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FINDING INTEGRAL LINEAR DEPENDENCIES OF
ALGEBRAIC NUMBERS AND ALGEBRAIC LIE ALGEBRAS

CLAUS FIEKER anp WILLEM A. DE GRAAF

Abstract

We give an algorithm for finding the module of linear
dependencies of the roots of a monic integral polynomial. Using
this, we describe an algorithm for constructing the algebraic
hull of a given matrix Lie algebra in characteristic zero.

1. Introduction

One of the major tools in the theory of algebraic groups is their correspondence
with Lie algebras. Many problems regarding algebraic groups can be reformulated
in terms of the corresponding Lie algebras, for which they are generally easier to
solve. There is considerable interest in studying algebraic groups computationally
(cf., for example, [6, 8, 11]). Also, for this it would be of great interest to exploit
the connection with Lie algebras. In this paper we treat a question that arises in this
context, namely the problem of deciding whether a given Lie algebra corresponds
to an algebraic group. In particular, a positive solution to this problem enables us
to decide which subalgebras of a Lie algebra of an algebraic group correspond to al-
gebraic subgroups. To tackle this problem we restrict to base fields of characteristic
0, because for that case there is a well-developed theory of the connection between
algebraic groups and Lie algebras (see [5]). In particular, a connected algebraic
(matrix-)group is completely determined by its Lie algebra.

Results of Chevalley yield a construction of the smallest algebraic Lie algebra
containing a given Lie algebra (this is called the algebraic hull). However, the com-
putationally hardest step is to find all the integral linear dependencies of the roots
of a polynomial. This can be done by constructing the splitting field of the given
polynomial. But that approach is limited to polynomials which have splitting fields
of only moderate sizes. Instead we describe a method that works with approxima-
tions to the roots. Combining complex and p-adic approximations to the roots, and
the technique of lattice reduction (LLL), we obtain an algorithm for computing
the Z-module of integral relations among a given set of algebraic integers. In the
literature, several somewhat similar methods for solving this problem are known
(cf., for example, [7, §2.7.2] and [13]). These methods focus on finding one lin-
ear dependency, while our algorithms find (a basis of) the whole module of linear
dependencies.

This paper is arranged as follows. In Section 2 we describe methods for obtaining
a basis of the module of linear dependencies of a set of algebraic numbers. Then
in Section 3 algorithms are given for constructing the algebraic hull of a given
Lie algebra. These make use of the algorithms of the previous section. The next
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section is devoted to showing how the knowledge of the Galois group can in some
instances be of help with constructing the algebraic hull. This is used in Section
5, where we give the algebraic hull of the Lie algebra spanned by a semisimple
4 x 4-matrix. Finally, in Section 6 we report on some practical experiences with an
implementation of the algorithms in the computer algebra system MAGMA [3, 4].

2. Finding integral dependencies among roots

Let f € Q[z] be a square-free polynomial with roots as,...,a, in some field
I' O Q. The field I" does not need to be finite or even algebraic over Q. In what fol-
lows, I will be the field C of complex numbers or a suitably chosen unramified p-adic
field. The roots «; (1 < ¢ < n) are given as rational numbers &; that approximate
the roots good enough so that &; can be lifted to arbitrary precision using classical

Newton-iteration. Elements of I' O K := Q|av, ..., ay,] can be represented as poly-
nomials g € Q[X1,...,X,] coming from a representation K = Q[Xy,...,X,]/I for
some zero-dimensional ideal I C Q[X7, ..., X,,]. Although constructive methods for

the construction of I or K are known (see, for example, [18]), in general they are
limited to small examples: the splitting field can have degree as large as n! over Q
and generically, it has. In what follows we assume f to be monic and integral, so
that «; are algebraic integers. We will give algorithms for the following tasks.

1. Given some g € Z[ X}, ..., X,], decide if g(a1,...,a,) =0.
2. Given g; € Z[X3,...,X,] (1 < j < s), find a Z-module basis for

AN=qeeZ’| Zejgj(al,...,an):O

Jj=1

Obviously, both tasks are trivial if exact representations for K or I are known, so we
essentially assume that (K : Q) is too large to allow direct algebraic constructions
to succeed. Our method will be based on approximate representations of the ay;
that is, we are going to use the field C of complex numbers and certain unramified
p-adic extensions of QQ, for our work. For basic properties of p-adic numbers, we
refer to [21, 15].

