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DISCRIMINANTS IN THE INVARIANT THEORY

OF REFLECTION GROUPS

PETER ORLIK AND LOUIS SOLOMON*

§ 1. Introduction

Let V be a complex vector space of dimension I and let G c GL( V)

be a finite reflection group. Let S be the C-algebra of polynomial func-

tions on V with its usual G-module structure (gf)(v) — f{g~ιv). Let R be

the subalgebra of G-invariant polynomials. By Chevalley's theorem there

exists a set & = {fl9 ,/Ί} of homogeneous polynomials such that R =

C[fu ' ' >fι\ We call J* a set of basic invariants or a basic set for G.

The degrees di — degft are uniquely determined by G. We agree to

number them so that d1 < < dt. The map τ\ V/G^C1 defined by

(1.1) τ(Gυ) = (/Ί(z ), , ft(v))

is a bijection. Each reflection in G fixes some hyperplane in V. Let

s/ = <$/(G) be the set of reflecting hyperplanes and let

(1.2) N(G)^ \J^H

(1.3) M{G) =V-\JH.

If H 6 s/ let β7/ be the order of the (cyclic) subgroup fixing H and let

aHeV* be a linear form with kernel H. Since Π ^ e ^ ^ ί f 6 ^ w e m a y

define a polynomial Δ(Tl9 , Tt; 3$) in the indeterminates T19 - —9Tt by

(1.4) /̂(/i, - ,Λ; ̂ ) = Π αff.

We call the polynomial J(Γ15 , TL; 3$) the discriminant of G relative to

J* since it depends on the basic invariants. The hypersurface

(1.5) τ(iV(G)/G) = {(zl9 . . ^ J e C ' l Δ(zl9 , zt; 0) = 0}
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24 PETER ORLIK AND LOUIS SOLOMON

will be called the discriminant locus. E. Bannai [1] computed the fun-

damental group of the complement τ{M(G)jG) of the discriminant locus

for all irreducible unitary reflection groups with dim V — 2. In the

course of this work she computed the discriminants Δ(fuf2) £$).

If VRd V is a real form of V and WczGL(VR) is a finite Coxeter

group we may view WdGL(V) as a unitary reflection group. In an

earlier paper [14] we defined a class of finite irreducible unitary reflection

groups, called Shephard groups. In (2.11) we associate to each Shephard

group GaGL(V) a finite irreducible Coxeter group WdGL(V) which is

determined up to isomorphism. Both G and W are isomorphic to quotients

of the same Artin group. Since W is also a reflection group it has basic

invariants, discriminant, etc. When both groups G, W are in question

we use notation such as ff, ff, ΔG, Δw, df, dj, etc. to indicate the depend-

ence on G, W. If a statement involves only one Shephard group we

usually suppress this dependence and may apply the statement to G or

W. Given a Shephard group G and the corresponding Coxeter group W,

inspection of the known values of df,dγ as listed in Table 1 reveals

the remarkable fact that

This suggests that there may be connections between the invariant theory

of G and W. Corollary (2.26) asserts that with suitable basic sets J*β,

JV for G, W the discriminant loci τ(N(G)IG) and τ(N(W)/W) are defined

by the same polynomial:

(1.7) Δ G ( T U - . . , T ι ; ^ G ) ~ Δ W ( T U . - . , T ι ; ^ w ) .

Here, and in the rest of this paper it is convenient to write a ~ b if

beC*a. In (5.1) we use (1.7) and work of Deligne [5] to show that

(1.8) If GdGL(V) is a Shephard group then M(G) is a K(π, 1) space.

We illustrate (1.6) and (1.7) for the pair (G, W) where G - G25 in

the Shephard-Todd classification [19] and W is the Coxeter group of type

A3 = D8. The degrees df are 6, 9, 12 and the degrees df are 2, 3, 4.

Thus df/df = 3 does not depend on i. To illustrate (1.7) we use poly-

nomials C6, C9, C12 and ©12 defined by Maschke [9, p. 326]. Shephard and

Todd [19, p. 286] remarked that we may choose £3Q = {C6, C9, C12} and that

H- It follows from Maschke's work [9, p. 326] that KJ2 =
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Table 1.

G W

S&T Γ(G) df Γ(W)

G(p,l,Z) 0 0 0 p,2p,-',lp 0 — 0 0 2 , 4 , •••,:

P
3 0 p 0 2

3 3
4 0 0 4, 6 0 0 2, 3

4 4
8 0 0 8, 12 0 0 2, 3

5 5
16 0 0 20, 30 0 0 2, 3

3 4 3 4

5 0 0 6, 12 0——0 2, 4
4 4 3 4

10 0 0 12, 24 0—^-0 2, 4
5 4 3 4

18 0 0 30, 60 0 — 0 2, 4
3 3

20 0—0 12, 30 0—0 2, 5
6 0—0 4, 12 0—0 2, 6

9 0—0 8, 24 0—0 2, 6

17 0-^-0 20, 60 0—0 2, 6
3 8 «

14 0 0 6, 24 0 — 0 2, 8

Q

21 0 — 0 12, 60 0 — 0 2, 10

3 3 3
25 0 0 0 6, 9, 12 0 0 0 2, 3, 4

3 3
26 0 — 0 0 6, 12, 18 0 — 0 0 2, 4, 6

3 3 3 3
32 0 0 0 0 12, 18, 24, 30 0 0 0 0 2, 3, 4, 5

(432C2

9 - Cl + 3C6C12)
2 - 4C3

12 and thus

(1.9) 4,(2;, Γ2, Γ3; # σ )

To compute the discriminant for W = Dz choose a basis xu x2, x3 for V*

such that X\H£S*{W)(XH = W — ^D(^i — *D(*? — ^D In this coordinate sys-

tem px = Xi + X2 + #3, p 2 = 1̂X2̂ 3 and p 3 = x?xl + 1̂̂ 3 + *2*3 is a basic

set for W. Consider a cubic polynomial with roots xf, x\, xj. The formula

for the discriminant of this cubic, expressed in terms of the elementary

symmetric functions of the roots, gives the identity
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26 PETER ORLIK AND LOUIS SOLOMON

(1.10) Π «ίf = (2pl - 9Plp3 + 27plf -
HGJ4(W)

Let fx =pu f2 = A / 4 and f3 = px

2 - 3p3. Then JV - {LfiJz} is a basic

set for W and we have

(1.11) Δw(Tl9 T2, T3; ®w) = (43221 - ΓJ + 32; Γ8)
2 - 4T3

3.

