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RESIDUAL AUTOMORPHIC
REPRESENTATIONS OF Sp,

TAKAO WATANABE

Introduction

Let G = Sp, be the symplectic group of degree two defined over an algebraic
number field F and K the standard maximal compact subgroup of the adele group
G (A). By the general theory of Eisenstein series ([14]), one knows that the
Hilbert space L*(G (F)\G (A)) has an orthogonal decomposition of the form

LHG(F)\G(A)) = L(G) © L*(B) @ L*(P) © L*(Py),

where B is a Borel subgroup and P; are standard maximal parabolic subgroups in
G for ¢ = 1,2. The purpose of this paper is to study the space L%(B) associated
to discrete spectrums in L2(B).

In order to obtain such discrete spectrums, we follow Langlands’ way. To be
more precise, let T'= {t(a, b) = diag(a, b, a™*, b™1)} be a maximal split torus
and B = NT a Levi decomposition. For any quadratic character g of F*\ A*) the
character x (g, #) of T(A) is defined to be x (g, w)(t(a, b)) = u(ab) for
t(a,b) € T(A). Let I(x(u, u)//A) be the space of functions @ on G(A)
satisfying @ ntg) = x (¢, ) () P(g) for any n&€ N(A),t€ T(A) and
g2 € G(A), and let

I (g, B) = Ind (B(A) T G (A);e<® >y (u, 1))

be the normalized induced representation of G (A), where B, is a fundamental
weight of G. For an admissible vector @ € I (x(u, n)//A), one can define the
Eisenstein series E(g, @, A) and take its iterated residue Ress-s E'(g, @, A),
El(g, ®,A) = Res war» =1 E(g, @, A). Through this procedure, one obtains a
mapping

Ry : @ Resa-p EN(g, @, A)
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from the space of admissible vectors in I (g, B1) into the space of automorphic
forms on G (A). In this situation, the following are conjectured.

CONJECTURE.  For each nontrivial quadratic character pt of F*\ A*,

(1) R, is nontrivial.

(2) The image of R, is contained in L4(B), so that R, is extended to an intert-
wining operator from I (p, B1) into L3(B).

(3) T (), the image of this intertwining operator, is 1rreducible and is of multi-
plicity one in L4(B).

On condition that these conjectures are true, it seems L%(B) has an irreduci-
ble decomposition L5(B) = 7 (o) D (D, m(y)), where u runs over all nontrivial
quadratic characters of F*\ A* and 7 () denotes the space of constant func-
tions. In this paper, we will show that a part of the conjecture is true for g with
“square free conductor”.

Now we explain contents of this paper. Let S be a finite set of finite places
of F. For v € S, k, denotes the residual field of F,. Let 7, : K,— Spi(k,) be
the reduction homomorphism for » € S and Ks = {(k,) € K| k, € Ker(#,) for
v € S} a normal subgroup of K. We study the subspace L%(B, Ks) consisting of
Ks-invariant elements of LZ(B), which becomes naturally a representation space
of the finite group K/Ks. Thus we are interested in an irreducible decomposition
of L4(B, Ks).

First, it is not hard to show that there is a decomposition

2B, Ks) = @ L%B, Ks, X ()
ueAs(F)
(corollary to Proposition 1). Here, As(F) is the set of characters ¢ of F*\ A! such
that the corresponding x (g, ¢) are characters of T(F)\ TY(Ks N T (A)) of
order at most 2 and L%(B, Ks, X (#)) is the space generated by residues of
El(g, @, A) for Ks-invariant elements @ € I (x (u, u)//A).

Next, by further calculations of residues of Eisenstein series, it is shown that
[ = Uo is the trivial character then L%(B, Ks, X (1)) consists of constant func-
tions (Theorem 2) and if g is nontrivial then one has an irreducible decomposition

LyB, Ks, X(w) = & LiB, K, X(wh = D As(p)

A€l (S,p) Ael(S,un)
(Theorem 1). Each As(y) is a K/Ks-irreducible subspace in I (x(u, ©)//A)
and I' (S, y) is a certain subset of the set of all maps from S to the two points set
{0,1} . Isomorphisms L34(B, Ks, X ()); = As(u) are derived from the constant
term map. Irreducible representations of Sps(k,), v € S occurring in a tensor pro-

https://doi.org/10.1017/50027763000004086 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004086

RESIDUAL AUTOMORPHIC REPRESENTATIONS OF Sp, 17

duct decomposition of As(u) are described by using the labelling of Enomoto ([7])
and Srinivasan ([20]) (Lemma 7).

Using these results, we can classify those automorphic representations real-
ized in L%(B) which have (non-zero) vectors fixed by Ks for some S. Let A(F)
be the union of As(F) for all finite sets S of finite places and I'(y, B,) for n €
A« (F) the G(A) module generated by all vectors in I(u, B1) fixed by Ks for
some S. Then Theorem 1 implies that there is a nontrivial intertwining operator
R, from I'(u, B1) into L%4(B) for each nontrivial y € A«(F). Further, it is
known by [3. Corollary 3.3.7] and [6. Proposition 3, 4° (b)] that I'(g, Bi) coin-
cides with I (u, B1) if F is totally imaginary. Unfortunately, we have been unable
to prove the irreduciblity of w (), the image of ®,. However, we can show that
the number of irreducible constituents of 7 (y) is at most 2'5®! (Theorem 3),
where S,(g) is the set of finite places v such that g, is ramified, and each irre-
ducible constituent of () is of multiplicity one in L%(B) (Theorem 4). The last
assertion is derived from the fact that each K—tybe As( ) is of multiplicity one in

%(B, Ks).

The major part of this paper will be devoted to calculations of residues of
Eisenstein series. It will be carried out in Sections 2, 3, 5 and 7. Main results are
stated in Sections 6, 7 and 8. In Section 4, we will recall the representation theory
of the finite group Sps(F,y), which we need for precise expressions of intertwining
operators occuring in the constant terms of Eisenstein series.

1. Preliminaries

Let F be an algebraic number field of finite degree over Q. For each place v
of F, let F, be the completion of F at v and | - |, the normalized absolute value on
F,. V; denotes the set of all finite places of F. For v € V; let 0, be the valuation
ring of F,, #, = p,0, the maximal ideal of 0, and k, = 0,/%, the residual field.
Let A be the adele ring of F,| - |a = Il,| - |, the idele norm and A! the group
consisting of ideles with idele norm one. The infinite part of A is denoted by A.

We fix, once and for all, a finite subset S of V. Let Us be the compact sub-
group consisting of ideles (@,) € A! such that | a,|, = 1 for all places v and
a, €1+ P, for any v € S. s denotes the Pontrjagin dual of the compact group
F*\ AYUs.

Take an element ¢ € Qs. If we decompose ¢ to the product of characters gy of
F;* then, by definition, g, is trivial on 0¥ or 1 + %, according as v € Sor v € S.
Hence, for each v € S, the restriction of ¢, to 0¥ induces the character *y, of k.
We denote by €(z, ¢) the Hecke L-function of g with the ordinary I" factor so
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that it satisfies the functional equation £(z, g) = e(@)&(1 — z, ™Y, If ¢ is the
trivial character g, then we write simply &(z) for &(z, uo). The residue of &(2)
at z = 1 is denoted by c(F).

For an algebraic group G defined over F and an F-algebra A, G(A) denotes
the group of A-rational points of G.

Let G = Sp4 be the symplectic group of degree two, that is

G(F)={g€GL4(F)|g(_OI 6)'&’:(_9[ {))}’ Iz((l) (1)>

Let T and N be a maximal split torus and a maximal unipotent subgroup of G, re-
spectively, as follows:

T(F) = {t(a, b) = diag(a, b,a™, b)) € G(F)}
v = (¢ L)( ) eewia=(} ).s-s]

Then B = TN is a Borel subgroup in G.

Let X(T) (resp. X*(T)) be the character (resp. cocharacter) group of T.
There is a natural pairing <, ) : X(T) X X*(T) — Z. We take a,, a, € X(T)
such that a1 (¢(a, b)) = ab™! and ax(t(a, b)) = b? Then { @y, ap, @3 = oy + s,
as = 2a; + a3} (resp. {ay, as}) is the set of positive roots (resp. simple roots) of
G with respect to (B, T). Further, 8, = a; + a»/2 and B, = a; + &, are the fun-
damental weights of G with respect to (B, T). The coroot corresponding to &; is
denoted by @) for 1 <7< 4. Since G is simply connected, one has X(T) =
ZB; + 2B, and X*(T) =Zay + Zay. Set a=X(T) QR,ac =a++y—1 g,
a* = X*(T) QR and af = a* + y/— 1a* Then {8,,8:) and {aY,ay} is the pair
of dual bases for a and a*. The set C* = {aB, + bB:| a, b € Ry} is the Weyl
chamber in a corresponding to (B, T). Let o(resp. 7) be the reflection with
respect to the line RB: (resp. RB:) in a. Then the Weyl group W of G is generated
by o, 7.

