN
matrix to an upper triangular TN matrix. Applying similar reasoning to the transpose
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of the resulting upper triangular matrix produces a factorization of A in terms of
totally nonnegative bidiagonal matrices of the form Ek(α) = I +αEk,k−1, ET

j (α) (with

Ei j being the elementary standard basis matrix whose only nonzero entry is a one in
position (i, j) ) and a nonnegative diagonal factor. Such a factorization is called an
elementary bidiagonal factorization of A.

In general, we define an elementary bidiagonal matrix as an upper or lower trian-

gular matrix that has a form D + αEk,k±1, where D is a diagonal matrix. Observe
that an elementary bidiagonal matrix is TN if and only if it is entrywise nonnegative.
There has been a significant amount of work done on factorizations of TN matrices
into elementary bidiagonal matrices (see [2, 4, 12, 14]). In the nonsingular case, the

most commonly used factorization is described by the next result.

Theorem 2 Let A be an n × n nonsingular TN matrix. Then A can be written as

(1) A = E2(lk)
(

E3(lk−1)E2(lk−2)
)
· · ·

· · ·
(

En(ln−1) · · ·E3(l2)E2(l1)
)

D
(

ET
2 (u1)ET

3 (u2) · · · ET
n (un−1)

)
· · ·

· · ·
(

ET
2 (uk−2)ET

3 (uk−1)
)

ET
2 (uk),

where k =

(
n
2

)
; li, u j ≥ 0 for all i, j ∈ {1, 2, . . . , k}; and D is a positive diagonal

matrix.

In what follows, we will need the following extension of Theorem 2, due to
Cryer [4]:

Theorem 3 Any n × n TN matrix A can be written as

(2) A =

M∏

i=1

L(i)

N∏

j=1

U ( j),

where the matrices L(i) and U ( j) are, respectively, lower and upper elementary bidiagonal

TN matrices.

Before we discuss connections between TN matrices and weighted digraphs we

need to set forth some notation. For an n×n matrix A = [ai j], α, β ⊆ {1, 2, . . . , n},
the submatrix of A lying in rows indexed by α and the columns indexed by β will be
denoted by A[α|β]. If, in addition, α = β, then the principal submatrix A[α|α] is
abbreviated to A[α].

An excellent treatment of the combinatorial and algebraic aspects of bidiagonal
factorizations of TN matrices along with generalizations for totally positive elements
in reductive Lie groups is given in [2, 7, 8]. One of the main tools used in these
papers is a graphical representation of the bidiagonal factorization in terms of planar

diagrams (or networks) that can be described as follows.
An n×n diagonal matrix diag(d1, d2, . . . , dn) is represented by the diagram on the

left in Figure 1 while an elementary lower (upper) bidiagonal matrix Ek(l) (ET
j (u)) is

the diagram middle (right) of Figure 1.
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Figure 1: Diagrams

Each horizontal edge of the last two diagrams has a weight of 1. It is not difficult
to verify that if A is a matrix represented by any one of the diagrams above, then

det A[{i1, i2, . . . , it}|{ j1, j2, . . . , jt}] is nonzero if and only if in the corresponding
diagram there is a family of t vertex-disjoint paths joining the vertices {i1, i2, . . . , it}
on the left-side of the diagram with the vertices { j1, j2, . . . , jt} on the right side.
Moreover, in this case this family of paths is unique and

det A[{i1, i2, . . . , it}|{ j1, j2, . . . , jt}]

is equal to the product of all the weights assigned to the edges that form this family.
Now, given a product A = A1A2 · · ·Al in which each matrix Ai is either a diagonal

matrix or an elementary (upper or lower) bidiagonal matrix, a corresponding dia-

gram D is obtained by concatenation left to right of the diagrams associated with the
matrices A1, A2, . . . , Al. Then the Cauchy-Binet formula for determinants applied
to the matrix A above implies the next two results. Given a diagram D and a path
connecting a vertex on the left side of D to a vertex in the right side of D, the weight

of this path is defined to be the product of all the weights of the edges along this path.

Proposition 4 Suppose A = A1A2 · · ·Al in which each matrix Ai is either a diagonal

matrix or an elementary (upper or lower) bidiagonal matrix. Then

(1) the (i, j)-entry of A is equal to the sum of the weights of all paths joining the vertex

i on the left side of the obtained diagram D with the vertex j on the right side.

