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§1. Introduction

Let V be a complex vector space of dimension [ and let G GL(V)
be a finite reflection group. Let S be the C-algebra of polynomial func-
tions on V with its usual G-module structure (gf)(v) = f(g~'v). Let R be
the subalgebra of G-invariant polynomials. By Chevalley’s theorem there
exists a set # = {f,, ---,f;} of homogeneous polynomials such that R =
Clf, ---,fi). We call # a set of basic invariants or a basic set for G.
The degrees d, = degf, are uniquely determined by G. We agree to
number them so that d, < --- < d,. The map r: V/G — C* defined by

(1.1 2(Gv) = (f(v), - -+, flv)

is a bijection. Each reflection in G fixes some hyperplane in V. Let
o = o/(G) be the set of reflecting hyperplanes and let

1.2) NG = U H
(1.3) MG =V~ \JH.

If He of let ey be the order of the (cyclic) subgroup fixing H and let
ay€ V* be a linear form with kernel H. Since [[gzc,a%¥ ¢ R we may

define a polynomial A(T,, ---, T}; #) in the indeterminates T, -- -, T, by
(1.4) Afy o fis B) = 1 aif .

Hewo
We call the polynomial A(T, ---, T,; #) the discriminant of G relative to

% since it depends on the basic invariants. The hypersurface

(1.5) (N@G)G) ={(z, -+, 2) e C' |z, -+, 255 #) = 0}
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will be called the discriminant locus. E. Bannai [1] computed the fun-
damental group of the complement z(M(G)/G) of the discriminant locus
for all irreducible unitary reflection groups with dim V =2. In the
course of this work she computed the discriminants 4(f,, f; %).

If VeCV is a real form of V and WC GL(Vg) is a finite Coxeter
group we may view WC GL(V) as a unitary reflection group. In an
earlier paper [14] we defined a class of finite irreducible unitary reflection
groups, called Shephard groups. In (2.11) we associate to each Shephard
group G C GL(V) a finite irreducible Coxeter group W GL(V) which is
determined up to isomorphism. Both G and W are isomorphic to quotients
of the same Artin group. Since W is also a reflection group it has basic
invariants, discriminant, etc. When both groups G, W are in question
we use notation such as f¢, f¥, 4,, 4y, d$, dV, ete. to indicate the depend-
ence on G, W. If a statement involves only one Shephard group we
usually suppress this dependence and may apply the statement to G or
W. Given a Shephard group G and the corresponding Coxeter group W,
inspection of the known values of df, d¥ as listed in Table 1 reveals
the remarkable fact that

(1.6) dfldy = ... =dj[d}].

This suggests that there may be connections between the invariant theory
of G and W. Corollary (2.26) asserts that with suitable basic sets %,
Ay for G, W the discriminant loci z(IN(G)/G) and =(N(W)/W) are defined
by the same polynomial:

.7 4Ty, -+, Ty RB) = 4(Ty, - -+, Ty Byw).

Here, and in the rest of this paper it is convenient to write a =~ b if
beC*a. In (5.1) we use (1.7) and work of Deligne [5] to show that

(1.8) If G GL(V) is a Shephard group then M(G) is a K(x, 1) space.

We illustrate (1.6) and (1.7) for the pair (G, W) where G = G, in
the Shephard-Todd classification [19] and W is the Coxeter group of type
A, = D,. The degrees d¢ are 6,9, 12 and the degrees d} are 2, 3, 4.
Thus d¢/dY = 3 does not depend on i. To illustrate (1.7) we use poly-
nomials C,, C,, C,, and €,, defined by Maschke [9, p. 326]. Shephard and
Todd [19, p. 286] remarked that we may choose %, = {C,, C,, C,;} and that
€ =~ [lueww@n. It follows from Maschke’s work [9, p. 326] that %, =
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Table 1.
G wo
S&T r'G d¢ (W) dr
P 4 4
G(p, 1,0 0—~0—---—0 ».2p.--+,Ip 0——O0—---—0 2,4, .+,2]
p
3 0 » 0 2
3 3
4 0—0 4, 6 0——0 2, 3
4 4
8 0—-0 8, 12 0—0 2, 3
5 5
16 0—0 20, 30 0—0 2, 3
3 4 3 4
5 020 6, 12 0—o 2, 4
4 4 3 4
10 020 12, 24 0—o 2, 4
5,3 )
18 0—20 30, 60 0—0 2, 4
3 5 3 5
20 0—-0 12, 30 0——0 2, 5
3 ]
6 0—20 4, 12 0—20 2, 6
4
9 0—2-0 8, 24 0—40 2, 6
5 6 6
17 0—0 20, 60 0—"-0 2, 6
3 8 8
14 020 6, 24 00 2, 8
3
21 029 12, 60 029 2, 10
3 3 3
25 0—0——0 6,9, 12 0——0——0 2,3, 4
4 3 3 4
26 0t 0—0 6, 12, 18 0—o0—0 2, 4, 6
3 3 3 3
32 0——0——0——0 12, 18, 24, 30 0——0——0——0 2,3, 4,5
(432C% — C% + 3C,C,,)* — 4C3; and thus
(1.9) AT, Ty, Ty; #B,) = (43215 — T + 3T\ T,)* — 4T3.

To compute the discriminant for W = D, choose a basis x;, x,, x; for V*
such that [[gecomm ar = (6] — xd)(x} — x3)(x; — x3). In this coordinate sys-
tem p, = x! + x5 + %3, py = x%%, and p, = xjx3 + x3xi + xjx} is a basic
set for W. Consider a cubic polynomial with roots x?, 2, 2. The formula
for the discriminant of this cubic, expressed in terms of the elementary
symmetric functions of the roots, gives the identity
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(1.10) [T o« = @2pi — 9p: + 2703 — 4(p} — 3p,)°.

