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ON HARMONIC AND PSEUDOHARMONIC MAPS
FROM PSEUDO-HERMITIAN MANIFOLDS

TIAN CHONG, YUXIN DONG, YIBIN REN anp GUILIN YANG

Abstract. In this paper, we give some rigidity results for both harmonic
and pseudoharmonic maps from pseudo-Hermitian manifolds into Riemannian
manifolds or K&hler manifolds. Some foliated results, pluriharmonicity and Siu—
Sampson type results are established for both harmonic maps and pseudohar-
monic maps.

81. Introduction

In 1980, Siu [20] studied the strong rigidity of compact K&hler manifolds
by using the theory of harmonic maps. The basic discovery by Siu was a
new Bochner-type formula for harmonic maps between Kéhler manifolds,
which does not involve the Ricci curvature tensor of the domains. Using
the modified Bochner formula, he proved that all harmonic maps from a
compact Kéhler manifold to a Kéhler manifold with strongly seminegative
curvature are actually pluriharmonic and some curvature expressions vanish.
When the target manifolds are Kéahler manifolds with strongly negative
curvature or compact quotients of irreducible bounded symmetric domains,
the vanishing curvature terms, under the assumption of sufficiently high
rank, force the maps to be either holomorphic or antiholomorphic. Later,
Sampson [19] showed that all harmonic maps from compact Kéahler mani-
folds into Riemannian manifolds with nonpositive Hermitian curvature are
also pluriharmonic, which generalized the pluriharmonicity result of Siu
to more general targets. Pluriharmonic maps, holomorphic maps and Siu—
Sampson type results have many important applications in geometry and
topology of Kéhler manifolds. The readers are referred to [23] for details.

In 2002, Petit [16] established some rigidity results for harmonic maps
from strictly pseudoconvex CR manifolds, endowed with a positively ori-
ented contact form, to Kéhler manifolds and Riemannian manifolds by
using tools of spinorial geometry. First, he proved that any harmonic map
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¢: M — N from a compact Sasakian manifold to a Riemannian manifold
with nonpositive sectional curvature satisfies that d¢(1") = 0, where T is the
characteristic direction of (M, ). A map with this property will be called
foliated. Next he proved that under suitable rank conditions the harmonic
map from a compact Sasakian manifold to a Kéhler manifold with strongly
negative curvature is (J, JV)-holomorphic or anti-(.J, J¥)-holomorphic.
However, Petit [16] did not specifically discuss the relevant notions of
pluriharmonicity. On the other hand, Barletta et al. in [1] introduced the so-
called pseudoharmonic maps from nondegenerate CR manifolds which are a
natural generalization of harmonic maps. In his thesis [4], Chang discussed
some fundamental properties of pseudoharmonic maps.

In this paper, we establish some rigidity results for both harmonic
maps and pseudoharmonic maps from pseudo-Hermitian manifolds by using
the moving frame method. First, we find a result about the relationship
between harmonic maps and pseudoharmonic maps from pseudo-Hermitian
manifolds, which claims that these two kinds of maps are actually equivalent
if the maps are foliated. By the moving frame method, we not only recapture
Petit’s result about harmonic maps from compact Sasakian manifolds to
Riemannian manifolds with nonpositive curvature (Theorem 5.2), but also
show that the result is still valid for pseudoharmonic maps (Theorem 5.1).

The usual Bochner-type formula for the energy density of harmonic maps
was given in [10]. In [4], Chang derived the CR Bochner-type formula
for the horizontal energy density of a pseudoharmonic map ¢. Unlike the
Bochner formula of harmonic maps, there is a mixed term /—1(¢’, i‘yo —
¢L ¢t ,) appearing in the CR Bochner formula for the pseudoharmonic map
(cf. Lemma 4.1). When ¢ is a function, it is known that the CR Paneitz
operator, which is a divergence of a third order differential operator P,
is a useful tool to treat such kind of term. One important property of
the CR Paneitz operator is its nonnegativity when the dimension of the
CR manifold >5 (cf. [5]). We generalize the operator P to a differential
operator, still denoted by P, acting on maps from a pseudo-Hermitian
manifolds into a Riemannian manifold, and establish similar nonnegativity
under the assumptions that the domain manifold has dimension >5 and the
target manifold is of nonpositive Hermitian curvature (Theorem 4.1). This
enables us to establish a CR Bochner-type result for pseudoharmonic maps
(Theorem 4.2).

As mentioned previously, the notion of “pluriharmonicity” is important
for Siu—Sampson type results and other potential applications. We shall
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discuss suitable notion of pluriharmonic maps from pseudo-Hermitian
manifolds. On a pseudo-Hermitian manifold, we have two canonical con-
nections, that is, the Levi-Civita connection of the Webster metric and
the Tanaka—Webster connection of the pseudo-Hermitian structure. As a
result, there are two kinds of second fundamental forms for a map from
a pseudo-Hermitian manifold to a Riemannian manifold: the usual second
fundamental form B and a new second fundamental form 3(¢). The later
one is defined with respect to the Tanaka—Webster connection of the domain
pseudo-Hermitian manifold and the Levi-Civita connection of the target
Riemannian manifold (see Section 2). Using B, lanus and Pastore [13]
defined two kinds of pluriharmonic notions. In [8], Dragomir and Kamishima
introduced the notion of J-pluriharmonic map by means of 3(¢). It turns
out that a Op-pluriharmonic map is pseudoharmonic and foliated, and
thus it is harmonic too. In addition, when the target manifold is Kéhler,
the Op-pluriharmonic maps in [8] are more compatible with the (J, JV)-
holomorphic maps in the sense that all (J, J"V)-holomorphic maps are
automatically Op-pluriharmonic. Next, using the Siu-Sampson technique,
we prove that all harmonic maps or pseudoharmonic maps from compact
Sasakian manifolds to Riemannian manifolds with nonpositive Hermitian
curvature or Kihler manifolds with strong seminegative curvature are 0p-
pluriharmonic (Theorems 6.1, 6.2). If the target is a Kéhler manifold with
strongly negative curvature and the rank of the map >3 at some point,
then the harmonic map or the pseudoharmonic map is (.J, JV)-holomorphic
or anti-(J, J™V)-holomorphic (Theorem 7.3). In [16], Petit proved a similar
result for harmonic maps using different technique. When the target is a
locally Hermitian symmetric space of noncompact type whose universal
cover does not contain the hyperbolic plane as a factor, we show that the
harmonic or pseudoharmonic maps are (.J, J™)-holomorphic under some
explicit rank conditions (Theorem 7.1). These generalize some similar results
in [3] to the pseudo-Hermitian case. To derive the above results, we also
investigate the conic extensions of harmonic maps, 9y-pluriharmonic maps
and (J, JV)-holomorphic maps from Sasakian manifolds respectively, and
establish also a unique continuation theorem for (.J, JN )-holomorphicity
(Proposition 7.2). Using a technique in [17], we consider harmonic maps
and pseudoharmonic maps from complete noncompact pseudo-Hermitian
manifolds too. Under some decay conditions, some foliated results and Op-
pluriharmonicity results are given.
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Finally, we would like to mention that Yuxin Dong in [7] has established
similar rigidity results including Siu type results for pseudoharmonic maps
between pseudo-Hermitian manifolds.

§2. Preliminaries

2.1 Pseudo-Hermitian structures
A smooth manifold M of real (2m + 1)-dimension is said to be a CR
manifold (of type (m, 1)) if there exists a smooth m-dimensional complex
subbundle T} (M) of the complexifed tangent bundle T¢(M) = T(M) ® C,
such that
TLQ(M) N T071(M) = {0}

and
Za We FOO(U7 TI,O(M)) = [Zv W] € FOO(U7 Tl,O(M))

for any open subset U C M. Here Ty (M) =T1,0(M) denotes the complex
conjugate of T7o(M). The subbundle Tj (M) is called a CR structure
on M. Equivalently, the CR structure may also be described by the
Levi distribution H(M) = Re{T1,0(M) & Tp1(M)}, which carries a complex
structure J : H(M) — H(M) given by

JZ+2)=vV-1Z - Z),
for any Z € Ty o(M).
Hereafter we assume M is orientable. Let us set

E,={weT;(M):Ker(w) 2 Hy,(M)},

for any x € M. Then E — M becomes an orientable real line subbundle
of the cotangent bundle T*(M), and thus there exist globally defined
nonvanishing sections 6 € I'*°(FE). Any such a section 6 is called a pseudo-
Hermitian structure on M. The Levi form Gy of 0 is defined by

GG(Xa Y) :de(Xa JY)v

for any X,Y € H(M). A CR manifold (M, T1 o(M)) is said to be a strictly
pseudoconvex CR manifold if the Levi form Gy is positive definite for
some pseudo-Hermitian structure # on M. Standard examples of strictly
pseudoconvex CR manifolds are the odd-dimensional spheres and the
Heisenberg groups.
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When (M,Tho(M)) is strictly pseudoconvex, it is natural to orient
FE by declaring a pseudo-Hermitian structure 6 to be positive if Gy is
positive definite. Henceforth we shall assume that (M, T o(M)) is strictly
pseudoconver and 0 is a positive pseudo-Hermitian structure. The triple
(M, T10(M), ) is called a pseudo-Hermitian manifold.