Let K. be the standard maximal compact subgroup in G(A«) and K, =
G(0,) for v € V. The product K =K. X [I K, is a maximal compact subgroup
in GA). For v € S, let 7,: K,— G(k,) be the reduction homomorphism. The
compact group Ks = Ko X [l,ev,-s Ky X [l,es Ker(#,) is a normal subgroup of K.

The homomorphism H from T (A) onto a* is defined to be H (t(a, b)) =
loglal| aaY + log| ab|aay. We set T'=Ker(H) and TR). = {t(a, d) |
a,b € R,}. Then T(R), is diagonally embedded in T (A~) and T (A) has a
direct product decomsosition T(A) = T(R).T! Thus the map ac— Hom
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(T (A)/T?, C*) : A+ e<MH> hecomes an isomorphism.

If we define the character x(u, v)of T(A) by x(u,v) (t(a, b)) =
w(@)v(b) for p, v € Qs, t(a, b) € T(A), then the correspondence (u, v) —
x(u, v) gives a bijection from 2s X 25 to 2s(T) = Hom(T (F) \ TY(Ks N
T(A)), C*). For x € Qs(T) and a place v, v-component of x is denoted by X,.
If v €S, the restriction of X, to T (0,) induces the character *y, of T (k,). The
Weyl group W naturally acts on £2s(7T). The set of W-orbits in 2s(T') is denoted

The space of square integrable functions on N (A)T(R)+T (F)\ G (A)/Ks
has an orthogonal decomposition

L(N(ATR):TE\G(A)/Ks) = D I(x/A)s.

X€Qs(T)

Here, for x € Qs(T), let I (x//A) be the space of all functions @ on G (A) satis-
fying @(ntg) = x(t)D(g) for any n € N(A), t € T(A) and g € G(A) and
1 (x//A)s the subspace of right Ks invariant elements in I (x//A).

For a moment, we fix a x € Qs(T). Let I (x,//F,) for each v denote the space
of functions @, on G(F,) satisfying D,(n,t,g,) = x,() D,(g,) for any n, €
N(F,), t, € T(F,) and g, € G(F,). If v& S, I (x,//F,) contains a unique spher-
ical function e(x,) such that e(x,) (14) = 1. Then one has a restricted tensor pro-
duct decomposition

I(x//A) = Q I (x,//Fy)

with respect to e(x,), v € S. Particularly, each element @ € I(x//A)s can be
written as (X ,esPy) Q (X yas e(xs)), where @, € I(x.//F,) is right Ker(r,)
invariant for each v € S. Further, let I (*x+/k,) for each v € S be the repre-
sentation space of G (K,) induced by the character trivially extended to B (k,)
from *y,. Then, for a right Ker(#,) invariant element @, € I (x,//F,), there is a
unique *@, € I (*x,//k,) such that @, (k,) = *®,(r,(k,)) for any k, € K,. By
the Iwasawa decomposition G(F,) = B(F,)K,, the correspondence @, — *®,
gives a bijection from the subspace of right Ker(#,) invariant elements in I (),
//F,) to I (*x,//K,). Hence one has the bijection

(1.1) I(Xv//A)S'_’ ® I(*Xv//ku) /]
veS
= (®ves¢v) ® (®0€S e(xn))— *P = Qyes*Dy.

For o =2, fi® ®; € C2(a*) Q LA(N(A)TR)+T (F)\ G(A)/Ks), the in-
complete theta series

Mg =2 X fi(HGg)P:(rg)

re€B(F)\GF)
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converges and belongs to the Hilbert space L2(G (F)\G (A)/Ks). Let I3(B, Ks)
be the closure of {p"| ¢ € C&(a*) @ LX(IN(A)TR).T(F) \ G(A)/Ks)} in
LX(G(F)\G(A)/Ks).

Take an orbit X € Qs(T)/W and define the space L*(B, Ks, X) by the
closed linear span of {¢”" | @ € C&(a*) @ I (x/A)s, x € X}. If L4(B, Ks) and
L%(B, Ks, X) denote the space associated to discrete spectrums in LZ(B, Ks) and
L*(B, Ks, X), respectively, there is an orthogonal decomposition

2B, Ks) = & %(B, Ks, X).
X< Qs(TY/W
A theorem of Harish-Chandra says the space L4(B, Ks, X) is of finite dimension.
Further, K acts on this space by right translation. Since the action of Ks is trivial,
L%(B, Ks, X) becomes a representation space of the finite group K/Ks. In Section
6, we will give completely an irreducible decomposition of L4(B, Ks, X).

Let X € Qs(T)/W and x € X. For @ € I(x//A) and A € ac, the Eisenstein

series

E(g, 0,4 = > e<A+6,H(rg)>@(Tg)

reB(F\G(F)

defines an automorphic form on G (F)\G (A) provided Re A € C* + 4, where let
0 = B; + B The constant term of E (g, @, A) is given by

Eo(g, D, A) = X eA+sH@ My A %) O(g).

wew

M (w, A, x)@(g) equals
1.2) e<—wA—d,H(g)>f e<A+d,H<w-1ng>>¢(w—1ng)dn
) WN(A)w-1nN(A)\N(A) )

Here, for any closed connected subgroup N’ of the unipotent group N, we use the
Haar measure dn on N’(A) such that the volume of N’(F)\N’(A) equals one.
This M (w, A, x) defines a linear map from I (x//A)s to I(wx//A)s. It is known
by general theory that both E(g, @, A) and M (w, A, x) have meromorphic con-
tinuation on ac as functions of A and M (w, A, ) satisfies the functional equa-
tion of the form

(1.3) M (ww,, A, x) = M (w1, w.A, wox) M (ws, A, x)

for any w,, w; € W.
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2. Calculation of M (w, A, %)

Throughout this section, we fix a x € Qs(T) and @ = Q,0, € I (x//A)s,
D, = ¢,(x) for v € S. First we calculate the integral (1.2) for the generator o, T

of W. Let
0 1 0 O 1 0 00
" = -1 0 0 O " = 0 0 01
’ 0 0 o0 1) 0 0 10
0 0 -1 0 0 —1 0 0
be representatives in K of ¢ and 7, respectively. Further, let
1 0 O 1 0 00
01 O 01 0 x
@D =100 1 o) " lo 01 0
00 —x 1 0 0 0 1

be the one parameter subgroups associated to the simple roots a; and &, respec-
tively.

In what follows we identify @ (resp. @,) with *®@ (resp. *®,) by the isomorph-
ism (1.1), hence we will often neglect the symbol % . To mention a statement of
results, we need a few more notations. Take an » € C with absolute value one and
an arbitrary z € C. Define, for each v € S, two operators &,(o, *x,) and
Ao, z, ¥) on I (*x,//K,) by

#o(0, *1) Bolhs) = G52 E By (w5 no() 7 (k)

ZE€ky

(0, 2, N Ok = (205 ) g

1 — rgy*!

{2 awrtn@nt) + (£ ) @~ Do)

for k, € K,. Replacing 0 by 7, 4.(7, *x») and (7, 2, 7) are similarly defined.
Let Si(x) for 1 <7 < 4 be the set of v € S such that *x, ° @ is trivial. The fol-
lowing is clear by definition.

LEMMA 1. Let v be in S and v a complex number with absolute value one.
(1) Both dy(0, 2z, ) and A,(T, 2, ¥) are rational functions of z and are holomor-

phic on {z € C|Re(z) > 0}.
(2) For v € S, d,(0, *xu) (resp. A,(T, *x,)) is an intertwining operator from
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I (%, /7Ky) to I(0% ), //Ky) (resp. I (T%x0/7Kyp)).
(3) If v € S51(x) (resp. v € S3(x)), then A,(0, 2, ) (resp. A,(7, 2, 7)) is a self-
intertwining operator of I (*x,//Kk,).

Now we can state an explicit formula of M (0, A, x) and M (7, A, ).

LemMa 2. Let x € Qs(T) and @ = @, @, € I (x//A)s. Then, one has

__ A o, x )
Mo, A, X)d)(k) E(<Ay a},> +1, y - ay) vESI——.Isl(ga (0, *Xv) D, (k)

X I do(o, <A, &, x - & () Do(ky)

veS1(x)

__EA, a0, x o) *
M, 42000 = 208 af> +1, 1 - ab) vesiag L7 1) ol

x I du(z, <A, o, x ° ¥ (0) (k)

veSa(x)

Jorany A € ac and k € K.

