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Abstract

Plastic chemicals are numerous and ubiquitous in modern life and pose significant risks to
human health. Observational epidemiological studies have been instrumental in identifying
consistent and statistically significant associations between exposure to certain chemicals and
adverse health outcomes. However, these studies often fail to establish causality due to the
complexity of real-world chemical mixtures, confounding factors, reverse causation, and study
designs that lack measures reflecting underlying genetic and cellular mechanisms indicating
causal pathways to harm. Addressing these limitations requires moving beyond traditional
‘black-box’ epidemiology, which mainly focuses on the strength of associations. We propose
adopting hybrid epidemiological methodologies that incorporate genetic susceptibility and
molecular mechanisms to uncover biological pathways, combined with machine learning and
statistical analysis of chemical mixtures, to strengthen the causal evidence linking exposure to
harm. By integrating observational multi-omics data with experimental and mechanistic
models, hybrid epidemiology offers a transformative path to improve causal evidence and public
health interventions. In addition, machine learning and statistical methods provide a more
nuanced understanding of the health effects of exposures to plastic chemical mixtures, facili-
tating the identification of interactions within chemical mixtures and the influence of biological
pathways. This paradigm shift is critical addressing the complex challenges of plastic exposure
and protecting human health.

Impact statement

This work addresses a critical gap in environmental health research: the inability of traditional
observational epidemiology to fully elucidate the causal and interactive effects of plastic chemical
exposures. By proposing a hybrid epidemiological framework that incorporates underpinning
genetic susceptibility and molecular mechanisms, advanced statistical methods, machine learn-
ing and experimental tools, this perspective charts a path towards a more comprehensive
understanding of exposure-disease relationships. This approach not only reveals the biological
plausibility of the findings but also provides robust evidence for policymakers to regulate
hazardous chemical mixtures effectively.

Introduction

For decades, observational epidemiological studies have formed the basis for our understanding of
environmental health risks, particularly those posed by plastic chemicals (Grandjean and Landrigan,
2006;Woodruff et al., 2011; Landrigan et al., 2023). These studies have provided critical information
on the associations between exposure to numerous ubiquitous chemicals, in particular during early
life, and various health conditions, including the aetiologies of adverse perinatal and childhood
outcomes, endocrine disruption, adverse neurodevelopmental outcomes, obesity, diabetes, and
cancer (Symeonides et al., 2024, and references therein). Despite their significant contributions,
observational epidemiological studies often face limitations in establishing causal relationships. Such
studies typically focus on the health impacts of individual chemicals, an approach that may not fully
capture the complexities of endocrine-disrupting chemicals (EDCs) such as phthalates and bisphe-
nols. These chemicals can exert effects through shared and/or overlapping mechanisms on endo-
crine systems, such as binding to specific hormone receptors in target tissues or interfering with
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biotransformation and excretion of endogenous hormones, enabling
multiple chemicals to act additively or synergistically at lower con-
centrations to produce outcomes that would require higher concen-
trations if acting alone (Kortenkamp, 2008; Al-Gubory, 2014; Darbre,
2022). The inability to account for the full exposome (Wild, 2005),
encompassing all chemical and non-chemical factors that influence
human well-being throughout life, e.g., lifestyle, socio-economic sta-
tus, diet, adverse life-events andpsychosocial factors, can bias findings
further and obscure direct causal links between chemical exposure
and health outcomes later in life. In addition, the long latency periods
associated with conditions such as cancer or reproductive disorders
make it difficult to attribute these health impacts to specific chemical
exposuresmany years earlier in life (Amolegbe et al., 2022). Exposures
to even very low concentrations during the critical developmental
window in the foetal and childhood life stages could be related to a
programming effect with an increased risk of disease later in life
(Lanphear, 2015). Furthermore, as EDCs often show non-linear
exposure–response relationships, assuming only linear relationships
will obscure the true impact of these chemicals. These challenges
highlight the need for a hybrid epidemiological approach that com-
bines advances in mixture analysis, machine learning and molecular
methods to improve causal inference. Integrating experimental
models (e.g., in vitro, in vivo, in silico and mechanistic toxicology)
with epidemiological data enables testing of biological plausibility,
dose–response and temporality. This alignment helps move from
statistical associations to identifying mechanistic pathways linking
EDC exposure to health outcomes.