Hew (W)

Let fi=p, f =p./4 and f, =p; — 3p,. Then %, = {f,f.,f;} is a basic
set for W and we have

(1.11) 4,(T,, T, T;; By) = (432T5 — T} + 3T\T,) — 4T3.
Comparison of (1.9) and (1.11) illustrates (1.7) for this pair of groups
(G, W).

In (2.18) we define, for each Shephard group G and basic set 4, an
I % 1 matrix AT, ---,T,; #) with entries in CI[T}, ---, T)]. We call
AT, -, T,; #) the discriminant matrix of G with respect to #. It
follows from the definition of the discriminant matrix that
(1'12) A(Th yTl;g)zdetA(th ’TL; '9?)'
Suppose #Z = {f,, -- -, f,) is another basic set. Define polynomials ¢ (T},
o TY by fy=ofis -+ ). Let T,=¢(T,, ---, T). It follows from (1.4)
that
(1‘13) A(Tn""TZ;'@)zd(TM""Tl;'@)'

The corresponding transformation formula for discriminant matrices is
more complicated; see (2.22). Write « = d¢/d” for the constant defined
in (1.6). The main result (2.25) of this paper implies that if G is a
Shephard group and W is the associated Coxeter group then there exist
basic sets #, and %, such that

(1.14) ; 4,T,, ---, T;; Bs) = Ay (T, - - -, kT, By) .

Since (1.14) asserts an equality of matrices, it is a much sharper statement
than (1.7), which asserts an equality of polynomials. We derive (1.7)
from (1.14) in (2.26). Our proof of (1.14) uses the classification of Shep-
hard groups. For the exceptional groups with dim V = 3,4 we used
MACSYMA on a VAX computer to find the discriminant matrix. We
comment on the methods in Section 4 and give the results in the
Appendix.

The discriminant A(T), ---, T,; #) is a weighted homogeneous poly-
nomial. We show in (5.13) that if G is any irreducible unitary reflection
group then the weights of A(T,, ---, T,; #) are unique. We use this to
show that (1.7) implies (1.6).

We would like to thank Ben Noble for introducing us to MACSYMA,
and the Mathematics Research Center of the University of Wisconsin
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for providing computer time. We also want to thank Hiroaki Terao for
many helpful conversations.

§2. The Comparision Theorem

In this section we state the main result of this paper, Theorem (2.25).
In the first part of this section we assume that G C GL(V) is any finite
unitary reflection group and use the notation and the results of our
earlier paper [14]. Let Derg be the S-module of derivations of S and let
25 = Homy(Derg, S) be the S-module of differential 1-forms. Let {e;} be
a basis for V and let {x,} be th= dual basis for V*, fixed throughout
this paper. Then {D, = 9/dx;,} and {dx,} are bases for Dery and O as
S-modules. These modules are graded as follows. Give S = @,., S, its
usual grading so that S, = V*. We call nonzero elements of S forms of
degree p. Grade Derg by 6 € (Dery), if S, = S,,, for all p and grade @
by we (), if o((Dery),) =S,,, for all p. Thus D, has degree —1 and
dx, has degree +1. Both Derg and £ are G-modules. The G-action is given
by (g0)(f) = g(6(g~'f)) and (gw)(¢) = g(w(g'd)) where 6 ¢ Der; and w € 2.

Recall from [14] that the R-module Q¢ of G-invariant 1-forms is free
of rank [/ with a basis of homogeneous elements df,, ---, df,, The R-
module Der{ of G-invariant derivations is free of rank ! with a basis
2 =1{0,, - -,0,} of homogeneous elements. We call & a set of basic der-
ivations. Note that deg(df,) = d, = m, + 1 where the m, are the exponents
of G. Similarly degéd, = n, — 1 where the n, are the coexponents of G
as in [12,14]. We agree to number the n, in increasing order so that

we have

2.1) m< - ---<m; and n, < --- <n,.

Define the Jacobian matrix J = J(f,, - - -, f) by J,;, = D,f,. If 6 € Derg then
0 = 2, (6x)D,. Define a matrix Q = Q(b,, - - -, 60,) by Q,; = 6,x,. It follows
from the definition of the G-action that if fe R and 6 € Der§ then 6(f) € R.
Since

(2.2 J7Q); = 22 (0,x)(Df) = 0jfi

it follows that J7Q ¢ M, (R) whare J” is the transpose of J. Let T}, ---, T,
be indeterminates. Since R = CI[f,, - - -, f1] and the basic invariants f;, - - -, f;

are algebraically independent, there exist unique polynomials (T}, - - -,
T)e C[T,, ---, T)] such that (JTQ)“ = ‘!fij(fu - ‘,fz)-
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(2.3) DerFiNITION. Let # = {f,, ---,f,} be a set of basic invariants
and let 2 = {6, ---,0,} be a set of basic derivations. Define the discrimi-
nant matrix A(th Ty Tl; ‘@, -@) by A(TI! Ty TL; ‘@1 g)u = wu(Ivb Ty TL)'
Thus
(2'4) A(fu ° }fl; '@’ -9) = J(fly ° "fL)TQ(ﬁu te "61)-

Define homogeneous polynomials J and @ by
(2.5) J= 1] ay. Q=] ax.

Heo Hew

The degree of J is the number m of reflections in G. The degree of @
is the number n of reflecting hyperplanes [12, 14]. It is proved in [19]
that J =~ detd(f, ---,f) and in [14,2.28] that @ =~ det Q@,, ---,6,). It
follows from (1.4), (2.4) and (2.5) that

(2.6) Afs, -5 fi; B) = det A(f,, -+, fi; B, ) = JQ.

Thus AT, ---, T,; #, 2) depends on # and 2 but its determinant depends
only on 4. For Shephard groups there is a natural choice of 2 in terms
of #. We repeat their definition [14]. Shephard [17, 18] introduced the
notion of a regular complex polytope # and showed that its symmetry
group G = Aut (&) is an irreducible unitary reflection group. A regular
convex polytope in R' defines a regular complex polytope in V = C' by
scalar extension. If & arises in this way we say that £ has a real form.
In this case G is a finite irreducible Coxeter group. Not all finite irre-
ducible Coxeter groups arise in this way.