Let p € Z be a prime number. For any r € Z, we can write r = p'r’ for some 7’
not divisible by p. The function

vyt Z\{0} = Z:r =plr’ 1
is called the p-adic valuation on Z. We extend v, to all of Z by defining v, (0) := oo
and extend further to Q by setting v,(a/b) = v,(a) — v,(b). Via
[p:Q—=Q:a—p ", 00,

this gives rise to the (normalised) p-adic absolute value and thus the p-adic topology
on Q. The completion @, of Q with respect to to |.|, is called the field of p-adic
numbers; it contains the p-adic integers, the completion Z, of Z.

Suppose now that over F,, the field with p elements, f factors as

l
f=1[# modp

i=1
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with irreducible, pairwise coprime f; € F,[t]. Then there is an (unramified) ex-
tension I'/Q,, of degree f, := lcmé:1 deg f; where f splits into linear factors. Fur-
thermore, there is a unique extension of |.|, to I" which is again denoted by |.|,.
Similarly to R or C, elements in I' cannot, in general, be represented exactly; in-
stead, approximations with a given fixed precision have to be used. The advantage
of using I' as a splitting field, rather than C or K directly, lies in the fact that
arithmetic operations in I' incur less numerical loss of precision than operations
with real numbers, while the algebraic degree of I'/Q,, is still much smaller than
the degree of K/Q. The main disadvantage of using I" or C is that, since there is no
exact representation of elements, in general we cannot decide if an element is zero
without additional information.

Lastly, we note that up to Galois conjugation, there is exactly one prime ideal
P of Zk (the ring of integers of K) such that I' = Kp the P-adic completion at P.
For elements x € Zy, we have x € P* if and only if |z[, < p~*.

In addition to the p-adic information mainly encoded in I', we are also going to
need complex information about elements in K. As a number field K/Q, K admits
(K : Q) many distinct embeddings (.)¢) (1 < j < (K : Q)) into the complex
numbers. For any x € K we define a length:

(K:Q
Th: K —>R:z— Z |2,
j=1
Note that /75 is an Euclidean norm on the Q-vectorspace K. Elementary Galois

theory and the inequality between arithmetic and geometric means can be used to
derive non-trivial lower bounds on T5(x):

R/ Nk jg(r?) < K1: @T2($) (1)

which implies for non-zero algebraic integers x € Zg \ {0} that
To(x) > (K : Q). (2)

REMARK. Let (31, ..., B, € C be the complex roots of f. In general it is extremely
difficult to sort the complex roots in such a way that «; corresponds to (;, which
means that, for example, from Y | e;a; = 0 we cannot, in general, conclude that

>y €ifli = 0.

After these preliminaries we can now state our algorithm for the first problem.

ALGORITHM 1. Let oy, ..., o, € I'/Q), be the roots of some monic polynomial
f € Z[t], and assume that T' is unramified over Q,. The o, are given as sufficiently
good approzimations &;, such that |o; — &;lp < oy — &lp (1< 4,5 < n, i #j) and
|f(@)lp < f'(@)]2 in order to apply Newton-lifting. Set K = Q(ax, ..., o) and
let g € Z[xq,...,x,] be arbitrary. This algorithm decides whether

glan, ..., an) = 0.

1. Compute a bound M > 0 such that |g(ay,...,a,) 9| < M for all complex
embeddings (.)V) : K — C. Such a bound can be obtained by first computing a
bound M’ on the complex roots 3; € C of f, and then estimating |g(71,- -, Yn)|
for all choices of |v;| < M'.
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2. Compute a bound r > (K : Q).

3. Set
. { r log M-‘
(I': Qp) logp
4. Compute &; such that |a; — ajl, < p~* for 1 <j < n.
5. Evaluate G = g(an,. .., dy).
6. If |G|, > p~* return NotZero; otherwise return IsZero.

Proof. Throughout this proof, we write &; for finite precision approximations to the

exact root ; € T' that we cannot exactly represent. Similarly, G := g(a1, ..., an)
is the exact element that we cannot compute but need to decide if G = 0 and
G :=g(ai,...,a,) is a finite precision approximation.