The challenge faced by observational studies to establish caus-
ality closely resembles those outlined in the Bradford Hill criteria,
such as demonstrating strength, consistency, biological plausibility
and temporality in observed associations (Woodside III and Davis,
2012; Fedak et al., 2015). Traditional epidemiology often produces
small effect sizes (Symeonides et al., 2024), which poses inconclu-
sive and weak confidence in causal links to human harm based on
Bradford Hill’s criterion of strength of association (Woodside III
and Davis, 2012; Fedak et al., 2015). While the consistency across
observational epidemiological studies, another Bradford Hill cri-
terion, provides some support for causality, the strength of the
association is the primary factor in considering ‘cause’ (Woodside
III and Davis, 2012; Fedak et al., 2015). In contrast, adopting a
hybrid epidemiology approach that explores the underlying bio-
logical mechanisms is likely to reveal larger effect sizes expressed as
several-fold changes (Caporale et al., 2022; Symeonides et al., 2024;
Elagali et al., 2025), which increases the evidence for causation.
Moving beyond traditional observational studies, this perspective
advocates for innovative hybrid epidemiological strategies that will
equip researchers with powerful tools to uncover causal relation-
ships and assess the health impacts of complex plastic chemical
mixtures. In this perspective, we offer key recommendations to
support the shift towards strengthening causal evidence, with sub-
stantial potential to drive progress in precision medicine and
improve population health outcomes.

Beyond one-chemical-at-a-time: mixture analysis and
machine learning methods

Traditional epidemiological approaches are sometimes limited by
their focus on assessing health risks associated with single chemical
exposure, which fail to capture the complexity of real-world scen-
arios and treat environmental exposures as isolated events. This
reductionist approach has resulted in a limited understanding of

the health impacts associated with chemical mixtures and presents
a significant regulatory challenge. In practice, humans are exposed
to numerous environmental chemicals throughout their lifespan,
often concurrently, as shown by national human biomonitoring
programs (Woodruff et al., 2011; Stanfield et al., 2024). These
exposures are frequently correlated, may show non-linear dose–
response relationships and can lead to cumulative or interactive
health effects. Traditional regression models struggle with such
complexity due to multicollinearity, limited power to detect inter-
actions and challenges in selecting meaningful variables from high-
dimensional data. To address this, advanced statistical techniques
have been developed to more accurately model chemical mixtures.
These approaches differ in assumptions, interpretability, ability to
account for correlation and capacity to detect non-linear or inter-
active effects. Advancing methods to quantify the disease risks
posed by chemical mixtures could help identify modifiable expos-
ures, enabling targeted public health interventions and prevention
strategies.

In adapting this approach, epidemiologists must consider that
the current research on plastic chemicals is constrained by a focus
on substances already known to be hazardous or measurable using
existing methods, a limitation often referred to as the ‘street-light
effect’ (J. M. Braun et al., 2016).With the increase in the use of non-
targeted approaches to quantify chemical exposures, mixture stud-
ies can rely on these methods to prioritize which chemicals are
included in mixture-based statistical approaches i.e., ‘in silico’
prioritization. To support this advancement, it is crucial to develop
efficient high-throughput screening assays that target key end-
points and account for the toxicity of both individual chemicals
and their mixtures. G. Braun et al. (2024) demonstrated this
approach by analysing the neurotoxic effects of hundreds of chem-
ical mixtures extracted from the blood of pregnant women. Using
unbiased extractionmethods, automated target screening and high-
throughput in vitro neurotoxicity assays, Braun et al. uncovered the
impact of complex organic mixtures on neurite development and
demonstrated how in silico prioritization can effectively narrow
down chemicals of concern for neurodevelopmental endpoints.