Comparison of (1.9) and (1.11) illustrates (1.7) for this pair of groups

(G, W).

In (2.18) we define, for each Shephard group G and basic set &, an

Ixl matrix Δ(TU , Tt; 3$) with entries in C[TU , ΓJ. We call

4(2^, •• ,7T

Z; J*) the discriminant matrix of G with respect to J*. It

follows from the definition of the discriminant matrix that

(1.12) Δ ( T U • • •, T ΰ 2$) « d e t Δ ( T U • • • , T ι ; 3 S ) .

S u p p o s e <% = {fu •• ,Jι) is a n o t h e r b a s i c set. Define p o l y n o m i a l s φ}(Tu

• , Z) by 7, = ^ ( / 1 ; - . , / , ) . L e t T^ψjiZ, •••, Γ,). I t follows f rom (1.4)

t h a t

(1.13) Δ{TU • • , Tι; S)

The corresponding transformation formula for discriminant matrices is

more complicated; see (2.22). Write K — dG

x\d™ for the constant defined

in (1.6). The main result (2.25) of this paper implies that if G is a

Shephard group and W is the associated Coxeter group then there exist

basic sets 33G and &w such that

(1.14) I Δβ(Tu .'.9Tι;a0) = Δw{κT» -'-,κTt; 0W).

Since (1.14) asserts an equality of matrices, it is a much sharper statement

than (1.7), which asserts an equality of polynomials. We derive (1.7)

from (1.14) in (2.26). Our proof of (1.14) uses the classification of Shep-

hard groups. For the exceptional groups with dim V = 3, 4 we used

MACSYMA on a VAX computer to find the discriminant matrix. We

comment on the methods in Section 4 and give the results in the

Appendix.

The discriminant J(TU •• ,27

ι; 38) is a weighted homogeneous poly-

nomial. We show in (5.13) that if G is any irreducible unitary reflection

group then the weights of Δ(T19 , Tz; J
5) are unique. We use this to

show that (1.7) implies (1.6).

We would like to thank Ben Noble for introducing us to MACSYMA,

and the Mathematics Research Center of the University of Wisconsin
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for providing computer time. We also want to thank Hiroaki Terao for

many helpful conversations.

§ 2. The Comparision Theorem

In this section we state the main result of this paper, Theorem (2.25).

In the first part of this section we assume that G c GL( V) is any finite

unitary reflection group and use the notation and the results of our

earlier paper [14]. Let Ders be the S-module of derivations of S and let

Ωs = Hom5(DeriS, S) be the S-module of differential 1-forms. Let {et} be

a basis for V and let {xj be the dual basis for V*, fixed throughout

this paper. Then {Dt = d/dxj and {rfxj are bases for Ders and Ωs as

S-modules. These modules are graded as follows. Give S= ©P>OSP its

usual grading so that Sλ = V*. We call nonzero elements of S forms of

degree p. Grade Όeτs by θ e (Ders)β if ΘSP c= Sp+q for all p and grade Ωs

by ωe(Ωs)q if ω((Ders)p) c S p + ί for all p. Thus Dt has degree — 1 and

dxi has degree + 1 . Both Der^ and Ωs are G-modules. The G-action is given

by (gθ)(f) = g(θ(g~ιf)) and (gω)(θ) = g{ω{g'ιθ)) where θ e Ders and ω 6 β5.

Recall from [14] that the J?-module ΩG

S of G-invariant 1-forms is free

of rank I with a basis of homogeneous elements dfu , dft. The R-

module Derf of G-invariant derivations is free of rank I with a basis

@ = {#1? . . ., θι) of homogeneous elements. We call Sf a set of basic der-

ivations. Note that deg(d/ί) = dt — mi + 1 where the mi are the exponents

of G. Similarly deg ^ = nt — 1 where the nt are the coexponents of G

as in [12, 14]. We agree to number the nt in increasing order so that

we have

(2.1) πii < < mι and nλ < < nt.

Define the Jacobian matrix J = J(fu ,ft) by JiJ = DJy J£ θ e Ders then

θ = Σi (^i)A Define a matrix Q - Q(^, , θτ) by Q o = θμ,. It follows

from the definition of the G-action that if fe R and θ e Derg then θ{f) e R.

Since

(2.2) (JFQX, = Σ (θjXtXDΛ) = ΘA

it follows that J Γ Q e Mt(R) where J r is the transpose of J . Let Tl9 , T,

be indeterminates. Since R = C[/1 ? , ft] and the basic invariants fu , ft

are algebraically independent, there exist unique polynomials ψij(Tu •••,

Tt) e C[T19 , ΓJ such that (J^Q),, - ψ,//,, . ,/ , ) .
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(2.3) DEFINITION. Let Si = {f19 ••,/!} be a set of basic invariants

and let Θ — {θu , θt} be a set of basic derivations. Define the discrimi-

nant matrix Δ(TU , Tt; a, 9) by Δ(TU , Γ i ; # , Sf)u = ψtj(Tu , Tt\

Thus

(2.4) Δ(fu '• ,fι;0,®) = J(/i, , fι)τQ(θl9

Define homogeneous polynomials J and Q by

(2.5) J=

The degree of J is the number m of reflections in G. The degree of Q

is the number n of reflecting hyperplanes [12, 14]. It is proved in [19]

that J~ det J(fu ,Λ) and in [14, 2.28] that Q ~ det Q(&, ,0Z). It

follows from (1.4), (2.4) and (2.5) that

(2.6) Δ(fu .,/,; O) « det J(/ , • ,Λ; ^ , S) - J Q .