Proof. We prove only the first equality since the second is obtained by simi-
lar calculation. For each v € V; and x, € F,, elements c¢(x,) and #(x,) in O, are
defined as follows:

( ) _ pﬂ—ord(.tv) if Ly e F” — 00

R Bt if z,€0, '

u( ) — (.’L'UC(.Z',,))_I if o, € Fv - @u
Lo Ty if x, € 0, ’

Further, for each infinite place v and x, € F, we set

(x2 + 1)_% if v is real
(xT, + 1)77 if vis imaginary’

dm=[

x,c(x,) if v is real
Z,c(x,) if visimaginary’

u(z,) = [

where let x, — I, be the complex conjugate for imaginary place v. Obviously, for
any £ = (x,) € A, both ¢(x) = (¢(x,)) and u(x) = (u(x,)) are contained in A.
For £ = (x,) € A, set ks(x) = (kos(xy)), where
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(@) u(z)z, — c(x) ™ 0 0
_ c(xy) ¢ (zy) 2y 0 0
Feo(z,) 0 0 c(T) Ty — c()
0 0 - u(xv)xu + c(xu) -1 u(-rv)

Then ks(x) is contained in K and one has

(2.1) w5 n.(x) = ne(—u(x)c(x))ay (c(x))ks(x)
for x € A.

By definition, for A € (C*+0) +vY—1a and k€ K, M (o, A, x)D(k)
equals

[, i o w5, )k de.
The measure dx is normalized by vol (A/F) = 1. By (2.1), this equals
Jle@] &g @t @) ot bde = TT L,
where
1= e |80 yuat (c @) Oulhs (@ k)

for each v. If v &S, I, is easily calculated because X, is unramified and
@v(ku(xv)kv) = 1. We obtain

\ (et d=1/2) o
T T(+1+dy—1)/2) if v is real
F + dv _1 . « . .
I, =127 p(z(-gz- 1+ 21/,7:%) if v is imaginary,
1 —x,° al(B) @y} )
1. freV,—S
vol ( ){1‘"Xv°011V(Pu)qu] if v f

where let 2= <A, aY> and d, be the real number given by Z° af =
| 4¥=1 for each infinite place v.
If v € S, then one has

L= [, 0la@)k)dz,
+ J‘”_av qgrd(zv) Aar’> ' Z l ;-lxu o a;/ (p;ord(zv)) Qv(ka(xv) k,,)dx,,
= Gvol(0) T 0y(w5naz)ra(ks)

zek,

& v
+ 2 q;n<A,ax>xu R O(I/(Pu)"
n=1
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= gr3vol(0y) (0, *xv) Du(ks)

oV —<4,a1>
+ ¢;vol (O Ko 00 (Po)go > Fxy e aY () | B, (r,(ky)).
gi™vol(6,) [1—xvoa¥(pv>q;<f*m>,em 1o+ 0¥ (@)} 0, (r, ()

Therefore I, equals vol(0,) times

45 24,(0, *10) By(ky) if v & S,(x)

— ° v <A,a,Y>—l
(% — o"‘;v(‘(’;);f;_wy> ) (o, <A, @b, o+ @t (0) Dulhe))
v 1 v) v

ifv € Si(x)
Summing up, we obtain the desired equality for A € (C* + 8) + v— Ia. Then
EKA oY) +1,xa)) A, Y ) KA, > — 1)
x 11 1= x-a¥@ag®) Mo, 4, )OW

veS1(x)
must be holomorphic on ac. Hence, the equality is valid for any A € ac.
Using the functional equation (1.3), one can describe M (w, A, X) ® for any w
€ W.If wy-.. .wm, wj € {0, 7} for 1 £ < m, is a reduced expression of an ele-

ment of W, we define the operator &, (w; .. .Wn, *xy) on I *x,//Kk,) by
Ay (w1, Wy, .. Wy *Xv) oy (s, W3- - - Wy, *Xv) o ooy (W, *Xv)-
This definition is independent of reduced expressions, actually one sees ,((07)?,

*Xu) = ,va((‘[a')z, *Xv) by (wawr)z = (wws)% We set

= - ECA, a0, x> a)
BUo= I oy vl a)

w(a<0
for each w € W and let S,(x) be the set consisting of ¥ € S such that x, is un-
ramified. Then, for any A € ac one has the following:

Moz, A, x) @
= Hoe(A, X) {®ve5-$z(x)—$3(x) 4, (o7, *Xv) @v}
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®

——

®veSz(x)—Ss(x) Ay (o, T*Xo) ° dy(t, <Ay ay >, Xov° ay (Pv)) ¢u]
® {®ve($—82(x))ﬂ$z(x) A0, <A, o >, Xo° o3 (o) ° Ao(T, *x0) Qv]
® | @uesuco 9u(0, <A, a¥>, %0 a¥ (B0) - du(z, <A, a¥,

%o+ af (0)) .
M(zo, A, x) @

= Bl 2 {®res-sio-sin 4u(70, 1) .|
® | @uesio-sun Aoz, 0*1) * (0, <A, at >, 20> 0¥ (90)) B )
® { @reis-simnsio do(e, 4, @D, 10 @l B) * (0, *1) O,
® | Buesuin dulr, A, @ >, 1o @ (4) * du(o, <A, ab ),
%o+ af ¢9) 0, }

M (oo, A, x) @

= B, ) {@res-sin-ssn-sun #(070, *1) @, }
® | @uets-sucomsinnsu 90, A, a¥), 10+ a¥ B) * dhu(za, *1.) B,
® | @uesio-ssim-sia A0, 0%1) * do(0, A, ), 10+ AV (4) B
® { Res-siennsio-ssw Do(0, T0*X0)
(e, CA al>, o o (02 * du(o, *1) O
® [ Buesun-siomso 440, <A, ¥, 1o+ 0¥ ()
oz, 0 + oo, A, @l >, 100 ¥ (6) B |
® { ®uesuin du(0, <4, @), 0 * ¥ (0)

(e, CA, @, 20+ @l () dulo, <A, @l >, 200 @ (9) O,
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M (rot, A, x) @

= Foc(A, X) {®ves—52(x)—83(x)—54(x) dy(Tot, *x4) @u}
&® [®ve(S—Sz(x)—53(x))r\S4(x) dy(T, </1, af >, Xv°® al (Pv)) > dy(ot, *Xv) @v]
® {®veSz(z)—Ss(x)—S4(x) d,(to, %) ° dy(z, KA af ), oo af (b)) d)v}

® {®ue(S—Sz(x))nSa(x>—Sc(x) A,(t, ot*x,)
s o, A @y, o o (0) * dulz, *1) B,

® { Buesun do(z, <A, al ), 0+ ¥ B0)
c @, (A, @y, 100 @Y (P) » Aoz, (A, 0¥, % a¥ (0) O,

M((o70)% A, x) @
= BoonA, ) {®res-v,reisin (002, *1) B, )

® { @rets-Uyasinnsin do(0, CA, al>, 20+ a¥ () * dulzor, *1) O, |
® { Bves-s:00-s300105800-5100 F(0, TOT* )
e, CA @ >, oo @l (0) * du(oT, *1) O )
b { Qresam-siw-ssw-saw (07T, T¥)10)
iz, (A @), g0 (B) O )
X { Qe s-saannssm-si0~ssw (0T, OT*Y)
“ (0, (A Y >, 10 ¥ (8) - oz, *1) B,
® {®v€((S—Sz(l))nSa(z)—Sd(x))nSI(x) dy(o, CA o) D, xo° @) (Do)
o du(T,0T) + du(o, <A, ¥, 100 AV (B) © dolT, *x0) Do)

® {®,,Es,,(1> dy(o, A, ) D, xo° a (By) ° do(z, <A i 7,

https://doi.org/10.1017/50027763000004086 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004086

RESIDUAL AUTOMORPHIC REPRESENTATIONS OF Sp, 27

xo° @l (0)
c (0, A0 ), o af () - sz, <A, a¥ D, o af () B, ).

In this paper, we are interested in the singular hyperplanes of M (w, A, x) contri-
buting to the spectral decomposition of L?(B, K). Such a singular hyperplane S
has to satisfy the following condition (cf. [14, Theorem 7.1}, [17, Theorem 5.12]).
(2.2) S is defined by a linear equation of the form { A,a > = ¢ with positive
real constant c.
From this and Lemma 1 (1), we obtain:

Lemma 3. Let Si={A€ac|{Aaf> =1} for 1 <i<4. Then S;,1 <4
< 4, exhaust the singular hyperplanes of M (w, A, x), w € W, x € 2s(T), contri-
buting to the spectral decomposition of L*(B, Ks).