(2.7 DEFINITION. A Shephard group is the symmetry group of a
regular complex polytope.

Coxeter [4, pps. 94-5, 147-9] showed that for each Shephard group G

there exist generating reflections s, ---,s, and integers p,, ---, p, and
integers ¢, - -+, q,_; such that G has a presentation with defining rela-
tions:

(2.8) sti=1

2.9) 8;8; = 8;8; if |j—k|>2

(2.10) 874188 41 = 8,818, fl1<j<ili—-1

where there are g, terms on each side of (2.10). Coxeter associated the
symbol p.[q.1p,- - - p.-:[q:-.]p, to the group G. It follows from the clas-
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sification of Shephard groups that the symbol is uniquely determined by
G up to replacement of p[aq]p.---p,..lq.-.]p. by its reversal plq, .lp, .
-«-polglp,. Thus we may make the following definition.

(2.11) DEerFintTiON. If G C GL(V) is a Shephard group with symbol
pilgdp.- - -p._lg.dp, let W GL(V) be the Coxeter group with symbol
2[q,12- - -2[q,_,]2. We call W the Coxeter group associated to G.

The group W is uniquely determined by G up to conjugacy in GL(V).
If # has a real form then W = G.

(2.12) DEeriniTION. Let G < GL(V) be a Shephard group with symbol
plgdp:: - -piilg._dp,. Associate to G a graph I'(G) which has vertices
8y, - -+, 8 with labels p,, ---,p, and edges between vertices s, and s,
which are labeled gq;,.

These graphs were introduced by Coxeter. If W is a Coxeter group,
let I'(W) be its Coxeter graph. In Table 1 we list the pairs (G, W) in
(2.11) together with their graphs. We omit the labels p, = 2 and q; == 3.
Table 1 also contains the invariant degrees d¢, d. In [2] Coxeter noted
in case [ = 2 and q = q, that

(2.13) df =2hlqg and df=nh

where h is the order of s;5,. Since d¥ = 2 and d¥ = ¢ this implies (1.6)
in case [ = 2. In fact if G is any Shephard group and A€ is the order
of 5,8,---s, then a case by case check shows that d¢/d} = h®/A" where
h" is the Coxeter number of W. Since the order of the center Z(G) is

the greatest common divisor of d¢, ..., d¢ [20, Cor. 3.3] we get a strongar
form of (1.6):
2.14) k= dfldY = |Z(G)||Z(W)| = hé[h".

Now we return to the invariant theory and the discriminant for a
Shephard group. Let G € GL(V) be a Shephard group and let £, be an
invariant form of minimal positive degree. The main result of [14] is
that the R-linear map Hess(f,): Der§ — Q% defined by

(2.15) Hess(f): 8 — >, 6(D,f)dx, 0 € Der§

is an isomorphism of graded R-modules. In particular it follows that
for given basic invariants f,, - .-, f, there exist unique basic derivations
0, - -+, 0, with
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(2.16) Hess(f))8, = mdf, i=1 -1

The matrix of Hess(f,) relative to the pair of bases {D,} and {dx,} is the
Hessian matrix H(f)) defined by H(f)),, = D,D,f,. The formula (2.16) is
equivalent to the matrix equation

(2.17) H(/)QO,, ---,0) = md(f,, -, f).

(2.18) DgerFiniTiON. Let G be a Shephard group and let Z = {f,, - - -, fi}
be a set of basic invariants. If 2 = {4,, - - -, 6,} satisfies (2.17) we call 2
the set of basic derivations associated to # and define

A(Tl, Ty Tl; '@) = A(T'b Tty TL; ‘gg’ 9)

We call 4(T,, -, T,; #) the discriminant matrix of G with respect to 4.
(2.19) Lemma. (i) d(f, ---,fi; ) = mJ"H(f)'J;
(i1) AT, ---,T,; #) is a symmetric matrix;

(i) 6.f, = 0,f; for 1 < i, j< L

Proof. Formula (i) follows from (2.4) and (2.17); (ii) follows from (i);
(iii) follows from (i) and (2.2). O

We showed in [14, 2.23] that 6, = > x,D, is the Euler derivation. It
follows from (2.19. iii) that 6,f, = 6,f, = d,;f;. It follows from (2.19. ii)

that
aT, 47T, --- d4,T,
AT, -, T,; B) = d2:T2 £ *
4T, = .
For convenience we define a matrix D(T}, - -, T}; #) by
(2.20) DT, -, T,; B) = AT,jd,, ---, T,)d,; B).

We also call D(T}, --
to #. Note that

(2.21) D@.f,, -, dify; B) = Af,, - [i; B).

In the next lemma we compare D(T,, --., T,; #) and D(T,, ---, T, &)
for basic sets %, Z. In the argument we use the fact proved in [14, 5.4]
that if G is a Shephard group, then an invariant form of minimal positive
degree is unique up to a constant multiple.

., T,; #) the discriminant matrix of G with respect
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(2.22) LemMA. Let # ={f, ---,fi} and & = {f.. ---. [} be basic sets
for the Shephard group G. Define ceC* by f, =cf,. Let E be the I X I
diagonal matrix E = diag(d,, ---, d,). Let p, be the polynomial defined

by d]fj :pj(dlfh Ty dlfl)- Let TJ == pJ(T‘I, ctty Tl)- LCt M be the l X l
matrix with (k,j) entry M, = 0T ,[0T,. Let N = EME". Then

(2'23) D(Tl’ ) Tl; 3?) - C‘INTD(TU T TL; <%)N'

Proof. Write J(%) = J(f,, ---,f). A calculation using the chain rule
gives J(Z) = J(#)N. Thus we get D(d.f,, - - -, dif;; D) = mI(Z)"H(f) 'J(Z)
= mN"J(Z)"H(f,) ' J(#N. Since f, =cf, we have H(f,) = cH(f) so
D(dlfh T, dl?l; #) = ¢ 'N'D(d,f,, - - -, d.f,; Z)N. ]

Now we are in position to compare the discriminant matrices D,(T,,

-+, T,; #) of a Shephard group G and D, (T, ---, T,; #,,) of the asso-
ciated Coxeter group W.