Thus J(Γj, , Tt; Sly &) depends on J* and Of but its determinant depends

only on Si. For Shephard groups there is a natural choice of Q) in terms

of Si, We repeat their definition [14], Shephard [17, 18] introduced the

notion of a regular complex polytope SP and showed that its symmetry

group G = Aut (^) is an irreducible unitary reflection group. A regular

convex polytope in Rι defines a regular complex polytope in V = Cι by

scalar extension. If 0* arises in this way we say that & has a real form.

In this case G is a finite irreducible Coxeter group. Not all finite irre-

ducible Coxeter groups arise in this way.

(2.7) DEFINITION. A Shephard group is the symmetry group of a

regular complex polytope.

Coxeter [4, pps. 94-5, 147-9] showed that for each Shephard group G

there exist generating reflections sl9"-9Sι and integers pU' -,Pι and

integers qu -'-,qι-χ such that G has a presentation with defining rela-

tions :

(2.8) sψ = 1

(2.9) s
jSk
 = 8

Λ
8j if \j - k\ > 2

(2.10) s
j+ί
sjs

j+t
 = SjS

J+l
Sj if 1 < j < I - 1

where there are q3 terms on each side of (2.10). Coxeter associated the

symbol AfaiLv * 'Pι-λQι-ιiPι t(> t h e group G. It follows from the clas-
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sification of Shephard groups that the symbol is uniquely determined by

G up to replacement of A [ # J / V -Pi-ilQi-ilPi by its reversal

Thus we may make the following definition.

(2.11) DEFINITION. If GcGL(V) is a Shephard group with symbol

• 'Pι-\[qι-ilPι, let WC GL(V) be the Coxeter group with symbol

2[<?1]2 2[gz_!]2. We call W the Coxeter group associated to G.

The group Wis uniquely determined by G up to conjugacy in GL(V).

If ^ has a real form then VF = G.

(2.12) DEFINITION. Let G c GL(V) be a Shephard group with symbol

Pi[Qi]Pi' - 'Pι-ί[qι-\]Pι- Associate to G a graph Γ(G) which has vertices

sl9 '•-,sι with labels pl9 -- ,Pι and edges between vertices Sj and sj+ι

which are labeled q5%

These graphs were introduced by Coxeter. If W is a Coxeter group,

let Γ(W) be its Coxeter graph. In Table 1 we list the pairs (G, W) in

(2.11) together with their graphs. We omit the labels Pj = 2 and q^ — 3.

Table 1 also contains the invariant degrees df, df. In [2] Coxeter noted

in case I = 2 and q = qx that

(2.13) df = 2h\q and dG = h

where h is the order of SjS2. Since dY = 2 and df = ςr this implies (1.6)

in case 1 = 2. In fact if G is any Shephard group and hG is the order

of s ^ Sj then a case by case check shows that df/df = hGjhw where

/&*" is the Coxeter number of W. Since the order of the center Z(G) is

the greatest common divisor of df, , df [20, Cor. 3.3] we get a stronger

form of (1.6):

(2.14) K = df/dΓ = \Z(G)\/\Z(W)\ = Λ /̂Λ .̂

Now we return to the invariant theory and the discriminant for a

Shephard group. Let G c GL(V) be a Shephard group and let /i be an

invariant form of minimal positive degree. The main result of [14] is

that the i?-linear map Hess (/i): Derg —> ΩG defined by

(2.15) Hess (£): θ -> Σ θiDJJdx, θ e Der£

is an isomorphism of graded E-modules. In particular it follows that

for given basic invariants fl9 , ft there exist unique basic derivations

θl9 *--,θι w i t h
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(2.16) Hess (/M = m.df, ί = 1, . ., I.

The matrix of Hess(/i) relative to the pair of bases {Z)J and {dxt} is the

Hessian matrix H(Λ) defined by H(/;)tJ = D.DJ,. The formula (2.16) is

equivalent to the matrix equation

(2.17) W i ) Q V i , ' - , θ ι ) = mJifu - - , f ι ) .

(2.18) DEFINITION. Let G be a Shephard group and let J* = {fl9 ,/J

be a set of basic invariants. If 2 = {θu ,θt} satisfies (2.17) we call 2

the set of basic derivations associated to 3% and define

Δ(Tl9 ...,Tι;O)

We call J(Tl9 , Tt; 0) the discriminant matrix of G with respect to 3S.

(2.19) LEMMA, (i) J(f19 -,/,; &) = mJτΈί(fyιδ\

(ii) d(Tu - , Tt; 3$) is a symmetric matrix]

(iii) θtf, - ΘJt for l<ίJ<L

Proof. Formula (i) follows from (2.4) and (2.17); (ii) follows from (i);

(iii) follows from (i) and (2.2). •

We showed in [14, 2.23] that θx = Σ xίDi i s t h e Euler derivation. It

follows from (2.19. iii) that θιfj = θj, = djfd. It follows from (2.19. ii)

that

d2T2 . . . dιTι\

Δ(Tl9

For convenience we define a matrix D ^ , , Tx\ 3S) by

(2.20) Ό(TU •..,Tι;&)

We also call Ό(Tl9 , Tt; 3$) the discriminant matrix of G with respect

to Si. Note that

(2.21) D ( c U , , d%f%\ <Sf) = Δ(fu - - , & ; # ) .