Let (M, T10(M),68) be a pseudo-Hermitian manifold. Then there exists
a unique nonvanishing vector field 7" on M, transverse to H (M), satisfying
0(T) =1and T, df = 0. The vector field T is referred to as the characteristic
direction or the Reeb vector field of (M, T} (M), ). Then we can extend
Gy to a Riemannian metric gy, called the Webster metric, on M as follows:

96(X,Y) =Go(mu X, 7gY )+ 6(X)0(Y),

for any X,Y € T(M), where mg : T(M) — H(M) is the projection associ-
ated to the direct sum decomposition T'(M) = H(M) & RT. Let us extend J
to a (1, 1) tensor field on M by requesting that JT' = 0. Then the two-form
2 defined by Q(X,Y) = go(X, JY) coincides with the two-form —df. Thus
the pseudo-Hermitian manifold (M, T} (M), §) carries a contact metric
structure (J, =T, —0, gg) (cf. [9]).

On a pseudo-Hermitian manifold, there exists a canonical linear connec-
tion preserving both the CR structure and the Webster metric.

LEMMA 2.1. (cf. [9, 22, 26]) Let (M, T10(M), 0) be a pseudo-Hermitian
manifold and gg the Webster metric of (M, Th o(M), 0). Then there exists a
unique linear connection V on M, called the Tanaka—Webster connection,
such that:

(1) the Levi distribution H(M) is parallel with respect to V;

(2) Vgp=0,VJ=0,VO=0 (hence VT =0);

(3) the torsion Ty of V satisfies Ty(X,Y)=-20(X,Y)T and
Ty (T, JX)=—-JIv(T, X), for any X,Y € H(M).

Unlike the Levi-Civita connection, the torsion 7y of the Tanaka—Webster
connection V is always nonzero. The pseudo-Hermitian torsion of V,
denoted by 7, is defined by 7(X)=1Tvy(T, X), for any X € T(M). Note
that 7 is trace-free and self-adjoint with respect to the Webster metric gy
(cf. [9]). Let us set

A(X,Y)=go(7X,Y),

for any X,Y € T(M). Then we have A(X,Y) = A(Y, X).
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THEOREM 2.1. (cf. [9]) Let (M,T1o(M),0) be a pseudo-Hermitian
manifold. Then the Webster metric gy is Sasakian if and only if the Tanaka—
Webster connection of (M,Tho(M),0) has vanishing pseudo-Hermitian
torsion, that is, T =0.

REMARK 2.1. In the following of this paper, a pseudo-Hermitian mani-
fold (M, T1,0(M), 9) is said to be a Sasakian manifold, if the Webster metric
go is Sasakian. The quadruple (J, =T, —0, gp) is referred to as a Sasakian
structure on M. The readers are referred to [2] for the original definition of
Sasakian metrics.

Let (M, T (M), 8) be a pseudo-Hermitian manifold. Let {7, :1 < a <
m} be a local frame of T o(M) defined on an open set U C M and {#* :1 <
a < m} the corresponding admissible local coframe, that is, §%(Tp) = 55,
0%(T5) =0, 0%(T) = 0. Clearly Lemma 2.1 implies that there exist unique
locally defined complex 1-forms wf € I'*°(T*(M) @ C) such that

VTa:w(ﬂy@T,B» VTd:o.)g@TB,
where Ty =T, and wg‘ = wig‘ These are the connection 1-forms of the
Tanaka—Webster connection V. Since 7(T10(M)) CTo1(M), there are
uniquely defined smooth functions AB U — C such that

T(To) = APT3.

Writing Ang = A(Tw, 1) and h.5= 9o(Ta, TB)’ we have A,3 = AZh,—Yg. Let
us define the local 1-forms 7¢ € I'°(T*(M) ® C) by setting 7¢ :A%‘GB.
Then 7 =7 ® Ty, + 7% ® Ty, where 7% = 72,

The Tanaka—Webster connection induces a covariant differential operator
V on tensors on M. We denote components of covariant derivatives
with indices preceded by a comma; for instance, Aagy = (V1 A)(Ta, Tp)
and Agﬁ = 93[(VT77')(T0[)]. The indices {0, o, @} indicate derivatives with
respect to {T,T,,Ts}. For derivatives of a scalar function, we omit
the comma; for example, u,5 = tap = TzTou — wy (TB)T’YU and ugg = TTu.
Then we have the following structure equations for the Tanaka—Webster
connection V.
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LEMMA 2.2. (cf. [9, 26]) The structure equations for the Tanaka—
Webster connection of (M, Ty (M), 0) in terms of local coframe {6, 6%, 0*}
are

df = 2/~Th,z0% A 67,
(2.1) o = 09 Nwg +ONTY  dheg=wih,z + hasw],
dwi = —wy /\wg + 113,
where
§ = RS 500 A0+ WEOTNO—WEO AY
(2.2) +2v=105 AT — 2¢/—175 A 0%,

with
(23)
Wi =hoPA

] ]
s WE=hPAL 5 ta=hgt? ba=h0"

and (h®P) is the inverse matriz of the matriz (hop)-

Let us set by definition R,z,; = go(R(Tx, Tp)Ta, Tj) = hvBRZzA[u where
R is the curvature tensor of V. From (2.1), one may derive that (cf. [26]):
Rogxg = Ragap- The pseudo-Hermitian Ricci tensor is given by Rz =

i‘aﬂ = Rg/\ﬂ, which satisfies R); = Rj). Since the Tanaka—Webster con-
nection can be viewed as a connection in 77 0(M), the pseudo-Hermitian

Ricci tensor and the torsion tensor on 77 (M) are also denoted by
Ric(X,Y) = R,5X°Y”

and

Tor(X,Y) = vV—1(A55XY? — A,5X°Y7)

for any X = X°T,, Y =Y Tz € Ty o(M).
The divergence of a vector field X on (M, T o(M), ) is defined by

ZxV = div(X)V,

where Zx denotes the Lie derivative and ¥ = 0 A (df)™ is, up to a constant,
the volume form on (M, gg). The divergence div(X) can be computed in
another way, that is,

div(X) =traceg,{Y € T(M)— Vy X}.
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If Z=27%T,, then div(Z) =T, (Z%) + Zﬂwg(Ta). For a 1-form o on M, we
denote by X, its dual vector field, that is, go(X,,Y)=0(Y) for any Y €
T(M). The divergence of o denoted by dy(c) is defined by d,(c) = div(X,).
If 0 =04,0% then dy(c) = O'a’Bhaﬁ. The sublaplacian of (M, T (M), 0) is
the differential operator Ay on functions defined by

Ayu = —div(VHu),

for any u € C2(M). Here VHu = w5 Vu is the horizontal gradient, and Vu
is the ordinary gradient of u with respect to the Webster metric gg, that
is, go(Vu, X) = X(u) for any X € T(M). With respect to the local frame
{T, Ty, Ts}, the sublaplacian A}, can be expressed as Ayu = —(ho‘ﬁuag +
haﬁ U@B).

We denote by V? the Levi-Civita connection of (M, gg). From [9,
Lemma 1.3], we know that the Levi-Civita connection V? is related to the
Tanaka—Webster connection V by

(2.4) VI=V4+Q-A)@T+720+2006 J,

where 2(0® J)(X,Y)=60(X)JY +6(Y)JX. By (2.4), we have V4T =
7(X) + JX. In particular, V4T = 0. If X,Y € H(M), then

(2.5) V&Y =VxY +[Q(X,Y) — A(X, Y)]T.

Since V? — V is a (1, 2) tensor field on M and V%T: V1T =0, we can
define a vector field V on M given by

V = tracey, (V? — V) = traceg, (V’ — V).

Actually we have V = —traceg,(7)T =0. On the Riemannian manifold
(M, gg), the Laplace-Beltrami operator is given by Au = —traceg{Y €
T(M)+— V% (Vu)} for any ue C?(M). Since V=0, we have Au=
—div(Vu) and Au = —(haﬂuag + h%ugp + ugo).