(2.24) NoratioN. Let G C GI(V) be a Shephard group and let W
be the corresponding Coxeter group. Given basic sets #, and %, we
sometimes write B, ~ By if DT, -+, T,; Be) =Dy (T, -, T,; By).

The main result of this paper, proved in Sections 3 and 4, is the
following comparison thzorem for discriminant matriczs of G and W. In
view of (2.20) this implies (1.14).

(2.25) TeROREM. Let G C GL(V) be a Shephard group and let W be
the corresponding Coxeter group. (i) If %, is a basic set for W then there
exists a basic set %, for G such that B, ~ By. Q1) If B, is a basic set
for G then there exists a basic set #, for W such that B, ~ %B.

(2.26) Cororrary. Let G C GL(V) be a Shephard group and let W
be the corresponding Coxeter group. Then there exist basic sets B,, By
such that

ATy, -, Ty Be) = A4(Ty, -, Ty HBy).

Proof. By (2.25) there exist basic sets %, = {f{, - -, fi} and Z, =
{fY, -+, fI'} such that Z, ~ %,. Thus Di(T,, -, T;; .} = DW(T,, ---, T},
#y). Tt follows from (2.20) that

4(Tjds, - - -, T\JdY; Bo) = 4y(T\/dY, - -, Tidi'; %) .

Let #; = {dff¢, ---,d?f¢} and let B, = {dVfV, ---,d]f!"}. The assertion
follows from (1.13) by taking determinants. O
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The next proposition shows that it suffices to prove (2.25) for one
particular basic set %, in (i) and one particular basic set %, in (ii).

(2.27) ProprosSITION. Suppose there exist basic sets %y, B; for W, G
such that B, ~ By. Q) If # is any basic set for W then there exists a
basic set #, for G such that %, ~ Zy. (i) If Z, is any basic set for G
then there exists a basic set %y, for W such that B, ~ By-.

Proof. (i) We apply (2.22) to both G and W. To indicate the
dependence on G and W we write c¢; E;, M;, N, and cy, Ey, M, N
Define polynomials p, by d¥f7 = p(d¥fY, ---,dVfV). Define f¢ by dsfé
= p,(d¥ff, -+, dff{). Then ¢, = ¢y, and M; = M,,. It follows from (1.6)
that E; = k-E; for some ke C*. Thus N, = N,,. Assertion (i) follows
from (2.23) applied to both G and W and the assumption DT, ---, T}; %)
= DT, ---, T,; #,). Assertion (ii) is proved in the same way. 0

§3. The case dim V = 2

(8.1) TeEOREM. Suppose dim V =2 and G C GL(V) is a Shephard

group with symbol plqlp,. Then there exists a basic set # = {f,, f.} such
that

T, T,
D(T, Ty; %) — [ ]

T, Ti ']’

Theorem (3.1) is a consequence of Lemmas (3.4)-(3.9). We introduce

some notation. If p, p.€ S we write J(p,, p,) = det J(p,, p.) for the Jaco-
bian determinant, a notation used throughout this section for various
polynomials p,, p.. It follows from (2.5) that for any basic set & = {f,, f}
we have J(f, f.) =J. Let 6, 6, be the basic derivations associated to %
as in (2.18). Since 6, = x,D, + x,D, is the Euler derivation, (2.4) and
(2.19. iii) give

af. df,
(3.2) A fi 93):[ hi i ]

d'ZfZ 0Zf‘2
Let (T, T.) be the polynomial defined by V(d.f,, d.f;) = 6.f.. Thus
T, T,
DT, 7 %) = | .
T, (T, T)

To prove (3.1) it remains to show that
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(3.3) b:f = (&, /)"
for suitable choice of f,, f,, Then (T, T,) = T .
(3.4) LEmMA. 6.f, # 0.

Proof. Suppose 6,f, = 0. It follows from (2.6) and (3.2) that J@Q =~ fZ
Since @ is square-free, @ divides f,, and thus f, divides J. For geG
let 6(g) = detg. It is known [21, p. 85] that J is a semi-invariant of G
of minimal degree with character §. Since JJf, is also a semi-invariant
of G with character § we have a contradiction. O

We have already remarked preceding (2.22) that, since G is a Shephard
group, the invariant f; is unique up to a constant multiple. We showed
in [14] that {f, J(Q, f)} is a basic set. Suppose {f,, f;} is any basic set.
Then f,e >, CfsJ(Q, f,)* where the sum is over all nonnegative integers
«, 8 such that ad, + fd, = d,. Thus either («, ) =(0,1) or =0, in
which case d, divides d,. It follows from (2.13) that 2d, = gd, so 8 =10
can only occur if ¢ is even. Thus there are two possibilities:

(3.5.1) f: = aJ(Q, ) if g is odd,
(3.5.11) f: = ad(Q, 1) + bfT if ¢ = 2r is even,

where a e C* and be C. In the next lemma we compute the basic deri-
vations 6, 8, associated to f;, f, where f, is given by (3.5). Let

(3:6) 1= —(D:Q)D, + (D,Q)D:.
Note that 59 = J(Q, ¢) for any g€ S.

(8.77 LemMA. Let G be a Shephard group. Let f, be an invariant
form of degree d, and let f, be defined by (3.5). Then the basic derivations
8,, 0, associated to the basic invariants f,, f, are 6, = x,D, + x,D, and

(1) 6, = d.ay if q is odd,

(1) 6, = dyanp + brf;='0, if q = 2r is even.