In the next lemma we compare Ό(Tl9 , Tt\ SS) and D(7\, , Tl9 M)

for basic sets 3S9 38. In the argument we use the fact proved in [14, 5.4]

that if G is a Shephard group, then an invariant form of minimal positive

degree is unique up to a constant multiple.
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(2.22) LEMMA. Let & = {fl9 ,/J and 3$ = {f,. . ft} be basic sets

for the Shephard group G. Define c e C * by f1 = c/Ί. Let E fe £/ιe / X I

diagonal matrix E = diag(d1) , dt). Let p3 be the polynomial defined

by djj = pjidj,, , dJd Let T3 == Pj(Tu , Tt). Let M be the I X I

matrix with (kj) entry Mkj = dTjldTk. Let N = EMEΛ Then

(2.23) D(f1 ? , Tx\ 3§) = c-ι

Proof. Write ίiβ) = J(/1? ,/i). A calculation using the chain rule

gives J(^) - J(J*)N. Thus we get Ό(dJu , d^; ̂ ) = mJ^ΈlQy^fβ)

lfcy'JWtl. Since A - cΛ we have H(Λ) - cH(/i) so

, dιfι; S) = c^WΌ(dJu - ., dJr, ̂ )N. D

Now we are in position to compare the discriminant matrices ΌG(T19

• , Tx\ $) of a Shephard group G and ΌW(TU , ϊ7^ ̂ ) F ) of the asso-

ciated Coxeter group W.

(2.24) NOTATION. Let G a GL(V) be a Shephard group and let W

be the corresponding Coxeter group. Given basic sets &G and 38w we

sometimes write @G - ^T F if DG(Ti, , Γz; ^ G ) = D i r (r i ? . , TL; @w).

The main result of this paper, proved in Sections 3 and 4, is the

following comparison theorem for discriminant matrices of G and W. In

view of (2.20) this implies (1.14).

(2.25) THEOREM. Let G C GL(V) be a Shephard group and let W be

the corresponding Coxeter group, (i) If 3SW is a basic set for W then there

exists a basic set 38G for G such that 38G — 38W. (ii). If 38G is a basic set

for G then there exists a basic set 38w for W such that 38G — 38w.

(2.26) COROLLARY. Let G c GL(V) be a Shephard group and let W

be the corresponding Coxeter group. Then there exist basic sets 3tfG, 38W

such that

ΔO(TU • • , τt; @a) - ΔW(TX, • • , τ ι ; ®w).

Proof. By (2.25) there exist basic sets JFG = {/?, •,/?} and <%w =

{fY, •••, fT) s u c h t h a t S$Q ~ §SW. T h u s D C ( Γ 1 ( • • •, Tt; S G ) = Ό i r ( T » •••,Tι,

@w). It follows from (2.20) that

MΆIdξ, •••, TJdf; aa) = JATJd?, •••, TJd\v; Sw).

Let ae = {din, • ,d?ff} and let 3SW = {dffY, • • , d\vfY}. The assertion

follows from (1.13) by taking determinants. •
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The next proposition shows that it suffices to prove (2.25) for one

particular basic set 3SW in (i) and one particular basic set 3SG in (ii).

(2.27) PROPOSITION. Suppose there exist basic sets 38W, 3$G for W, G

such that 38G ~ 38W. (i) If 3$w is any basic set for W then there exists a

basic set 3$G for G such that 3$G ~ 38W. (ii) // 38 G is any basic set for G

then there exists a basic set 38W for W such that 3$G ~ JF1Γ.

Proof, (i) We apply (2.22) to both G and W. To indicate the

dependence on G and W we write cG, Eo, Mσ, NG and cTΓ, E^, MTΓ, Nw.

Define polynomials Pj by djfj = p/dΓ/Γ, , dγff). Define f° by dfff

= Pj(d?f?> ,dfff). Then cG = cw and MG = MTF. It follows from (1.6)

that EG = k'Έw for some £ e C * . Thus NG = N^. Assertion (i) follows

from (2.23) applied to both G and W and the assumption ΌG(TU , Tt; 38G)

= ΌW(TU - - , Tz; ^ Ϊ Γ ) . Assertion (ii) is proved in the same way. •

§ 3. The case dim V = 2

(3.1) THEOREM. Suppose d i m F = 2 ami G a GL(V) is a Shephard

group with symbol pί[q]p2. Then there exists a basic set 38 — {fuf2} such

that

Ό(T19 T2; -Γ1

Theorem (3.1) is a consequence of Lemmas (3.4)-(3.9). We introduce

some notation. If pl9 p2 e S we write J(pu p2) = det J(pu p2) for the Jaco-

bian determinant, a notation used throughout this section for various

polynomials pu p2- It follows from (2.5) that for any basic set 38 — {fu f2}

we have J(fu f2) ~ J. Let Θu θ2 be the basic derivations associated to 3$

as in (2.18). Since θx = x1D1 + x2D2 is the Euler derivation, (2.4) and

(2.19. iii) give

(3.2)

Let ψ(Tιy T,) be the polynomial defined by ψ(dju d2f2) = 6»2/2. Thus

To prove (3.1) it remains to show that
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(3.3) θ2f2 =

for suitable choice of fu /2. Then ψ(Tu T2) = T?"1-

(3.4) LEMMA. θ2f2 φ 0.

Proo/. Suppose θ2f2 = 0. It follows from (2.6) and (3.2) that JQ « /2

2.

Since Q is square-free, Q divides /2, and thus f2 divides J. For g e G

let δ(g) = άetg. It is known [21, p. 85] that J is a semi-invariant of G

of minimal degree with character δ. Since J//2 is also a semi-invariant

of G with character δ we have a contradiction. •

We have already remarked preceding (2.22) that, since G is a Shephard

group, the invariant ft is unique up to a constant multiple. We showed

in [14] that {f19 J(Q, /i)} is a basic set. Suppose {/, f2} is any basic set.

