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RESIDUAL AUTOMORPHIC

REPRESENTATIONS OF Sp4

TAKAO WATANABE

Introduction

Let G = Spi be the symplectic group of degree two defined over an algebraic

number field F and K the standard maximal compact subgroup of the adele group

G(A). By the general theory of Eisenstein series ([14]), one knows that the

Hubert space L2(G(F)\G(A)) has an orthogonal decomposition of the form

L2(G(F)\G(A)) = L2(G)ΦL2(B)ΘL2(Pι) ΘI2(P2),

where B is a Borel subgroup and Pi are standard maximal parabolic subgroups in

G for i = 1,2. The purpose of this paper is to study the space L2

d(B) associated

to discrete spectrurns in L2(B).

In order to obtain such discrete spectrums, we follow Langlands' way. To be

more precise, let T= {t(a> b) = diag(#, b, a~ι

t b~1)} be a maximal split torus

and B — NT a Levi decomposition. For any quadratic character μ of F * \ A*, the

character χ(μ, μ) of T(A) is defined to be χ(μ, μ)(t(a, b)) = μ(ab) for

t(a, b) e Γ(A). Let I(χ(μ, μ)//A) be the space of functions Φ on G(A)

satisfying Φ(ntg) = χ(μ, μ)(t)Φ(g) for any n e N(A), t e T(A) and

g e G(A), and let

/(μ, ft) = Ind (B(A) T G(A);e<βιJiim)>χ(μ9 μ))

be the normalized induced representation of G(A), where ft is a fundamental

weight of G. For an admissible vector Φ ^ I(χ(μ, μ)//A), one can define the

Eisenstein series E(g, Φ,Λ) and take its iterated residue Reŝ /Si Ex(g, Φ,Λ),

E1(g, Φ,Λ) = Res <Λ,ar> = i E(g, Φ,Λ). Through this procedure, one obtains a

mapping
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1 6 TAKAO WATANABE

from the space of admissible vectors in I(μ, βι) into the space of automorphic

forms on G(A). In this situation, the following are conjectured.

CONJECTURE. For each nontrivial quadratic character μ of F*\ A*,

(1) 9ϊu is nontrivial

(2) The image of 9ίu is contained in L2d(B), so that 0lu is extended to an intert-

wining operator from I (μ, βi) into L2d(B).

(3) ττ(μ), the image of this intertwining operator, is irreducible and is of multi-

plicity one in IΛ(B).

On condition that these conjectures are true, it seems IΛ(B) has an irreduci-

ble decomposition IΛ(B) = τr(μo) Θ (Θ# π(μ)), where μ runs over all nontrivial

quadratic characters of F*\A* and π(μ0) denotes the space of constant func-

tions. In this paper, we will show that a part of the conjecture is true for μ with

"square free conductor".

Now we explain contents of this paper. Let S be a finite set of finite places

of F. For υ e 5, kv denotes the residual field of Fv. Let rv:Kv-> Sp^(kv) be

the reduction homomorphism for υ ^ S and Ks — {(kv) ^ K\ kv ^ Ker(rv) for

υ ^ S) a normal subgroup of K. We study the subspace IΛ(B, Ks) consisting of

ϋίs-invariant elements of L2d(B), which becomes naturally a representation space

of the finite group K/Ks. Thus we are interested in an irreducible decomposition

of L2

d(B, Ks).

First, it is not hard to show that there is a decomposition

L2

d(B, Ks) = Θ IΛ(B, Ks, X(μ))
A(F)

(corollary to Proposition 1). Here, AS(F) is the set of characters μ of F*\ A1 such

that the corresponding χ(μ, μ) are characters of T(F)\TV(KS Π T(A)) of

order at most 2 and L2

d(B, Ks,X(μ)) is the space generated by residues of

Eι(g, Φ, A) for i£s-invariant elements Φ e I(χ(μ, μ)//A).

Next, by further calculations of residues of Eisenstein series, it is shown that

μ = μ0 is the trivial character then L2d(B, Ks, X(μo)) consists of constant func-

tions (Theorem 2) and if μ is nontrivial then one has an irreducible decomposition

L2

d(B,Ks,X(μ))= Θ L2ΛB,Ks,X{μ))λ= Θ λs(μ)
λ(=Γ(S,u)

(Theorem 1). Each λs(μ) is a ϋΓ/Ks-irreducible subspace in /(χ(μ, μ)//A)

and Γ(Sf μ) is a certain subset of the set of all maps from S to the two points set

{0,1}. Isomorphisms L2

d(B, Ks, X(μ))λ = λs(μ) are derived from the constant

term map. Irreducible representations of Sp4(kv), v ^ S occurring in a tensor pro-
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RESIDUAL AUTOMORPHIC REPRESENTATIONS OF SpA 1 7

duct decomposition of λs(μ) are described by using the labelling of Enomoto ([7])

and Srinivasan ([20]) (Lemma 7).

Using these results, we can classify those automorphic representations real-

ized in L2

d(B) which have (non-zero) vectors fixed by Ks for some S. Let Ao(F)

be the union of AS(F) for all finite sets S of finite places and Iι(μ, βι) for μ ^

A»(F) the G(A) module generated by all vectors in I(μ,βi) fixed by Ks for

some S. Then Theorem 1 implies that there is a nontrivial intertwining operator

dift from P(μ, βι) into L2d(B) for each nontrivial μ ^ A o ( F ) . Further, it is

known by [3. Corollary 3.3.7] and [6. Proposition 3, 4° (b)] that Iι(μ, βι) coin-

cides with I (μ, βι) if F is totally imaginary. Unfortunately, we have been unable

to prove the irreduciblity of π(μ), the image of 9ίu. However, we can show that

the number of irreducible constituents of 7r(μ) is at most 2]Sriu)] (Theorem 3),

where Sr(μ) is the set of finite places υ such that μv is ramified, and each irre-

ducible constituent of ττ(μ) is of multiplicity one in L2d(B) (Theorem 4). The last

assertion is derived from the fact that each if-type λs(μ) is of multiplicity one in

L2ΛB,Ks).

The major part of this paper will be devoted to calculations of residues of

Eisenstein series. It will be carried out in Sections 2, 3, 5 and 7. Main results are

stated in Sections 6, 7 and 8. In Section 4, we will recall the representation theory

of the finite group Sp4(Fq), which we need for precise expressions of intertwining

operators occuring in the constant terms of Eisenstein series.

1. Preliminaries

Let F be an algebraic number field of finite degree over Q. For each place v

of F, let ^ be the completion of F at v and | \v the normalized absolute value on

Fv. Vf denotes the set of all finite places of F. For υ e Vf let Θυ be the valuation

ring of Fv, ?PV — pvΘv the maximal ideal of Θυ and hv — Θv/ί!Pv the residual field.

Let A be the adele ring of F, | * |A = Tίv I ' \v the idele norm and A1 the group

consisting of ideles with idele norm one. The infinite part of A is denoted by A«>.

We fix, once and for all, a finite subset S of Vf. Let Us be the compact sub-

group consisting of ideles (av) ^ A1 such that | av I v — 1 for all places υ and

av ^ 1 + ^v for any v ^ S. Ωs denotes the Pontrjagin dual of the compact group

F*\A7f/s.

Take an element μ ^ Ωs. If we decompose μ to the product of characters μv of

Ft,* then, by definition, μv is trivial on Θf or 1 + &v according as v & S or v ^ S.

Hence, for each v £ S, the restriction of μv to €* induces the character *μυ of k*.

We denote by ξ(z, μ) the Hecke L-function of μ with the ordinary Γ factor so
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1 8 TAKAO WAT AN ABE

that it satisfies the functional equation ξ(z, μ) = ε(μ)ξ(l — z, μ~ι). If μ is the

trivial character μ0, then we write simply ξ(z) for ξ(z, μ0). The residue of ξ(z)

at z = 1 is denoted by c(F).

For an algebraic group G defined over F and an F-algebra A, G(A) denotes

the group of A-rational points of G_.

Let G — Spt be the symplectic group of degree two, that is

V0) ,-(V0)>. "(o ?)•
Let T and N be a maximal split torus and a maximal unipotent subgroup of G, re-

spectively, as follows:

T(F) = {t(a, b) = diag(β, b, a'1, ό"1) e G(F)}

Then B = TN is a Borel subgroup in G.