Proof. Recall from (2.5) that n = deg @ We showed in [14] that
H(f)Q®,, y) = mJ(f,, V) where (n + d, — 2)v = J(Q, f,). Note that n + d,
— 2=degJ(Q, ) = degy = d,. In view of the equivalence of (2.16) and
(2.17) we have Hess(f)8, = m,df, and Hess(f)y = m,d+». Now R-linearity
of Hess(f,) shows that Hess(f,)d, = m,df,. O
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(8.8) LeMmMA. The form J(Q, J(®,f)) is a nonzero invariant of degree
2d2 - d1 = (q - 1)d1

Proof. Let f, ¢, 4 be any binary forms of degrees m, n, p at least 2.
Let H(f) = det H(f) be the Hessian determinant of f and let

o(f, 9) = (DIf X Dip) — 2D, D,f)(D, Do) + (D5f)(Dip)

be their second transvectant [21, p.57]. Define (f, ¢)* by

T2(f’ §0) = m(m - 1)n(n - 1)(f7 SD)Z .

We use a known formula for the Jacobian of a Jacobian [23, p. 223]:

JIf, ) 9) = P (L9 + (e — (o 0f

Set f=f, and ¢ =+ = . We proved in [14] that z,(f, @) = 0. Thus

J(Q, J(@Q, 1)) = =(Q, @f, = HQ); -

Since @ is not a power of a linear form H(Q) # 0 [6, p.235] and thus
J(Q, J(Q, 1)) +# 0. In general, if G is a subgroup of GL(V) and f, ¢ are
semi-invariants of G with characters 4, ¢ then J(f, ) is a semi-invariant
of G with character iy [21, p. 97] where d(g) = detg. Since @ is a
semi-invariant with character 6-' [14, 2.27] and f, is an invariant form
it follows that J(Q, J(Q,f)) is an invariant of degree 2n + d, — 4. We
remarked in the proof of (3.7) that n + d, — 2 = d,. Since 2d, = qd, the
proof is complete. O

(3.9) Lemma. (i) If q is odd then there exists ce C* with
JQ, J(Q, 1)) = cf'. (1) If g = 2r is even then there exist c,, c,€ C not
both zero with J(Q, J(Q,f)) = c.f i' (@, f)) + c.f1™".

Proof. It follows from (3.8) that J(Q,J(Q,f)) <€ >, Cfifi where the
sum is over all nonnegative integers «, 8 such that ad, + gd, = 2d, — d..
Thus g =0,1. If 8 =0 then ad, = 2d, — d,. Since 2d, = qd, it follows
that « = ¢ — 1. If =1 then (¢ + 1)d, = d, so d, divides d;, and q must
be even. Since J(Q, J(Q,f) + 0 this completes the proof. O

To prove (3.3) it remains to show that constants e C* and beC
may be chosen so that 6,f, = (d,f,)*"'. Suppose first that ¢ is odd. Then
by (38.5)-(3.9) we have
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O.f, = d:a’nd(@Q, f) = da’J(Q, J(Q, ) = doa’cfi .

Since ¢ #= 0 we may choose a € C* so that d,a’c = d?~'. Now suppose q = 2r
is even. A degree argument as in (3.9) shows that 6,f, = k,f{~'J(Q,f)
+ kyf¢~' where k,, k,eC. It follows from (8.3) that k,, k, are not both
zero. We must show that there exist a e C*, be C such that 2, =0 and
k, = d{~'. Direct calculation gives

Oofy = dzasz(Q, f) + duabnfl + brfi~'0,f;
= dyd’J(Q, J(Q, 1)) + 2d.abrf{='J(@Q, f,) + dob’rfi~".

From (3.9) we get k, = dya’c, + 2d;abr and k, = d,a’c, + d,b’r. Choose
be C so that ac, + 2br = 0. Then k, = 0 and &, = a’(d,c, + dyci/4r). Since
k, = 0 we have k, #+ 0 and thus we may choose a c C* so that k, = d¢ .
This proves (3.3) and hence completes the argument for (3.1). O

(3.10) Remark. It follows from the preceding computation that for

given f,, an invariant f, which satisfies (38.1) is determined uniquely up
to sign.

To complete the proof of Theorem (2.25) in case dim V = 2, we apply
(3.1) to both G and W, where W has symbol 2[q]2, to conclude that
there exist bases %#;, #, such that

T, T,
DT, T:; #,) = [T: Th‘f'l] = Dy(T\, T;; #Bv). O
Table 2.
S&T Coxeter fi fo
Glg,q;2) 2[q]2 X% @V*Y gy +x)
G(p,1;2) pl412 xf +xf (p/2)(x}P —6xPxE +x37)
4 3[3]13 [ 8(—1/3)1/4
8 4[3]4 w (4/3)21/2y
16 5[315 H 4/3)(—5n2T
5 31413 ¢ (1/6)(—3)1/2¢
10 4[4]3 X 6(2W3—yx2)
18 5[4]3 T 15(T2+2H?)
20 3513 f ©@/5T
6 3[612 ® (16/3)(@*—2U3)
9 4[6]2 w (64/3)(W3—232)
17 5(612 H (400/3)2T2+ H?)
14 3[812 t 1/2)(x2+ W?)
21 3[10]2 f (12/5)(H3—T?)
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In Table 2 we list the Shephard groups for I = 2 together with a
basic set # = {f,, f} which satisfies Theorem (3.1). The invariant f, is
chosen as in [19, 4.14] to be one of Klein’s polynomials @, ¥, ¢, W, X, f,
H, T, [7l. The invariant f,, determined up to sign, is also expressed in
terms of Klein’s polynomials.