3. Residues of M (w, A, x) (1)

Each S; is rewritten as S; = Cu; + v;, 1 <1< 4, where uy = B2, 42 = S,
Us = Q, Uy = &z and v; = @;/2 for 1 < 1 <4. Then we take a coordinate z;(A) on
SiasA=z;(MDu; + v, for A€ S;, 1 <1< 4.

Next, for 1 < 1,7 < 4, let W;; be the set of elements w € W such that —E
= §;. Obviously Wj; is empty unless ¢ = j modulo 2. For 1 < ¢ < 4, let W; be the
union of Wi, 1 <j< 4,

For x € Qs(T), @€ I (x//A)sand w € W, we set

i — £2)
Mi(w, A, x) = 27rc(F)\/:chM(w’A + zv;, x) dz
,- 0 |
Ei(g, 0, 4) = ZM(FN:—ILE(g, O, A+ ) dz

for A€ S;, 1 <i< 4, where C is a small contour around the origin in the com-
plex plane. Let A;; denote the intersection of S; and S; for 7 # J. One sees that the
order of pole of E'(g, @, A) at A = A is at most one for any @ € I (x/A)s,
x € Q2s(T),1 <7<4,5F 1 (cf Lemma 11). Then the main theorem of [11] de-
duces that, for X € Qs(T)/W, the space L4(B, Ks, X) is spanned by

ReSA=A1iEi(gy ¢1 A)r (S I(X//A)Sy X = Xy l= 1721 1 g] < 4!]#: Z

belonging to L2(G (F)\G (A)). Here, notice that, since principal singular hyper-
planes (in the sense of [17]) are only S; and S, it is enough for our purpose to
consider only residues of E'(g, @, A) for i = 1,2 (cf. [17, Chapter 6]). Since the
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residue Ress=45 E'(g, @, A) is completely determined by its constant term
i
j;V(F)\N(A) Ress-ay E'(ng, @, A)dn

= Resa-ay | 5 @09 Miw, A, n0(@) ],

weWw;

what we should do is to calculate residues of M*(w, A, x) at A = A;; for i = 1,2,
1<;<54,5+1.

Let As(F') be the set of characters ¢t € £s such that g? = o, where g, is the
trivial character. For each y € As(F), the W orbit of x(u, ) is denoted by
X (p), that is, X (¢) = {x(u, )}, Then the next proposition follows from direct
calculations.

ProPOSITION 1. Let X € Q5(T)/W be a W orbit. Assume X & {X (p) |
nE As(F)}. Then, foramy y €EX, wE€ Wand 1 < i+ j < 4, Respen, Mi(w, A, x)
=0

By that mentioned above, we obtain
CoroLLArY.  L%(B, Ks) =@eayqm Li(B, Ks, X (p)).

The major part of remains of this paper will be devoted to a detailed calcula-
tion of residues of M*(w, A, x) for x =x(u, 1), ¢t € As(F). At first, we give an
explicit form of M‘(w, A, x). For each # € As(F), the subset Su(g) of S is de-
fined to be S.(p) = {v € S| g is unramified}.

LEMMA 4. Let ¢ € As(F) be a nontrivial character, ¥ = x(u, 1) € 2s(T)
and @ € I (x//A)s an arbitrary element. Then, for any w € W, M%*(w, A, x)® is
tdentically zevo. Furthey one has

Mo, A, x) @ = Rves 4,(0,1,1) O,

§(z + —%* ©)
Ml(Tay Av X) @ = { ®UES—Su(u) -ﬂv(fr*Xv) ° '5240(0.2 19 1) @v}
e+, )

X {®ve$u(u) Ay(t, 2+ %, (D)) ° Ay(0,1, 1) d)v]
EQDEGE+ 5, )

M (oto, A, x) @ = 3 X
§Qz+ 1Dz + 5 )
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{ @ues-suw #0(0,22, 1) + du(z, *1) * du(0, 1, 1) 0,

® | @resuaw 900, 22, 1) = oz, 2+ 5, 1 (B)" (0,1, 1) O, |

£QDEG — 5, 1)
22+ DEG+ 3, )

MY ((a7)?, A, x) @ =

[ @esosuan (0, 1, 1) » ol, *) + 0, 22, 1)  dule, *x2) B )
® | Buesuw #u(0, 1, 1) » oz, 2 + 5, tu(p)
1
(@, 22, 1) - du(c, 2= 5, 1w (0) D, )
f01’ any A= ZUy -+ v € Sl.

Lemma 5. Let x = x (o, tto) € 2s(T) be the trivial character and @ €
I (x//A)s an arbitrary element. Then one has the following:
For A =2zu + v € Sl,

Ml(oy A: X) ¢ = ®vES du(ay lyl) Qﬂ
1

gt 3)
3

et 1

§REE+ )

Mi(zo, A, ) 0= [@es iz, 2+5, 1) - dia, 1, 1)

X
M'(oto, A, ) @ = §C@z T DL+ %)

[ @ues (0, 22,1) =, 2+ 5, 1) oo, 1, 1) B,

£@22)&(z — %)
3 {®ves‘$2¢y(0', 1, 1)
Mi((o)%, A, x) @ = §@2z2+ 1€+ 3)
) de(’l', z+ %’ 1) ° ‘dv(a, 227 1) °‘Q¢v(Ty z %1 1) q)v}
ForA=zu, + v, € S,

MZ(T, /1, X) o= ®ves du(z’, 1,1 o,
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Moz, 4, ) 0 = FEFP | @ues (o, 2+ 1, D) - du(z, 1, 1) 0,
Mot A, 1) @ = 5 g { @ues oz, 2, 1) » dalo, 2+ 1, 1)
cdi(r,1,1) 0, )

M@0 A, 1) 0 =5 g3 { @ues (o, 2= 1, 1) - dhu(z, 2, 1)

c (0, 2+ L1) +dd(c, 1, 1) 0, ]
These lemmas are easily proved. Consequently, we obtain the following:

ProposITION 2. Let p € As(F)be a montrivial character. Then L%(B, Ks,
X (u)) is spanned by Ress=s E'(g, @, A), ® € I (x (1, 1)//A)s, where 1 = Az
= Awu is a fundamental weight of G.
Proof. From Lemma 4, it follows
ReSA=A12 El(g; Qy A) = O
ResA=A2,EZ(g, @, A) =0, 1 3]34,]9&2

for all @ € I(x(u, n)//A)s. On the other hand, by Lemma 4 again, it is possible
that E*(g, @, A) has a simple pole at A = B,. If so, the constant term of Ress=g
E'(g, @, A) equals

e BHOH® (Ros, o MY (070, A, x) D + Resa=sn M ((07)%, A, x) O}

Thus, Langlands’ L%-ness criterion deduces Ress—51 E'(g, @, A) is square integr-
able for any @ € I (x(u,u)//A)s. This implies the assertion.

Residues of M(o7to, A, x(u, @) and M*((o7)?, A, x(u, 1)) at A = B, for
nontrivial g € As(F') are given as follows.

Resp-ps M*(ot0, A, x(u, 1)) @
= CF(Z ) {®ves—5u(u) .va(()', 1, 1) o du(f, *XV) o .dp((]’, 1,1 ¢v]

® | ®vesun #ula, 1, 1) = oz, 1, @) * da(0, 1, 1) @, }

Resp—p1 M'((07)%, A, x (4, ) @
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= S @ o s (o, 1, 1)  du(z, 10
+ (0,1, 1) * du(z, *1) O, )
® { Ruesu dul0, 1, 1) + (e, 1, wp) * du(a, 1, 1)

(2,0, 1)) o,

where ¢cr(p) = c(F)EQ, ©)E(2)&(2, 1)~ Hence, in order to describe L%(B,
Ks, X (1)) as a representation space of K/ Ks in more detail, we have to investi-
gate the intertwining operators #,(o, 1, 1), &,(7,*x,),.... To do so, we use a

result of Gurtis and Fossum. Thus, in next section, we recall the representation
theory of G (k,).

4. Principal series of G (F,)

Throughout this section, k denotes the finite field of cardinality ¢. For a char-
acter *x of T(K), let I (*x//K) be the representation of G (K) induced by the
trivial extension to B(k) of *x and H (G,B;*x) denote the centralizer ring of
I (*x//K). Dropping the lower index v, operators & (w, *x) and A (w, 2z, 7) for
w € {0,7} on I(*x//K) are similarly defined as in Section 2. In this section, we
explain an irreducible decomposition of I (*x//K) for some particular *x and then
represent the operators & (w, *x) and & (w, 2z, ) by linear combinations of those
projections to irreducible subspaces of I (*x//k) which are constructed by using
a theorem of Curtis and Fossum.