Let X(T) (resp. X*(T)) be the character (resp. cocharacter) group of Γ.

There is a natural pairing <, > : X(T) X X*(T) — Z. We take au a2 e X ( Γ )

such that αi(^(α, 6)) = ab~ι and a2(t(a, b)) = b2, Then {αi, α 2, α 3 = α x + α2,

α 4 = 2αi + <22} (resp. {au a zϊ) is the set of positive roots (resp. simple roots) of

G with respect to (B, T). Further, βι = Oί\ + α 2 /2 and β2 = αi + α 2 are the fun-

damental weights of G with respect to (B, T). The coroot corresponding to α* is

denoted by aϊ for 1 < i < 4. Since G is simply connected, one has X(T) =

Zβi + Zβ2 and X*(T) = Zaϊ + Zα2

v. Set a = X(T)<g) R,αc = α + v^TΓ α,

α* = Z * ( Γ ) Θ R and αg = α* + / = T α * . Then {j8i,j82} and {αiv,α2

v} is the pair

of dual bases for α and α*. The set C + = {aft + bβ21 a, 6 e R+} is the Weyl

chamber in α corresponding to (B, T). Let σ(resp. r) be the reflection with

respect to the line Rft (resp. Rft) in α. Then the Weyl group W of G is generated

by σ, r.

Let Koo be the standard maximal compact subgroup in G(A«>) and Kv =

G (^y) for v e V/. The product K = Koo X Π -Kt/ is a maximal compact subgroup

in G(A). For v €= S, let /^ : i ^ —* G (ky) be the reduction homomorphism. The

compact group Ks — K^ X Hv<=Vf-s Kv X Πyes KerC^) is a normal subgroup of i£

The homomorphism H from T(A) onto α* is defined to be H(t(a, b)) =

log I a I A<2IV + log I ab[xaϊ. We set Tι = Ker(#) and 3Γ(R)+ = {t(a, b) \

a, b ^ R+} . Then T(R)+ is diagonally embedded in Γ(Aoo) and T(A) has a

direct product decomsosition Γ ( A ) = ΓίRJ + Γ1. Thus the map αc~^ Horn
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(T(A)/T\ C*) : A *-> e<ΛM{t)> becomes an isomorphism.

If we define the character χ(μ, v) of Γ(A) by χ(μ, v) (t(a, b)) =

μ(a)v(b) for μ, v e J2S, £(#, £) <Ξ T(A), then the correspondence (μ, v) ι—•

χ(μ, ι>) gives a bijection from ί25 x Ωs to β s (Γ) = Hom(T(jP) \ TV(KS Π

T(A)), C*). For χ € 425(Γ) and a place #, t -component of χ is denoted by χυ.

\ί υ ̂  S, the restriction of χv to Γ ^ ) induces the character *χy of T(kt ). The

Weyl group W naturally acts on Ωs(T). The set of MK-orbits in Ωs(T) is denoted

by ΩS(T)/W.

The space of square integrable functions on N(A)T(R) + T(F)\G(A)/Ks

has an orthogonal decomposition

L2(N(A)T(R) + T(F)\G(A)/Ks) = Θ Πχ//A)s.
χeΩs(T)

Here, for χ G Ωs(T), let I(χ//A) be the space of all functions Φ on G(A) satis-

fying Φ(ntg) = χ(t)Φ(g) for any n<ΞN(A), f €= T(A) and ^ e G(A) and
I(χ//A)s the subspace of right iζs invariant elements in /(χ//A).

For a moment, we fix a χ e ΩS(T). Let I (χv//Fv) for each # denote the space

of functions Φv on G(FV) satisfying Φv(nvtvgv) = χv(tv)Φv(gv) for any nv ^

N(FV), tv e Γ(F,) and ^ e G(FV). lίvέS, I(χv//Fv) contains a unique spher-

ical function e(χv) such that e(χv)(lA) = 1. Then one has a restricted tensor pro-

duct decomposition

I{χ//A)=®I{χv//Fυ)
V

with respect to e(χv), υ £ S. Particularly, each element Φ^ I(χ//A)s can be

written as (<8> vesΦυ) ® ( ® ̂ s β(χ»)), where Φv ̂  I (Xv//Fv) is right Ker(n,)

invariant for each υ ̂  S. Further, let I(*χv//kv) for each ^ ̂  S be the repre-

sentation space of G(ky) induced by the character trivially extended to -B(ky)

from *χv. Then, for a right Ker(rv) invariant element Φv e I(χv//Fυ), there is a

unique *ΦV e I(*χv//kv) such that Φ* (A:̂  = *Φf,(rf,(A:f,)) for any fe e ϋί̂ . By

the Iwasawa decomposition G(FV) = B(FV)KV, the correspondence Φy -̂̂  *Φt,

gives a bijection from the subspace of right Ker(rv) invariant elements in I (χυ

//Fv) to I(*χv//kv). Hence one has the bijection

(1.1) J(χ,//A)s-> Θ /(*χ,//k.) : Φ

For φ = Σi/i® Φ, e C?(a*)®L2(N(A)T(R) + T(F)\G(A)/Ks), the in-

complete theta series

Σ< Σ fi{H{rg))Φt{rg)
reB(F)\G(F)
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20 TAKAO WATANABE

converges and belongs to the Hubert space L2(G(F)\G(A)/Ks). Let L2{B, Ks)

be the closure of {φA \ φ e C?(a*) ® L\N( A)T(R) + T(F) \ G( A)/Ks)} in

L2(G(F)\G(A)/KS).

Take an orbit X^ ΩS(T)/W and define the space L2(B, Ks, X) by the

closed linear span of {φA \ φ e= CΓ(α*) <8> 7(χ//A)s, χ e J β . If L\{B, Ks) and

L2

d(B, Ks, X) denote the space associated to discrete spectrums in L2(B, Ks) and

L2(B, Ks, X), respectively, there is an orthogonal decomposition

L2

d(B,Ks)= Θ L2

d(B,Ks,X).
X*ΞΩS(T)/W

A theorem of Harish-Chandra says the space L2d(B, Ks, X) is of finite dimension.

Further, K acts on this space by right translation. Since the action of Ks is trivial,

L2

d(B, Ks, X) becomes a representation space of the finite group K/Ks. In Section

6, we will give completely an irreducible decomposition of L2d(B, Ks, X).

Let X e ΩS(T)/W and χ e l F o r Φ e /(χ//A) and A e αc, the Eisenstein

series

E(g, Φ,Λ)= Σ e <*+«""»0( 7 £)
reB(F)\G(F)

defines an automorphic form on G(F)\G(A) provided ReΛ ^ C+ + δ, where let

δ = βι+ β2. The constant term of E (g, Φ, A) is given by

Eo(g, Φ,Λ) = Σ β^+^^Mίw, Λ χ)

l, χ)Φ(g) equals

(1.2) β < - M-ω(#)> Γ e<A+δ'Hiurlnβ)>Φ(w'ιng)dn.
J wMA)w-inN(A)\tί(A)

Here, for any closed connected subgroup N' of the unipotent group N, we use the

Haar measure dn on N'(A) such that the volume of N'(F)\N'(A) equals one.

This M(w, A, χ) defines a linear map from I(χ//A)s to I(wχ//A)s. It is known

by general theory that both E(g, Φ, A) and M(w, A, χ) have meromorphic con-

tinuation on αc as functions of A and M(w, A, χ) satisfies the functional equa-

tion of the form

(1.3) M(wiw2, A, χ) = M(wu w2A, w2χ) M(w2, A, χ)

for any wx, w2 ^ W'.
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2. Calculation of M (w, A, χ)

Throughout this section, we fix a χ e ΩS(T) and Φ = ® A e I(χ//A)s,

Φv — ev(χ) for υ £ S. First we calculate the integral (1.2) for the generator σ, r

of W. Let

0

0

be representatives in K of o and τ, respectively. Further, let

nΛx) = o o

be the one parameter subgroups associated to the simple roots αi and α2, respec-

tively.