§4. The case dim V > 3

If dim V > 3 the Shephard groups which are not Coxeter groups are
the monomial groups G(p, 1, ) and the groups G, G, Gy in the classifi-
cation of Shephard and Todd. We use (2.27) which tells us that it suffices
to exhibit basic sets #;, #» such that DT, -.-, T;; %) = Dup(TY, - - -,
Ty; By).

First we consider the monomial group G = G(p, 1, ). In this case
the corresponding Coxeter group W=G(2, 1, 1) is of type B,. It suffices to
show that G has a basic set # such that the corresponding discriminant
matrix D(T,, ---, T,; #) is the same for all p. For £=1,2,3, --- let
sy = xf + .-+ + xf. Define polynomials ¢, = ¢, (T}, - - -, T)) by

(4'1) Sy = 9316(819 ] Sl) k= 1’ 27 3’ tt e

Thus ¢, =T, for k=1, ---,1. Let #={f,---,f,} be the basic set for
G(p, 1, 1) defined by

(4.2) kpfi = sy, 1<k<I.

It follows from (2.17) that the associated basic derivations are

4.3) 6, = ;xﬁ““’”Dj l<k<l.
Thus
Sp Sz cr Sy
I Y QE, ) = | S 11 Swens
LS;p 3.<z+1>p . Sei-1)p )
Since sy, = ¢x(S,, -+ -, 83p), the discriminant matrix
G P2 P
D(T,, ---, Ty; A= |72 & [ P
(90 ©ier - - O
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is the same for all p. This proves (2.25) for G = G(p, 1,1) and W = B,.

To complete the proof of the main theorem we have to find %,, %Z»
such that %, ~ #, for the three remaining pairs (G, W) which are
(Gus, D;), (Gy, By) and (Gy, A,). There are done by explicit calculation, in
part using machine computation in MACSYMA. We choose a basic st
By = {fV, -+, f7¥}. Since fy is a quadratic form, the Hessian H{fY) is
a constant matrix, so it is easy to compute the matrix Q@Y, ---,67) =
mYH(f) ' I(fY, - -, f¥) which satisfies (2.17). Note that m} = 1. Next
we compute J(fY, .-, fI)TQEY, ---,607). This is a matrix of W-invariants.
We express each matrix entry as a polynomial in the variables dYf7,
-+, dYfV¥ to obtain the matrix D, (T}, ---, T}; #,). Basic invariants for
the corresponding groups G were determined by Shephard and Todd using
work of Maschke [9]. Let # = {f,, - - -, f,} be their basic set for G. Any
basic invariant f{ of degree d¢ has the form f¢ = o,(f, - - -, f,) where the
¢, are polynomials. Since the G-invariant form of minimal degree is
unique up to a constant we may choose f¢ = f;. Degree considerations
restrict the polynomials ¢, so that there are only a few free parameters
in each case. The matrix J(f¢, ---,ff) contains these parameters. The
matrix H(f¢) has polynomial entries. In G,, the entries of the 4 X 4 matrix
H(f¢) are polynomials of degree 10 in 4 variables. Thus it is not easy to
compute the matrix Q¢ - - -, 69) = mfH(fE)'J(f¢, - - -, f¥) which satisfies
(2.17). As in the case of W we compute J(f%, -, fHTQE?, - - -, 6% which
still contains the free parameters. This is a matrix of G-invariants. We
express each matrix entry as a polynomial in the variables d¢f¢, - .-, d¢f¢
and force the parameters to satisfy D (T}, - - -, T}; Bg) = Dy (T, - -+, T} By).
The results of the calculation are given in the Appendix where we also
exhibit the unique basic derivations 4, ---,6, associated to %, which
satisfy (2.17).

§5. Related results

The comparison theorem (2.25) allows us to deduce further properties
of a Shephard group G from the corresponding properties of the associated
Coxeter group W.

(5.1) TueorEM. If G C GL(V) is a Shephard group then M(G) =V
— Unew H is a K(z, 1) space.

Proof. Let W be the Coxeter group associated to G. Deligne [5]
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showed that M(W) is a K(x, 1) space and hence so is M(W)/W. It follows
from (1.7) that for suitable choice of basic invariants the discriminant
loci for G and W are the zero sets of the same polynomial. Thus
M(G)|G = M(W)]W, so M(G)/G and hence M(G) is a K(x, 1) space. N

If I =2 then the complement of any finite set of hyperplanes con-
taining the origin is a K(z, 1) space. We proved in [13] that M(G) is a
K(z, 1) space for the Shephard groups G = G(p, 1, ). Nakamura [11]
showed that M(G) is a K(z, 1) space for all imprimitive unitary reflection
groups. ‘

(5.2) THEOREM. Let G C GL(V) be a Shephard group and let %, =
(¢, ---,f¢} be a basic set. Then

d(f, - O = (D) mod (ff, -+, fiL).

Proof. Let W be the associated Coxeter group. By (2.25) there exists
a basic set %, = {fY, - -+, f7} such that 4, ~ %,,. Saito [15] proved that
d(fY, - 75 Bw) = (7)Y mod (fY, -+ -, fiZ). Thus 4(T), -+, Ty; By) =
T'mod (T}, ---, T,_,). The assertion follows from (2.26). |

Suppose W < GL(V) is a finite irreducible Coxeter group. Let
B ={f,, -, fi} be a basic set for W and write J = J(f,, -- -, f,). Saito,
Sekiguchi and Yano [15, 16, 24] have used the matrix J”J. We may choose
coordinates x,, ---,x, so that f, = > x} and choose 6, = %> (D,f,)D..
Then J = 2Q(0,, - - -, 0,) and (2.17) is satisfied. Thus J7d = A(f,, -- -, f,; &)
in the notation of this paper. Since d,_, <d, the operator 9/df,: R— R
is uniquely determined up to constant. Saito, Sekiguchi and Yano [15, 16]
proved that there exists a basic set # for W, which they call a flat basic
set, such that (0/of)(J7d) e M,(R).