(2) For index sets α = {i1, i2, . . . , it} and β = { j1, j2, . . . , jt}, consider a collection

P(α, β) of all families of vertex-disjoint paths joining the vertices {i1, i2, . . . , it}
on the left of the diagram D with the vertices { j1, j2, . . . , jt} on the right. For

π ∈ P(α, β), let w(π) be the product of all the weights assigned to edges that form

a family π. Then

det A[α|β] =

∑

π∈P(α,β)

w(π) .

Theorems 2 and 3 imply that every TN matrix can be represented by a weighted
planar diagram constructed from building blocks as in Figure 1 (in the case of de-
generate matrices some of the horizontal edges may have to be erased). As the most
important example, consider the bidiagonal factorization of an arbitrary TP matrix

https://doi.org/10.4153/CJM-2005-004-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-004-0


86 S. M. Fallat and M. I. Gekhtman

A from Theorem 2. This factorization translates into the diagram in Figure 2 (here
k =

n(n−1)

2
).

1

2

3

n − 1

n

1

2

3

n − 1

n

lk lk−2 ln l1 d1 u1 un uk−2 uk

uk−1uk+1u2d2l2ln+1lk−1

ln−1 dn−1 un−1

dn

Figure 2: General n× n diagram.

More general weighted planar digraphs can also be associated to TN matrices (see,
e.g., [3, 13]). A planar diagram of order n is a planar acyclic digraph D with all edges

oriented from left to right and 2n distinguished boundary vertices: n sources on the
left and n sinks on the right with both sources and sinks labeled 1, . . . , n from bottom
to top. To each edge of a planar diagram D we assign a positive weight. We denote
a collection of all assigned weights by W , and call the pair (D,W ) a weighted planar

diagram of order n. Clearly, the diagrams in Figures 1 and 2 are weighted planar
diagrams of order n.

Now, if (D,W ) is an arbitrary weighted planar diagram of order n, then the first
statement in Proposition 4 can be used as a definition of an n × n matrix A(D,W )

associated with (D,W ). It was first observed by Karlin and MacGregor [16], that
the second statement remains valid in this more general situation and, in particular,
A(D,W ) is TN.

We denote by M(D) the set of all TN matrices A such that A = A(D,W ) for some

choice W of positive weights. In what follows, a path from i to j in D will mean a
path from the ith source to jth sink in a planar diagram D. We will also use terms
the highest and the lowest path in D for the unique paths from n to n and from 1 to 1
such that the entire diagram is enclosed between these two paths.

We conclude this section with a well-known criterion for irreducibility of a TN
matrix. A diagram-based proof is provided to illustrate the technique to be used in
the following sections.

Proposition 5 An n × n TN matrix A = [ai j] is irreducible if and only if ai j > 0 for

all i, j such that |i − j| = 1.

Proof Only necessity needs to be established, as the sufficiency of the condition is

obvious. Suppose that for some i and j, ai j = 0. If A is irreducible, it contains no
zero rows or columns. Thus, there exists i ′ such that ai ′ j > 0. We claim that if i ′ < i

then akl = 0 for all k ≥ i, l ≤ j, and if i ′ > i then akl = 0 for all k ≤ i, l ≥ j. Since
both cases can be treated in a similar way, we consider only the former.
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Let D be a planar diagram that corresponds to A. In D there is a path P from i ′

to j, but no paths from i to j. If for akl > 0 for some k ≥ i, l ≤ j, then there is

also a path Q from k to l in D, and P and Q intersect at some vertex v1. Since A has
no nonzero rows, there is a path R that starts at i, and since i ′ < i < k, R intersects
either P or Q at a vertex v0 that lies to the left of v1. Then, following R from i to v0,
then either P or Q from v0 to v1 and then P from v1 to j, we obtain a path from i to

j, which is a contradiction.
Now, if we assume that ai+1,i = 0 for some i, then akl = 0 either for all k > i and

l < i or for all k < i and l > i, and in both cases, A is reducible. The case ai+1,i = 0
can be treated similarly.

Note that if A is TN and ai+1,i, ai,i+1 > 0 for each i, then certainly aii > 0 for
each i.

3 Positive Eigenvalues

From this point on, we restrict our attention to irreducible TN matrices, which we
denote by ITN.