For a character g of k*, the character *x(u) of T(K) is defined to be
*y () (t(a, b)) = u(ab) for t(a, b) € T(k). Then we consider the following
three cases.

(#-1) p is the trivial character.

(#-2) ¢ =1 mod 4 and g is the quadratic character.

(#-3) ¢ = 3 mod 4 and g is the quadratic character.

Before going to case by case consideration, we state a result deduced from
general theory (cf. [5]).

LEMMA 6. Let *x be an arbitrary character of T (K). Then there is a bijection
n— 6(n) from the set of equivalence classes of irreducible representations of
H (G, B;*x) to the set of equivalence classes of irreducible constituents of I (*x//K)
such that the character of 1 is equal to the restriction to H (G, B;*x) of the character
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of 6(n). Here, notice that H(G, B;*x) is considered as a subalgebra of the group
ring of G(K). Furthermore, the multiplicity of 0(n) inl *x//K) is equal to the
degree of 1.

Now we start with the case (#-1).
(#-1) *x = *x (), p is the trivial character.
The self-intertwining operators o and a; of I (*x//K) are defined to be

4D a(D)(g) = X O(ws'n(x)g), a(P)(g) = X P(wr'n(x)g)

zek rek
for @ € I (*x//K). Further, if w=w1 . . . wm, w; € {0, 7} ,1 <7< m is a
reduced expression, we define aw by Qu, - - - Qu,, Which does not depend on re-
duced expressions. Then H (G, B;*x) is generated by a, and a; together with the

relations
ai=qa,+ (g— Das,, a?=qa.+ (qg— Da,, (a.a)? = (a.a,)?

where a, is the identity map of I (*x//K). Irreducible representations of H (G,
B;*x) are exhausted by the following ones up to equivalence.

as— Jas— —1 Jag Jas— —1
771~[a1,___,g, Uz-{aTHq ’ 7]3-{6[1}_._)?__1! 7]4-[6!;’,_,_.1

’75’“0Hﬁ(zg(;2}l-l) q(ql—1)), aTH<(q) _01)

Let 6#(n;) be the irreducible representation of G(k) corresponding to 7;.by
Lemma 6 and V; the 6 (n;)-isotypic subspace of I (*x//k) for 1 < 1 < 5. Then one
has

100k =& v,

i=1

{V,-’—E O(n) forl<i<4
Vs = 0(ns) D 6(ns).

If P; denotes the projection from I(*y//k) onto V; for 1 <¢<5, then |5,
Theorem (2.4)] allows us to represent P; by linear combinations of o, w € W.
Actually one has

1
P, = Z Ay
Y@t DA+ 1) wew
P, = m {qae = + qa; — Qor — Qo + q_laow — Qqor T+ q_la(rnﬂ}
P; = m {qae + qas — Ay — Qor — Ao — Qoo + q‘lawt + q‘la(o‘rﬂ}
P, 1 {*'a. — Pas — ¢Pa: + ¢Pao:

T @t D@+D
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+ ¢®Qe — qQore — GOlor T Qona}

1

= 2@+ D {290, + (¢ — Das + (¢ — Da,

5

+ ¢ g — Dasw + ¢7Hg — 1) or — 2¢ 002} -

We express & (o, 1, 1) and 4 (zr, 1, 1) by linear combinations of projections to
irreducible subspaces. By definition,

4@, 1,0 =47 @ta), 411D =4 @ta).
Thus, it follows from easy calculation
A@,1,1) =P +P;+Q, Q =DPd(d,1,1)
A4(r,1,1) =P+ P+ Q;, Q- =Psd(r, 1, 1).

Then @, and @, are considered as elements in Endgqo(Vs) and satisfy the follow-
ing:

We define four elements of Endgao (Vs) by

Po= oy (7 2000+ (@ D',
Pe= oy (- 2000+ @+ D'Q)
R =V2L0TD 0.0, - @), R="2LaTD Q0. - a),

where y2¢q is the positive square root of 2q. Then these elements satisfy
P:=R.R.=P,, P!:=R,R_ =P,
P,P, = PP, = (R+)2= (R—)2=0

Therefore P,, P, R;, R becomes a base of the four dimensional space
Endgao(Vs) and both P, and P, are projections to irreducible subspaces in V.
Representing @, and @; by these we obtain

(4.2) 4(0,1,1) =Pi+P;+ Ps + qii_%lf-

d(r,1,1) = P, + P, +PT+4L§TR+.
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We set particularly

—0 = V2q
Ps+——Qo——Pg+q+1R_.

Then Ps 1 (*x//K) = 6(5s) and one has

(4.3) 4, 1,1 d(z,1,1) -4, 1,1) =P, + —24_ pz
(g+1)?

Since 4 (w, z, r), w € {0, 7}, equals

#q—m {Q—rgHAQ+ gV d (w,1,1) +¢7 ' (rg**— Da,l,

one has
(4.4) 40, 1,1) e d(r,1, = 1) - d(0, 1, 1)=P1—;Iz_2f_—1P3
d(a, 1, 1) °JZ¢(T, 1, - 1) oﬂ(o.; 1) 1) °,Q¢(2', O’ - 1) =Pl +qu_+_L1P3.
(#-2) ¢ = 1mod4, *x = *x(u), ¢ is the quadratic character.
We define the self-intertwining operators ay,, w € W of I (*x//K) as in (4.1).
Then the centralizer ring H(G, B;*y) is generated by a, and a. together with
the relations

ai = qa, + (¢ — Da, at = qa,, (aoa0)? = (aa5)?

Irreducible representations of H (G, B;*x) are exhausted by the following ones
up to equivalence.

rfar—g rfoae— 1 '.[a'—'q r,{a*—’—
’71'{a:r-*q%’ ”2'{a:*—>qfl’ Bila =g Mila——g
1
n;:aoH((q) .91)7 a‘r‘_—)<2-%— qf))r

where q% is the positive square root of ¢. Let 6(7;:) be the irreducible representa-
tion of G (k) corresponding to n; and Vi the 6 (n;)-isotypic subspace of I (*x//k)
for 1 £ ¢ < 5. Then it follows from Lemma 6

5
ICx/k) =DV,

i=1

[V,»":”@(n?) for1 <i<4
Vs = 0(ns) D 0(ns).

If P; denote projections from I (*x//K) to V; for 1 < i < 5, then by [5], one has

1

= m {ga. + gqa, + q%a, + q%a.,, + q%am + q%am + Qor + Aona)

’
1
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1

= m {g*ae — qao + @a: — @Faoe — q20tes + q 200z

P,

— Qror + q_la'(ar)Z}

1

= m {qae =+ qas — q%ar - q%aar - q%aw - q%—aaw

3
+ Qror + Q’(W)z}

1

= m {¢?a, — qa, — q“g‘ar + q%aar + q%aw — q‘%am

4
— Qror + q_la(ar)Z}

b= G%F {2qa. + (¢ — Dy +¢7* (¢ — 1) Qor — 2¢7 @003}

We set
Q=5 (@ +d@ ) P Q=73 (@—d@r ) P,
R+ = 2%(0, 1, 1)Q+ - Q+r R— = 2'524(0-7 11 l)Q— - Q—-

Since (0,1, 1) = g (@ + a0, d(r, %) = ¢ @ and Az, )" =
one has

Qi=R-R.,=Q,, @ =R.R_=0Q-
Q:Q-=Q-Q.=Ri=R:2=0.
Therefore {Q+, @-, R+, R} gives a basis of End(Vs). Then
4(6,1,1) =P, + Pi + 5 (@ + Q-+ R. + R)
d(t,*x) =P+ P,— P;— Pi+ Q: — Q-.

Hence we obtain

(4.5) 40,1, 1) - d(r,*y) ~d(0,1,1) = P{ — P;

A0, 1,1) - d(zr,*x) *d(o,1,1) - d(z, *x) = P, + P;.

(#-3)g = 3 mod 4, *x = *x(u), ¢ is the quadratic character.

This case is similar to the case (# -2), hence we will omit the details. Define
oy, w € W, as in (4.1). Then the centralizer ring H (G,B; *x) is generated by ao
and a: together with the relations
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ai=gqa,+ (g — Da, ai= —qa, (aa)?= (a.a.).

Irreducible representations of H (G,B; *x) are exhausted by the following ones
up to equivalence.