Then /2 6 2] CfΐJ(Q, fι)β where the sum is over all nonnegative integers

a, β such that adx + βd2 = d2. Thus either (a, β) = (0, 1) or β = 0, in

which case d2 divides c?2. It follows from (2.13) that 2rf2 = qdx so β = 0

can only occur if # is even. Thus there are two possibilities:

(3.5.i) f* = aJ(Q,fi) if 9 is odd,

(3.5.U) /2 - αJ(Q5 fd + bfl iϊ q = 2r is even,

where a eC* and 6 e C. In the next lemma we compute the basic deri-

vations θu θ2 associated to fu f2 where /2 is given by (3.5). Let

(3.6) , =

Note that ηψ = J(Q, ψ) for any ψ e S.

(3.7) LEMMA. Lei G be a Shephard group. Let fx be an invariant

form of degree dx and let f2 be defined by (3.5). Then the basic derivations

θl9 θ2 associated to the basic invariants fu f2 are θx = xιDι + x2D2 and

( i ) #2 = d2aη if q is odd,

(ϋ) β2 = d2aη + brfl~1θί if q = 2r is

Proo/. Recall from (2.5) that n - deg Q. We showed in [14] that

H(/;)Q(#i, 9) - miJ(/i, Ψ) where (τι + dx - 2)ψ = J(Q, Λ). Note that n + ^

— 2 = deg J(Q, /j) = deg ψ = c?2. In view of the equivalence of (2.16) and

(2.17) we have Hessί/i)^ = mγdfx and Hess(/!)57 = m^ψ. Now i?-linearity

of Hess(/j) shows that H e s s ^ ) ^ = mxdft. D
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(3.8) LEMMA. The form J(Q, J(Q, fj) is a nonzero invariant of degree

2d2 - d, = (q - I K .

Proof Let /, φ, ψ be any binary forms of degrees m, n, p at least 2.

Let H(f) = det H(/) be the Hessian determinant of / and let

τ2(/, φ) = (Dlf)(Dlφ) - 2(AA/XAA?) + (Dlf)(Dlφ)

be their second transvectant [21, p. 57]. Define (/, φf by

τ2(/, ^ = m(m - ΐ)n(n - 1)(/, φf.

We use a known formula for the Jacobian of a Jacobian [23, p. 223]:

J(J(f, φ), ψ) « /, 0V + (/, ψ)V (p, Ψ)/

Set / = Λ and 9? = ifr = Q. We proved in [14] that τ2(/, Q) = 0. Thus

Since Q is not a power of a linear form ίί(Q) Φ 0 [6, p. 235] and thus

c/(Q, J(Q,/i)) ^ 0. In general, if G is a subgroup of GL(V) and /, ψ are

semi-invariants of G with characters Λ, μ then J(f, ψ) is a semi-invariant

of G with character δλμ [21, p. 97] where δ(g) = det^ . Since Q is a

semi-invariant with character d"1 [14, 2.27] and f is an invariant form

it follows that J(Q, J(Q, fj) is an invariant of degree 2n + dλ — 4. We

remarked in the proof of (3.7) that n + dλ — 2 = d2. Since 2rf2 = gc^ the

proof is complete. •

(3.9) LEMMA, ( i ) // q is odd then there exists c e C* with

J(Q,J(Q,fd) = cf}~\ (ϋ) If q = 2r is even then there exist c1? c2eC not

both zero with J(Q, J(Q,fd) = cJ[-ιJ{QJd + c2fΓ
ι.

Proof. It follows from (3.8) that J(Q, J(Q, /!)) e Σ C/ί/| where the

sum is over all nonnegative integers a, β such that adγ + βd2 = 2d2 — dx.

Thus β = 0,1. If jS = 0 then adx = 2d2 - dx. Since 2d2 = qdx it follows

that α = g — 1. If/3 = 1 then (α + l)c?! = d2 so di divides d2 and q must

be even. Since J(Q, J(Q, ̂ )) Φ 0 this completes the proof. •

To prove (3.3) it remains to show that constants aeC* and beC

may be chosen so that θ2f2 = (di/Ί)9'1. Suppose first that q is odd. Then

by (3.5)-(3.9) we have
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θ2f2 = tf2

Since c Φ 0 we may choose α e C* so that d2α
2c = dl~\ Now suppose g = 2r

is even. A degree argument as in (3.9) shows that θ2f2 = ^/["^(Q, /Ί)

+ £2/f-1 where β1? £2 e C. It follows from (3.3) that kl9 k2 are not both

zero. We must show that there exist aeC*, beC such that kx = 0 and

2̂ = dl~\ Direct calculation gives

) + d2abηf{ + brfl~%U

= d2a
2J(Q, J(Q, fj) + 2d2abrfl~1J(Q, fx) + d2b

2rfΓι.

From (3.9) we get kx = d^c^ + 2d2abr and k2 = d2α
2c2 + c?26

2r. Choose

6 e C so that αct + 2br = 0. Then k, = 0 and A2 = α2(d2c2 + d2c\l4:r). Since

^ = 0 we have k2 Φ 0 and thus we may choose α e C * so that fe2 = df""1.

This proves (3.3) and hence completes the argument for (3.1). •

(3.10) Remark. It follows from the preceding computation that for

given fl9 an invariant f2 which satisfies (3.1) is determined uniquely up

to sign.

To complete the proof of Theorem (2.25) in case dim V = 2, we apply

(3.1) to both G and W, where W has symbol 2[q]2, to conclude that

there exist bases &G, £%w such that

ΌG(TU T2; _

Table 2.