We first note that since f € Z[t] is monic, we have «; € Zr, the integral closure
of Z, in T. Now g € Z[x1,...,2,] implies G € Zr as well. Writing &; = «; + p*vy;
with some v; € Zr we obtain from the ultrametric property of |.|,:

|g(&17 cee 7&n)|p < maX(|g(a1, ey aﬂ)|1)ﬂp_k);

that is, there is no loss of precision in the evaluation.

Let K := Q(a1,...,q,), as above, and let P be some prime ideal Zx O Plp
such that I' = Kp. Then for z € Zg such that |z|, < p~* we obtain z € P*; thus
Ni/o(z) € Nijo(P)* and, since Ny /q(P) is an ideal in Z generated by p™®r:

pk(F:Qp) < NK/Q($)~

Now, let us assume that we have k and M as in the algorithm, |G|, < p~* and
agssume G # 0. From
(G _ M*(K:Q) 2
(K:Q) [ \ G2 =M
VVE/0(G?) < 57 Q X0
we get Ni/o(G) = pFT@)  And thus
k(T :Qp) < log M
K:Q = logp’
which contradicts our choices. Thus we conclude that G = 0, as claimed. O

While the above algorithm can verify a relation, it does not tell us how to find
one. Also, the precision necessary to verify relations can be extremely large; it is
essentially linear in (K : Q) = # Gal(f). In order to use similar ideas to find
relations, we first need a result allowing us to get a bound on a basis of the relation
lattice.

THEOREM 1. Let ai,...,a, be algebraic integers, K = Q(ai,...,an), 7 =
(K :Q), and define

A= {eeZ"|Zeiai:0}.
i=1

Suppose that |a£j)\ < M for all complex embeddings (.)V) : K — C (1<j<7)
and all 1 < i < n; then A has a Z-basis b, € Z™, 1 < i < I, with

||bz||oo < nn—an—l.
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Proof. The function

f:72" -R:e— T2<Zeiai>

i=1

is a convex distance function in the sense of [16, p. 250]. Let m be a standard basis
element of Z™; that is, m = (m;)1<i<n and m; = 0 for all i # iy while m;, = 1.
Then f(m) = \/To(ay,) < /rM. From (2) we get for non-zero algebraic integers
x € K that Ta(z) = r; thus f(m) > /7, for all m € Z™ with f(m) # 0. The rest
now follows directly from the proposition of [16, p. 250]. O

The next essential ingredient is the LLL algorithm for lattice reduction. We need
the following property of a reduced basis [7, Theorem 2.6.2.(5)].

LEMMA 1. Let A C Z" be a lattice. Suppose that A contains linearly independent
elements x1,...,x;, of norm ||x;||l2 < M. Then for an LLL-reduced basis by, ..., by,
of A, we have ||b;]|3 <27 1M? for 1 <i <.

Combining the previous results we can now give a first algorithm for linear

dependencies.
ALGORITHM 2. Let f € Z[t] be monic, and let a1, ...,a, € T'/Q, be the roots of
f in some unramified extension of Q, of degree f,. We assume that elements in
I' are represented as vectors in (@Z],c” with respect to some fived basis wy,...,wy,.
Furthermore, let g; € Z]x1, . ..,x,] be arbitrary (1 <i < s) and define

S

A= {GGZS | Zeigi(al,...,an) 0}.
i=1

This algorithm computes a Z-basis for A.

1. Compute a bound M > 0 such that for each 1 < i < s, |gi(ay,...,a,) 9| < M
for all complex embeddings (.)V) : K — C.

2. Set N := s5~1 51,
3. Set

b [(Q(al, ) Q) logNMs—‘
Ip logp

4. Set \:= N225°1,

5. Compute &; such that |a; — |, < p*

6. Compute §3; := g(a1,..., &) for 1 < i < s, and form a matriz B where the
ith row contains the lift of coefficients of B; as elements to Z.

7. Form a big matriz B € ZH)x(tf0) by first concatenating I, and AB to get
(I|AB) and then appending a matriz (0L;|Ap*Iy,) to the bottom.