. qu ay— —1 a;+—q
’71.{ —-—(— q)z’ Uz-[ar,_,__(_q)z, ﬂs-{ar,_,( q)2’

i (T e e (8 0)) am (L 0 TG )

where (— )7 lies in the upper half plane of the complex plane. Let #(77) be the
irreducible representation of G(K) corresponding to n; and Vi the 6(ny)-
isotypic subspace of I (*x//K) for 1 < ¢ < 5. Then it follows from Lemma 6

Vi'=60@xi) for1 £i<4
Vs = 0(ns) D O®s).

Let P;" be the projection from I (*x//K) to Vi for each 1 < ¢ < 5. Then, from the
argument similar to the case (#-2), it follows

(4.6) A, 1,1) cd(zr,*x) cd(o,1,1) = —/—=1(P] — P)
d0,1,1) - d(zr,*x) = d(a,1,1) - d(z, *x) =— (P + P5).

5
I(*x//k) = @1 Vi, l

5. Residues of M (w, A, x) (2)

We return to calculations of residues of M (w, A, x). In this section, we fix a
nontrivial character ¢ € As(F) and put x = x(u, ).
Define four subsets of S as follows:

SH(u) = {v € S| *u, is the quadratic character and *u,(— 1) = 1}
S; () = {v € S| *u, is the quadratic character and *u,(— 1) = — 1}
SH(p) = {v € S|y is trivial }

S () = {v € S| py is unramified and g, (p) = — 1}

Then S is the disjoint union of these subsets. Notice that if v € S lies above 2
then v is contained in S,(¢) = Sf(u) U S;(u). We apply results in Section 4 to
I(*y,//K,) for each v € S. I (*x,//K,) takes the case (# -1), (#-2) or (#-3)
according as v € S, (), SF () or S;7(y). Then, using the notations of Section 4
with respect to k = K, and *)x = *x,, we define irreducible subspaces Y¢#(v) and
Y& (v) of I (*x»//ky) as follows:
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+ 3 = +
Bt ve S, PiVs if v e Si(p)

. e -
YE@w) =1V it ve S, Yé(v) = V3, %f v S,:(/l)
V// if v E S_(#) Vl lf vE S’ (ﬂ)

' e 12 if v€S7(w

Let R} (v) be the projection of I (*3,//k,) to Y#(v) for i = 0,1.

LEMMA 7. Using the labelling of Srimivasan ([20]) for v X 2 and Enomoto ([7])
forvl|2,

the trivial representation if v € Su(p)

Yt(v) = 6, if ve Sr(#)

6 if v €Sy andv 42
o, if vE€SH(p) andv |2
Ye) =36 if veE S;(w andv [t 2,
6, if ve€S;(W andv|?2
O if v €S ()

where S, () is the union of S7F () and S;7(p).

We remark that Enomoto’s character table contains some misprints. The
degrees of 6, and @, are correctly %q,,(q,, 4+ 1)% and %q,,(q,f + 1), respectively.
This is easily checked from the defining equations of 6, and 5 in [7, p. 83].

Proof. First we assume v € S, (), hence one has the case (#-1). When ¢ =
@y is odd, the correspondence 7; = 6 (n;) is well known (cf. [23]). When ¢ = ¢, is
even, one can compute explicitly 83(Bw,B) and 6;(Bw.B) by using the tables of
conjugacy classes and characters in [7]. Then one has 03(Bw,B) = 1.(as) and
0;(Bw,B) = n,(a,), hence V, = 6(n,) = 6;. Further, from the formula in [5], it
follows dim8(72) = dim6 (1) = 5 ¢(¢*+ 1) and dimf(7s) = 5 q(¢ + D
Thus the character table concludes Vs & 6(n3) = 6, and P5Vs = 6(n5) = 61

Next, assume v € S;} (), hence one has the case (# -2). The formula in [5]
deduces that dim6(n7) = dimf(n3) = % (g2 + 1), hence {0(n1),0(n3)} = {6s,
64} . Furthermore, Littlewood’s formula (cf. [12]) deduces 6(n1)(g) = 0(n3)(g)
for any g € G(k,). Then, by the character table in [20], it is known that Vi =
6(n) = Osand V5 = 0 (1) = 6.

Finally, assume ¥ € S; (). From the similar arguments to the second case, it
follows {0 (n7),0(ns)} = {6, 64} and Imaginary (0 (n7)(g)) = Imaginary(6(n3)
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(g)) for any g € G(Kk,). The character table in [20] allows us to conclude V;" =
6(ny) = 65 Vi’ = 0(ny) = 6.

The following lemma is an immediate consequence of (4.3), (4.4), (4.5) and
(4.6). Here, note that the cardinality of S, (4) is even since g is an even charac-
ter.

LEMMA 8. Let u € As(F) be a wontrivial character, x = x(u, ¢t) and @ €
I(x//A)s an arbitrary element. Then

Resp—p Mt (070, A, ) D

_ () (— 1)IS;<mI+IS;<m1/z * e
- 2 [®06Su(u) (Rf(v) + (qv __I,_ 1)2 Rg(v)) @v}

® { Buesiw (RE0) = o R{) 0] © { Buesiwn (REW) — Riw)) 0.
Resy-p M*((07)% A, x) @

= e (@, 10 (REW) + ﬁj Riw) 0.

® { @uesin (REW) + Ko Riw) 0] © | @uesrn REW) + R5@)) 0.

6. Decomposition of L%(B, Ks, X (1)) for nontrivial y

We take a nontrivial ¢ € As(F) and put x = x (g, ). Let I'(S) be the set
of all maps from S to {0,1}. For each A € I'(S), As(y) = ®es Y}, (®) is an
irreducible subspace in ®@es I (*x»//ks) and R} = & yes R}, (v) the projection
of Qyes I (*x»//Ky) to As (1). By the isomorphism (1.1), As(y) is identified with
a subspace in I (x//A)s. The subset I' (S, ¢) of I'(S) is defined to be

'S, p=0er®) |ep =(— 1)ISND'+%ls;<m1+u-1(o)nsr(a)|+u—uo)ns;tmt}
where A171(0) is the inverse image of 0 by A. By Lemma 8, we obtain
ProrosiTION 3. Let ¢t € As(F) be a wnontrivial character, A € I'(S) and @ €

As (1) an arbitrary element. Then the constant term of Resa-g E'(g, @, A) is equal
to the following:
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e(Wer (1) qu(R) e H@ g0y if A€ (S, p)
0 if A€r,u’

whene

_ e _ 2, 24,
e (1) §@2)EQ, 1)’ o) vex-l(glns;(u) (g, + 1)? ueru{)[ns;(m g +1

CoroLLARY. Forany @ € I (x(pu, n)//A)s, one has
Resp-p E'(g, , A) = 20 Resa-p E'(g, R{D, A).

Aer(s,p)

Proof. The constant term of the left hand side is equal to that of the right
hand side. Hence, Langlands’ lemma implies the assertion.

Let L%(B, Ks, X (1)) be the space spanned by Ress-s, E'(g, @, A), ® €
As () for each A € I' (S, u). Combining with Proposition 2, one has

THEOREM 1. Let u € As(F) be a wontrivial chavacter. Then one has a
K/Ks-irreducible decomposition
2B, Ks, X(w) = & Li(B, Ks, X ().
AET(S,)
For each A € I'(S, ), the constant term map gives rise to a K/Ks-isomorphism from
%(B9 KS’ X(ﬂ)) onto 28(#)

7. Decomposition of L% (B, Ks, X (1)) for trivial u

Throughout this section, go and x = x (o, &) denote the trivial characters.
We prove the following:

TueoreM 2. L%(B, Ks, X (o)) comsists of constant functions.
We must calculate residues of E'(g, @, A) at A = Ay, A3 and of E2(g, 9,
A) at A = Ay, Ags, Ay In what follows, E§(g, @, A) denote the constant terms

of E'(g, @, A) for i =1,2.

LemMa 9. E?%(g, @, A) is holomorphic at A = Az = /2 and A = Az = B2
forany @ € I (x//A)s.
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Proof. 1t is sufficient to show that E%(g, @, A) is holomorphic at A = a»/2
and B,. By Lemma 5, one has

RESA=012/2 E()Z(bk, Q, A)

= %%)le<""+"'”“’”{®ues dy(0, 1, 1) > dy(z, 1, 1) Po(ky)

— Ryes Ao(7, 0, 1) ° dy(o, 1, 1) - dy(z, 1,1) @, (k»)}
ResA=ﬂz E(?(bkr @7 A)

=%%wwmw&wthwmmanwmmnmm

- ®1}ES -dv(a, 0, 1) ° ﬂu(r, 1, 1) ° .va(d, 2, 1) ° du(t, 1, 1) ¢1)(kv)}

for any b € B(A) and k € K. Since both #,(z, 0, 1) and #,(o, 0, 1) are the
identity map of I (*x,//K,) for any v € S, the residues are identically zero.