As the study of chemical mixtures remains an evolving field of
research, there is currently no established consensus on the most
appropriate statistical or machine learning methods to investigate
the health effects of chemical mixtures in epidemiological studies
(Bobb et al., 2015; Lazarevic et al., 2019; Maitre et al., 2022; Miller
and Consortium, 2025). In recent years, numerous methods have
been introduced to address the complexities associated with mul-
tiple exposures and their interactions (Sun et al., 2013; Forns et al.,
2016; Stafoggia et al., 2017). These include techniques for variable
selection, shrinkage and grouping of correlated variables, such as
the least absolute shrinkage and selection operator (LASSO; Sun
et al., 2013), elastic net (Lenters et al., 2016) and adaptive elastic net
(Zou and Zhang, 2009). Other approaches include dimension
reduction methods like principal component analysis (Yang et al.,
2013) and partial least squares (Sun et al., 2013), as well as Bayesian
frameworks such as Bayesian model averaging (Bobb et al., 2011).
Notably, two methods specifically designed for mixture analyses in
environmental epidemiologywarrant attention:WeightedQuantile
Sum Regression (WQSR, Carrico et al., 2015) and Bayesian Kernel
Machine Regression (BKMR, Bobb et al., 2018).WQSR and BKMR
provide robust measures of the health effects of mixtures, with
BKMR offering additional advantages, such as accounting for
non-linearity and interaction in multivariate exposure–response
relationships. Despite their strengths, all of these methods exhibit
some limitations, including instability in model selection
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(shrinkage approaches), difficulties in interpreting latent variables
(dimension reduction) and the computational intensity of Bayesian
models. Furthermore, their application to large and heterogeneous
exposome datasets – comprising diverse variable types such as
-omics data and mixed categorical and continuous variables –

remains limited.
We do not advocate for a rigid, one-size-fits-all approach;

however, for complex research questions exploring the health
effects of multiple exposures, a multi-staged statistical strategy is
recommended. For example, an initial step could involve utilizing
methods like LASSO as a pre-processing tool (Sun et al., 2013). This
preliminary step helps refine the dataset and enhance model per-
formance before implementing Bayesian approaches, such as:
Bayesian Hierarchical Models (Gelman et al., 1995), which can
handle data with nested or multilevel structures (e.g., repeated
measures or multi-cohort studies); BKMR, which is particularly
effective for modelling non-linear and interactive effects of correl-
ated exposures; or Bayesian Additive Regression Trees (Chipman
et al., 2010), a flexible ensemble method that captures complex,
non-parametric relationships and has been used to identify high-
order interactions in high-dimensional datasets. An alternative to
multistage analysis is the use of machine learning (ML) techniques,
which are increasingly applied in environmental health to manage
high-dimensional exposure data and uncover patterns missed by
regression models. ML is well-suited for modelling non-linear
relationships and interactions in chemical mixtures. The choice
of algorithm depends on the data structure and research aims. For
example, neural networks are particularly suited for modelling
complex, multilayered interactions in large datasets, while support
vector regression (SVR) performs well in small- to medium-sized
datasets with non-linear boundaries. Ensemble learning methods
like gradient boosting (e.g., XGBoost, LightGBM, CatBoost) and
adaptive boosting (AdaBoost) build highly predictive models and
are especially effective for structured data with correlated features
(see, for example, Argyri et al., 2024; Guimbaud et al., 2024, and
references therein). However, a significant challenge with machine
learning models lies in their lack of interpretability. For example,
models like gradient boosting, which consist of numerous decision
trees, make it difficult to determine how individual features con-
tribute to a specific prediction. To address this limitation, Shapley
Additive Explanations (SHAP) has emerged as a valuable tool,
offering clear and detailed explanations of ML predictions
(Lundberg, 2017). Ultimately, the choice of method should reflect
the dimensionality of the data, sample size, confounding and
research objectives. As environmental health data grow in com-
plexity, so does the relevance of machine learning for analysis and
interpretation.

Uncovering mechanisms: -omics and molecular pathways in
the shift towards causal inference

