
A NOTE ON WELL-DISTRIBUTED SEQUENCES 

B. H. MURDOCH 

A sequence {xk\™ is said to be well distributed (mod 1) (3, 4, 5) if the limit 

(1.1) lim H'1 £ x/((*»)) = | / | 

exists, uniformly in p > 0, for all intervals I in [0, 1], with length | / | , charac­
teristic function x / W , where (x) is the fractional part of x. If (1.1) is true for 
p = 0 and all I in [0, 1] we say that {xk}™ is uniformly distributed (mod 1). 

In a paper of Dowidar and Petersen (2) it is proved that {rkd}™ is not well 
distributed (mod 1) for any real 6 and integer r. For r rational Petersen and 
McGregor (6) have shown that {rkd\™ is not well distributed (mod 1) for 
almost all real 0. In this note we shall prove the generalization of this latter 
result for real r. 

THEOREM. Given a real number a, then {ak0}™ is not well distributed (mod 1) 
for almost all real numbers 6. 

Proof. We first show that for \a\ > 1 the sequence {akd\™ is uniformly 
distributed (mod 1) for almost all 0. In a recent paper of Davenport, Erdôs, 
and Le Veque (1) it is proved that if for integers m ?*• 0 

oo -j /»& n 

(1.2) E — E exp[2Timxk(t)\ 
n=l n %)a | k==i 

2 

dt < oo, 

then the sequence {xk(t)}™ is uniformly distributed (modi) for almost all 
t in [a, b]. Applying this to the case xk (t) = aktj with |a| > 1, we get 

2 

dt X) exp(2Trimakt)\ dt = Y, cos 2wm(ar - a)t 
a I k=l I r , s = l J a 

<n(b-a)+-^—,£ X 

7r\m\ TiS==i \<x — a | 

\Ci 

< n(b — a) + T-[3 T 
\a\ — 1 

and hence {akd}™ is uniformly distributed (mod 1) for almost all 0. For \a\ < 1, 
{akQ}™ is obviously not uniformly distributed or well distributed for any 6. 

For \a\ > 1 we now consider separately the two cases: (i) a transcendental, 
(ii) a algebraic, not an integer. 
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In case (i) we deduce that for arbitrary v > 1 and arbitrary integers 
(mi, . . . , mv), not all zero, the sequence 

\ t=l J k=\ 

is uniformly distributed (mod 1) for almost all 0. Therefore all such sequences 
Gm

v are simultaneously uniformly distributed for almost all 0. From this it 
follows, by means of the multidimensional form of Weyl's criterion for uniform 
distribution (7), that the sequence {ak+1d, . . . , ak+vd}™ is uniformly distributed 
(mod 1) in the ^-dimensional unit cube Cv for all v simultaneously, for almost 
all 0. Thus, for any 0 except in some set E of measure zero, any N > 1, there 
is an integer k such that 

(1.4) 0 < («*+>*) < \ (l<j<N) 

and hence {akd}™ is not well distributed (mod 1) for 0 not in E. 
In case (ii), if a is algebraic of degree v, then for arbitrary (wi, . . . , mt) not 

all zero, and q > 1, the sequence 

is uniformly distributed (mod 1) for almost all 0. Therefore all such sequences 
Hm

Q are simultaneously uniformly distributed for almost all 6. Hence, as before, 
the sequence 

Iq = ^q a 0, . . . , g a 0 ( 
f k= 

is uniformly distributed (mod 1) in Cv for all q simultaneously, for almost all 0. 
If « satisfies the equation 

É at"= 0, 

with integer coefficients au av > 0, then there exist integers A t
j such that 

(1.5) ajav+1= £ A/a' (j > 1). 
t=l 

Thus, for any 0 except in a set F of measure zero and any N > 1, by the uniform 
distribution of lq

v with q = ad
N~v, there exists an integer k such that 

(1.6) 0 < (q-V+t6) < 4 max £ \At
j\av

N'j\ (l<t<v). 
\ l<j<N-v t=l J 

From (1.5) and (1.6) it follows that for 1 < j < N 

(1.7) 0 < min {(a*+>0), 1 - (ak+j6)} < \ 

and so the sequence {ak9}™ is not well distributed (mod 1) for 0 not in F. This 
completes the proof of the theorem. 
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Defining a uniformly (well) distributed sequence {xn}™ of degree v (mod 1) as 
one for which {xk+i, . . . , xk+v} is uniformly (well) distributed (mod 1) in Cv 

and a normally distributed sequence (mod 1) as one which is uniformly distri­
buted of degree v for all v > 1 we derive from the above proof 

COROLLARY 1. If \a\ > 1, then {akd} is uniformly distributed [normally 
distributed] of degree v (mod 1) for almost all 0 if a is algebraic [transcendental] of 
degree v. 

COROLLARY 2. / / a or or1 is an algebraic integer of degree v, then {ak0}™ is not 
well distributed of degree vfor any 6. 

Proof. Corollary 1 has already been proved in the course of the proof of the 
Theorem. 

For the proof of Corollary 2 we first note that if {akd\™ is well distributed of 
degree v it must be uniformly distributed of degree v; hence |a| > 1. We 
consider the case when a is an algebraic integer of degree v, that is to say, 
a satisfies an equation 

V 

23 atu = 0 

with av = 1. Applying the argument of case (ii) of the theorem with q = 1 to 
1\ = [a V, . . . , a 0), 

which is uniformly distributed, it follows that {akd}™ is not well distributed 
(mod 1) and hence is not well distributed of degree v. Thus we have a con­
tradiction. Similarly, we obtain a contradiction if or1 is an algebraic integer, 
so that a0 = 1 instead of av = 1. In this case we express (a^^d, . . . , ak~N6) 
in terms of (ak~vd, . . . , a:*-10) and obtain inequalities of type (1.7) with 
j replaced by —j. 

Corollary 2, with v = 1, gives us the theorem of Dowidar and Petersen (2), 
mentioned at the beginning of this note. 
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