= D , f ( Γ l 5 T2; <gw). D

S & T

G{q,q;2)

G(p,l;2)

4

8

16

5

10

18

20

6

9

17

14

21

Coxeter

2[g]2

p[4]2

3[3]3

4[3]4

5[3]5

3[4]3

4[4]3

5[4]3

3[5]3

3[6]2

4[6]2

5[6]2

3[8]2

3[10]2

h

Xlx2

xf+xξ
Φ

w
H

t

X

T

f
φ

w
H

t

f

h

(2«/2-ι/q){xf+χ$)

(p/2)(xlp-6xfxξ+xlp)
8(-l/3)1/4ί

(4/3)21/2χ

(4/3)(-5)1/2T

(l/6)(-3)1/2χ

6(2ΐ^3-χ2)

15(T2+2iί3)

(2/5)T

(16/3)(Φ3-2F3)

(64/3)(^3-2χ2)

(400/3)(2T2+iί3)
(l/2)(χ2+W3)

(12/5)(iί3-T2)
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In Table 2 we list the Shephard groups for 1 — 2 together with a

basic set J* = {fu f2} which satisfies Theorem (3.1). The invariant fx is

chosen as in [19, 4.14] to be one of Klein's polynomials Φ, Ψ, t, W, X, /,

H, T, [7]. The invariant /2, determined up to sign, is also expressed in

terms of Klein's polynomials.

§ 4. The case dim V > 3

If dim V > 3 the Shephard groups which are not Coxeter groups are

the monomial groups G(p, 1, I) and the groups G25, G26, G32 in the classifi-

cation of Shephard and Todd. We use (2.27) which tells us that it suffices

to exhibit basic sets $Qy @w such that ΌG(Tl9 , Tx\ @Q) = Όw(Tl9 ,

First we consider the monomial group G = G(p> 1, 0 In. this case

the corresponding Coxeter group W=G(2, 1,1) is of type Bt. It suffices to

show that G has a basic set £8 such that the corresponding discriminant

matrix Ό(TU , Tt; 38) is the same for all p. For k = 1, 2, 3, let

sk = xί + - ' - + xϊ> Define polynomials ψk = ψk(Tu , Tt) by

(4.1) 8k = φ k ( 8 l 9 •• , S ί ) A = 1,2,3, •••.

Thus φk = Γfc for A = 1, , I Let J* = {fl9 , / J be the basic set for

G(p, 1, /) defined by

(4.2) - s
kp

It follows from (2.17) that the associated basic derivations are

I

(4. o) ϋ i —— / , OC i •Ls ί J- < C ιZ " ^ /
\ •* V -V v A, Z — I J 3 —— ——

Thus

Since skp = , slp), the discriminant matrix

ψl + l ' ' ' ψll-\
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is the same for all p. This proves (2.25) for G = G(p, 1, I) and W = Bι.

To complete the proof of the main theorem we have to find 38 G, $w

such that 3$G ~ 38 w for the three remaining pairs (G, W) which are

(G25, A), (G^ JB3) and (G32, A4). There are done by explicit calculation, in

part using machine computation in MACSYMA. We choose a basic set

33 w = {/f, . . .,/f}. Since /Γ is a quadratic form, the Hessian H(/Γ) is

a constant matrix, so it is easy to compute the matrix Q(#Γ? , θf) —

m f H ί / D - W r , ,/7) which satisfies (2.17). Note that mf = 1. Next

we compute J(/Γ, , /Γ)ΓQ(#Γ, , 0f) This is a matrix of ^-invariants.

We express each matrix entry as a polynomial in the variables dffY,

-' , df/7 to obtain the matrix D^T^, , Tt; 38 w). Basic invariants for

the corresponding groups G were determined by Shephard and Todd using

work of Maschke [9]. Let 38 = {fί9 ,/J be their basic set for G. Any

basic invariant ff of degree df has the form ff = φt(fl9 ,/i) where the

^έ are polynomials. Since the G-invariant form of minimal degree is

unique up to a constant we may choose /? = /i. Degree considerations

restrict the polynomials φt so that there are only a few free parameters

in each case. The matrix J(/f, , ff) contains these parameters. The

matrix H(/f) has polynomial entries. In G32 the entries of the 4 X 4 matrix

H(/f) are polynomials of degree 10 in 4 variables. Thus it is not easy to

compute the matrix Q(0?, . , θf) = mfHiffl-'Jif?, •••,/?) which satisfies

(2.17). As in the case of W we compute J(/f, ,/?)ΓQ(^, , 0f) which

still contains the free parameters. This is a matrix of G-invariants. We

express each matrix entry as a polynomial in the variables df/f, , dfff

and force the parameters to satisfy Όa(Tl9 , Tx\ 3SG) = DF(T1 ? , Γ ;̂ 33w).

The results of the calculation are given in the Appendix where we also

exhibit the unique basic derivations θu •••,#! associated to 38G which

satisfy (2.17).

§ 5. Related results

The comparison theorem (2.25) allows us to deduce further properties

of a Shephard group G from the corresponding properties of the associated

Coxeter group W.

(5.1) THEOREM. If G c GL(V) is a Shephard group then M{G) = V

- UHG^(G)H is a K(π, 1) space.

Proof. Let W be the Coxeter group associated to G. Deligne [5]
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showed that M(W) is a K(π, 1) space and hence so is M(W)/W. It follows

from (1.7) that for suitable choice of basic invariants the discriminant

loci for G and W are the zero sets of the same polynomial. Thus

M(G)/G = M(W)IW, so M(G)/G and hence M(G) is a K(π, 1) space. •

If I = 2 then the complement of any finite set of hyperplanes con-

taining the origin is a K(π, 1) space. We proved in [13] that M(G) is a

K(π, 1) space for the Shephard groups G = G(p, 1, I). Nakamura [11]

showed that M(G) is a If (π, 1) space for all imprimitive unitary reflection

groups.

(5.2) THEOREM. Let G a GL(V) be a Shephard group and let $iG =

{/?, •'•>/?} be a basic set Then

JG(f?,' 'J?) = (f?Y mod (/?,•..,/?.,).