As research on plastic chemicals advances, there is an increasing
emphasis on the need to identify robust causal evidence linking
these exposures to human health outcomes. While correlations
between exposure and health effects may represent genuine asso-
ciations, they do not inherently demonstrate causation. A promis-
ing strategy to strengthen causal inference involves the integration
of evidence from multiple approaches, each with distinct and
unrelated sources of potential bias – a method referred to as
triangulation of evidence. For instance, combining observational
epidemiological data with experimental or quasi-experimental

approaches, such as toxicological studies, in vitro systems and
mechanistic models, facilitates the identification of biologically
plausible pathways linking plastic exposure to health outcomes.
Similarly, the integration of ‘multi-omics’ technologies, encom-
passing comprehensive biological domains such as genomics, tran-
scriptomics and proteomics, offers a robust framework for
uncovering novel causal mediators of disease and revealing bio-
logical insights that may remain undetected through single-omics
analyses (Hasin et al., 2017; Karczewski and Snyder, 2018; Miller
and Consortium, 2025). Since each method operates under unique
assumptions and exhibits distinct strengths and limitations, con-
sistent findings across diverse methodologies significantly reduce
the likelihood of artefactual results, thereby strengthening the
inference of causality (see Figure 1).

The approach of uncovering the biological pathways linking
exposures to outcomes has gained significant attention in Europe
and is the focus of ongoing research through initiatives such as the
Horizon 2020 ENDpoiNTs project (Lupu et al., 2020) and the
Psychiatric Disorders and Comorbidities Caused by Pollution in
the Mediterranean Area (PsyCoMed) project. These projects com-
bine scientific expertise in endocrine disruption and developmental
neurotoxicity with advanced in silico and in vitro tools, innovative
experimental approaches and sophisticated biostatistical analyses
of human epidemiological and biomonitoring data. Their aim is to
uncover both correlative and causal links between neurodevelop-
mental outcomes and endocrine pathways, addressing not only
well-studied targets like estrogen, androgen and thyroid systems
but also lesser-known pathways such as the retinoic acid system.
Symeonides et al. (2024) employed a multimodal approach, com-
bining human observational studies and preclinical mouse models,
to investigate the link between prenatal bisphenol A (BPA) expos-
ure and autism spectrum disorder (ASD) in males. In the human
cohort, BPA exposure was associated with increased ASD symp-
toms and diagnosis in males with low aromatase activity, driven by
BPA-induced hypermethylation of the CYP19A1 brain promoter,
with over three-fold increased risk of ASD symptoms at age 2 and
six-fold increased risk of diagnosis at age 9 (Symeonides et al.,
2024). In mouse models, BPA exposure and aromatase knockout
led to ASD-like behaviours, amygdala hypoactivation and brain
alterations. In vitro experiments confirmed BPA’s suppression of
aromatase in neuronal cells. These findings provide insights into
how prenatal BPA disrupts aromatase signalling, causing changes
characteristic of ASD in males.

To inform policy effectively, broader research covering a wider
range of health outcomes beyond neurodevelopment is needed
(Symeonides et al., 2024). Further, incorporating mixture analyses
into triangulation methods is crucial, as interactions between indi-
vidual EDCs can amplify their effects. For example, BPA has been
shown to enhance oestrogen receptor expression, increasing cellu-
lar vulnerability to other EDCs (Hayes et al., 2016; Hamid et al.,
2021). This complicates the assessment of combined effects based
on individual exposures (Kortenkamp, 2008; J. M. Braun et al.,
2016). Misattributing health effects to a single exposure rather
than to a correlated harmful exposure carries significant regulatory
consequences (Caporale et al., 2022; Duh-Leong et al., 2023).
Such poorly defined policies can increase global human exposure
to plastic chemicals, resulting in considerable public health issues,
disability and economic costs (the societal burden of chemical
exposure is estimated at US$340 billion annually, see for example
Duh-Leong et al., 2023). We therefore advocate for the integration
of triangulation methods with mixture modelling to more
accurately reflect real-world exposure scenarios. This combined
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approach enhances the identification of the most harmful chem-
icals within mixtures and provides insights into whether their
effects are additive, antagonistic or synergistic – thus supporting
more precise and actionable interventions. The applicability of this
hybrid epidemiological framework is particularly relevant in areas
where environmental exposures act through diverse, interacting
biological pathways — including endocrine disruption, neurode-
velopment and immune modulation. In this context, the eight
hallmarks of environmental insults proposed by Peters et al.
(2021)) — namely oxidative stress and inflammation, genomic
alterations and mutations, epigenetic alterations, mitochondrial
dysfunction, endocrine disruption, altered intercellular communi-
cation, altered microbiome communities and impaired nervous
system function— offer a valuable conceptual scaffold. Integrating
multi-omics and mechanistic evidence with these hallmarks
enables researchers to better identify plausible biological pathways
and prioritize environmental exposures for regulatory action.