2.2 Harmonic maps and pseudoharmonic maps

Let (M,T1o(M),0) be a pseudo-Hermitian manifold (gg is positive
definite). Let us denote by V and V? the Tanaka-Webster connection of
(M, Tyo(M),8) and the Levi-Civita connection of the Webster metric gy,
respectively. Let (N, h) be a Riemannian manifold with the Levi-Civita
connection V”. For a smooth map ¢: M — N, there are two induced

https://doi.org/10.1017/nmj.2017.38 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2017.38

178 T. CHONG, Y. DONG, Y. REN AND G. YANG

connections V?® ¢~V and V@ ¢~ 1V" on T*(M)® ¢ 1T (N). Using
these two connections, one may define the usual second fundamental form
B(¢) and a new second fundamental form S(¢) (cf. [16]) for the map ¢ as

follows:

(2.6) B($)(X,Y) = Vi(dp(X)) — dp(V5 X)
and

(2.7) B()(X,Y) = Vi (dp(X)) — dp(VyX),

for any X,Y € T(M), where ¢~'V" is written as V" for simplicity. While
B(¢) is symmetric on T'(M) ® T(M), B(¢) is, in general, nonsymmetric.

For any bilinear form C on T'(M), we denote by 7z C' the restriction of C
to H(M)® H(M). Recall that ¢: (M, T1o(M),0) — (N, h) is pseudohar-
monic if the vector field along ¢ given by 7(¢) = traceq, (T /5(¢)) vanishes.
In [1], the pseudoharmonic map is the critical point of the horizontal energy
functional

(2.9 Ena(®)= [ en(o)v.

Q
for any Q CC M, where ey (¢) = (1/2)traceg,(mp¢*h) is the horizontal
energy density and W = 0 A (d§)™. Let 7%(¢) be the usual tension field of ¢
given by 7%(¢) = trace,, B(¢). Then ¢ : (M, gg) — (N, k) is harmonic if and
only if 7%(¢) = 0 (cf. [10]). Due to V =0, we have

(2.9) 7(¢) = traceg, (11 5(¢)) = traceg, (1 B(¢)),

and

(2.10) 70(¢) = trace,, B(¢) = traceg, 3(¢).

A smooth map ¢ : (M27+1 Ty o(M), 8) — (N, h) is said to be a foliated map
if dg(T) = 0.

PROPOSITION 2.1. (cf. [25]) Let (M, T1o(M), ) be a pseudo-Hermitian
manifold and (N,h) a Riemannian manifold. Let ¢: M — (N, h) be a
smooth map. Then

() =7(¢) + Vi dg(T).
If in addition ¢ is foliated, then ¢ 1is harmonic if and only if it is
pseudoharmonic.
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DEFINITION 2.1. Let (M, T1 (M), 0) be a pseudo-Hermitian manifold
and (N, h) a Riemannian manifold. Let ¢ : M — N be a smooth map. We
say that:

(i) [13] ¢ is J-pluriharmonic, if B(¢)(X,Y) + B(¢)(JX, JY) =0, for any
X,Y € T(M);

(ii) [13] ¢ is H(M)-pluriharmonic, if B(¢)(X,Y) + B(¢)(JX, JY) =0, for
any X,Y € H(M);

(iii) [8] ¢ is p-pluriharmonic, if B(¢)(X,Y) + B(¢)(JX, JY) =0, for any
X,Y € H(M);

(iv) [11] when (N, h) is a Kihler manifold with complex structure JV, ¢ is
called a (J, JV)-holomorphic (resp. anti-(J, J¥)-holomorphic) map, if

(2.11) dpoJ=JNodgp, (resp.dpoJ=—JN odp).

Obviously, both the J-pluriharmonic map and the (.J, JV)-holomorphic
map are harmonic (cf. [11, 13]). By (2.9), the H(M)-pluriharmonic map
is pseudoharmonic. Dragomir and Kamishima in [8] proved that every -
pluriharmonic map is a pseudoharmonic map. Actually, we get that any
Op-pluriharmonic map is foliated.

PROPOSITION 2.2. Let (M, T (M), 8) be a pseudo-Hermitian manifold
and (N, h) a Riemannian manifold. If ¢ : M — N is Op-pluriharmonic, then
¢ is a foliated map.

Proof. Forany Z =X —/—-1JX, W =Y —/-1JY €T o(M), we have

B@)Z, W) = B($)(X,Y) + B(¢)(JX, JY)
+V-1[B(9)(X, JY) = B()(JX, Y],

and

B@)NZ, W) = B(¢)(X,Y) + B(¢)(JX, JY)
—V-1[B(9)(X, JY) = B(¢)(JX, Y)].
Thus we get that ¢ is Op-pluriharmonic if and only if B(¢)(Z, W)=

B(¢)(Z, W) =0 for any Z, W € Ty o(M). Therefore, any 9,-pluriharmonic
map is pseudoharmonic.
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If ¢ : M — N is Op-pluriharmonic, then we have

0=5(¢)(Z,W) - B(¢)(W, Z)
= dp(Tw(Z,W))
= —2Q(Z, W) dé(T)
(2.12) = 2v/—1g9(Z, W) do(T).
If we take Z = W # 0, then gg(Z, W) # 0, thus we have d¢(T) = 0. 0

PROPOSITION 2.3. Let (M, T (M), 8) be a pseudo-Hermitian manifold
and (N, h) a Kéihler manifold with complex structure J. Suppose ¢ :— N
is a +(.J, JV)-holomorphic map. Then ¢ is Oy-pluriharmonic.

Proof. Without loss of generality, we assume that ¢ is (J, JV)-
holomorphic. Since JV do(T) =dp(JT) =0, we get that ¢ is foliated.
Because of the following identity
for any X,Y € H(M), we get that 5(¢) is symmetric on H(M) ® H(M).
On the other hand, we have

BO)(JX,Y) = Vi (do(JX)) — dd(Vy I X)
= VIV dp(X)) — dp(J(Vy X))
= JNV(dp(X)) — TV dp(Vy X)
(2.13) = JVB()(X,Y),
for any X,Y € H(M). Thus we have

BO)IX, JY) = JNB($)(X, JY) = TN B(¢) (Y, X)
= —B(@)(Y, X) =—-B(¢)(X,Y).
Therefore, the (J, J'V)-holomorphic map ¢ is 9,-pluriharmonic. 0

§3. Commutation relations

Let (M?™1 Ty o(M), 0) be a pseudo-Hermitian manifold. Let (N, h) be
a Riemannian manifold with the Levi-Civita connection V*. Let ¢ : M — N
be a smooth map. Choose a local admissible coframe {6} on M and a local
orthonormal coframe field {¢*} on N. Throughout this paper we employ the
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index conventions

A B,C=0,1,...,m,1,...,m,
a,B,v=1,...,m,
i,5,k=1,...,n,
and use the summation convention on repeating indices. The structure

equations for the Levi-Civita connection V" of (N,h) in terms of local
orthonormal coframe field {o*} are

do' = —nj Ao, 77§+nf:0,

(3.1) dn' = —np A + Q5

where Q; = (1/2)§§.klak A ol are the curvature forms of V.
Under the map ¢ : M — N, we denote the components of d¢, the covariant
derivatives V d¢ and V? d¢ with respect to the local frames {6, 6%, 0%} and

{0} by @Y, ¢’y and @' g respectively, that is,
dp = 40" @ E;,
Vdg = ¢'450" @ 65 @ B,
V2 dg = ¢ypct? ® 08 @09 ® B,
where §° = 6 and {F;} is the dual vector field of {o’}. Thus we have
(3.2) ¢’ = PLOY + PLOY + .

Hereafter we drop ¢* in such formulas when their meaning is clear from the
context.

By taking the exterior derivative of (3.2) and making use of the structure
equations (2.1) and (3.1), we get

(3.3) Dol A7 + 2 =1jh,50% N 07 — 6L A%0° N O — 95 AGO° N0 =0,

where
(3.4) D¢l = dgl, — 05 + ln) = 8,07,
(3.5) D¢}y = dgly — ¢505 + ¢k = dhpt”,
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(3.6) Dojy = def + ¢ = ¢6”.
Then (3.3) gives
(3.7) b = Dhan i~ Pha =2V =160has oo — dho = P5AL
Then the map ¢ is harmonic if and only if

haB(Z%B + haﬁqﬁiow + ¢ =0,
and ¢ is pseudoharmonic if and only if

haﬂd)’i haﬁ¢aﬁ —

Differentiating the equation (3.4) and using the structure equations in M
and NV, we have