In what follows we identify Φ (resp. Φv) with *Φ (resp. *ΦV) by the isomorph-

ism (1.1), hence we will often neglect the symbol * . To mention a statement of

results, we need a few more notations. Take an r ^ C with absolute value one and

an arbitrary z ^ C. Define, for each v ^ S, two operators dv(o, *χy) and

^ y (σ, s, r) on 7(*χt,//ki;) by

^»(σ, *χv)Φv(kv) = qϋ* Σ Φv(woιnσ(x)rv(kv))
xekv

s4v(σ, z, r)Φv(kv) = (

Σ Φv(Waιnσ{x)rΛkv)) + ί r<Γ** ) (qv - l)Φv(rv(kv))}
rqυ

for kv

 e Kv. Replacing σ by τ, dv(τ, *χv) and ^ ( r , z, r) are similarly defined.

Let Sί(χ) for 1 < ί < 4 be the set of v ^ S such that *χy ° αt

y is trivial. The fol-

lowing is clear by definition.

LEMMA 1. Let v be in S and r a complex number with absolute value one.

(1) Both dv{σy z, r) and dυ(τ, z, r) are rational functions of z and are holomor-

phiconiz^ C|Re(z) > 0}.

(2) For t e S , dv(σ, *χy) {resp. dv(τ, *χv)) is an intertwining operator from
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toI(σ*χυ//K) (resp.

(3) //«; € Si(χ) (r*#. i; e S2(χ)), thendv(σ, z, r) (resp. dv(τ, z, r)) is a self-

intertwining operator of I (*χv

Now we can state an explicit formula of M (σ, Λ, χ) and M(τ, Λ, χ).

LEMMA 2. Let χ e ΩS(T) and Φ= <8)VΦV^ /(χ//A)s.

x Π ^,(σ, <Λ9 aϊ>, χ aϊ(pv))Φv(kv)
vsSι(χ)

M(τ,Λ, χ)Φ(k) = .βλ^'^l y^K, Π ^(r, *χv)Φv(kv)ξ(<Λ aί? + 1, r α2

v) κss-s

x Π dv(τ, <Λ, α2

v>, X aϊ(pv))Φv(kv)

for any A ^ αc αn<i k ^ K.

Proof. We prove only the first equality since the second is obtained by simi-

lar calculation. For each v ^ V/ and xv ^ i v elements c(xv) and wfe) in Θv are

defined as follows:

\(XVC(XV))-1 if XvtΞFv-ϋv

[ j^ , if xv e ^ y

Further, for each infinite place # and xv

 e F^ we set

, v ί fe2 + 1)"^ if v is real
C(Xv) — ] i _ , 1 N _ i ., . . . ,

[ (Xί̂ Ty -r 1) 2 if t; is imaginary
if v is real

[ if z; is imaginary

where let xv

 v~* xυ be the complex conjugate for imaginary place v. Obviously, for

any x = (xυ) ^ A, both c(x) = (c(xv)) and u(x) — (u(xv)) are contained in A.

For x = (Xυ) s A, set A:σ(j:) = (kσ(xv)), where
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Xυ) U(XV)XV — C{XV)
 l 0 0

c(xv) c(xv)xv 0 0

0 0 c(Xv)Xv ~" c(Xv)
0 0 — u(xv)xv + c(xv)~ι u(xv)

Then kσ(x) is contained in K and one has

(2.1)

for x e A .

By definition, for

equals

wσ

ιnσ{x) = nσ(—u(x)c(x))aι(c(x))kσ(x)

^ΠΓ α and A e # , M(σy A, χ)Φ(k)

Γ
J A

The measure ώr is normalized by vol( A/F) = 1. By (2.1), this equals

Γ I c{x) I ̂ +δ'aϊ>χ(aUc(x)))Φ(kσ(x)k)dx= Π Λ,
^ A y

where

I,= f \c{xυ)\<

v

A+δ aϊyχv(aUc(Xv))Φv{kσ{xv)kv)dxv
J Fv

for each ». If ϊ έ 5, /„ is easily calculated because %„ is unramified and

Φv(kσ(xυ)kv) = 1. We obtain

7Γ2"

Γ((z

2π

if v is real

if V is imaginary,

-χv°

where let z = (Λ, αi' ) and dv be the real number given by xv

I ̂ v^"1 for each infinite place v.

lί υ & S, then one has

Iv = I Φ(kσ(xv)kv)dxv

J Fv-Θv

r^)<A,aϊ> I I -i oΓte.)) φυ{kσ(xv)kv)dxv

) Σ Φv(waιnσ(x)rv(kv))

q-n<Λ,aι ^ o aV(φυy
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U 0 0 0

-1 -pnψ' \du

v(σ, *χυ) Φv(kv)

a ϊ

Therefore Iv equals vo\(0v) times

qMviσ, *χv) Φv(kv) if v

Summing up, we obtain the desired equality for A ^ (C + + δ) + y/— lα. Then

ξ « Λ , α!v > + 1, χ αO <Λ aiv > « Λ , a2

v > - 1)

x Π a-χ^aϊ(pυ)^<A'aϊ>'ι)M(σfΛ9χ)Φ(k)
veSi(x)

must be holomorphic on etc. Hence, the equality is valid for any A e αc

Using the functional equation (1.3), one can describe M{wf A, X)Φ for any w

^ W.lfWi- . wm, Wj e {σ, τ) for 1 < < m, is a reduced expression of an ele-

ment of W, we define the operator dυ(wχ.. .wm, *χv) on I(*χv//\LV) by

^ ( ^ 1 , ^ 2 . ..Wm *Xv) ° dv(w2, W3 ..Wm *χv) <> o sίυ(wm, * χ υ ) .

This definition is independent of reduced expressions, actually one sees s4v((στ)2,

*Xv) = dΌ{(τσ)2, *χv) by (wσwτ)
2 = (wτwσ)

2. We set

for each M; e W and let Su(χ) be the set consisting of v ^ S such that χt, is un-

ramified. Then, for any A ^ Q c one has the following:

M(στ, A, χ) Φ

= Ξστ(Λ, X)[®ves-S2(x)-S3(x) dv(στ, *χΌ) Φ,
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υ(σ, τ*χv) ° do(τ, <Λ, α 2

v >, χv ° <*2V (ft,)) Φ,

i>(σ, 0 1 , α 3

v >, χ , ° α 3

v (ft,)) ° ^ ( τ , *χ,,) Φ»

(σ, 0 1 , α 3

v >, χ , α3

v (pv)) rf,(τ, < Λ, α 2

v >,

χ, oα2 v(p y)) Φ,}

M(rσ, Λ, χ) Φ

= Ξτσ(Λ,

(^, 0 1 , Ctϊ >, χ y ° «4 (/>„)) ° ^ ( σ , *χυ) Φv

aϊ >, χ, α4

v (ί,)) ° dv(σ, <Λ, at >,

M(στσ, Λ, χ ) Φ

= ΞaτσiA, X) (®t;e5-Sι(χ)-S3(χ)-S4(χ) dv(στσy *χv) Φυ\

) ̂ ( ^ , 01, aϊ >, χ,, ° α3

v(

, σ*χv) ° ^ ( σ , 0 1 , α x

v >, χv° άί(pυ)) Φv

, χ, aϊ (pv)) Λ(σ, *χ,) Φ,}

υ(τ, σ*χv) ^ ( σ , <Λ, αiv >, χ, aϊ(p9)) Φv]

®ι»βs ω ^?,(σ, 01, α3

v >, χ, aϊipv))

p(r, </l, α4

v >, χ, α 4

v ^ ) ) dv(σ, <Λ, aϊ >, χ, aϊ(pv)) Φv)
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M(τστ, Λ, χ) Φ

= SVσrGl, χ ) I®ι,es-S2(χ)-S3(χ)-S4(χ) dv(τστ, * χ y ) Φv

s4(x) dυ(τ, <Λ, aϊ >, χv ° aϊ (pv)) ° dv{στ, *χv) Φv

dv(τσ, r *χ y ) ° ^ y ( r , <Λ, α2

v >, χ y ° α2

v (/),))

, ( σ , <Λ, α 3

v >, χv

( r , < yl, α 4

v >, χv ° α 4

v (/>,)

v(τ, <Λ, α2

v>, χv* aϊ(pv)) Φv)

M{{στ)\Λyχ)Φ

= Ξ{στ)2(Λ, χ){®v,s-υ1^4siωdv((στ)2

f *χυ) Φυ]

, (r , <Λ, α4

v >, χ , α4

v(/>,)) dv(στ,

ι/eS2<χ)-Si<χ>-Ss(X>-S4<χ> dv((JTG, T*χv)

, <yl, α3

v >, χ , α3

v ^ ) ) ^ ( r , *χ.) Φv)

2(x))ns3(x)-SA(x))nsi(x) dΌ(σ, < Λ, ot{ >, χ y ° άί (pv))

τ,στ*χv) Λ(σ, <Λ α3

v >, χ, α3

v(ί«)) ° A ( r f *χ,) Φ,}

es«(x) dv(σ, <Λ, άί >, χ , aϊ (pv)) ° rfD(r, <A, aϊ >,
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Xv α 4

v ipv))

• dυ(σ, <Λ, α3

v >, Xv α3

v (/>»)) ^ ( r , <Λ, άϊ >, χ , α2

v(ft,)) Φ,} .