Additionally, the integration of advanced biomolecular tech-
niques, such as genomics, proteomics and transcriptomics, plays a
key role in enhancing the biological plausibility of exposure–disease
associations and strengthening causal evidence. For instance, util-
izing genetic data can effectively reduce confounding in epidemio-
logical research throughmethods like pedigree-based analyses (e.g.,
sibling comparisons) and genetically informed approaches (e.g.,
polygenic scoring, genetic pathway score functions and Mendelian
randomization). This capability to identify genotype-specific or
individual responses to environmental exposures is crucial to
unravelling gene–environment interactions (see, for example, Tan-
ner et al., 2022; Elagali et al., 2025), as the aetiology ofmany diseases
involves intricate interplays between genetic susceptibilities and
environmental factors (Manrai et al., 2017; Vermeulen et al.,
2020; Chang et al., 2024). Advancing this understanding is import-
ant for the development of predictive gene–environment inter-
action (GxE) models, with transformative potential in robust
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many critical aspects of the biological pathway remain uncovered, hybrid epidemiology (depicted by the purple arrow) adopts a more comprehensive view. The hybrid
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chemical regulation and large-scale public health monitoring
(Motsinger-Reif et al., 2024). Further, recent advances in single-
cell omics and human organoid modelling provide powerful
opportunities to validate and contextualize associations identified
through epidemiological studies (Cuomo et al., 2023; Farbehi et al.,
2024; Caporale et al., 2025). For example, single-cell expression
quantitative trait loci (eQTL) mapping reveals how genetic vari-
ation influences gene expression in specific cell types or states,
helping identify where environmental exposures exert their effects.
Likewise, organoid systems derived from human stem cells offer
controlled platforms to model tissue-specific responses to plastic
chemicals and test hypotheses about developmental disruption,
endocrine signalling or neurotoxicity (Caporale et al., 2025). These
tools strengthen causal inference by enabling experimental testing
of epidemiologically derived hypotheses in human-relevant models
and are a key complement to the hybrid epidemiology framework.
By incorporating these technologies, researchers can bridge the gap
between population-level associations and cell-level mechanisms,
ultimately producing more translatable, policy-relevant insights
(Caporale et al., 2022).

Limitations

While hybrid epidemiological approaches offer promising path-
ways for strengthening causal inference, several methodological
and practical challenges remain. Data availability and accessibility
are key limitations, particularly for high-resolution multi-omics
and single-cell datasets, which are often derived from small cohorts
and may be restricted due to privacy, consent or regulatory con-
cerns. Even when accessible, harmonizing data across studies is
difficult due to differences in sample processing, measurement
platforms and annotation standards, hindering integrative and
meta-analytic analyses.

Modelling the health effects of chemical mixtures also presents
significant challenges. Although methods like WQSR, BKMR and
elastic net are useful, they often assume additive effects, despite the
likelihood of synergistic or antagonistic interactions. Accurately
identifying and quantifying such interactions typically requires
large sample sizes, which in turn lead to substantial financial costs
– a major limiting factor. These financial constraints are com-
pounded by the need for substantial biospecimen volumes (e.g.,
blood, urine or plasma), which can be especially difficult to obtain
from vulnerable populations such as neonates or young children.
As the field progresses, overcoming data and modelling limitations
will be essential to bridge existing gaps in our understanding of how
environmental exposures affect human health.

Conclusion

Although observational epidemiological studies have provided
important information on the health impacts of exposure to plastic
chemicals, it is time to move beyond simple ‘black-box’ associ-
ations. Hybrid epidemiology, powered by examining mixture ana-
lyses, including underpinning -omics and molecular mechanisms,
as well as machine learning, offers the opportunity to examine
causal evidence, the underlying biological pathways and under-
stand the complex interactions between multiple chemical expos-
ures. This shift is crucial formaking informed decisions that protect
human health in the face of increasing environmental challenges.
By accounting for the totality of exposures and integrating mech-
anistic evidence, we can more effectively understand and prevent

disease, ultimately improving population health, quality of life and
economic outcomes such as Gross Domestic Product (GDP, Land-
rigan, 2017).
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