8. Apply the LLL algorithn to the rows of B, obtaining a new matriz L =
(Lij)1<ij<fpts

9. The lattice A is generated by (L; ;)1<i<ii<j<s, wherel is the index of the last
row L; of L with norm ||L;|l2 < A.
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Proof. Using Theorem 1, we see that N is a bound for the maximum norm of a
length of a basis-relation, so that N'Ms is a bound for the complex embedding |(.))|
of a possible relation. The precision is now chosen in the same way as in Algorithm
1 so that a possible relation e € Z* with |le|ls < N and | Y ;_, e;gi(ar, ..., an)|p <
p~* has to be zero.

In the matrix L, the s leftmost columns encode the transformations applied to
B, while the rightmost columns give the evaluated relation:

Iv

S
AD Ljigi(@n, . ydn) = Y Lyjiys@i +p'a
i=1 i=1
(for some z € Zr). So we see that if there is a relation > ;_, €;g;(c1,...,a,) =0,
then the Z-span of the first s rows of B contains a vector (eq,...,e,,ur,...,uy,),

with u; € ApFZ. So by adding suitable multiples of the last fp rows of B, we find
that (e1,...,en,0,...,0) lies in the Z-span of the rows of B.
Our choice of k£ and A now ensures the following facts.

1. If and only if (L;;)1< s is a true relation, is (L;,4s)i1<j<f zero.
2. If (Lj,i-l-s)lgjgf is not zero, then ||(Li,j)1§j§s+f||2 >A>N.

3. If there are relations within the bounds of Theorem 1, then the LLL will find
them since by Lemma 1, there must be rows in L with norm bounded by
2571 N < ), which implies that they are relations. O

In applying the above algorithm, the main problem is the huge precision k needed
to guarantee correctness. Since the precision directly determines the bit-length of
the entries of B, it is the crucial parameter for the runtime of the LLL algorithm. By
[17] we know that the runtime depends quadratically on the bit-length on the input;
thus we need to try to reduce the precision. Since verification of a relation (using
Algorithm 1) is computationally much easier than finding a relation, one method is
to just use the above Algorithm 2 with a smaller precision, say [1.5(log N/logp)],
apply the LLL algorithm, and test the relations obtained. In cases where Algorithm
1 fails to verify a relation obtained this way, we increase the precision and try again.
The proof of the correctness shows that this method must terminate with the correct
answer.

If the Galois-action on the p-adic roots aq, ..., a, is known, then we can sub-
stantially improve the runtime, by using the fact that if > | gi(a1,..., o) =0
then we also have >0, gi(0to1,. .., %) = 0 for all 0 € G = Gal(f). This allows us
to replace LLL by much faster echelon algorithms over Z/p*Z, followed by rational
reconstruction.

ALGORITHM 3. Let f € Z[t] be monic, and let aq, . .., o € T'/Q), be the roots of f in
some unramified extension of Q, of degree f,. Furthermore, let G = Gal(f) < S,
be given explicitly; that is, ca; = agi. Now, let g; € Z[xy,...,x,] be arbitrary
(1 <i<s<#G) and define

A= {eezs|Z€i9i(a17""a"):0}'

i=1

This algorithm computes a Z-basis for A.
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1. Compute a bound M > 0 such that for eachi we have |g;(B1,. .., B.)9| < M.
2. Set N := s~ IMs~1,

3. Set k:=[2log NM/logp].

4. Select a set S C G of size s, containing the identity of G.

5. Repeat:

6. compute &; such that |a; — a;l, < p~*;
7. set B := () a matriz with s rows and 0 columns;
8. foro e S do
9. compute /3’1 = gi(Go1 ..., Qpn) for 1 < i < s, and form a matriz B
where the ith row contains the lift of coefficients of B; as elements to Z;
10. set B := (B|)\B); that is, append \B to the right of B.

11. Apply HNF techniques to compute the nullspace N of B € (Z/pFZ)/»** in
echelon form.

12. Use rational reconstruction to find (if possible) the unique N € Q¢ such
that N = N mod p*. If this fails, increase the set S by randomly selecting
at most 0.24S elements in G\ S and k := [1.2k] and go back to step 5.

13. Compute a matriz S € 7" such that S is a Z-basis for the intersection
of the Q-vectorspace with basis N and Z° (using some saturation method).

14. Apply the LLL algorithm to S to obtain a LLL reduced basis L.

15. Set k := [1.2k] and increase the set S by randomly selecting at most 0.2#S
elements in G\ S,

16. wuntil all rows L; of L are norm bounded: | L;||2 < N and are true relations by
Algorithm 1.