Délp A 0P + 20/ =18l 0hra6 A" — 615 AT 0N
(3.8) NO— ¢ AP p o= —hI10 + ¢l

afy

Dlas = ddlas — G} = 9,08 + Gl = bipn?”
D5 = dd\,; — Gis6] — b 56 + &) i = 6 50,
Dl = doly — 7093 + ¢io’7j = ¢hopt”.
From (3.8), we get the following commutation relations
( iuﬁ«/ = Q%w - <Z5j ¢]E¢§§?kl + 2\/—71<;523AM - 2\/—71¢;Aa6,
(3.10) ¢}5. = 6Lz — PhLA, ;kl + 2V =18 o5 A5 — 2V =16} hay A3,
(3.11) @hgs = Php — %%% '+ O\Rogs + 2V =10k hgs,
(3.12) @l = ¢>f105 - ¢, ¢,]§¢6Rl'kz + M Ap  — zw/%
(3.13) @50 = Shos — PASEOLRE — GNP Ay o — By AT
Similarly the exterior derivative of (3.6) yields

(3.14) i i .
Do A 67 +2v/=1djha50% A 6° — ¢, A36° N O — 6, AGO° N O = 02,
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where
Dy, = dpp, — ¢0,896 + ¢0a773 Goanb”,
Dy = de — S50 + Gbans = bant”,
Dy = dop + ¢0077] bhopt”-

We get from (3.14) the commutation relations

(3.15) Ghas = Poga — ShPROERin
(316) ¢éa5 - Q%Ba - ¢]¢k qblﬁﬁzkl + 2\/j1¢60ha87
(317) ¢60a = ¢6a0 ¢0¢0¢l lel + (béBAlg

From (3.7), we can derive:

(3.18) qba&, = 0o, + 2V 1ho500,,
(3.19) Lgy = Db T 2V 1hy5005,
(3.20) s = bhos + O5aAL + S5 AT 5,
(3.21) %ag = GZ%OB + ¢Z§BAZ + %AZI B

If (N, h) is a Kihler manifold, we choose a local orthonormal coframe field
{@",@" =&} on N. The structure equations for the Levi-Civita connection
of (N, h) in terms of local orthonormal frame {&%, &'} are

st =~} w a;i +af:o,
(3.22)

where Q’ RZ ﬂ) A&!. Similar to the above discussions, we may obtain

the followmg commutatmn formula:
Zaﬁfy a'yﬁ ¢J (bﬁd)’)/ kl + ¢J ¢'Y¢6 jkl
(3.23) +2V=1¢\ho3A5 — 2V —=1¢\ has A3,

8§4. CR Bochner-type result

Let (M?*™+1 T o(M), 0) be a compact pseudo-Hermitian manifold and
(N,h) a Riemannian manifold. Let ¢: (M, T 0(M),0) — (N", h) be a
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smooth map. We choose a local orthonormal admissible coframe {#*} on
M, a local orthonormal coframe field {o*} on N. We still use the notations
of the last section. Denote

dpp = d¢|H(M = ¢>i 0" @ E; + ¢i-96 ® Ei,

where {E;} is the dual vector field of {¢'}.
We first derive the following CR Bochner formula.

LEMMA 4.1. Set Eijkl = hjpﬁ?kl = 5jp§fkl = ﬁikl Then
2 i |2 i 41
—Ap(en (¢ —22 |6hsl® + 16551%) + ((dbd, Vo7 (9))) + 26%,85 Ras

- 2¢—1m(¢a¢gAag — 0505 Aas) — 4V =1L d50 — P5Po)
(4.1) — 204 dadh R + Ohds PS5 Rim),
where ((-,-)) is the metric in T*(M) ® ¢~ T(N) induced by go and h.

Proof. From the definition of the components of V d¢ and V? d¢, it is
easy to get that

—Ap(en(9)) = 2(Phpdlz + ha0hs) + Shdazs + Padlss
+ ¢L L 5+¢’ 335.
By the commutation relations of Section 3, we have
—Ap(en(9) = 2(hsdhz + 0 iPus) T Ondhas + Vabhas
+ b Ohas + PaPhas — 2V —1(BL00a — Padha)
= 2l 05 + Ok 50hs)

+ 04 (55 — FsOE S Riyy + G5 RY 55 — 2= 10bk)
+ B (B30 — PRORSS R + SARS 5 + 2V —1¢k)
+ O (D5, — FHORSS R, + 2\E¢3A4 —2my/—1g} A))
+ 05 (90 — FOL BRI — 2V =TG5 AL + 2mV/ =105 A))
— 2V/=1(¢h (0ho + DA AD) — BL (Dl + 05 AY))
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=2( ggfﬁgg + ¢35¢35)
+ (040555 + Pabhga T Ohdhza + PaP550)
+ 204,055, — 2mV=1($L ¢4 Agx — Pa05 Aar)
— 4V=1(¢ Pk — Padho)
— 26, ¢ok bl Rjnt + 040 ok o Ryin). i

The main difficulty in applications of Lemma 4.1 comes from the mixed
term /—1(¢L oL, — ¢Ldl). It is known that the CR Paneitz operator is a

%

useful tool to deal with such a term. In [12, 14] the authors introduced the
following differential operator acting on functions

Pf = (faas + 2V —1mAg,fa)0” = (Psf)0”,

which characterizes CR pluriharmonic functions on M (cf. also [9, Chap-
ter 5]). In [5] Chang and Chiu discussed the CR Paneitz operator

Pof =48,(Pf + Pf),

where d, is the divergence operator that takes 1-forms to functions, and they
proved that when m > 2, the corresponding CR Paneitz operator is always
nonnegative, that is

[ ror-gu=—t [ wpi+PLasw=o
M M

We generalize the operator P to an operator, still denoted by P, acting
on maps from compact pseudo-Hermitian manifolds into Riemannian man-
ifolds. Define ‘
P¢ = (Pje)0” © Ej,

Where Pé(b = gz%aﬁ + 2\/—1mA5a¢é. From the definition of gbi‘, qS’AB and
¢y gc» we can see that the definition of the operator P is independent of
the choice of the local admissible coframe {6} and local frame field {E;},
thus the operator P is well-defined.

LEMMA 4.2.

o (s, V()
(4.2 V1 Ag — G5 Aas).

V(8 0h0 — dhdho) = (PO + P, dig)) 5
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Proof. From (3.19), we have
[T i Lo i
(4-3) —1ps = %(ﬁsﬁ/g@ - d)Bﬁ@)'
Then (3.7) and (4.3) imply
V1600 = V=164 (dha — dAap)
Lo i [T i i
= %(pa(éﬁﬁa - ¢Bﬁa> - _1¢a¢ﬁAE¥B
1 —— . 1 ..
— — Pig. A At .
2m Oé(b ¢CM 2m¢a¢5[8a
After taking the conjugation of the above formula, we obtain
—V/=1¢L et = Lpiqg - Lgbi i
Consequently, we get

V—=1(¢h 5 — 4 Zo):%(P&¢'¢Z+P;¢'¢Za)

Loi i i
- %(%c(%g& + 069350

(1.4) = o (P64 PG dy)) — 5 (6 + Batise)

o'
On the other hand, one can derive the following:
= (PhPhpa T Padlza) + (PO + PO, dyo))
+ 2V =1m(¢4hAas — Okd5Aap)-
Therefore, we have
— 2V Im(¢h ) Ay — BhdlAag).
We complete the proof by substituting the above formula into (4.4). 0

Thus the CR Bochner formula could be refreshed by the following
corollary.
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COROLLARY 4.1.
—Ap(en(d)) = QZ |0asl” + l0551%)

+<r+m>«%¢ﬂmd@»+a%@ym@
— 2V =1(m + 2)(¢a 83 Asz — Pad5Aap)
2 ((P6+ PG, Vut))
(4.5) — 2¢hdhok ol Riju + 04040505 Riju).
In order to apply the above CR Bochner formula, we want to investigate

the sign of the integral of the term ((P¢ + P, Vy¢)). We now state two
lemmas.

LEMMA 4.3.

\/7/ (¢z z ¢z z — 2m/ (;50
4.6 — V-1 LOLA_z — Lt Ang) W
(4.6) N/L[;<¢a¢ﬁ o5 — Bk Aas)
Proof. From (3.7) we can derive the following equality:
VLG = Ghdie) = VLG — i)
— V=1(¢hdhAs5 — PadhAap).

Integrating both sides of the above formula and using the divergence
theorem, we obtain

VAT [ (@htho = 0htto)¥ =~V [ (@hath— hath)¥
VAT [ (@A =t da)¥
By (3.7), we have
VT [ (Ghath = sty =2m [ (6w

The proof is completed by combining the above two formulas. 0

https://doi.org/10.1017/nmj.2017.38 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2017.38

188 T. CHONG, Y. DONG, Y. REN AND G. YANG

LEMMA 4.4.