In this paper, we are interested in the singular hyperplanes of M(w, A, χ) contri-

buting to the spectral decomposition of L2(B, K). Such a singular hyperplane S

has to satisfy the following condition (cf. [14, Theorem 7.1], [17, Theorem 5.12]).

(2.2) S is defined by a linear equation of the form <Λ,α,y> = c with positive

real constant c.

From this and Lemma 1 (1), we obtain:

LEMMA 3. Let Si = {Λ e α c I 01, α,y > = 1} /or 1 < i < 4. Then Sif 1 < i

< 4, exhaust the singular hyperplanes of M(w, Λ, χ), w e J7, χ ^ Ωs(T), contri-

buting to the spectral decomposition ofL2(B, Ks).

3. Residues of M(w, Λ, χ) (1)

Each Si is rewritten as S, = CM, 4- vu 1 ^ ί ^ 4, where Mi = ^2, w2 = j8i,

u3 = αi, M4 = a2 and #, = α, /2 for 1 < i < 4 . Then we take a coordinate Zj(Λ) on

S, as yl = Zj(Λ)Ui + vf for A e S, , 1 < ί < 4.

Next, for 1 < ί,y < 4, let IVy be the set of elements w & W such that — wSi

= Sy. Obviously W^ is empty unless i = modulo 2. For 1 < i < 4, let W* be the

union of W^, 1 < 7 < 4.

For x e β s ( T ) , Φ e I(χ//A)s and w e W, we set

> X) — o / m . / - τ iM{w,Λ'rzvi9χ)az

for A G S, , 1 < ί < 4, where C is a small contour around the origin in the com-

plex plane. Let An denote the intersection of Si and Sy for i Φ j . One sees that the

order of pole of E*{g, Φ,Λ) at A = An is at most one for any Φ e /(χ//A)5,

χ G Ωs(T)f l<j<4, jΦi (cf. Lemma 11). Then the main theorem of [11] de-

duces that, for X e ΩS(T)/W, the space LlCB, iίs, -ϊ) is spanned by

ResΛ-ΛU E*(g, Φ, Λ), Φ e 7(χ//A) s, χ e- Z , i = 1,2, 1 <j < 4, Φ i

belonging to L2(G(F)\G( A)). Here, notice that, since principal singular hyper-

planes (in the sense of [17]) are only 5i and S2, it is enough for our purpose to

consider only residues of El(g, Φ,Λ) for i — 1,2 (cf. [17, Chapter 6]). Since the
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residue ResΛ=ΛuEf(g, Φ, A) is completely determined by its constant term

Γ v ResΛ-ΛuE^ng, Φ, Λ)dn
JN(F)\N(A)

= ResΛ-Λ« ί Σ e<wΛ+δ>H(g)> M^w, A, χ)Φ(g) },

what we should do is to calculate residues of M^iw, A, χ) at A — An for i = 1,2,

1 < j < 4, Φ i.

Let As(F) be the set of characters μ ^ Ωs such that μ2 = μ0, where μ0 is the

trivial character. For each μ^As(F), the W orbit of χ(μ, μ) is denoted by

X(μ), that is, X(μ) = {χ(j«, JW)}, Then the next proposition follows from direct

calculations.

PROPOSITION 1. Let X ^ ΩS(T)/W be a W orbit. Assume X<έ{X(μ)\

μ e As(F)}. Then, for any χ <Ξ X, w *Ξ W andl < iΦ j < 4, Res^,, M{(w, Λ, χ)

= 0

By that mentioned above, we obtain

COROLLARY. L\(B, Ks) = Θ^S(F) L\(B,Ks,X(μ)).

The major part of remains of this paper will be devoted to a detailed calcula-

tion of residues of M*(w, Ay χ) for χ = χ ( μ , μ), μ e AS(F). At first, we give an

explicit form of M^w, Λ, χ). For each μ ^ AS(F), the subset Su(μ) of S is de-

fined to be Su(μ) = iv ^ 5 | //ϋ is unramified}.

LEMMA 4. L ί̂ μ ^ AS(F) be a nontrivial character, χ — χ(μ, μ) ^ ΩS(T)

and Φ ^ I (χ//A)s an arbitrary element. Then, for any w ^ W2, M2(w, A, χ)Φ is

identically zero. Further one has

Mx(σ, Λ,χ)Φ = (8), e S ^(σ,l, l) Φv

ξ(z + hμ) r Ί

Mι(τσ, Λ,χ)Φ = \ ®v*s-s»ω sdυ(τ*χυ) dv(σ, 1, 1) Φv

ξ(z + f,μ) l J

® { ®v*su(») dv{τ, z + ~2f μvipv)) ° dv(σ, 1, 1) Φv J

£(2z)f(s + i 0)
, Λ, χ) Φ = ^ x

https://doi.org/10.1017/S0027763000004086 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004086


RESIDUAL AUTOMORPHIC REPRESENTATIONS OF Sp, 29

v(σ,2z, 1) dv(τ, *χv) ° dv(σ, 1, 1) Φv\

υ(σ, 2z, 1) dυ{τ, z + 1 , μυ(pv))° dv(σ, 1,

, Λ, χ) Φ = ^
f(2z+l)£(z + ! , 0 )

0,eS-s,,to) dv(σ, 1,1)° rf,(τ, *χ,) dv(σ, 2z, 1) • ^ ( r , *χ») Φv

(
1

<8>t;es,(«) dυ(σ, 1, 1) - ̂ ( r , z + -g, itί,,(/>„))

- rf.ίσ, 2z, 1) dv(τ, z~\, βv(pv))Φv

for any A = zux + Vi e Si.

LEMMA 5. Let χ = χ(βo, βo) e ΩS(T) be the trivial character and

I(χ//A)s an arbitrary element. Then one has the following.

For A =zuι + Ϊ I e Si,

Mι{σ, Λ,χ)Φ = ®vesdv(σ, 1,1) Φ*

M\τσ, A,χ)Φ =

M'iστσ, A,χ)Φ=

,{τ, z + -k,l)° dv{σ, 1, 1) Φv\

v(τ, z + \, , 1, 1) φ,

, 1, 1)
, Λ, χ) Φ =

dv(τ, z + \,l)' dΛσ, 2z, f z - | ,

For 1̂ =

, A,χ)Φ=
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M\στ, Λ,χ)Φ= | £ ΐ ί i

M2(τστ, Λ, χ) Φ = -

MH(στ)2, Λ, χ) Φ = | | * * | { ® M S rf,(σ, 2 - 1 , 1 ) ° rf,(τ, 2, 1)

°dv(σ,z+\,l)°dυ(τ, 1,

These lemmas are easily proved. Consequently, we obtain the following:

PROPOSITION 2. Let μ ̂  As(F)be a nontήvial character. Then L2

d(B, Ks,

X(μ)) is spanned by Res^-* Ex(g9 Φ,Λ), Φ& I(χ(μ, μ)//A)s, where βi = Λu

— yli4 t5 a fundamental weight of G.