If G < GL(V) is a Shephard group, it follows from (1.6) that d¢_, < d¢

and thus the operator 9/df,: R — R is again uniquely determined up to
constant.

(5.3) DEeriNiTION. Let G be a Shephard group. We call a basic set
% a flat basic set if @/of)A(f,, ---,[; %) e M/(C).

(5.4) THEOREM. Let G C GI(V) be a Shephard group. Then G has
a flat basic set.

Proof. In view of (2.20) a basic set # is flat if and only if
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@pT)D(T, ---,T,; #)e M(C). The result follows from (2.25) and the
existence of flat basic sets for finite irreducible Coxeter groups. O

(5.5) Remark. If dim V = 2 then

aTsz_Ol
oT. |T, T+ |1 o]

Thus the basic sets constructed in Theorem (3.1) are flat.

We conclude this section with some results about the discriminant
which are true for any irreducible unitary reflection group G < GL(V).
Let 4 ={f, ---,fi} be a basic set and let 9 = {4, ---,0,} be a set of
basic derivations. As before let R = S? = C[f,, ---,f,]. Let Der, be the
R-module of derivations of R. Then Der, has an R-basis {D,, = d/df}
where D, (f) =29d,,. If 6eDers and acS then g(ad) = (ga)(gd) for all
geG. Thus if § € Der§ then R © R. Let 6 be the restriction of 4 to R.

Then
_ 15

(5.6) 6 = };1 (f)D;,,.
As in the introduction let </ be the set of reflecting hyperplanes and
let 4 = A(f, ---,f,; %) be the discriminant. The following proposition is
due to H. Terao; see [22, Thm. D] for the analytic version.

(5.7 ProposiTiON. Let Dgp(d) = {neDerg|pde R4}. If 6, ---,0, is
an R-basis for Der¢ then Dgy(4) is a free R-module with R-basis 0,, - --,0,.

(5.8) Remark. In view of (5.6) and (2.2) the columns of the matrix
d(f,, -, fi; B, 2) defined in (2.4) are the coefficients of the derivations
,, -+, 8, when written as R-linear combinations of D,, ---, D,,.

We have used (1.6) in the proof of the comparison theorem and hence
in the proof of (1.7). We show in (5.15) that conversely (1.7) implies (1.6).
To do this we must consider gradings of R = C[f,, ---,fi]. There is a
natural grading R = @R, inherited from S in which degf, = d, and R,
=RNS, I a=(a, - --,a) is any [-tuple of positive integers we may
also grade R by letting degf, = a,. Let R denote the p-th homogeneous
component in this grading. Thus R=@®R;. If fe R; we say that f is

(ay, - -+, a))-homogeneous of degree p. If fe R; then the Euler formula
says

13
(5.9 2 a.fiD; (f) = pf .

1=1
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Let #eDer,. We say that 6 is (a, - - -, @;)-homogeneous of degree r if
6(R:) < R:.,. For example D, is (a,, - - -, @,)-homogeneous of degree —a,.
It follows from (2.5) and (2.6) that in the natural grading the discriminant
4 is (d,, - - -, d;)-homogeneous of degree m + n.

(5.10) ProrosiTiON. Let G C GL(V) be any finite irreducible unitary
reflection group. Let (a,, ---,a,) be an Il-tuple of positive integers. Suppose
4 is (ay, - - -, a,)-homogeneous of degree p. Then there exists k such that
p=~Fkm-+n) and a,=kd, for 1 <i<L

Proof. Let 6, ---,0, be a set of basic derivations of degrees n, — 1,

-«,n, — 1. It follows from (5.7) that 4,, ---,d, is an R-basis for Dj(4).

Note that §, is (d,, - - -, d;)-homogeneous of degree n, — 1. We proved in
[12] that 1 = n, <n, for any irreducible unitary reflection group. Thus

(5'11) 91 = dllef1 + -+ dllefz

is, up to constant, the unique (d,, - - -, d;)-homogeneous element of degree
0 in Dg(4). Let (a,, ---, a;) be any Il-tuple of positive integers such that
4 is (ay, - - -, a;)-homogeneous of degree p. Define

(5.12) n=afiD;+ - + afD;,.

By the Euler formula (5.9) we have pd = pd so ye Dy(4). Clearly 5 is
(d,, -- -, d))-homogeneous of degree 0. Thus there exists k£ - 0 such that
n = kf,. The conclusion follows. |

Proposition (5.10) may be restated using Milnor’s notion [10, p. 75]
of weighted homogeneous polynomials. In the (d, ---, d)-grading of
CI[T,, ---, T)] the polynomial 4 = AT, - - -, T,; %) is homogeneous of degree
(m 4+ n) and hence it is weighted homogeneous with weights ((m + n)/d,,
o, (m + n)ldy).

(5.13) CoroLLARY. Let G C GL(V) be any irreducible unitary reflec-
tion group. The discriminant A(T,, ---, T,; #) has uniquely determined
weights. These weights are also independent of %. O

(5.14) Remark. The assertions in (5.10) and (5.13) need not hold for
reducible groups. For example if G is of type A, X A, acting naturally
on C* then @ = xx,. If we choose # = {x}, xi} then A(T,, T,; &) = T,T,,
which is (a,, @,)-homogeneous of degree a, 4+ 4, for any positive integers
a,, @, The weights are ((a, + a,)/a,, (a; + a)/a,).
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(5.15) CororrLarRY. Let G < GL(V) be a Shephard group and let W
be the corresponding Coxeter group. Suppose there exist basic sets A,
Ry such that Ad(T,, ---, Ty; Bs) = 4dw(T,, - -+, Ty; By). Then df/dY = -

= d¢/d}.

Proof. Apply (5.13) to both 4,(T,, ---, T}; #,) and 4.(T,, ---, T,; %),
This shows (m? + n®)/d§ = (m"™ + n™)/d) for 1 < i< O
Appendix

(A1) The pairs (G, W). In Table 1 we list the pairs (G, W) where
G is a Shephard group, W is the corresponding Coxeter group and G = W.
Given the graph I'(G) we obtain I'(W) by omitting the labels on the
nodes of I'(G).