As mentioned in the introduction, Gantmacher and Krein [10] proved that any os-
cillatory (equivalently, invertible ITN) matrix has distinct positive eigenvalues. Thus
we turn our attention to singular ITN matrices. The following result obtained in
[6] can be viewed as an extension of Gantmacher and Krein’s original result on the

positive eigenvalues of oscillatory matrices.

Theorem 6 Let A be an n × n irreducible TN matrix. Then the positive eigenvalues

of A are distinct.

To make the presentation more self-contained, we provide an outline of the proof
of Theorem 6. Since TN matrices have only nonnegative eigenvalues and ITN ma-
trices have positive trace, it is clear that every ITN matrix must have at least one
nonzero (positive) eigenvalue. Starting with an n × n ITN matrix A, we construct an

ITN matrix A ′ that satisfies either:

(i) A ′ is n × n, similar to A, and has at least one more zero entry; or
(ii) A ′ is (n − 1) × (n − 1) and has the same nonzero eigenvalues A.

The matrix A ′ is obtained from A via similarity transformation by elementary bidi-
agonal matrix of the form Ek(α) (or ET

k (α) ) that appears in an appropriately chosen
bidiagonal factorization of A. If the result Ã of the similarity transformation does

not contain a zero column (row), we set A ′
= Ã and show that A ′ satisfies (i) above.

Otherwise, A ′ is obtained from Ã by deleting the zero column (row) and the cor-
responding row (column). In this case, A ′ satisfies (ii). Observe that operations
described above clearly preserve nonzero eigenvalues of a matrix. Verifying that A ′ is

irreducible requires a bit more work.
Repeatedly applying this reduction algorithm, one finally produces an irreducible

tridiagonal (i.e., with only nonzero entries in positions (i, j) such that |i − j| ≤ 1)
TN matrix T that, by construction, has the same nonzero eigenvalues as A. It is
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well-known that an irreducible tridiagonal TN matrix must have distinct positive
eigenvalues (see. e.g., [10]). Hence A must have distinct positive eigenvalues.

Thus the first statement in Theorem 1 has been verified. To prove the remainder
of Theorem 1, we will need a refinement of Theorem 6.

First, recall that the rank of a given m × n matrix A, denoted by rank(A), is the
size of the largest invertible square submatrix of A. Naturally, the principal rank of an
n × n matrix A, denoted by p-rank(A), is defined as the size of the largest invertible
principal submatrix of A. Clearly

1 ≤ p-rank(A) ≤ rank(A) ≤ n .

It is not difficult to show that the principal rank of a TN matrix is equal to the
number of its nonzero (positive) eigenvalues. Indeed, if a TN matrix A has p nonzero

eigenvalues λ1, . . . , λp, then the characteristic polynomial of A, det(λI − A), has the
form det(λI − A) = λn−p

∑p
j=0(−1)pcn− jλ

p− j and cn−p = λ1 · · ·λp > 0. On

the other hand, the coefficient of λn−k in the characteristic polynomial of A is equal
to (−1)k times the sum of all k × k principal minors of A, Since all the minors are

nonnegative, it follows that all principal minors of A of size greater than p are zero
and there is at least one nonzero principal minor of A of size p. In other words,
p-rank(A) = p.

Thus, for an n × n TN matrix A, (n − p-rank(A)) is equal to the sum of the sizes
of the Jordan blocks corresponding to the eigenvalue zero. Since (n − rank(A)) is
equal to the number of Jordan blocks corresponding to zero, we conclude that, for
ITN matrices, if k is the smallest positive integer such that rank(Ak) = p-rank(A),

then k is equal to the size of the largest Jordan block corresponding to the eigenvalue
zero.

Consider the following illustrative example.

Example 7 Consider the n × n lower Hessenberg (0,1)-matrix

H =











1 1 0 · · · 0

1 1 1
. . .

...
...

...
. . .

. . . 0

1 1 · · · 1 1
1 1 · · · 1 1











.

Then H is an irreducible TN matrix with rank(H) = n−1 and p-rank(H) = ⌈ n
2
⌉ (cf.

[6]).