LEmMMA 10. The residues of E'(g, @, A), 1 = 1,2 at A = A1z = 0 are constant
Sunctions for any @ € I (x//K)s.

Proof. Resa=s E&(bk, @, A) equals

—%%)l{@,,es (0,1, 1) » dolz, 2, 1) » do(0, 3, 1) » dol, 1, 1)) By()}

for any b € B(A), k € K and 1 = 1, 2. Since
&49(0’, 1y 1) ° -dv(ry 2, 1) ° dv(o', 3: 1) ° dv(T, 1’ 1)

is the projection to the space of constant functions for any v € S, we obtain the
assertion.

LEmMMA 11. The order of pole of E'(g, @, A) at A = Aj3 = By is at most one
for any @ € I (x//A)s.

Proof. By Lemma 5, one has

lim (a(A) —5)°Ed(k, @, A)
a-1

c(F)*
2£(2)?
— ®ues do(0, 1, 1)+ dy(r, 1, 1) * dy(0, 1, 1) = dy(z, 0, 1) B (ky)}.

{Ques du(0, 1, 1) * dy(r, 1, 1) » 4y(0, 1, 1) D,(ky)
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This vanishes since &,(z, 0,1) is the identity map for any v € S.
By Lemmas 9, 10, 11 and the main theorem of [14], it is known that the space
2(B, Ks, X (¢to)) is spanned by the constant functions and those residues of
Ei(g, @, A), @€ I(x/A)s at A= B; which are square integrable. Hence, in
order to finish the proof of Theorem 2, we must show the following.

ProposiTiON 4. Let @ € I (x//A)s. If Resa=s, E'(g, @, A) is square integrable
on G (FY\G (A), then it is identically zevo.

Proof. Let z= z,(A) be the coordinate of A on S;. We note that M'(o70,
A, x) and M*((o7)%, A, %) may have double pole at A = B;. By Lemma 5, the re-
sidue of E¢(bk, @, A) at A = B equals
Z Resss, {e<wA+6,H(b)> M‘(w, /1, X) Q(k)]
weWi

(—az/2+6,H(b)> ResA=glM1(Z‘0', A, X) @(k)
+ hm dz (z — __)ze<awA+d,H(b)> MI(O'TO', A, X) @(k)
z_._

+ 11m (Z — _)2 {aD)2A+8,H () Ml((G'T)Z A X) & (k)

= VIO Res s M (20, A, 1) O (R)

{hm (z ——)ZMl(gz-g A, %) q)(k)] d p(oTON+IH®)

z—.__

2

A=p1

+ $BrSH® Ress-g M (a7, A, x) O (k)

{llm (z — —)2M1((o-z-)Z A, x) ¢(k)} _._e<(ar)2/1+6 H®)>

71

2

A=p1

+ o EHIEO? Ros, o MM ((07)%, A, 1) O(K).
Since the second and fourth terms are cancelled out each other, one has
Ress-g E&(bk, @, A)
= (/2 HO) Reg, o M(70, A, x) OK)
+ gCBHBH®D Reg, o {M (070, A, ) OKk) + M ((67)?, A, x) D@k)}

for b € B(A), k € K. Then it follows from Langlands L2-ness criterion that the
residue of E'(g, @, A) at A = B, is square integrable on G(F)\G(A) if and
only if the first term of the right hand side vanishes. Therefore, the next lemma
completes the proof of Proposition 4.
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LemMma 12, Let @ € I (x//A)s. If Resppy M (70, A, x) D is identically zero,
then so is Resp=g, {M (070, A, ) @ + M*((07)?, A, x) D).

Proof. We assume Resy-p M (7o, A, x) @ is identically zero. Then, by Lem-
ma 5, one has Qpes &y(7, 1, 1) - 4,(5, 1, 1) @, = 0. Hence, there exists at least
one place # € S such that A,(z7, 1, 1) - A,(z, 1, 1) &, = 0. We fix such a place
u. For k = Kk, and *x = *yx., we use the same notations as in Section 4 case
(#-1). Then, by (4.2),

dyr, 1, 1) oy, 1,1) = P, + (P, + Y2%_R ) pz.
gt 1

Therefore, @, must belong to the space (P, + P; + Py + P5) I (*x.//Ky), where
-—p _ V2qu_
P; =P, it 1 R_

is a projection satisfying Pf¥Ps = Ps P = 0.
Assume @, € (P, + Py)I (*x// k.). Then one has

du(o, 22, 1) ° d.(7, z+ y 1) e dy(o,1,1) O, =

Aulo, 1,1) °» (7, z+ , 1) o dy(o, 22, 1) o dy(t, z2— ,1)<Du=0,

and hence M!(oto, A, x) @ = M‘((or)z, A, x) ® = 0. This implies the asser-

tion.
Assume @, € P3I (*x, //ku) Then one has
&f(aZzl)d(rz-i— , 1) e d,(0,1,1) @,
— (9 2 - l)gu
45*’2‘ -1
A0, 1, 1) » dule, 2+ 5, 1) - du(0, 22, 1)° du(z, 2= L0,
— (g P — 1) (g7 — 1)@ O,
(gi* 7~ 1)(45’“2 -1
and

Res,1=,g. M"(O'Z'O', A, X) [0)]
E@DEGE+ ) -

Pe@et DEGE+D)

= Res;=

(Qu 2—1)qu¢]®
gt —1
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{ Qpes—w dy(o, 22, 1) * dy(z, Z+ , 1) » (0, 1,1) o}

(B 108 4
2@ -1 *®

{@yes-w do(0, 1, 1) > do(z, 1, 1) * dy(o, 1, 1) B}
Resa-s, M((07)?, 4, 1) @
£(20)EG — 3)
@it DEG+ 3 [

= Res,- (g% — 1) (g5 — 1)¢d } ®

g2z — 1 (gi*? — 1)
{ Ques—w Ho(0, 1, 1) « oy(7, z+ , 1) o dy(o, 22, 1) - dy(7, 2 — ,1) D,}

_ c(F)*qu log gu o,
25 2)%g: — 1 ®

{®UES—{u) 'ﬂv(oy 1) 1) ° ‘ng(f, 17 1) ° ‘dv(ay 17 1) ° ‘dv(fy Oy 1) ¢U}-

Since #y(7, 0,1) is the identity map for any v € S — {u}, Resa=s, {(M*(o70,
A, x) @ +MY((o1)% A, x) D} vanishes.

Assume @, € P51 (*x,//k,). From P#®, = 0, it follows M'(o7o, A, x) ©
= 0. On the other hand, one has

Resa-s M'((07)%, A, x) @

1
Lk N 17 B Ui IV IOES Y
YfrDEG+D L @P-D@E- D

@' = D(gE?2 = Dagg—1)  (g3—1) qu<qu +1) }
(g7 — 1) (g&*% — 1) (@ — 1) (g — 1)

« {gi+ V24, p o
(¢ +1)°

® ( @ues—iw (0, 1, 1) * du(t, 2 + 5, 1) * du(0, 22, 1) * do(z, 2= 3, 1) @)

=_£_(Ii{__&qil%_ql+24ulogqu} it V244 p o
28 (2)? -1 @ -1 (g + 1)° “

® {®UES—W) *ng(o-) 1) 1) ° -ﬁv(T, ]-, 1) ° 'dv(o.y 1) 1) ° -dv(Ty Os 1) ¢U}
= 0.

This completes the proof of Lemma and hence Theorem 2.
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8. Residual automorphic representations

In this section, we give another representation theoretic interpretation of
Theorem 1. For this, it is convenient to consider various S simultaneously. Hence,
we set Ao(F) = UAs(F), where S runs over finite subsets of V. For each ¢ €
Ax(F), S,(u) also denotes the set of v € V; such that g, is ramified.

We fix a nontrivial g € A«(F). Let

I(g, By) =Ind(B(A) T G(A): e Hy (u, 1))

be the normalized induced representation of G (A). This I (g, 1) has a restricted
tensor product decomposition: I (g, B1) = &,L,(u, B1) (cf. [15]). For any finite set
S C V; containing S,( ), we denote by I (u, B1)s the subspace spanned by right
Ks-invariant elements of [I(u, Bi). Further, I'(y, B.) denotes the G(A)-
submodule of I(y, B1) generated by I(u, B1)s for all finite sets S € V; contain-
ing S,(u). Then the residue map

I(x(p, /A)s— Ly(B, Ks) : O Ress—5, E'(g, @, A)

induces an intertwining operator from I*(g, B1) into the space associated with re-
sidual spectrums L%(B). We write () for the image of this intertwining oper-
ator. Namely, w(g) is an automorphic representation generated by L%(B, Ks,
X () for all finite sets S < V containing S, ().