/ G R = —2 / Z 64512 — 166,510
+ 2\/7m/ ¢z z ¢z % )
(@.7) 2 [ LohoobRumv.
Proof. From (3.11), we have
255 = 255 - ¢Zy¢§¢lg3ﬁk1 + ¢§R355 +2v/=1mgl,
Hence
BaPaps — Pabags T PaPuss — PaPass
= 261,05 Rap — 20485050k Rjin — 2V —1m($hdko — $adho)-
Using the divergence theorem, we derive
| (Ghdhgs — Gy + 6ty — idiss)
=2 [ S (ohsl? 1640
Mo
Consequently
—2 /M 2(1%/312 - WLB\Q)‘I’ =2 /M ¢Z¢%Raﬂ‘1’ -2 /M %Gﬁ]aqﬁg%Rﬂkl‘I’
aﬂB

_ 2\/7 1m / ¢z z ¢z i )
This completes the proof of Lemma 4.4. 0

We can establish the nonnegative property of the generalized operator
P under suitable conditions. Recall that a Riemannian manifold (N™, h) is
said to have nonpositive Hermitian curvature if

(4.8) hR(X,Y)Y, X) <0,
for any X, Y € T(N) ® C (cf. [19]).
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THEOREM 4.1. Let (M*™ 1 Ty o(M), 0) be a compact pseudo-Hermitian
manifold with m >2 and (N, h) a Riemannian manifold with nonpositive
Hermitian curvature. Suppose ¢ : M — N is a smooth map, then

- / (Pé+ PG, dyd)) ¥ > 0
M

Proof. Integrating (4.1) on M and substituting (4.7) into it, we have
0-4f DTS ~ [ @R+ 2 Tm—2) [ (ko — itV
~2V=Tm [ (@A — G Aas)V
—2/M(¢2 LSh b5 Rjint + Sn b dhds Ry — S ¢k 0l Ryin) W
=4 P — 2V +2v/—=1(m — 2 Lo — Bad!
/MQE%\%\ | r@Pv+2v=im =2 [ (@hotn - dhioio)
~2vim [ 6ty — dholdan)¥ —4 [ dhlekel R,

(4.9)

where the second equality follows from the Bianchi identity. Integrating both
sides of (4.2) and using the divergence theorem, we get

VA [ (@t — bty = - [ (Po+ PN+ 5 [ (o
(4.10) +v-1 /M(%%Aag—(ﬁ%%flaﬁ)‘l’

Calculating (4.10) x 2(m — 1) — (4.6) x 2 and substituting the result into
(4.9), we have

_ i 2q L 20 i\2
0—4/M§\¢aﬁ\ Vo [ Ry —am [ (@

(4.11) +2(7737L_1)/M<<P¢+P¢, db¢>>‘1’—4/M Sr B ds Ry V.
Since
Z|¢;B|2 S bha| = @) + g2,
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we conclude

_ 2 o ~

(412) = [ (Po+Po,dpd))0 > —— [ ¢lolokes R >0. [
M m—1 M B B

Combing this theorem with Corollary 4.1, we obtain the following CR

Bochner-type result.

THEOREM 4.2. Let (M, T\ o(M),8) be a compact pseudo-Hermitian
manifold with m >2 and (N, h) a Riemannian manifold with nonpositive
Hermitian curvature. Let ¢ : M — N be a pseudoharmonic map. Suppose
that

(4.13) (Ric — (m + 2)Tor)(Z, Z) >0,

for any Z € (T oM), then (;SZ/B = ¢Za/§ =0 for any «, 5. In particular, ¢

is Oy-pluriharmonic.

Proof. From (4.5), we have
_ ) P12\ 2 2
=2 [ Sl +ieiatre - (1+2) [ o
4 .
- | o+ Pa e
+2 [ (Ric = (m+2/Tor)(Vsé')c. (Vo)) ¥
—JZJ%%%%@W+%%%%EMN,

where (Vy¢')c = ¢!, Ty. By Theorem 4.1, the third term on the right-hand
side of the preceding equation is nonnegative. Because of the curvature
condition of N, the last term on the right-hand side is nonnegative. Since ¢
is pseudoharmonic, from (4.13) we get

0> P2 i 12y
> /Mgw 16 52)

Hence ¢fx 5= L 5= 0. From qﬁg 5= 0, we see that ¢ is Op-pluriharmonic. []
COROLLARY 4.2. If the manifold M in Theorem 4.2 is Sasakian and
Ric(Z, Z) =0, then we have B(¢) =0.
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85. Foliated results of harmonic and pseudoharmonic maps

Let ¢ : (M*™TL1 Ty o(M), ) — (N™, h) be a smooth map from a pseudo-
Hermitian manifold into a Riemannian manifold. To obtain the foliated
results for the map ¢: M — N, we consider the sublaplacian and the
Laplacian of the square norm of d¢(T"), respectively.

We choose a local orthonormal admissible coframe {#*} on M and a
local orthonormal coframe field {o*} on N. By the commutation relations
of Section 3, we have

LEMMA 5.1.
—fAb|d<z> =2 Z |6hal? + ((dS(T), VIr(0)) + 20h 0k b Rjir
(5.1) +2(66054 50,0 + $005480.a + Fo0hsAza + DodszAsa);
_,AW =2 Z |6bal” + |60l
+ ((dg(T), V¥ (9))) + 204850560 Rjin
(5:2) + 2000} Aga.0 + 00054808 + GobhsAss + G085 A80)-
Proof. Using (3.21), (3.13), (3.7) and their complex conjugate, we
compute

—38|dd(T)* = (G40 )sa +(6ba)a

= ¢6d¢6a + ¢6¢6ad + ¢6a¢6d + ¢6¢6aa

= 2000 $0s + P0Pa0a T 9005540 + P05 Asaa
+ G60k0a + D60haAas + G005 45a.q

= 2¢6a¢6a + 0 (Shao + PhSRONRirt + D Ash a0 + dasAhs)
+ $(Gha0 + PROESORjint + B5Aapa + 0k 5As0)
+ G055 Asa + ¢o¢>z*ABa,a + G050 Aas + 9005 455.0

= 2600 Pt + B0(Dhao + Phao) T+ 2000405 D) Rjir
+ 20005 A55,0 + 20095460, + 20000sA5a + 200055 45a-

Since the formula for —(1/2)A|d¢(T)|? can be derived similarly, we omit
the details. [
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LEMMA 5.2. Let (M*™1 Ty o(M), 0) be a compact pseudo-Hermitian
manifold and (N, h) a Riemannian manifold. Let ¢: M — N be a smooth
map. If the second fundamental form satisfies

B(o)T, X)=0 for any X € H(M),

then ¢ is foliated.

Proof. By the integration by parts and the commutation formulas (3.7),
we have

0=v—1 /M<¢f;¢6a — PLdha) VU = —V—1 /M< haBh — Paadh) ¥

—m [ lojPv.
M

Thus we have ¢}y = 0, that is, d¢(T) = 0. 0
First, we prove the following result by the moving frame method.

THEOREM 5.1.  Let (M?™FY Ty o(M),0) be a compact Sasakian man-
ifold and (N, h) be a Riemannian manifold with nonpositive curvature.
Suppose ¢ : M — N is a pseudoharmonic map. Then ¢ is foliated.

Proof. Since ¢ is pseudoharmonic, we have 7(¢)=0. The Sasakian
condition for M implies that A,g =0, for any «, 5. Thus (5.1) becomes

—fAbldcb —22 |6hal” + 200080604 Rjin.

Since the sectional curvature of N is nonpositive, we take T, = (1/v/2)(eq —
iJeq) and Ty = (1/v/2)(eq +iJeq) and compute the following curvature
term to find

(R(d¢(Ta), dp(T)) dp(Ta), dp(T))
h(R(dd(eq + iTeq), dO(T)) dd(eq — iTeq), d(T))

[A(R(d(eq), dD(T)) dilea), db(T))
h(R(dg(Teq), dd(T)) dp(Jeq), dp(T))]

SodhOE b R = M(R

1
2
1
2

o +

(5.3)

WV
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Hence we have
(5.4) —fAbrcw > 2 Z e

The divergence theorem yields
q%a = ¢8& =0
The fact that ¢ is foliated can be easily obtained by Lemma 5.2. [

The next result gives another proof of Petit’s result.

THEOREM 5.2. (cf. [16])  Let (M?*™F1 Ty o(M),0) be a compact
Sasakian manifold and (N, h) be a Riemannian manifold with nonpositive
curvature. Suppose ¢ : M — N is a harmonic map. Then ¢ is foliated.

Proof. Since ¢ is harmonic, we have 7%(¢) = 0. By (5.2), we get
(5.5) —fArd¢ >2 Z [$oal” + 1660l

Using the divergence theorem, we derive ¢60 = ¢6a = (b%& =0. By Lemma 5.2
again, we find that the map ¢ is foliated. 0

REMARK 5.1. From Theorems 5.1 and 5.2, we get that if M is a compact
Sasakian manifold and N is a Riemannian manifold with nonpositive
curvature, then the map ¢: M — N is harmonic if and only if it is
pseudoharmonic.