Proof. Let W be the associated Coxeter group. By (2.25) there exists

a basic set SSW = {ff, , /Γ} such that @Q ~ JV Saito [15] proved that

Δw(f7, '-',f7;aw) = (fTY mod (/Γ, , /Γ-J). Thus ΔW{TU , T, ^ ) =

, , Γ^j). The assertion follows from (2.26). •

Suppose W C GL(V) is a finite irreducible Coxeter group. Let

J = [fu -,/J be a basic set for W and write J = J(/j, -,/j). Saito,

Sekiguchi and Yano [15, 16, 24] have used the matrix J Γ J. We may choose

coordinates xu , xx so that /i = Σ x? and choose 0j, = \ 2 (A/j)A

Then J = 2Q(^, , ̂ ) and (2.17) is satisfied. Thus J Γ J « J(Λ, .,/,; ^ )

in the notation of this paper. Since dt_x <dt the operator 9/9/i: R-+R

is uniquely determined up to constant. Saito, Sekiguchi and Yano [15,16]

proved that there exists a basic set Sfi for W, which they call a /Zα£ basic

set, such that (8/3/,)(JΓ J) e Mt(R).

If G c GL(V) is a Shephard group, it follows from (1.6) that df_, < df

and thus the operator 9/3/i: R-> R is again uniquely determined up to

constant.

(5.3) DEFINITION. Let G be a Shephard group. We call a basic set

a a /Zα* basic set if (3/9/,)J(Λ, ,Λ; # ) e M,(C).

(5.4) THEOREM. Lei G c GL(V) 6β a Shephard group. Then G has

a flat basic set.

Proof. In view of (2.20) a basic set J* is flat if and only if
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(a/aTz)D(T1? , Tt; 3S)eMt{C). The result follows from (2.25) and the

existence of flat basic sets for finite irreducible Coxeter groups. •

(5.5) Remark. If dim V = 2 then

d IX Ά i ro 11

dτ2 [τ2 τrι\ [1 oJ'
Thus the basic sets constructed in Theorem (3.1) are flat.

We conclude this section with some results about the discriminant

which are true for any irreducible unitary reflection group G a GL(V).

Let J5 = {/i, , ft} be a basic set and let Q> = {θu , 0t} be a set of

basic derivations. As before let R = SG = C[fl9 ,/J. Let ΌeτR be the

jR-module of derivations of R. Then DerΛ has an i?-basis {Df. — d/d/J

where Dfi(fj) = δtj. If θ e Ders and aeS then g(α0) = (ga)(gθ) for all

g 6 G. Thus if θ e Derf then ΘR c β. Let ̂  be the restriction of θ to B.

Then

(5.6) 0 = ±θ{fτ)Dfi.

As in the introduction let si be the set of reflecting hyperplanes and

let Δ = J(/i, -,fι\&) be the discriminant. The following proposition is

due to H. Terao; see [22, Thm. D] for the analytic version.

(5.7) PROPOSITION. Let DR{Δ) = {η e ΌerR \ηΔ e RΔ}. If θu , θι is

an R-basίs for Derg then DR(Δ) is a free R-module with R-basίs θl9 , ΘL.

(5.8) Remark. In view of (5.6) and (2.2) the columns of the matrix

Δ(f\, - - - 9fύ &, &) defined in (2,4) are the coefficients of the derivations

θu , θt when written as i?-linear combinations of Dfl, - , Dfι.

We have used (1.6) in the proof of the comparison theorem and hence

in the proof of (1.7). We show in (5.15) that conversely (1.7) implies (1.6).

To do this we must consider gradings of R — C[fίy ,/i]. There is a

natural grading R = ®RP inherited from S in which deg/έ = dt and Rp

= RΓ\Sr If a = (au , a^ is any Z-tuple of positive integers we may

also grade R by letting degft = at. Let Ra

v denote the p-th homogeneous

component in this grading. Thus R = ζ&Ra

p. If feRa

p we say that / is

(al9 , α^-homogeneous of degree p. If feRa

p then the Euler formula

says

(5.9) Σ aJtD/t(f) = pf.
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Let θeΌerR. We say that θ is (al9 , αz)-homogeneous of degree r if

θ(Ra

p) <= i?p+r. For example Dfi is (al9 , αz)-homogeneous of degree — at.

It follows from (2.5) and (2.6) that in the natural grading the discriminant

Δ is (dl9 , ^-homogeneous of degree m + n.

(5.10) PROPOSITION. Let G a GL(V) be any finite irreducible unitary

reflection group. Let (al9 , at) be an l-tuple of positive integers. Suppose

Δ is (al9 , a^-homogeneous of degree p. Then there exists k such that

p = k(m + n) and at = kdt for 1 < ί < I.

Proof. Let θl9 , θt be a set of basic derivations of degrees nx — 1,

• , nt — 1. It follows from (5.7) that θl9 , θι is an J?-basis for DR(Δ).

Note that θi is (dl9 , cQ-homogeneous of degree nt — 1. We proved in

[12] that 1 = nx < n2 for any irreducible unitary reflection group. Thus

(5.11) θ, = dJλDfl + + fl

is, up to constant, the unique (dί9 , (iz)-homogeneous element of degree

0 in DR(Δ). Let (aί9 , at) be any Z-tuple of positive integers such that

Δ is (al9 , αz)-homogeneous of degree p. Define

(5.12) , = aJxDJx + + axUΏSι.

By the Euler formula (5.9) we have ηΔ = pΔ so η e DR(Δ). Clearly η is

(dl9 -, cQ-homogeneous of degree 0. Thus there exists k φ 0 such that

η = kθv The conclusion follows. •

Proposition (5.10) may be restated using Milnor's notion [10, p. 75]

of weighted homogeneous polynomials. In the (dl9 , degrading of

C[Tl9 , TJ the polynomial Δ = Δ(T19 , Tt; SS) is homogeneous of degree

(m + n) and hence it is weighted homogeneous with weights ((m + n)/dl9

• , (m + n)ldι).