Proof From Lemma 4, it follows

ResΛ-ΛuE'ig, Φ,Λ) =0

ResΛ=Λ2i E
2(g, Φ, Λ) = 0 , 1 < > < 4, ^ 2

for all Φ G I(χ(μ, μ)//A)s. On the other hand, by Lemma 4 again, it is possible

that Eι(g, Φ, A) has a simple pole at Λ = βi. If so, the constant term of

Eι(g, Φ, A) equals

es*.*! M^σrσ, Λ χ) Φ + Res^^i JlίHίσr)2, Λ, χ) Φ}.

Thus, Langlands' L2-ness criterion deduces Res^^i Eι(g, Φ, A) is square integr-

able for any Φ e I(χ(μ,μ)//A)s. This implies the assertion.

Residues of Mλ(στσ, A, χ(μ, μ)) and Mι((στ)2, A, χ(μ, μ)) at A = βi for

nontrivial μ ΞE i4s(F) are given as follows.

, Λ, χ(μ, μ)) Φ

su(u) dυ(σ, l f 1) β Λ ( r , *χ.) dv{σ, 1, 1)

^ ( σ , 1, 1) ^ ( r , 1, μv(pv)) ° ̂ ( σ , 1, 1) Φv]

ResΛ=βlM
ι«στ)2, A, χ(μ, μ)) Φ
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®VeS-su(*) dυ(σy 1, 1) dv(τy *χυ)

°dv(σ, 1, 1) ° dv{τ,*χυ) Φυ]

sίυ{σ, 1, 1) ^ ( r , 1, μυ(pυ)) ° ^ O , 1, 1)

• dv(τ, 0, ̂ (fc,)) Φ,},

where c F (μ) = c ( F ) £ ( l , ^ ) ? ( 2 ) " 1 ί ( 2 , μ)~\ Hence, in order to describe L2

d(B,

Ksy X(β)) as a representation space of K/Ks in more detail, we have to investi-

gate the intertwining operators dv(σ, 1, 1), dv(τ,*χv),.... To do so, we use a

result of Gurtis and Fossum. Thus, in next section, we recall the representation

theory of

4. Principal series of G (Fq)

Throughout this section, k denotes the finite field of cardinality q. For a char-

acter *χ of Γ(k), let /(*χ//k) be the representation of G(k) induced by the

trivial extension to BQt) of *χ and ίί(G,jB;*χ) denote the centralizer ring of

/(*χ//k). Dropping the lower index v, operators d(w,*χ) and d(w, z, r) for

w ^ {σ,r} on /(*χ//k) are similarly defined as in Section 2. In this section, we

explain an irreducible decomposition of / (*χ//k) for some particular *χ and then

represent the operators d(w, *χ) and d(w, z, r) by linear combinations of those

projections to irreducible subspaces of /(*χ//k) which are constructed by using

a theorem of Curtis and Fossum.

For a character μ of k*, the character *χ(μ) of Γ(k) is defined to be

*χ(μ)(t(a,b)) = μ(ab) for t(a, b) e Γ(k). Then we consider the following

three cases.

(#-1) μ is the trivial character.

(#-2) q = 1 mod 4 and μ is the quadratic character.

(#-3) q = 3 mod 4 and μ is the quadratic character.

Before going to case by case consideration, we state a result deduced from

general theory (cf. [5]).

LEMMA 6. Let *χ be an arbitrary character of Γ(k) . Then there is a bijection

η |—• θ(η) from the set of equivalence classes of irreducible representations of

H(G, B;*χ) to the set of equivalence classes of irreducible constituents of IX*χ//k)

such that the character of η is equal to the restriction to H(G, B;*χ) of the character
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of θ(η). Here, notice that H(G, B;*χ) is considered as a subalgebra of the group

ring of G(k). Furthermore, the multiplicity of θ(η) inl(*χ//k) is equal to the

degree ofη.

Now we start with the case (#-1) .

( # - 1 ) *χ = *%(μ), β is the trivial character.

The self-intertwining operators aσ and aτ of /(*χ//k) are defined to be

(4.1) aσ(Φ)(g) = Σ Φ(w;ιnσ(x)g), aτ(Φ)(g) = Σ Φ(w71nτ(x)g)

for Φ ^ / (*χ//k) . Further, if w = W\ . . . ww, «/> ^ {σ, r} , 1 < / < m is a

reduced expression, we define aw by α ^ aWm, which does not depend on re-

duced expressions. Then H(G, B;*χ) is generated by aσ and aτ together with the

relations

a2

σ = qae + {q— l ) α σ , a\ = ^α^ + (^ — l ) α τ , ( α σ α r )
2 = (αrα σ ) 2 ,

where ae is the identity map of / (*χ//k) . Irreducible representations of H(G,

jβ;*χ) are exhausted by the following ones up to equivalence.

T ί + l) ίίZ-l))' α^(θ -l)

Let θ(ηi) be the irreducible representation of G(k) corresponding to r?t .by

Lemma 6 and F, the ^(r O-isotypic subspace of /(*χ//k) for 1 < i < 5. Then one

has

If P, denotes the projection from /(*χ//k) onto VJ for 1 < ί < 5, then [5,

Theorem (2.4)] allows us to represent P, by linear combinations of aw, w ^ W.

Actually one has

q ιaaτa - aτστ + q

-1)
1

iqae + qaσ — aτ — aστ — aτσ — a^o + q ιaτστ

(q + \)2{q2 + 1)
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q2aτσ ~ qaστσ - qaτστ

{2qae + (q~ l)aσ + (q - l)aτ
~r )

+ q~ι(q — l)a

We express d(σ, 1, 1) and <sί(r, 1, 1) by linear combinations of projections to

irreducible subspaces. By definition,

d(σ, 1, 1) = jψj (ae + aσ), d(τ, 1, 1) = y ψ y to + aτ).

Thus, it follows from easy calculation

d(a, I, 1) = Px + Pz + Qo, Qa = Psd(σ, 1, 1)

d(τ, 1, 1) =Pi+P3+Qr, Qτ = Ps*i(τ, 1,1).

Then Qσ and Qτ are considered as elements in EndG(k>(^s) and satisfy the follow-

ing:

QσQτQσ = , ^\,2 Qa, QrQoQr = , ^ , 2 Qr
(q + I)2 (q + I)2

We define four elements of EndG(k)(^s) by

P° = , a l l s ( " 2«0α0r + (? +
(q + 1)

Wτ), K- —
^2 + 1 q2 + 1

where \/2# is the positive square root of 2q. Then these elements satisfy

P2 D D D D2 Ό Ό — Ό

σ — I\—1Y+ — x a * τ — /t+iv— — £χy

= (/e+)2 = (i?-)2 = o.

Therefore Pσ, Pτ, R+, R- becomes a base of the four dimensional space

EndGUdίVs) and both Pσ and Pτ are projections to irreducible subspaces in V5.

Representing Qσ and Qτ by these we obtain

(4.2)

d(τ, 1, 1) = Pi + P2 + P τ
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We set particularly

Then P5

+/(*%//k) = θ(η5) and one has

(4.3) d(σ, 1, 1) d(τ, 1, 1) d(σ, 1, 1) = Λ + ~7~^
(q+ ly

Since ^(w, z, r), w & iσ, τ}, equals

i — γn-z-i Ul ~" ^ " 0 ( 1 + ϊ" 1) ^ (^, 1, 1) +q~1(rq~z+ι

one has

(4.4) d(σ, 1, 1) rf(τ, 1, - 1) d(σ, 1, 1) = Λ - -τ^f-

d(σ, 1, 1) - d{τ, 1, - 1) rf(σ, 1, 1) ^(r, 0, - 1) = Λ + ~γ^P^
q2 + 1

(#-2) # Ξ 1 mod 4, *χ = *χ(β), μ is the quadratic character.

We define the self-intertwining operators aw, w ^ W oί /(*χ//k) as in (4.1).

Then the centralizer ring H(G, B;*χ) is generated by aσ and aτ together with

the relations

al = qae + (q — l)α σ, α? = qaej (aσaτ)
2 = (aτaσ)

2

Irreducible representations of H(G, B;*χ) are exhausted by the following ones

up to equivalence.