If an n × n TN matrix A is realized as A(D,W ) for some weighted planar dia-
gram (D,W ), then notions of rank, principal rank, and irreducibility can be conve-

niently interpreted in terms of D. Namely, A is irreducible if and only if, for every
i = 1, . . . , n, there exist paths in D from i to i ± 1 (ignoring i − 1, when i = 1 and
i + 1, when i = n). Similarly, since rank and principal rank are defined in terms of
nonsingular submatrices, it follows that the rank (resp. principal rank) of A can be
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interpreted as the largest number of vertex disjoint paths in D beginning on the left
and terminating on the right (resp. the largest number of vertex disjoint paths which

begin and terminate in the same index set). Since this interpretation obviously does
not depend on particular values of weights, it makes perfect sense to say that a dia-
gram D is irreducible of rank r and principal rank p whenever some (and therefore
all) A ∈ M(D) has these properties. The following observation will be particularly

useful for us: if A ∈ M(D), then, for any positive integer k, the rank of Ak is equal
to the rank of the diagram Dk obtained from D by gluing left to right k copies of the
diagram D.

We now come to the main result of this section

Theorem 8 Let D be an irreducible diagram of order n with rank n. Then, for every

0 < λ1 < λ2 < · · · < λn there is a TN matrix A ∈ M(D) with eigenvalues λ1, . . . , λn.

Proof First observe, that if A = A(D,W ) is in M(D), then so is DA, where D =

diag(d1, . . . , dn) is any positive diagonal matrix. Indeed, to obtain DA, one needs to
multiply by di every weight in W assigned to an edge starting at the ith source. With
this in mind, we will reduce the statement to a solvable case of the multiplicative

inverse eigenvalue problem.

Since D is of rank n we can select a collection of n vertex disjoint paths, P1, . . . , Pn

in D such that Pi joins the ith source to the ith sink in D. To every edge that is
contained in one of the paths Pi we assign a weight 1 and to every other edge in D

we assign a weight ǫ > 0. Call this weight assignment W (ǫ). Since paths Pi do not

intersect, for every i 6= j, a path from ith to jth sink in D (if it exists) must contain
an edge that does not belong to any of the paths Pi . This implies that A(D,W (ǫ)) =

I + O(ǫ), where I is the identity matrix, and O(ǫ) denotes a matrix whose entries are
polynomials in ǫ with zero constant terms. Multiplying A(D,W (ǫ)) from the left by

the inverse of its diagonal part, we obtain a matrix A(ǫ) = (ai j(ǫ))n
i, j=1 ∈ M(D) such

that aii(ǫ) = 1 and ai j(ǫ) = O(ǫ) for i 6= j.

Now, fix n distinct positive numbers λ1 < λ2 < · · · < λn. By choosing ǫ small
enough, we can ensure that

min(λ2 − λ1, . . . , λn − λn−1)

λn

> 2
∑

i 6= j

ai j(ǫ) .

Then Theorem 4.4.11 of [19] guarantees a solution to the multiplicative inverse
eigenvalue problem for A(ǫ) and λ1, . . . , λn, i.e., an existence of a positive diag-

onal matrix D such that DA(ǫ) has eigenvalues λ1, . . . , λn. (It should be noted
that the theorem we refer to is formulated for positive definite rather than TN ma-
trices. However its proof requires only that every matrix B = (bi j) in the set
{DA(ǫ) : D is positive diagonal} (i) has distinct positive eigenvalues µ1 < · · · < µn

and (ii) satisfies µ1 ≤ bii ≤ µn. (i) is obvious since B is nonsingular ITN matrix
and (ii) is just a consequence of the interlacing inequalities for TN matrices (The-
orem 14 in [10]) applied to 1 × 1 principal submatrices of a TN matrix B.) Since
DA(ǫ) ∈ M(D), the proof is complete.
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Corollary 9 Let D be an irreducible diagram of order n and of principal rank p.

Then, for every 0 < λ1 < λ2 < · · · < λp there is a TN matrix A ∈ M(D) with

positive eigenvalues λ1, . . . , λp.

Proof We will fix p and use induction on n ≥ p. The base case n = p coincides
with the statement of Theorem 8. Now let n > p and let P1 be the lowest path from
1st source to the 1st sink, and let Pn be the highest path from n source to the nth
sink. Since p < n, the rank of D is strictly less than n. This means that there exists a

“vertical” line L that cuts through D in such a way that (i) L intersects both P1 and Pn;
(ii) L intersects every path in D from i to j at most once; and (iii) the total number,
m, of intersections of L with D is strictly less than n.