(5.13) COROLLARY. Let G c GL(V) be any irreducible unitary reflec-

tion group. The discriminant Δ(TU , Tt; 3$) has uniquely determined

weights. These weights are also independent of 38. •

(5.14) Remark. The assertions in (5.10) and (5.13) need not hold for

reducible groups. For example if G is of type Ax X Ax acting naturally

on C2 then Q = x,x2. If we choose SS = {x\9 xl) then Δ(TU T2; SS) = TxTl9

which is (a19 α2)-homogeneous of degree ax + a2 for any positive integers

au α2. The weights are ((ax + a2)/au (ax + a2)/a2).
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(5.15) COROLLARY. Let G c GL(V) be a Shephard group and let W

be the corresponding Coxeter group. Suppose there exist basic sets 09 G,

09 w such that dσ(Tu , Tx\ 09 G) = ΔW{TU . , Tt; 09 w ) . Then d?/dY =

= df/dT.

Proof. Apply (5.13) to both ΔG{TU .• ,Tι;@G) and ΔW(TU , Tt; Sw\

This shows (mG + nG)/df = (mίV + nw)/dT for 1 < ί < I Q

Appendix

(A.I) The pairs (G, W). In Table 1 we list the pairs (G, W) where

G is a Shephard group, W is the corresponding Coxeter group and G ΦW.

Given the graph Γ(G) we obtain Γ(W) by omitting the labels on the

nodes of Γ(G).

(A.2) Flat basic sets for 1 = 2. In Table 2 we list basic sets J5 =

{/i> fi) foϊ1 Shephard groups G with ί = 2 which satisfy (3.1). It follows

from (5.5) that these basic sets are flat. The invariants are either given

explicitly or in terms of the polynomials Φ, Ψ, t, W> X, f, H, T of Klein [7].

(A.3) Conventions. For the Shephard groups G25, G26, G32 we use work

of Maschke [9]. The computations were done using MACSYMA. In order

to be able to use the polynomials C6) C9, C12, C18 defined in [9, p. 326] and

Fί2, F18y F2i, F30 defined in [9, p. 337] we agree to let the basis of V* be

zu z2, z3 for / = 3 and z0, zu z2, zz for 1 = 4. This allows us to use Mas-

chke's convention that in formulas where the subscripts ί, ί + 1, ί + 2

appear, they represent the integers 1, 2, 3 in cyclic permutation.

In the description of the basic derivations associated to 2$G for G =

G32 we need additional polynomials defined below:

C6(0) = Cβ, C9(0) = C9, C12(0) = C12

and for i = 1, 2, 3

C,(ί) = 4 + 2f + 1 + Zl2 + 10(^ + 1Z? + 2 - 2S«? + i + 2o2? + 2)
Λ _ ^3 «6 _ j _ —6 ^3 I ^ 3 ^ 6 _ -,6^3 _ - 3 ^ 6

\t/J — ^i + l^i + l I" ^ 1 + 1^1 +2 I ^0^ί +1 '^O'-'i + l -^0^1 +2

-^O^t + l ^0^i +1/ I" bv^O^ΐ + l I ^0^1 + 2 I ^ i + l ^ i + 2/

2 2 8 ( ^ 0 ^ + 1 2 ί + 2 + Z0Zi + 1Zi + 2 ^ O ^ + l^i + 2)

For the Coxeter groups D3, #3, -A4 we found flat basic sets ^ τ r = {/}Γ, , fj}
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using free parameters as described in Section 4. We checked that these

basic sets agree, up to multiplication of each ff by a constant ci9 with

the flat basic sets found by Saito, Sekiguchi and Yano in [16].

(A.4) The pair (G25, ϋ3). For W = Ds we choose the flat basic set

fγ = z\ + zl + zl,
fw z=i %χ Z Z

ff = 6(zlz2

2 + z\z\ + zlzl) - (zί + z\ + zt).

This gives the discriminant matrix

3Γ2

l + 6TI

— J*TT/ is given by:

fG — Γ
/1 - ^65

For G — G25 a basic set

f i = 5Cg — 8C1 2.

The basic derivations (2.18) associated to @IG a re :

(A.5) z> (G26, ΰ 3 ) . For W = Bz we choose the flat basic set

fY = 3(af + 22

4 + zί) - 6(zlzl + z\zl + z\zf),

ίί = - ^ ( * ί + ^6 + 2!) - ίθ(zίzl + ztzϊ + ztzl + z\z\ + zξzi +

This gives the the discriminant matrix
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W(T» T2, T3; &w) =

"2Γ,

4Γ2 STl

_6T3 32TIT2 + 8T;

For G = G26 a basic set J*σ — &w is given by:

/ G ΛOC* Q/^2

2 — J-^^12 *^^6 ?

6Γ3

32Γ?Γ2 + 8T7;

32Γ^ + 40T171_

The basic derivations (2.18) associated to &G are:

3

Vι — 2-1 z ι L J i -

ί = l

(A.6) Γ/ie pair (G32, A4). For VF = A, use the notation

Sk = Zk

0 + 2? + Z\ + 2* + (-l)*O 0 + Z, + Z2 + Zs)
k .

We choose the flat basic set 38w:

fW Q

This gives the discriminant matrix

^(ϊ 1 , , Γ2, Γ,, T4;

(2T, 4Γ3

3Γ2 4Γ3 + 4T?

4T3 57;

5T4

6 T 2

2

±8Tl

28T\T2 8Γ;

5T4

671

16Tί
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For G = Gn a. basic set ί$0 ~ £SW is given by

fα- 4 F

= 21F\t-25Fu,

f
5

The basic derivations (2.18) associated to £fiG are:

03 = 36 Σ (iz? ~ 262?C.(0 + 20802ΪC,(0 + |?C,(ί)! - ^ C ^ o k A ,
i=o \ 3 3/

^4 = 216 Σ f - l l β i 8 + WtfCt(ΐ) - 30402?C9(i) + Ί22z\Ci{i)L

\

- 12352?C12(0 + 45602?C6(ί)C9(i) - ^

+ ^Cβ(i)C 1 2(i) + 7600Cβ(02)*iA
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