(A.2) Flat basic sets for | = 2. In Table 2 we list basic sets # =
{f., fz} for Shephard groups G with [ = 2 which satisfy (3.1). It follows
from (5.5) that these basic sets are flat. The invariants are either given
explicitly or in terms of the polynomials @, ¥, t, W, %, f, H, T of Klein [7].

(A.3) Conventions. For the Shephard groups G,;, Gy, G, we use work
of Maschke [9]. The computations were done using MACSYMA. In order
to be able to use the polynomials G, C,, C,, C; defined in [9, p. 326] and
F,, Fy, F,, F,, defined in [9, p. 337] we agree to let the basis of V* be
2, 2y, 2 for | =3 and z, 2z, 2, 2, for [ = 4. This allows us to use Mas-
chke’s convention that in formulas where the subscripts i,i + 1, i + 2
appear, they represent the integers 1, 2, 3 in cyclic permutation.

In the description of the basic derivations associated to #,; for G =
G, we need additional polynomials defined below:

CS(O) = Cs’ CQ(O) - Csy sz(o) - Cl‘l
and for i =1,2,3
Coi) = 20 + 25, + 20, + 10(20,.2%.. — 2328, + 232,)
C) = 28,.20 . + 20,2, + 22l — 2020, — 22l — 2020,
Cod) = 2" + 235 + 2% — 4(2],,20.. + 20,20, + 202).. + 2020

9 9 6,56 6.6 28 8

— 2320, — 228,y + 6(2028,, + 2025, + 20,2
653 53 356 53 3.3 o6

— 228(2823, .23, + 202020, — 2320.420.0) .

For the Coxeter groups D,, B,, A, we found flat basic sets 4, = {fV", -- -, 7}
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using free parameters as described in Section 4. We checked that these
basic sets agree, up to multiplication of each f by a constant c, with
the flat basic sets found by Saito, Sekiguchi and Yano in [16].

(A.4) The pair (G, D,). For W = D, we choose the flat basic set
By
v =2+ 2 + z,
17 = 8222,
f¥ = 6(ziz; + 228 + 2i2D) — (21 + 25 + 29).
This gives the discriminant matrix
2T, 3T, 4T,
4,17, T, T,; #,) = |3T, 4T + 47, 10T.T,
4T, 10717, 87% 4+ 6T%
For G = G, a basic set %, ~ %, is given by:
flG = C6 »
fé =32/3C,.
fi =5C; — 8C,,.

The basic derivations (2.18) associated to %, are:

3
6, = >.2D,.
i=1
3
f, = 8\/§ Z (Z?arz - Z?Jrl)zz‘Di ’
i=1
3
(93 == 6 Z (“"Z(zi + 7(2$+1 + 2§+2) - 1423(Z?+1 + 234‘3) + 422?+1Z?+2)ziDi ’
i=1

(A.5) The pair (Gy, B,). For W = B, we choose the flat basic set
By

fr=2+21+ 2,
Y =32 + 25 + 2) — 6(2i2; + 21z + 2i2)
14
y = 3 (2} + 25 + 2) — 10(212} + =325 + 232t + 2128 + 2325 + 232)

+ 100222222,

This gives the the discriminant matrix
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2T, 4T,
4(T,, T, Ty; #By) = |4T, 8T} + 12T.T, + 67T,
6T, 327T3T, + 8T
For G = Gy a basic set #, ~ %, 1s given by:
f - CG’
g = 12012 - 30(259

6T,
32TT, 4- 8T
32T% + 40T\T3

§ = 96C,, + 18C3 — 72C,C,,.

The basic derivations (2.18) associated to #, are:
3
6, = >.2D,.
i=1

3
0, =18 3. (2 — 3(2]., + 20,0 + 22¥(2h, + 28.0) —
=1

2623, ,25..)z,D, .

3
03 = 18 Z (7212 + 2823(23+1 + Z§+L’) + 1622?(Zz+1 + 2$+2)
=1
— 1236221, 2., + 25802i(2}, 21,0 + 21.42000) — 3082i(21, + 21.0)

- 17(2111 + Z]iiz + 676(zg+122+2 + 224»1224 2) +
(A.6) The pair (G, A). For W= A, use the

6 6
9022,,2%,.)2,D; .

notation

ss=zZ+ad+ad+2+ (D2 + 2+ 2+ 2)°.

We choose the flat basic set % :

1
U= ESZ’
0
;V - ,\,;1*033)
153
r=2s -2
2 4

v = 2\/1—0(35 — %S*33> .
This gives the discriminant matrix
4(T,, To, T, Ty; By)
2T, 3T, 4T,
3T, 4T, 4+ 4713 5T, + 10T\ T,
4T, 57T, + 107, T, 12T, T, + 12T} + 8T%
5T, 12T.T, + 6T% 14T, T, + 28737,
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For G = G,, a basic set &, ~ %, is given by

fi = Fy,
fgz'é 185

fg = 21F§2 - 25Fz“
£5 = i‘;—mF,z \ — 95F,).

The basic derivations (2.18) associated to %, are:
3
0, = Z ziDz‘ s
=0
3
0, =6, (—32¢ + 7C(i)z,D,,
1=0
— 96 S (751 _ 9p50 (i srvin L 26 e 65
0, = 36 X (721" — 262]Cy(i) + 20802}C,(7) + 3 ()" — 3 w(0))z.D;,
=0
3
6, = 216 > (——112}8 + 57212C(i) — 30402°C,(i) + T222°C,(i)’
1=0
5C (5 SOUNC (3 38 ~ /s
— 1238625C (i) + 45602:C(i)C(i) — 5 (D)

+ %écsa)c,z(i) + 7eoocg<i>2)ziDi.
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