Let Dl and Dr be, respectively, the left and the right parts into which L cuts D.
Clearly, all sources (resp. sinks) of D belong to Dl (resp. Dr). Construct a new
diagram, D̃ by attaching Dl to Dr from the right in such a way that ith source is
glued to the ith sink. Then it follows that the order m of D̃ is strictly less than n, D̃ is

irreducible since D is, and the principal rank of D̃ is p.

By the induction assumption, for every choice of 0 < λ1 < λ2 < · · · < λp, there

is a weight assignment W̃ for D̃ such that an m × m matrix A(D̃,W̃ ) has positive
eigenvalues λ1, . . . , λp. By our construction, Ã = A(D̃,W̃ ) can be factored into

Ã = A(Dr,W̃r)A(D̃l,W̃l), where weight assignments Wr,Wl are defined in a natural
way. But then the matrix A = A(Dl,W̃l)A(D̃rW̃r) has the same positive eigenvalues

as A(D̃,W̃ ). On the other hand, A ∈ M(D) with a corresponding weight assignment
W obtained from W̃ as follows: D is contained in Dl or Dr , then the weight of this
edge in W coincides with that in W̃ . If L intersects an edge vl → vr in D at an interior
point v, then the weight assigned to vl → vr in W is wlwr, where wl (resp. wr) is the

weight of the edge vl → v (resp. v → vr) in W̃ .

4 Index of the Eigenvalue Zero

Recall that the index of an eigenvalue λ corresponding to a matrix A is the smallest
positive integer k such that rank((A − λI)k) = rank((A − λI)k+1). Equivalently, the
index of an eigenvalue is equal to the size of the largest Jordan block corresponding

to that eigenvalue. It was observed in [6] that in many examples of ITN matrices,
the size of the largest Jordan block corresponding to zero does not exceed the prin-
cipal rank. Based on the evidence, this relation was conjectured in [6] to be true in
general. Moreover, the conjecture was verified for n ≤ 7 and also in the cases when

p-rank(A) ≥ ⌈ n
2
⌉; when p-rank(A) ≥ rank(A) − 1; and when p-rank(A) = 1 or 2.

Since for ITN matrices the number of positive eigenvalues is equal to the principal
rank, the claim that the index of zero does not exceed the principal rank is equivalent

to

rank(Ap-rank(A)) = p-rank(A).

for any ITN matrix A.

The central result of this section is a proof of the conjecture formulated in [6].

Theorem 10 Let A be an n×n irreducible TN matrix with a principal rank equal to k
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with 1 ≤ k < n. Then rank(Ak) = p-rank(A) = k. In particular, the size of the largest

Jordan block corresponding to zero is at most k.

Proof We will use induction on k and n. The case of k = 1 and arbitrary n was
treated in [6]. Suppose that A is an n × n irreducible TN matrix with principal

rank equal to k. Let D be an irreducible diagram that represents A and P be the
highest path from n to n in D (see Figure 3). Choose the largest possible vertex m

1

m

x

n

1

m

n

m

y

A A

P P

Q

Figure 3: Planar Diagram D.

(m < n) such that there exists a path from m to m that does not intersect P. Observe

that such a vertex exists because the principal rank of A is greater than 1. Define
a subdiagram D ′ of D in the following way. First delete all edges that belong to
P or have a common vertex with P. Then D ′ is a union of all paths from i to j

(1 ≤ i, j ≤ m) in the resulting diagram. Note that D ′ is irreducible since D is.

Furthermore, by the maximality of m, the principal rank of D ′ is equal to k − 1.
(A matrix A ′ represented by D ′ should not be confused with an m × m principal
submatrix of A).

Suppose m < n− 1, and let x be any vertex such that m < x < n. Then one of the

following must hold: Any path Q from x must either: (i) intersect P, or (ii) terminate
at a sink y, where y ≤ m.