' \ U —

where #2" is the positive square root of q. Let 0(^i) be the irreducible representa-

tion of G(k) corresponding to η\ and Vί the β(ι?ί)-isotypic subspace of /(*χ//k)

for 1 < i < 5. Then it follows from Lemma 6

If Pί denote projections from /(*χ//k) to Vi' for 1 <> i < 5, then by [5], one has

Pί = , , . 2 {tftf* + ^ασ + ^ « r + (poίoτ + qiaτσ + q^aστσ + aτστ + a{στ)2}
£QQ • -»•/
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iq2ae — qaσ + qmτ — qmaT - qwτσ + q~2aσ

— Oίτστ

Pi = 2 {qae + qaσ — (paτ — q^aστ - cpaτσ — <μaσ

£qq i 1)

. . 2 {q2ae - qaσ - qiaτ + qiaστ + qiaτσ - q~\
1)

~\aσ

+q~ι (q - l)aτστ -
(ί + I) 2

We set

1 . 1
V + — 2 ^ e ^ M\Ci X)) *5, ty- — g V^e « ^ U J X y i 5 »

Since «sί(σ, 1, 1) = • -. (ae + α^), d(τ, *χ) = "̂2" α r and ^ ( τ , *χ) 2 = αe

one has

Ql = i?_i?+ = Q+, Qi = R+R- = Q-

Therefore {Q+, 0-, i?+, RJ gives a basis of EIKKW). Then

^(σ, 1, 1) = Pi + Pi + i (0+ + 0_ + i?+ + RJ)

d(τ, *χ) = Pi + Pi - Pi - Pi + Q+ - Q-.

Hence we obtain

(4.5) d(σ, 1, 1) ° d(τ, *χ) «^(σ, 1, 1) = Pi - Pi

r, 1, 1) ° JZ/(Γ, *χ) ° Λ/(σ, 1, 1) ° Λ/(Γ, *χ) = Pi + Pi

(#-3) ί = 3 mod 4, *χ = *χ(//), ^ is the quadratic character.

This case is similar to the case (#-2), hence we will omit the details. Define

aw, w G ίF, as in (4.1). Then the centralizer ring H(G,B; *χ) is generated by α^

and α r together with the relations
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al = qae + (q ~ l)α σ, a\ = — qae, (aσaτ)
2 =

Irreducible representations of H{G,B\ *χ) are exhausted by the following ones

up to equivalence.

q γ n . f aσ

^2 1 aτ ^ - ( - ? ) * ' V3 '\aT*->(- q)v

where (— q)"£ lies in the upper half plane of the complex plane. Let θ(η'ί) be the

irreducible representation of G(k) corresponding to ηί and Vi the θ(η'i)-

isotypic subspace of /(*χ//k) for 1 < i < 5. Then it follows from Lemma 6

Let PΓ be the projection from /(*χ//k) to F/' for each 1 < i < 5. Then, from the

argument similar to the case (#-2), it follows

(4.6) d(σf 1, 1) d(τ, *χ) sΛ(σ, 1, 1) = - / = T ( P Γ - Pi')

r, *χ) ^(σ, 1, 1) d{τ, *χ) = - ( P Γ + Pi').

5. Residues of M (w, Λ, χ) (2)

We return to calculations of residues of M(w, A, χ). In this section, we fix a

nontrivial character μ ^ As(F) and put χ = %(μ, μ).

Define four subsets of S as follows:

Sr(β) — iv ^ S I *μy is the quadratic character and *μy(— 1) = 1}

Sr(fJt) = {̂  e S I *//„ is the quadratic character and */4(~~ 1) = ~ 1}

Su(μ) — iv ^ S\ μυ is trivial}

Sΰ(β) = ίv ^ S\ μv is unramified and μv(pv) = — 1}

Then S is the disjoint union of these subsets. Notice that if v e S lies above 2

then v is contained in Su(μ) = S£(μ) U Sΰ(μ). We apply results in Section 4 to

I{*χυ//\b) for each ί G S . /(*χv//k l,) takes the case (#-1), (#-2) or (#-3)

according as v £= Su(μ), S?(μ) or S^(μ). Then, using the notations of Section 4

with respect to k = hv and *χ = *%», we define irreducible subspaces F^(t ) and

of /(*χ»//k^) as follows:
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YΠυ) =

vi'

if υ

if υ

if v

PδV5

v3

v;
v3

if

if

if

if

V €

V €

V €

V ^

Ξ S+(μ)
Ξ Sΰ(μ)

Let R?(v) be the projection of I(*χv//kv) to F/^) for i = 0,1.

LEMMA 7. t/stn£ the labelling of Sήnivasan ([20]) for v X 2 and Enomoto ([7])

for υ I 2,

Yf(v) =

You(v) =

t/i£ fπftα/ representation

03

if v G Su(μ)

if v e Sr(//)

09 t/ t; e Sw

+(^) and?; ^ 2

01

711

02

04

i/ i;

i/ i;

if v

if v

and v I 2

and # X 2,

and t; I 2

where Sr(β) is the union of Sf(μ) and Sr (β).

We remark that Enomoto's character table contains some misprints. The

degrees of θ\ and θ2 are correctly ~κ Qv(Qv + I ) 2 and -wqv(q% + 1), respectively.

This is easily checked from the defining equations of θi and θz in [7, p. 83].

Proof First we assume υ & Su(μ), hence one has the case ( # - 1 ) . When q =

qv is odd, the correspondence r\i '—• θ(ηi) is well known (cf. [23]). When q — qυ is

even, one can compute explicitly θ3(BwσB) and θ3(BwτB) by using the tables of

conjugacy classes and characters in [7]. Then one has θ3(BwσB) = r}2(θίσ) and

θ3(BwrB) — η2(<Xτ), hence V2 = θ(η2) — θ3. Further, from the formula in [5], it

follows dim0(ij2) = dim/9 (η3) = j q(q2 + 1) and dim0(775) = \ q{q + I ) 2 .

Thus the character table concludes V3 = #(773) = θ2 and P5V5 = θ(η5) = θx.

Next, assume υ Ξ S?(μ), hence one has the case ( # - 2 ) . The formula in [5]

deduces that dimθ(η{) = dimθ(η3) = j (q$ + 1), hence iθ(ϊ}\),θ(η3)} = {θ3,

Θ4}. Furthermore, Little wood's formula (cf. [12]) deduces θ(η[)(g) ^ θ(η'3)(g)

for any g G G(kt,). Then, by the character table in [20], it is known that V{ =

θ(η[) = 04 and V3 = θ(η3) = θ3.

Finally, assume v ^ Sr(μ). From the similar arguments to the second case, it

follows {θ(ηi),θ(η3)} = {θ3f ΘA) and Imaginary(θ(ηϊ)(g)) > Imaginary(θ(η3)
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(g)) for any g ^ G(kv). The character table in [20] allows us to conclude V\ =

W ) = 03, Vί' = β(i7s) = θt.

The following lemma is an immediate consequence of (4.3), (4.4), (4.5) and

(4.6). Here, note that the cardinality of Sγ(μ) is even since μ is an even charac-

ter.

LEMMA 8. Let μ ^ As{F) be a nontrivial character, χ = χ(μ, μ) and Φ ̂

I(χ//A)s an arbitrary element. Then

ResA-βiMι(στσ, A, χ) Φ

(/ff(») --T^jKSiv)) ®v}®{<3>vesH«) (Rζ(υ) - Rζ(υ)) Φv

ResΛ=SlM
ι((στ)2, A, χ) Φ

Hv) + ~^f^-2 Rξ{v)) Φ*

Rβ(v))

6 Decomposition of L\{B, Ks, X (//)) for nontrivial μ

We take a nontrivial μ ^ As(F) and put χ = χ(μ, μ). Let /^(S) be the set

of all maps from S to {0,1}. For each λ e Γ{S)y λs(μ) = Θt es Yλ

u

(v)(v) is an

irreducible subspace in <8>ι;es /(*%i,//kt;) and R" = ® »es i?ί(l>)(ϋ) the projection

of Θ^es /(*Xt;//ki,) to λs (μ). By the isomorphism (1.1), λs(μ) is identified with

a subspace in /(χ//A)s. The subset Γ*(S, //) of /"(S) is defined to be

Γ(S9 μ) = U Ή

where λ~ι(Q) is the inverse image of 0 by λ. By Lemma 8, we obtain

PROPOSITION 3. Let μ ^ AS(F) be a nontrivial character, λ ^ Γ(S) and Φ ^

Λs (μ) an arbitrary elentent. Then the constant term of ResΛ=βι Eλ(g, Φ, A) is equal

to the following:
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if λt

0 if λ <έΓ(S, μ) '

whene

_ c(F)ξ(l,μ) „ , „ _ π 2g. χ Π 2qv

1 (^t; ~τ" 1) veλ~i(O)Γ)Sΰ(u) Qv i 1

COROLLARY. For any Φ ^ I(χ(μ, μ)//A)s, one has

βl Eι(g, Φ,Λ)= Σ ResΛ=βl Eι(g, RΪΦ, A).
λeΓ(S,u)

Proof. The constant term of the left hand side is equal to that of the right

hand side. Hence, Langlands' lemma implies the assertion.