PROPOSITION 5. Let u € Au(F) be a nontrivial character and & ,mwo( ) a res-
tricted tensor product decomposition of T (). If u & S,( 1), then m, (i) is a spherical
irreducible representation of G (F,).

Proof. From the above construction, m,( ) is clearly spherical. We show the
irreduciblity of it. In the following, we denote by m,(u). for an open subgroup
L C K, the subspace consisting of L-invariant elements of 7, ().

First, assume # is a finite place. Then it follows from [3. Corollary 3.3.7] that
the u-component of a restricted tensor product of I'(g, B1) coincides with I,(,
B1), so that m, () is isomorphic to a quotient representation of I,( ¢, B1). We take
a finite set S V, such that S,(x) U {#} €S and | Sy (x) | = 2. Then, by
Theorem 1,

m(wx, = L3(B, Ks, X () = D As(p)
AET(S,u)
and

Tu( ) kerw = Y (u) D Y (u).
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Let L, = r;*(B(k,)) be an Iwahori subgroup of K,. By the Frobenius reciprocity
law and Lemma 7, it is seen

3 ifu € SH(w

dim m, (1)1, = 2 ifue S;(w

On the other hand, from [2. Lemma 4.7] and [18. Chapters 3 and 6], it follows that
I,(u, B1) has a composition series of the form

O =Lchclhchclo=L(u B)
Jo/ ] is spherical

and
3  ifu€ SH(p

dim(Jo/JV) 1 = 2 fue S'(y)'

This implies 7, (@) = Jo/ /1.

Next let m.() (resp. (1)) be the infinite part (resp. finite part) of m ().
We show m.( ) is irreducible. Since L%(B) decomposes to the sum of irreducible
subspaces, so is 7 (). Hence, if () is reducible, it decomposes to the sum of
proper subspaces 7&( ) and 7#4( ). Then, by Theorem 1, one has

(k. D w2 ()g) X 717/(#)1(5', = b As(w
A€ (S,

for any finite set S C V; containing S,(u), where K is the finite part of Ks.
Since 7()ks, = @ serswAs(p) and the multiplicity of As(g) in mw(g)k, is one
for any A € I'(S, p), either w&(wxk, or w&(u)x, must be trivial. We assume
n4( @)k, is trivial. Then w(p)x, = ma()x, & 7,(1)k,,. Since m(y) is generated
by m(u)k, for finite sets S C V; one has w(y) = mu(u) @ m,(4), and hence
To(p) = mh(10).

It seems that () is irreducible. However, at present, we know only the up-
per bounds of the number of irreducible components of 7 ().

THEOREM 3. Let 4t € Aw(F) be a nontrivial element. The number of irreducible
components of () is less than or equal to 2'7),

Proof. By Proposition 5, it is sufficient to show that the number of irreduci-
ble components of m,(x) is at most 2 for any v € S,(u). Thus we fix a v €
S,(4), Since the v-component of a restricted tensor product of 7'(y, Bi1) equals
I(u, B1) by [3, Corollary 3.3.7), m,() is a quotient representation of I,(y, Bi).
Further, by [3, Theorem 7.2.4], each constituent J of 7,(x) has a non-zero vector
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fixed by Ker(#,). In other words, the subspace of Ker(#,)-invariant elements of J
contains necessarily at least one nontrivial representation of G (k,). On the other
hand, if we take a finite set S C V; such that S,(#) € S and |S;(g) | = 2, then
one has 7()x, = D rersw As(#) and hence 7, (W kerevn = Y{'(v) D Y (v) by
Theorem 1. This implies that the number of irreducble constituents of 7,(g) is at
most 2.

THEOREM 4. Let € Au(F) be a nontrivial character. Then each irreducible
constituent of (p) is of multiplicity one in L4(B).

Proof. By Proposition 5 and the proof of Theorem 3, it is known that each
irreducible constituent of 7w (u) has a non-zero vector fixed under Ks for suffi-
ciently large S. Then the assertion follows from the fact that As( ) is of multiplic-
ity one in L%(B, Ks) for any A € I'(S, p).

Finally, we remark about an L-function of 7 (). Proposition 5 implies that
the set of irreducible constituents of 7 (u¢) becomes an L-packet of automorphic
representations. We write L(s, #(y)) for the standard (degree 5) L-function
attached to this L-packet. If we define the factor L,(s, m(u)) attached to a rami-
fied place » € S,(¢) by (1 — ¢>°)7}, then the simple calculation gives

L(s, m(w) = Cp(s)L(s, w)?L(s — 1, p) L(s + 1, p),

where {r(s) is the Dedekind zeta function of F.

REFERENCES

[1] J. Arthur, Eisenstein series and the trace formula, Proc. Symp. Pure Math. Amer.
Math. Soc., 33 (1979), 253-274.

[2] A. Borel, Admissible representations of a semi-simple group over a local field with
vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233—-259.

[3] W. Casselman, Introduction to the theory of admissible representations of p-adic
reductive groups, to appear.

[4] C. W. Curtis, N. Iwahori and R. Kilmoyer, Hecke algebras and characters of para
bolic type of finite groups with (B, N) pairs, LH.E.S. Publ. Math, 40 (1972),
81-116.

[5] C.W. Curtis and T. V. Fossum, On centralizer rings and characters of representa-
tions of finite groups, Math. Zeit. 107 (1968). 402—406.

[6] M. Duflo, Représentations unitaires irréductibles des groupes simples complexes de
rang deux, Bull. Soc. Math. France, 107 (1979), 55-96.

[ 7] H.Enomoto, The characters of the finite symplectic group Sp(4, ¢q), ¢ = 2/, Osaka
J. Math. 9 (1972), 75-94.

[8] Harish-Chandra, “Automorphic Forms on Semisimple Lie Groups,” Lecture Notes
in Math., 62, Springer-Verlag, 1968.

https://doi.org/10.1017/50027763000004086 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004086

RESIDUAL AUTOMORPHIC REPRESENTATIONS OF Sp, 47

[9] K. Hashimoto, Representations of the finite symplectic group Sp(4, F,) in the
space of Siegel modular forms, in “The Selberg Trace Formula and Related Topics,”
Contemporary Math. 53. Amer. Math. Soc., 1986, pp.253-276.

[10] S. Helgason: “Groups and Geometric Analysis,” Academic Press, 1984,

[11] R. B. Howlett, Some irreducible characters of groups with BN pairs, J. Algebra, 39
(1976), 571-592.

[12] R. B. Howlett and R. Kilmoyer, Principal series representations of finite groups
with split BN pairs, Comm. in Algebra, 8 (1980), 543—-583.

[13] Y. Kitaoka, On Eisenstiein series of degree two, Proc. Japan Acad., 63 (1987),
114-117.

[14] R. P. Langlands, “On the Functional Equations Satisfied by Eisenstein Series,” Lec-
ture Notes in Math. 544, Springer-Verlag, 1976.

[15] ——, On the notion of an automorphic representation, Proc. Sympo. Pure Math.
Amer. Math. Soc., 33 (1979), 203-207.

[16] T. Oda and J. Schwermer, Mixed Hodge structures and automorphic forms for
Siegel modular varieties of degree two, preprint.

[17] M. S. Osborne and G. Warner, “The Theory of Eisenstein Systems,” Academic
Press, 1981.

[18] F. Rodier, Sur les représentations non ramifiées des groupes réductifs p-adiques;
I’exemple de GSp(4), Bull. Soc. Math. France, 116 (1988), 15-42.

[19] J. Schwermer, On arithmetic quotients of the Siegel upper half space of degree two,
Compositio Math., 58 (1986), 233—-258.

[20] B. Srinivasan, The characters of the finite symplectic group Sp(4, q), Trans.
Amer. Math. Soc. 131 (1968), 488—-525.

[21] K. Takase, A note on the automorphic forms, preprint.

[22] R. Weissauer, Vektorwertige Siegelsche Modulformen kleinen Gewichtes, J. reine
angew. Math., 343 (1983), 184-202.

[23] H. Yoshida, On representations of finite groups in the space of Siegel modular
forms and theta series, J. Math. Kyoto Univ, 28 (1988). 343-372.

Department of Mathematics
College of General Education
Tohoku University
Kawauchi Sendai 980
Japan

https://doi.org/10.1017/50027763000004086 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004086