Suppose neither of these cases hold, i.e., assume Q begins at x and terminates at
y with y > m, and does not intersect P. Then if x < y, it follows that there exists a

path T from x to x that does not intersect P. Indeed, since A is irreducible there exists
a path R from x to x, and by the maximality of m, this path R must intersect P. Thus
R must intersect Q. To construct T (a path from x that does not intersect P), follow
R and Q until they part, then follow Q until they meet up again, and then follow R

until x (note that R and Q may meet at x). On the other hand if y < x, then applying
similar reasoning it follows that there exists a path from y to y that does not intersect
P. Since both x, y > m, both cases contradict the maximality of m.

Observe that an immediate consequence of the above claim is that any two paths
that begin and end in {m + 1, . . . , n} must intersect. Furthermore, if there is a path

https://doi.org/10.4153/CJM-2005-004-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-004-0


92 S. M. Fallat and M. I. Gekhtman

in D that starts (resp. terminates) in {m + 1, . . . , n − 1} and does not intersect P,
then there is no path that terminates (resp. starts) in {m + 1, . . . , n−1} and does not

intersect P, for if both such paths exist, they have to intersect (since both intersect a
path from m to m) and thus, can be used to produce a path that starts and terminates
in {m + 1, . . . , n − 1} and does not intersect P. Therefore, we can assume that D

does not contain a path that terminates in {m + 1, . . . , n − 1} and does not intersect

P (otherwise one can deal with the transpose of A instead of A).
Next, consider a matrix Ak. It can be represented by the diagram Dk, obtained by

a concatenation of k copies of D. Let r be the rank of Ak. Then there exists a family F

of r vertex disjoint paths in Dk. Since P was chosen to be the highest path from n to

n in D, at most one of these paths can intersect a path Pk defined in Dk in an obvious
way. Without a loss of generality, we may assume that Pk ∈ F. Let Q be any other
path in F and let Qi be the part of Q that lies in the ith copy of D in Dk (counting
from left to right). Since none of the Qi ’s intersect P, by the previous discussion, the

end points of Qi must belong to the index set {1, 2, . . . , m}. This means that the path
obtained by gluing Q2, . . . , Qk belongs to (D ′)k−1. In other words, F gives rise to a
family of r − 1 vertex disjoint paths in (D ′)k−1 and, therefore,

r = rank(Ak) ≤ 1 + rank((A ′)k−1).

By the induction assumption, rank((A ′)k−1) = p-rank(A ′) = k − 1 and we obtain

k = p-rank(A) = p-rank(Ak) ≤ rank(Ak) ≤ k,

which completes the proof.

The next result is an immediate consequence of Theorem 10.

Theorem 11 Let A be an n × n irreducible TN matrix. Then

p-rank(A) ≥
⌈ n

n − rank(A) + 1

⌉

,

Proof For convenience of notation, let p = p-rank(A), r = rank(A), and J0 denote

the number of Jordan blocks of A corresponding to 0. Then the inequality above is
equivalent to

p ≥
⌈ n

J0 + 1

⌉

,

since n − rank(A) represents the nullity of A. By Theorem 10 the size of the largest
Jordan block corresponding to 0 is at most p, hence since p is equal to the number
of distinct positive eigenvalues of A, it is clear that the minimal possible number of

Jordan blocks corresponding to 0 is at least ⌈ n−p
p
⌉. Consequently, J0 ≥ ⌈ n−p

p
⌉, which

implies p ≥ ⌈ n
J0+1

⌉. This completes the proof.

It is worth noting here that results of this section constitute a proof of the state-
ment (2) of Theorem 1. This claim will be made more precise in the next section.
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5 Jordan Structures

For an arbitrary n × n ITN matrix A of rank r and principal rank p, let mi (i =

1, 2, . . . ) denote the number of i × i Jordan blocks that correspond to the zero eigen-
value in the Jordan canonical form of A. From Theorems 10 and 11 we know that

(3) p ≥
n

n − r + 1

and mi = 0 for i > p. Furthermore, by Theorem 6, A has p distinct positive eigen-

values 0 < λ1 < · · · < λp. It follows that non-negative integers m1, . . . , mp are
subject to conditions

(4) m1 + · · · + mp = n − r , m1 + 2m2 + · · · + pmp = n − p .

Combining the first equality in (4) with an inequality (3) re-written as n − r ≥ n−p
p

,

we obtain the condition (c) of the second part of Theorem 1.

Denote

(5) J(A) = (n, r, p ; m1, . . . , mp).