Let L2

d(B, Ks, X(μ))λ be the space spanned by Res^.* Eι(gf Φ, Λ), Φ e

λs (μ) for each λ ^ Γ(S, μ). Combining with Proposition 2, one has

THEOREM 1. Let μ ^ As(F) be a nontrivial character. Then one has a

K/Ks-irreducible decomposition

L2ΛB,Ks,X(μ))= Θ L2ΛB,Ks,X(μ))λ.

For each λ e Γ(S, μ), the constant term map gives rise to a K/Ks-isomorphism from

L2

d(B,Ks,X(μ)) ontoλs(μ).

7. Decomposition of L2

d(B, Ks, X (μ)) for trivial μ

Throughout this section, μ0 and χ = χ (μ 0 , βo) denote the trivial characters.

We prove the following:

THEOREM 2. L\{B, Ks, X(μo)) consists of constant functions.

We must calculate residues of E1(g, Φ, Λ) at A = Λί2, Λί3 and of E2{g, Φ,

Λ) at A — Aw,, Λ23, Λ24. In what follows, Eί(g, Φ, A) denote the constant terms

of £ ' ( # , Φ, A) for i = 1,2.

LEMMA 9. E2(gf Φ, A) is holomorphic at A — Λ23 = αz/2 αncί A = Λ24 =

/or any Φ ^ I (χ//A)s.
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Proof It is sufficient to show that E2

0(g, Φ, A) is holomorphic at A — a2/2

and β2. By Lemma 5, one has

ResΛ-αi/2 E§(bk, Φ, A)

^ dviσ, 1, 1) stΛτ, 1, 1) Φv(kv)

- Θ,e S dv(τ, 0, 1) dv(σ, 1, 1) dυ(τ, 1,1) Φv

ResΛ=β2E$(bk,Φ,Λ)

dv(τ, 1, 1) dv(σ, 2, 1) rf,(r, 1, l)Φv(kv)

- Θ,e S Λ(σ, 0, 1) d9(τ, 1, 1) dυ(σ, 2, 1) dυ(τ, 1, 1) Φp(fc)}

for any b & B(A) and A: e iC. Since both ^ ( r , 0, 1) and ^(ίx, 0, 1) are the

identity map of I (*χv//kv) for any v € 5, the residues are identically zero.

LEMMA 10. T/10 residues of El(g, Φ, Λ), i — 1,2 αίΛ = 1̂2 = δ are constant

functions for any Φ ^ I (χ//k)s.

Proof ResΛ=<5 E&bk, Φ, A) equals

,(r, 2, 1) dv(σ, 3, 1) dv(τ, 1, D) Φ,(fc)>

for any ft e JB( A), k e i ί and ί = 1, 2. Since

rf,(σ, 1, 1) rf,(r, 2, 1) dv(σ, 3, 1) do(τ, 1, 1)

is the projection to the space of constant functions for any υ ^ S, we obtain the

assertion.

LEMMA 11. The order of pole of E1(g, Φ, A) at A = Ai3 = ft is at most one

for any Φ e /(χ//A)s.

Proof By Lemma 5, one has

lim (zM) ~\)2Eh{k, Φ, A)

υ(σ, 1, 1) ° dv(τ, 1, 1) ° dυ(σ, 1, 1) ^ ( τ , 0, 1) Φv(kv)}.
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This vanishes since dv(τ, 0,1) is the identity map for any υ ^ S.

By Lemmas 9, 10, 11 and the main theorem of [14], it is known that the space

L2

d(B, Ks, X(μ0)) is spanned by the constant functions and those residues of

Eι(g, Φ, A), Φ ̂  I(χ//A)s at A — βι which are square integrable. Hence, in

order to finish the proof of Theorem 2, we must show the following.

PROPOSITION 4. Let Φ ̂  I(χ//A)s. IfResA=$iE1(gt Φ, A) is square integrable

on G(F)\G(A), then it is identically zero.

Proof. Let z = Z\(Λ) be the coordinate of A on Si. We note that Mι(στσ,

Λt χ) and Mι{{στ)2, A, χ) may have double pole at A = βι. By Lemma 5, the re-

sidue of Eo(bk, Φ, A) at A = βi equals

, A, χ) Φ(k)}

, Λ, χ) Φ(k)

+ l im— (z - l)Vσ r < M +*'* ( d ) > Mι(στσ, A, χ) Φ(k)

^ (z - 1)2^««)M+W(W> Mι((στ)\ A, χ) Φ{k)

r, A, χ) Φ(k)

+ {lim (2 - \)2Mι{στσ, A, χ) Φ(k)} -£J-e<στσΛ+δ Hib)>

+ β

<-*+« *< » ResΛ-βiMHστσ, A, χ) Φ{k)

+ (lim (z - h'M'dστ)2, A, χ) Φ(k)} -fe

<(στ)2A+β mb)>

I i Δ ) uZ Λ=β1

e KeSΛ=jSi i " U ( n j , /I, X; Ψ\K).

Since the second and fourth terms are cancelled out each other, one has

Res,!-* Ei(bk, Φ, A)

= e<-a2/2+δ>H{b)> ResA^MKτσ, A, χ) Φ(k)

+ e<-βl+δ'Hib)> ResA./ίi iMKστσ, Λ, χ) Φ(ft) + MHCστ)2, Λ, χ) Φ(/c)}

for b ^ J5(A), k ^ K Then it follows from Langlands L2-ness criterion that the

residue of Eι(g, Φ, A) at A = βι is square integrable on G(F)\G(A) if and

only if the first term of the right hand side vanishes. Therefore, the next lemma

completes the proof of Proposition 4.
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LEMMA 12. Let Φ ̂  I(χ//A)s. IfRe$Λ=&ιMι{τσ, Λ, χ) Φ is identically zero,

then so is Res^i {Mι(στσy A, χ) Φ + Mι((στ)2, Λ, χ) Φ).

Proof. We assume Res^^ Mι(τσ, Λ, χ) Φ is identically zero. Then, by Lem-

ma 5, one has ®v*sdv{τ, 1, 1) ° dv(σ, 1, 1) Φv = 0. Hence, there exists at least

one place u & S such that du(τ, 1, 1) ° du(τ, 1, 1) Φu = 0. We fix such a place

u. For k = kM and *χ = *χM, we use the same notations as in Section 4 case

(#-1). Then, by (4.2),

Therefore, Φtt must belong to the space (P2 + P3 + P* + P5") / (*χM//kw), where

is a projection satisfying P5P5 = P5Pit = 0.

Assume Φu ^ (P2 + P4)/(*χ//kw). Then one has

du(σ, 2z, 1) ° du(τ, z + ^ l ) ' du(σ, 1, 1) Φu = 0

and hence Λ ί 1 ^ , Λ, χ) Φ = Mι((στ)2, Λ, χ) Φ = 0. This implies the asser-

tion.