Now we use a technique in [17] to treat harmonic maps or pseudoharmonic
maps from complete noncompact pseudo-Hermitian manifolds. Here the
completeness of a pseudo-Hermitian manifold is with respect to the Webster
metric. Let r be the Riemannian distance on the complete noncompact
pseudo-Hermitian manifold (M, T o(M), 6) from a fixed point xg € M. Set
Br={zx € M :r(x) < R}.

For a measurable function w defined on R, we use the notation u ¢
L!(+00) to mean that |u| ¢ L'((K, 4+oc)) for any positive number K.
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PROPOSITION 5.1.  Let (M,Tio(M),0) be a complete noncompact
Sasakian manifold of dimension 2m + 1 and (N, h) be a Riemannian man-
ifold with nonpositive curvature. Suppose ¢ : M — N is either a harmonic
map or a pseudoharmonic map. If ¢ satisfies

(5.6) ( / . rd¢<T>\2%>

where H is the 2m-dimensional Hausdorff measure on 0B,., which coincides
with the Riemannian measure induced on the regular part of OB, then the
second fundamental form satisfies 5(¢)(T, X) =0 for any X € H(M).

1
¢ L' (+o0),

Proof. We consider only the case ¢ is a harmonic map, because the other
case is analogous. By the divergence theorem, (5.5) gives

i |2 i |2 1 2
/. (2 > 05l + 650 ) v [ Alaompy
0

(5.7) SN (Vs 5 )

Here the quantity ., |¢),|* is well-defined, since it is independent of
the choice of the local frame fields on M and N. Recalling V|do(T)|? =

23 (0500, Ta + 0y dbaTa) + 2040k T we have

1 , 0
3 ) (Tasp. )

12 . . 1/2
(5.8) <{/ij !¢6\2”H} {/33 <2Z!¢6a12+r¢6012>ﬂ} :

((r) = /B (2 D ldhal* + |¢6o|2> .

Then by the co-area formula, we get

/ _ d : 7 %
¢'(r) = ar {/0 /é)Bt (22 |Boal” + \¢00\2> Hdt}

(67

= /8 . (2 Z |Ghal” + |¢60|2> H.
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Putting together (5.7) and (5.8) and squaring we finally get

(5.9) () < ( / . |¢a|2%) ).

Next, we reason by contradiction and we suppose (bf)a %0 for some a. It
follows that there exists a R > 0 sufficiently large such that ((r) >0, for
every r > R. Fix such an R. From (5.9) we then derive

" dt
R)'>c¢(R)! — -1y S
O A e

and letting » — +o00 we contradict (5.6). [

COROLLARY 5.1.  Let (M,T10(M),0) be a complete noncompact
Sasakian manifold and (N, h) be a Riemannian manifold with nonpositive
curvature. Suppose ¢ : M — N is either a harmonic map or a pseudohar-
monic map. If ¢ satisfies

(5.10) / |do(T)|*® < Or?,
By
then the second fundamental form satisfies B(¢)(T, X) =0 for any X €
Proof. Set

)= [ s,

So, by the co-area formula, we have
W)= [ ldom)Pa
0B,

From of [18, Proposition 3.1], we know that

1
)

r

1
) ¢ L™ (400).

¢ L'(+00) implies

Suppose that ¢ satisfies (5.10), this implies
r

— ¢! .

i 1 (0)

Thus we deduce 1/h(r) ¢ L' (+00), that is, ¢ satisfies (5.6). Hence we prove
the corollary. 0
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PROPOSITION 5.2.  Let (M,Tio(M),0) be a complete noncompact
pseudo-Hermitian manifold and (N, h) a Riemannian manifold. Let ¢ :
M — N be a smooth map. If the second fundamental form satisfies
B(@) (T, X) =0 for any X € H(M) and

(5.11) </83 eH(¢)H> - ¢ L' (+00),

then ¢ is foliated.

Proof. By the property of 8(¢) and the divergence theorem, we have

m [ 1w = =T [ aehoner — shonemw
B B

1/2 1/2
712 72
<2{[ 1opnu {/mgw’ﬂ} .

Set (r) = [i, |6h/*¥. Then we have

"< ([ enton) o

If ¢ is not foliated, then for r > R,

s [ dt
n(R)~L - () > /R e @

where R is large enough such that n(R) >0, and letting r — 400 we
contradict (5.11). [

THEOREM 5.3.  Let (M?™F1 Ty o(M),0) be a complete noncompact
Sasakian manifold and (N, h) be a Riemannian manifold with nonpositive
curvature. Suppose ¢ : M — N is either a harmonic map or a pseudohar-
monic map. If ¢ satisfies

(5.12) (f . (M) g L (o),

where e(¢) = (1/2)tracey, (¢*h) is the energy density of ¢, then ¢ is a foliated
map.
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Proof. Since e(¢) = ey (¢) + (1/2)|dé(T)|?, the condition (5.12) implies
both (5.6) and (5.11). It follows from Propositions 5.1 and 5.2 that ¢ is
foliated. il

COROLLARY 5.2.  Let (M,T1o0(M),0) be a complete noncompact
Sasakian manifold and (N, h) be a Riemannian manifold with nonpositive
curvature. Suppose ¢ : M — N is either a harmonic map or a pseudohar-
monic map. If ¢ satisfies

(5.13) / e(¢)¥ < Cr?,

then ¢ is foliated.

§6. Op-pluriharmonicity results

In this section, we give some conditions to ensure the dy-pluriharmonicity
for both harmonic and pseudoharmonic maps from either a compact
Sasakian manifold or a complete Sasakian manifold. Recall that Petit [16]
gave similar results for harmonic maps from a compact Sasakian manifold
by using tools of spinorial geometry, although he did not mention the notion
of Op-pluriharmonicity. The moving frame method, which enables us to treat
both cases of harmonic maps and pseudoharmonic maps, seems closer to the
classical methods in differential geometry. Let ¢ : (M?™ L Ty o(M), 0) —
(N™ h) be a smooth map from a pseudo-Hermitian manifold M into a
Riemannian manifold N. Inspired by Sampson’s technique (cf. [6, 19]), we
introduce a global 1-form on M given by

(6.1) Ow, = 0 da0° + S, 0,

in terms of the local orthonormal admissible coframe {#*} on M and the
local orthonormal coframe field {o?} on N.

LEMMA 6.1.

0o(Onr) = 2> 164517 + Shdl5n + Sudsn — 4m(6h)” — 265 ¢hEE AL R
a?ﬂ

(6.2) =2V =1(m — 1)(¢4,05455 — PadiAas)-
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Proof. By the definition of the divergence of 1-forms on M, we have
3(Ow) = ($adfa)ss +(P505.):5
= Gh30ha + DaBhap T POl + Sablas
Using (3.7), (3.10) and their complex conjugate, we get
o(Ow,) = 25( L5+ 2V—1600ap) + dhs( 35 — 2V =1¢0as)
+ 61(0h 50 — PhoE S5 Rjies + 2V =10asd) Asg — 2mv/ =16} Ass)
X OG0 — O50EOL Rjit — 2V 100565 Arg + 2my/ =15 Ara)
= 20, 5045 + 2V =165 (dha — Paa) + Oulzs + PaPha
— 20050505 Rjin — 2V =1(m — 1)(¢h) Asq — 6565 Ara)
= 20! 30k — Am())” + Fadlyz, + 0h055, — 200050805 Ry
= 2V=1(m — 1) (405455 — 055 Aas)- 0
THEOREM 6.1. Let (M?*™1 T\ o(M),0) be a compact Sasakian mani-
fold of and (N™, h) be a Riemannian manifold with nonpositive Hermitian

curvature. Suppose ¢ : M — N is either a harmonic map or a pseudohar-
monic map. Then ¢ is Oy-pluriharmonic and

n
(6.3) Z oy JﬂQSf—ng%Rijkl =0, foranya,p.
0,5,k

Proof. The fact that N has a nonpositive Hermitian curvature implies
that the sectional curvature of N is nonpositive. According to Theorems 5.1
and 5.2, we know that the condition that ¢ is harmonic is equivalent to
that ¢ is pseudoharmonic. Besides, we get that the map is foliated in this
circumstance. By (3.7), we have ¢Z<B :qﬁ%a for any «, 8. Thus we have

T(p) = 2¢,i6’BEi’ where {E;} is the dual vector field of {¢*}.
From (6.2), we get

O (6w —2Z\¢> 512+ 5 (b, Vi (9)) — 2060505 R

(6.4) =2 Z |0%517 — 2¢;¢g¢§¢g§jm.
a?/B
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Since N has nonpositive Hermitian curvature, we have

(6.5) 0., %qﬁéqﬁ%fiﬁkl <0 for any fixed a, 5.