We call J(A) the combinatorial Jordan data of A.
A tuple J = (n, r, p ; m1, . . . , mp) is called admissible if it satisfies conditions (3)

and (4). Furthermore, J is called realizable if there exists an ITN matrix A such that

J = J(A). As discussed above, an admissible tuple J = (n, r, p ; m1, . . . , mp) satisfies
conditions (a)–(c) in item (2) of Theorem 1. Hence the only item left to prove is the
third part of the main theorem. Given the terminology we have just adopted, item
(3) of Theorem 1 can be re-stated as follows.

Theorem 12 For an arbitrary admissible J = (n, r, p ; m1, . . . , mp) and arbitrary

distinct positive numbers λ1 < · · · < λp, there exists an ITN matrix A with the combi-

natorial Jordan data J and positive eigenvalues λ1, . . . , λp.

The remainder of this section is devoted to proving Theorem 12, and thus com-
pleting a proof of our main result.

Lemma 13 If

J = (n, r, p; m1, . . . , mp−l, 0, . . . , 0
︸ ︷︷ ︸

l

)

is admissible, then J ′ = (n − l, r − l, p − l ; m1, . . . , mp−l) is admissible as well.

Proof Since J is admissible,

(6)
m1 + · · · + mp−l = n − r = (n − l) − (r − l)

m1 + 2m2 · · · + (p − l)mp−l = n − p = (n − l) − (r − l)

and thus, J ′ satisfies (4). Moreover, it follows from (6) that (p−l)(n−r)−(n−p) ≥ 0.

Therefore, (p − l) − n−l
n−r+1

=

(p−l)(n−r)−(n−p)

n−r+1
≥ 0, and J ′ is admissible.
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Lemma 14 If J = (n, r, p; m1, . . . , mp) is realizable, then

J ′ = (n + l, r + l, p + l; m1, . . . , mp, 0, . . . , 0
︸ ︷︷ ︸

l

)

is realizable as well.

Proof Let A be an ITN matrix such that J(A) = J and D be a planar diagram that
represents A. Then the matrix represented by the diagram below is ITN and has a

D

1

n

n + 1

n + 2

n + 1

1

n

n + 1

n + 2

n + 1

combinatorial Jordan data J ′.

Theorem 15 Every admissible J = (n, r, p ; m1, . . . , mp) with mp 6= 0 is realiz-

able. Moreover, there exists an ITN matrix A = [ai j], such that J(A) = J and

ai j ∈ {0, 1} (i, j = 1, . . . , n).

Proof We prove the statement by constructing a diagram D( J) that represents an

ITN matrix A such that J(A) = J and ai j ∈ {0, 1} (i, j = 1, . . . , n). This diagram is
built from smaller diagrams of the form in Figure 4.

l

l − 1

k + 1

k

l − k − 1 2 1

l − k 3 2 1
l

l − 1

k + 1

k

Figure 4: Diagram D(k, l).
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Here we assume that l − k ≥ 2. Given two diagrams D(k, l) and D(l, m), one
obtains a new diagram, denoted by D(k, l, m), by gluing the bottom level of D(l, m)

to the top level of D(k, l) in such a way that for every i = 1, . . . , min(m − l − 1, l −
k), the block numbered i on the bottom level of D(l, m) is glued to the the block
numbered i on the top level of D(k, l). In the same fashion, we construct a diagram
D(k1, k2, , . . . , ks−1, ks) for arbitrary k1 < k1 + 2 ≤ k2 < · · · < ks−1 + 2 ≤ ks by

gluing D(ks−1, ks) to D(k1, k2, k3, . . . , ks−1) according to the same rule. For example,
the diagram D(1, 3, 5, 8, 11) is shown in Figure 5.

1

3

5

8

10

Figure 5: Diagram D(1, 3, 5, 8, 11).

Note that D(k1, . . . , ks), in fact, represents a (ks − 1)× (ks − 1) matrix. Let us now

put k1 = 1, ks = m + 1 and consider an m × m TN matrix A(k1, . . . , ks) = (ai j)
n
i, j=1

obtained from D(k1, . . . , ks) with weights along all the edges assumed to be equal
to 1. A brief inspection of the diagram D(k, l) shows that for every pair i, j of indices,
there is at most one path in the diagram D(k1, . . . , ks) starting at the level i on the left

and ending at the level j on the right. Therefore, every entry of A(k1, . . . , ks) is either
0 or 1. Furthermore, it follows from the construction of D(k1, . . . , ks), that a1m = 1
and ai+1,i = 1 for i = 1, . . . , m − 1. This implies that A(k1, . . . , ks) is irreducible.