Assume ΦM

 e P3/(*χw//kM). Then one has

du(σ, 2z, 1) ^ w ( r , 2 + -g, 1) ° rfu(σ, 1, 1) ΦM

= _ (<yH^- l)Qu φ

and

ResΛ^M^σrσ,.!, χ) Φ

= Res*=i- V " ί - (<y" 2

3

 1)<?M Φ
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{<8>ves-M dv(σ, 2z, 1) dv(τ, z + ^,

_ c(F)2qu log qu

φ

ResΛ~BιM
1((στ)2,Λ,χ)Φ

= Res,-i

v(σ, 1,1) Φv)

, 1, 1) Φv)

+ 2 -
+2 -

{®Ves-{u} dv(σ, 1, 1) ° s4v(τ, z + g-, 1) ° dυ(σ, 2z, 1) ° dv(τ, z — TJΓ, 1) Φ j

= c{F)2qu logQu φ ^

2 $ ( 2 ) 2 ( ^ M — 1) "

{®,eS-{M} «^.(σ, 1, 1) ° ^ ( r , 1, 1) ° Λ ( σ , 1, 1) ° dv(τ, 0, 1) Φ j .

Since dv(τ, 0,1) is the identity map for any υ ^ S — {w} , Resyi=J8i {MHtrra,

-Λf λ) Φ + M 1 ( ^ ) 2 , Λ, χ)Φ} vanishes.

Assume Φu e Pϊl(*χu//ku) From P5

+Φw = 0, it follows M\στσ, Ay χ) Φ

= 0. On the other hand, one has

ResΛ=βlM
1«στ)2,Λ,χ)Φ

ξ(2z)ξ(z-j>)

(r, z + -|,

ί _ 2<7« log g» • 2 g B l o g <7«

I ql-\ ql-l ( f t + I) 3

ί <8Us-ω ^,(σ, 1, 1) sAv(τ, 1, 1) ^ ( σ , 1, 1) υ(τ, 0, 1) Φj

= 0.

This completes the proof of Lemma and hence Theorem 2.
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8. Residual automorphic representations

In this section, we give another representation theoretic interpretation of

Theorem 1. For this, it is convenient to consider various S simultaneously. Hence,

we set Λoo(F) = U sAs(F), where S runs over finite subsets of Vf. For each μ ^

Ao(F), Sr(μ) also denotes the set of v ^ Vf such that μv is ramified.

We fix a nontrivial μ e A»(F). Let

I(μ, βύ = Ind(B(A) ί G(A) : e^<H{')yχ(μy μ))

be the normalized induced representation of G(A). This I(μ, βi) has a restricted

tensor product decomposition: I(μ, βι) = ®vIv{μ, βi) (cf. [15]). For any finite set

S c Vf containing Sr(μ), we denote by I(μ, βι)s the subspace spanned by right

As-invariant elements of I(μ, βι). Further, Iι(μ, βi) denotes the G(A)-

submodule of I(μ, βi) generated by I(μ, βi)s for all finite sets S c Vf contain-

ing Sr( μ). Then the residue map

I(χ(μ, μ)//A)s^L2

d(B, Ks) : Φ^+ResΛ^EHg, Φ, A)

induces an intertwining operator from P(μ, βi) into the space associated with re-

sidual spectrums L2d(B). We write τt(μ) for the image of this intertwining oper-

ator. Namely, π{μ) is an automorphic representation generated by IΛ(B, Ks,

X{μ)) for all finite sets S c Vf containing Sr(μ).

PROPOSITION 5. Let μ ^ Aoo(F) be a nontrivial character and ®vKv(μ) a res-

tricted tensor product decomposition of π(μ). If u £Sr(μ), then πu(μ) is a spherical

irreducible representation of G (Fu).

Proof From the above construction, πu(μ) is clearly spherical. We show the

irreduciblity of it. In the following, we denote by πu(μ)L for an open subgroup

L c Ku the subspace consisting of L-invariant elements of πu(μ).

First, assume u is a finite place. Then it follows from [3. Corollary 3.3.7] that

the w-component of a restricted tensor product of P(μ, βi) coincides with Iu(μ,

βi), so that πu(μ) is isomorphic to a quotient representation of Iu(μ, βi). We take

a finite set S c V> such that Sr(μ) U iu) CΞ S and | Sΰ(μ) I ̂  2. Then, by

Theorem 1,

π(μ)Ks = L2

d(B,Ks,X(μ))= Θ λs(μ)
λeΓ(S,μ)

and

Ttu(μ)κertru) = Yo*(u) Θ Yf (u) .
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Let Lu = r^iBQ&u)) be an Iwahori subgroup of Ku. By the Frobenius reciprocity

law and Lemma 7, it is seen

, x _ {3 iίu^SΪ(μ)
dim πu(μ)Lu - \ .

On the other hand, from [2. Lemma 4.7] and [18. Chapters 3 and 6], it follows that

Iu(μ, ft) has a composition series of the form

{0} = /4 c /3 c /2 c Jx c /0 = /tt(μ, ft)

/o//i is spherical

and

ί 3 i f w ( Ξ 5 « ^ )
[2 \ίu & Su(μ)

This implies 7ΓM(μ) = /o//i

Next let π*>{μ) (resp. πf(μ)) be the infinite part (resp. finite part) of 7r(μ).

We show 7Γoo(μ) is irreducible. Since L2

d(B) decomposes to the sum of irreducible

subspaces, so is τt{μ). Hence, if 7Zoo(μ) is reducible, it decomposes to the sum of

proper subspaces ττi(μ) and πl(μ). Then, by Theorem 1, one has

f= Θ λs(μ)

for any finite set 5 c Vf containing Sr(μ), where Ksj is the finite part of Ks.

Since π/(μ)κs/= Φ λ<=r(sftι)As(μ) and the multiplicity of /ίs(μ) in π(μ)κs is one

for any >ϊ ^Γ(S,μ), either πlo{μ)κtΛ or πh(μ)κ» must be trivial. We assume

πl(μ)κ.. is trivial. Then π(μ)κs = πi(μ)κ. ® πf(μ)Ksr Since π(//) is generated

by π(μ)κs for finite sets S c V / one has τr(μ) = 7ri(/i) ®πf(μ), and hence

7Γoo(μ) = πi(jM).

It seems that τr(μ) is irreducible. However, at present, we know only the up-

per bounds of the number of irreducible components of π(μ).

THEOREM 3. Let μ €= i4ooCF) be a nontrivial element. The number of irreducible

components ofπ(μ) is less than or equal to 2lSriu)K

Proof. By Proposition 5, it is sufficient to show that the number of irreduci-

ble components of πv(μ) is at most 2 for any υ ^ Sr(μ). Thus we fix a v ^

Sr(μ), Since the tf-component of a restricted tensor product of Iι(μ, βι) equals

Iv(μ, βι) by [3, Corollary 3.3.7], πv(μ) is a quotient representation of Iv(μ, ft).

Further, by [3, Theorem 7.2.4], each constituent / of πv(μ) has a non-zero vector
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fixed by K e r ^ ) . In other words, the subspace of Ker^)-invariant elements of /

contains necessarily at least one nontrivial representation of G(kv). On the other

hand, if we take a finite set S c Vf such that Sr(μ) c: S and \Sΰ(μ)\ > 2, then

one has π(μ)Ks= ® λeΓ(s,U) λs(μ) and hence πϋ(μ)Ker{rv) = Ygiv) Θ Y?{υ) by

Theorem 1. This implies that the number of irreducble constituents of πv{μ) is at

most 2.

THEOREM 4. Let μ €= Aoo(F) be a nontrivial character. Then each irreducible

constituent of π(μ) is of multiplicity one in L2d(B).

Proof. By Proposition 5 and the proof of Theorem 3, it is known that each

irreducible constituent of π(μ) has a non-zero vector fixed under Ks for suffi-

ciently large S. Then the assertion follows from the fact that λs(μ) is of multiplic-

ity one in L2

d(B, Ks) for any λ e Γ(S, μ).

Finally, we remark about an L-function of τr(μ). Proposition 5 implies that

the set of irreducible constituents of π(μ) becomes an L-packet of automorphic

representations. We write L(s, τc(μ)) for the standard (degree 5) L-function

attached to this L-packet. If we define the factor Lv(s, τt(μ)) attached to a rami-

fied place υ e Sr(μ) by (1 ~ qϋs)~ι, then the simple calculation gives

L(s, π(μ)) = ζF(s)L(s, μ)2L(s - 1, μ) L(s + 1, μ),

where CF(S) is the Dedekind zeta function of F.
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