By the divergence theorem, we derive from (6.4) that ¢ is a d,-pluriharmonic
map with property (6.3). [

Then consider the case that the target manifold (N,h) is a Kahler
manifold. The curvature operator @ of IV is defined by

(QIXANY), ZANW)=(R(X,Y)W, Z)

for any X, Y, Z, W € T(N). The complex extension of Q to A2TC(N) is also
denoted by @. Let us set

(QIXAY), ZAW) =(QX AY), ZATW).
The Kahler identity of N yields

@’M&O)TC(N) = Cfj|/\(0’2‘>T<C(N) =0.
Set
QWY =@ : ABITE(N) = ALDTCE(N).

DEFINITION 6.1. (cf. [20]) Let (IV, h) be a Kéhler manifold. The curva-
ture tensor of IV is said to be strongly negative (resp. strongly seminegative)
if

(QUV(€).€) = (@D (€).§) <0 (resp. <0)
for any & = (Z AW)BY £0, Z, W € T(TC(N)).

Let ¢ : (M?™T Ty o(M),0) — (N™, h) be a smooth map from a pseudo-
Hermitian manifold M into a K&hler manifold N. Similar to (6.1) (cf. [19]
and [6]), we introduce a global 1-form on M defined as

(6.6) Ow, = Pudhpt’ + 0500507,

in terms of the local orthonormal admissible coframe {6} on M and the
local orthonormal frame field {E;} on N. By (3.7), (3.23) and their complex
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conjugate, we have
0b(Ows) = 6L 5050 + Oatlas + Shsds, + ¢@¢EBQB
ig( s+ 2V —16,p00) + dhs(¢, . NEST IS
+%wm—%%%Jm+w%¢]m
+2v/ =180 A5 — 2V —1mgl As,)
+ G (D50 — ShOR 0l Ry + 6050k Ry
— 2@5%%14% + 2\/?1m¢x,4m)
:2Z]¢ﬁ+¢¢wﬁwwma 2V =1($hbha — hFha)

- <<Q(¢a A ¢,6’)7 ¢a A ¢ﬁ>>
(6.7) = 2V=1(m = 1)(¢405Aa5 — Pad5Aap)-
THEOREM 6.2. Let ¢: (M, T o(M),0) — (N, h) be a harmonic or pseu-
doharmonic map from a compact Sasakian manifold into a Kdhler manifold

with strongly seminegative curvature. Then ¢ is a Oy-pluriharmonic map
and

(6.8) ({(Q(¢a N B5), G Adg)) =0, for any a, B

where ¢o, = dp(Ty,).

Proof. Since strongly seminegative curvature implies nonpositive sec-
tional curvature, we get that ¢ must be pseudoharmonlc and foliated. Then
we have (ﬁzﬂ— P and ¢} = 0. So we get 7(¢) = ( E +¢65 E;) =0, that

Ba
is, d)BB 7 =0. As M is Sasakian, by (6.7) we have
(6.9) Sb (6w, ) —22 "b 5’2 ¢a/\¢ﬁ) ba N P3)-

The divergence theorem and the curvature condition of N imply that ¢ is
Op-pluriharmonic and {({(Q(¢a A ¢5), da A ¢5)) =0, for any a, . [

Now we attempt to give some conditions to ensure Oy-pluriharmonicity for
harmonic and pseudoharmonic maps from complete noncompact Sasakian
manifolds.
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THEOREM 6.3. Let (M, T10(M),0) be a complete noncompact Sasakian
manifold and (N, h) be a Riemannian manifold with nonpositive Hermitian
curvature. Suppose ¢ : M — N is either a harmonic map or a pseudohar-
monic map. If ¢ satisfies

(6.10) (f N (M) gD (400),

then ¢ is a Op-pluriharmonic map with the property (6.3).

Proof. By Theorem 5.3, we get that ¢ is foliated and pseudoharmonic.
From (6.4) and (6.5), we have

9W1 22 M) ﬁ’2

Using the divergence theorem, we get
(6.11) / 9 (a> /ZW 2.
o, | \0 B, 5 p

On the other hand, by the definition of fy,, we have

(6.12)
1/2

9 1/2 P
/831« Ow, (m) ’H<2{/aBT eH(sb)”H} /BT%%M H

Putting together (6.11) and (6.12) and squaring we finally get

(6.13) A2 < ( /a . eH<¢>%> ¥ (1),

where we have set

0= [ Sk

T a7/6

Next suppose that ¢ is not Op-pluriharmonic. Then there exists a R >0
sufficiently large such that (R) > 0. For any r > R, from (6.13) we can

deduce ., it
Rl _ -1 ’
V(R — () /R e

and letting 7 — +o0o we contradict (6.10). Hence ¢ is Jp-pluriharmonic and
Ow, = 0. Then (6.2) implies that ¢ satisfies (6.3). [
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COROLLARY 6.1.  Let (M,Tio(M),0) be a complete noncompact
Sasakian manifold and (N, h) be a Riemannian manifold with nonpositive
Hermitian curvature. Suppose ¢ : M — N is either a harmonic map or a
pseudoharmonic map. If ¢ satisfies

/ e(d)¥ < Cr?,

then ¢ is a Op-pluriharmonic map with the property (6.3).

THEOREM 6.4. Let ¢: (M, T1o(M),0) — (N, h) be a harmonic or pseu-
doharmonic map from a complete noncompact Sasakian manifold into a
Kdhler manifold with strongly seminegative curvature. If ¢ satisfies

(6.14) (f . (M) g L (40),

then ¢ is a Op-pluriharmonic map with the property (6.8).

Proof. Obviously, the map ¢ is foliated, and hence gbfx 5= qﬁ%a. It follows
from (6.7) that

- 0
2/ ¢Z2\IJ</50 \IJ:/ 9 ()H
; > 1¢sl . b(Ow,) s "

r a?IB

By the definition of Oy, , we have

) 1/2 | 1/2
fo e () 2, o} 3 [, Sietal
Set
o= > sl
Then

(6.15) e <o ([ . EE

Suppose that ¢ is not J,-pluriharmonic, then there exists a R > 0 sufficiently
large such that p(r) > 0 for any r > R. Fix such a R. From (6.15) we deduce
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the following

-1 _ ()1 " dt
p(R)L = p(r) L > /R T en @

and letting » — +0o we contradict (6.14). Hence ¢ is Oy-pluriharmonic and
Ow, =0. Then (6.7) implies that ¢ satisfies (6.8). [

COROLLARY 6.2. Let ¢: (M, T19(M),0) — (N,h) be a harmonic or
pseudoharmonic map from a complete noncompact Sasakian manifold into
a Kdhler manifold with strongly seminegative curvature. If ¢ satisfies

/ ()W < Cr?,

then ¢ is a Op-pluriharmonic map with the property (6.8).

87. Siu—Sampson type results

In this section, we establish some results of Siu—Sampson type for
both harmonic maps and pseudoharmonic maps from compact Sasakian
manifolds. Similar to the results for harmonic maps from Ké&hler manifolds
in [3, 19, 20], we may derive (J, JVV)-holomorphicity under rank conditions
for harmonic and pseudoharmonic maps from compact Sasakian manifolds
by analysing the curvature equations (6.8). Note that Petit [16] also
gave the (J, JV)-holomorphicity results for harmonic maps from Sasakian
manifolds using spinorial geometry. As mentioned previously, our method is
different from his. Besides recapturing Petit’s results by using the moving
frame method, we also add some new results which include the results for
pseudoharmonic maps, the conic extension of harmonic maps from Sasakian
manifolds and a unique continuation theorem for (.J, J»)-holomorphicity.

First, we consider the case where the target manifold N is a locally
symmetric space of noncompact type (cf. [3, 19]). The universal covering
manifold of N is a symmetric space G/K, where K is a connected and
closed subgroup of the noncompact connected Lie group G, and G/K is
given the invariant metric determined by the Killing form (,) on g. If the
corresponding Cartan decomposition of the Lie algebra of G is g==¢+ p,
then the real tangent space of IV at any point can be identified with p. The
Killing form (,) is positive definite on p and negative definite on €. The
curvature tensor of IV is given by

~

R(X,Y)Z=—[[X,Y], Z],
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for any X,Y, Z € p, and the Hermitian curvature of IV is given by
(7.1) (R(X, Y)Y, X) = (X, Y],[X,Y]),

which is nonpositive, and zero if and only if [X, Y] = 0, because of [p, p] C £.
By Theorem 6.1, we get

(7.2) [dp(Tw), dé(T)] = 0,
for any «, 8. Thus we have

PROPOSITION 7.1. Let (M, T1o(M),0) be a compact Sasakian manifold
and N a locally symmetric space of noncompact type. If ¢ : M — N is either
a harmonic map or a pseudoharmonic map, then ¢ is Op-pluriharmonic and
for any x € M, dp, maps T1o(M), onto an abelian subspace W of p @ C.