Now, let us consider an admissible tuple J = (n, r, p ; m1, . . . , mp) with mp 6= 0

and define r0 = n + 1, rp+1 = 0 and

(7) ri = n − i + 1 −
i−1∑

α=1

αmα − i

p
∑

α=i

mα (i = 1, . . . , p).

Note that r1 = r, rp = 1 and that solving (7) for mi results in

(8) mi = ri+1 − 2ri + ri−1 (i = 1, . . . , p).
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This implies, in particular, that

(9) ri−1 − ri ≥ ri − ri+1 (i = 1, . . . , p).

Consider a diagram D( J) = D(1, rp−1, . . . , r1, n + 1) and a matrix A( J) =

A(1, rp−1, . . . , r1, n + 1) that corresponds to D( J). For example, the diagram in Fig-
ure 5 corresponds to J = (10, 8, 4 ; 0, 1, 0, 1). We shall prove that

(i) rank(A( J)) = r;
(ii) rank(A( J)2) = 1 + rank(A(1, rp−1, . . . , r1)).

To prove (i), let us observe that, by construction of D( J), every path that starts above
or at the level ri terminates strictly above the level ri+1. Moreover, due to inequali-

ties (9), for every i = 1, . . . , p − 1, indices ri−1 − 1, . . . , ri+1 − ri + ri−1 on the left are
joined by a collection of vertex-disjoint paths with indices ri, . . . , ri+1 + 1 on the left.
Combining these two observations, we see that there is a collection of vertex-disjoint
paths whose right end points are indices 1 through r1 = r. On the other hand, any

two paths that end at or above r1 intersect. Thus, rank(A( J)) = r.

To establish (ii), recall that the rank of A( J)2 is equal to the maximal number of
vertex-disjoint paths in the diagram D( J)2 obtained by concatenation of two copies

of D( J). Let P be the highest possible path from n to n in D( J). Then the concate-
nation of two copies of P, which we denote by P2, is the highest possible path from
n to n in D( J)2. By construction every path in D( J) that does not intersect P, termi-
nates below the level r1 and if we want this path to continue through D( J)2 without

intersecting P2, then its part that belongs to the second copy of D( J)2 must belong
to the sub-diagram D(1, rp−1, . . . , r1)). Thus the left-hand side in (ii) cannot exceed
the right-hand side. To show that they are equal, simply repeat the argument used in
proving (i).

It follows from (i) and (ii) that rank(A( J)2) = 1 + rank(A(1, rp−1, . . . , r1)) =

1 + r2. Arguing in exactly the same way implies that

rank(A( J)i) = i − 1 + rk (k = 1, . . . , p)

and so, by (7),

n − rank(A( J)i) = n − i + 1 − ri =

i−1∑

α=1

αmα + i

p
∑

α=i

mα (k = 1, . . . , p)

The left-hand side of the last equality describes the number of Jordan blocks that cor-
respond to the zero eigenvalue in the Jordan form of A( J)i , while the right-hand side
corresponds with the number of zero Jordan blocks of any matrix with a combinato-
rial Jordan data J. This completes the proof.

https://doi.org/10.4153/CJM-2005-004-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-004-0


Jordan Structures of Totally Nonnegative Matrices 97

Theorem 16 Every admissible J is realizable.

Proof Let l be the smallest number such that mp−l 6= 0. By Lemma 13, if

J = (n, r, p; m1, . . . , mp−l, 0, . . . , 0
︸ ︷︷ ︸

l

)

is admissible then J ′ = (n− l, r − l, p − l; m1, . . . , mp−l) is admissible and therefore,

by the previous theorem, J ′ is realizable. Then Lemma 14 implies that J is realizable
as well.

Now to complete a proof of Theorem 12, consider a diagram D that realizes ad-
missible combinatorial Jordan data J. Then, by Corollary 9, for arbitrary 0 < λ1 <

· · · < λp, there exists a matrix A ∈ M(D) with positive eigenvalues λ1, . . . , λp. Since
every matrix in M(D) has the same combinatorial Jordan data, the proof is complete.
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