Under the assumption of Proposition 7.1, the image under d¢, of real
tangent space T,(M) is the subspace of real points of space W + W C
T(;‘)J(I)(N), so that

dimg de,(T(M)) = dime(W + W) < 2 dime W.

If G/K is a Hermitian symmetric space, then corresponding to any
invariant complex structure on G/K we have the decomposition

peC=p"Yep™,

and the integrability condition [p'?, p'9] C p*¥ is equivalent, in view of

[, p] C & to [p*0, p19) =0, thus pC is an abelian subalgebra of p @ C.

LEMMA 7.1. (cf. [3]) Let G/K be a symmetric space of noncompact
type. Let W C p ® C be an abelian subspace. Then dim W < (1/2) dimp @ C.
Equality holds in this inequality if and only if G/K is Hermitian symmetric
and W = pb0 for an invariant complex structure on G /K.

From Lemma 7.1, we get immediately the following result.

COROLLARY 7.1. Let ¢: M — N be as in Proposition 7.1 and suppose
that N s not locally Hermitian symmetric. Then rank d¢ < dim N.

The above corollary use only the case of strict inequality in Lemma 7.1.
We have treated the case of equality in such detail in order to obtain the
following theorem.

https://doi.org/10.1017/nmj.2017.38 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2017.38

ON HARMONIC AND PSEUDOHARMONIC MAPS FROM PSEUDO-HERMITIAN MANIFOLDS 205

THEOREM 7.1. Let (M, T1 (M), 0) be a compact Sasakian manifold and
N a locally Hermitian symmetric space of noncompact type whose universal
cover does not contain the hyperbolic plane as a factor. If ¢ : M — N is
either a harmonic map or a pseudoharmonic map, and there is a point

x € M such that dp(T,(M)) = Ty)(N), then ¢ is (J, JN)-holomorphic.

Proof.  Since d¢(T1,0(M)) is an abelian subspace of half the dimen-
sion, it must be p'¥ for an invariant complex structure on N, that is,
dp.(T10(M),) = p'0. Consequently this property must hold on a neighbor-
hood U of z. By Proposition 7.1 and Proposition 2.2, we have d¢(T") = 0.
Therefore, the map ¢ is (J, JV)-holomorphic on U. We get that the
map ¢ is (J, JV)-holomorphic on M by the following unique continuation
Proposition 7.2. [

Then, we give some fundamental knowledge about the warped product.
Let (B, gg) and (S, gs) be two Riemannian manifolds and f be a positive
smooth function on B. Consider the product manifold B x S with its natural
projections 7 : B x S — B and mg : B x S — S. The warped product B x
S is the manifold B x S furnished with the following Riemannian metric

(7.3) g=mp(9p) + (fomp)’n5(gs).

The Levi-Civita connection of B x y S can now be related to those of B and
S as follows.

LEMMA 7.2. (cf. [15, p. 206]) Let V, BV and SV be the Levi-Civita
connections on B x; S, B and S respectively. If V, W are vector fields
on B, and X, Y are vector fields on S, the lift of X, Y, V,W to B x; S are
also denoted by the same notations, then

(i) VyW is the lift of PVyW;

(i) Vv X=VxV=(Vf/fX;

(i) (VxY)5=—(3(X. Y)/f) grad f;
(iv) (VxY)g is the lift of “VxY on S.

We consider the special case: let (M, T} o(M), ) be a pseudo-Hermitian
manifold and C(M) be the manifold Rt x, M endowed with the metric
g = dr® + r2gg. Therefore, by Lemma 7.2, we have

~ 0 ~ ~ 0 1
- Va/arg =0, VajorX = VXE =X,
7.4
VxY =V&Y — rgy(X, Y)%
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THEOREM 7.2. (cf. [2]) If (M, T1o(M),0) is a Sasakian manifold, then
(C(M), g) is Kdihler.

Proof. Set ( =r(0/0r) and define smooth section of End TC' (M) by the

formula
(7.5) JY =JY —0(Y)¢, J(=T.

It is easy to see that J is an almost complex structure on C(M) and the
metric g is Hermitian. From (7.4) and (7.5) we can show that V.J = 0. Thus
C(M) is Kéhler. [

LEMMA 7.3. Let (M,Tho(M),0) be a pseudo-Hermitian manifold,
(C(M), g) its cone manifold, (N", h) a Riemannian manifold. If ¢ : M — N
is a harmonic map, then the conic extension ¢ : C(M) — N defined by

(7.6) Pz, 1) = P(z)
s also harmonic.

Proof. We take a local orthonormal frame field {T, e, Jeq} on T'(M),
then {(1/r)T, (1/r)eq, (1/r)Jeqs, /0r} is an orthonormal local frame field
on T(C(M)). By (7.4), we get that the usual tension field of ¢ is equivalent
to (1/72)7%(¢). Thus, the harmonicity of ¢ follows that of ¢. [

LEMMA 7.4. Let¢: (M, T o(M),0) — (N, h, JN) be a smooth map from
a Sasakian manifold to a Kdhler manifold, (C(M),g) the cone manifold
of M. Then:

(i) ¢ is a(J, JN)-holomorphic (resp. anti-(J, JN)-holomorphic) map if and
only if the conic extension 5 is holomorphic (resp. antiholomorphic);

(ii) if ¢ : M — N is a Oy-pluriharmonic map, then the conic extension 5 i
a pluriharmonic map.

Proof. (i) It can be proved by (7.5). We omit the details.

(ii) If ¢ is Op-pluriharmonic, then by Proposition 2.2 we have do(T') = 0.
Let B(¢) be the usual second fundamental form for ¢. From (7.5), (7.4) and
(2.4) we get o o

B(¢)(X,Y)+ B(¢)(JX, JY) =0,
for any X,Ye T(C(M)). Therefore, the map 5 is pluriharmonic. U

In [20], Siu derived the following unique continuation theorem for
holomorphicity.
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LEMMA 7.5. (cf. [20]) Suppose M, N are two Kdihler manifolds (M is
connected) and ¢ : M — N is a harmonic map. Let U be a nonempty open
subset of M. If ¢ is holomorphic (resp. antiholomorphic) on U, then ¢ is
holomorphic (resp. antiholomorphic) on M.

From the Lemmas 7.3-7.5, we get the following unique continuation
theorem.

PROPOSITION 7.2. Let ¢: (M, T10(M),0) — (N, h) be a harmonic map
from a connected Sasakian manifold to a Kdihler manifold. Let U be a
nonempty open subset of M. If ¢ is (J, JN)-holomorphic (resp. anti-(J, JV)-
holomorphic) on U, then ¢ is (J, JV)-holomorphic (resp. anti-(J, JV)-
holomorphic) on M.

Proof. From Lemma 7.3, we get that ¢:C(M)— N is harmonic.
Suppose ¢ is (J, JV)-holomorphic on U. It follows from Lemma 7.4 that gz~5

is holomorphic on R %, U. By Lemma 7.5, we have that ¢ is holomorphic
on C(M) and thus, from Lemma 7.4, ¢ is (J, J'V)-holomorphic on M. []

Now we may establish the following Siu type results.

THEOREM 7.3. Let (M,Tio(M),0) be a compact Sasakian manifold
and N be a Kahler manifold with strongly negative curvature. Suppose
¢: M — N 1is either a harmonic map or a pseudoharmonic map, and
rankr do > 3 at some point of M, then ¢ is (J, JN)—holomorphic or anti-
(J, JN)-holomorphic on M.

Proof. From Theorem 6.2 and Lemma 7.3, we know that (Z is harmonic.
By Siu’s results, we have ¢ is +holomorphic on C(M). By Lemma 7.4, we
conclude that ¢ is #(J, JV)-holomorphic on M. [

Keeping in mind Udagawa’s proof to Theorem 4 of [24] the following
result is relevant.

THEOREM 7.4.  Every Op-pluriharmonic map ¢: (M, Ty o(M),0) —
(N, h) from a Sasakian manifold M into an irreducible Hermitian sym-
metric space N of compact or noncompact type is £(.J, JN)holomorphic if
Maxyrankg dop > 2P(N) + 1, where P(N) is the degree of strong nonde-
generate of the bisectional curvature of N (cf. [21] for the definition of the
degree of strong nondegenerate of the bisectional curvature of N ).

Proof. By Lemma 7.4, we get that 5 is pluriharmonic. Since
Max s rankg d¢ > 2P(N) + 1 implies that Max¢(pyyrankg d¢ > 2P(N) + 1,
it follows from [24, Theorem 4] that ¢7 is +holomorphic. From Lemma 7.4,
we have that ¢ is 4(J, JV)-holomorphic. [
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