Proof. Let K := Q(cu,...,qy); then, since I' is a splitting field for f, we have K ®q
I 2 T¢ = I(5:Q and the embedding is given via o; — (0(a;))seq. Furthermore,
as Q,-vectorspace we have

Ir~Qlr and Kol =QlH®

and the embedding extends via composition with

fr
I'sy=) ~w — (vihci<s, € Qr.
=1

If we apply this embedding to V := [g1(a), . .., gs(a)]o we get
VTl =lg(oa)sea,---(9s(0a))sec]r.

The fact that extensions of scalars preserve dimension,
dimg(V) = dimp(V @ I') = dimg, (V ®T)

implies that eventually rkg, B = dimg(V'). Similarly, the increasing precision en-
sures that the rational reconstruction will be successful, eventually. To be more
precise: assume that S is large enough so that dimg(V') = rkg, B and let M € Qixs
be a Q-basis matrix for the Q-nullspace of B. Without loss of generality, we can
furthermore assume that M = (M, ;) is in echelon form, and thus M is uniquely
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defined by V. If the precision k is chosen so that p* > maxh(M; ;)? for the naive
height h: Q — Z : p/q — max(p, q), then N in step 11 will allow us to compute M
by reconstruction.

If, however, S is too small, it may happen that rkg, B < dimg(V'), which means
that the matrix N computed in step 11 does not represent an approximation to M.
In this case, either the reconstruction fails or the reconstructed relations cannot be
verified in step 16. U

In steps 4, 12 and 15 we increase the size of the matrix by exploiting the Galois
action. This is done hoping that generically the new columns are independent from
the previous ones so as to increase the rank of B. It is clear that if S = G, then the
Z-nullspace of B would be precisely A; however, if S = {I5} then there will always
be spurious relations, some of which may be small in size.

Also, using well-known techniques that generalize rational reconstruction to num-
ber fields [9, 1, 10] and omitting steps 13 and 14, the algorithms can easily be
extended to find R-relations instead of Z-relations for R being any order in some
number field.

REMARK. The complexity of our algorithms is easily seen to be polynomial in
the input data and in (K : Q) as the precision necessary to ensure correctness in
Algorithm 1 (and in 2 and 3 as well) is essentially linear in (K : Q). In general
we expect (K : Q) to be close to n! = O(n™), and thus the overall complexity will
be exponential. This agrees well with all other published algorithms, as they are
always polynomial in the size of the input data — which is mainly the degree of
the number field containing «s, . .., a,. In the general situation, this field will have
degree exponential in n.

3. An algorithm for the algebraic hull

Let V be a finite-dimensional vector space over a field of characteristic 0. A
subgroup G C GL(V) is said to be algebraic if there is a set of polynomial functions
P on End(V') such that G consists of all g € GL(V') with f(g) =0 for all f € P. To
such a group corresponds a Lie algebra, Lie(G) C gl(V) (see [5, Chapter II, §8]),
where by gl(V') we denote the Lie algebra of all endomorphisms of V. Now a given
Lie subalgebra g C gl(V) is called algebraic if there is an algebraic subgroup G C
GL(V) such that g = Lie(G). In [5], Chevalley studied this concept in characteristic
0, and gave several criteria for a g C gl(V') to be algebraic.

Let g C gl(V) be any Lie algebra. Then by [5, Chapter II, Theorem 13], there is
a unique smallest algebraic Lie algebra containing g. This algebraic Lie algebra is
called the algebraic hull of g. In this section we consider the problem of constructing
the algebraic hull for a given g C gl(V).

Here F' will be a field of characteristic 0. We will use the language of matrices,
rather than that of endomorphisms, as this is more convenient for calculations. In
particular, gl(n, F) is the Lie algebra of all n x n-matrices over F. By [5, Chapter II,
Theorem 14], a Lie algebra g C gl(n, F') is algebraic if it is generated by algebraic
Lie algebras. It follows that g is algebraic if and only if the algebraic hull of the
subalgebra spanned by each basis element of g is contained in g. Hence we can
compute the algebraic hull of g if we can compute it in the case where g is spanned
by one matrix X.
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Let X € gl(n, F'). Then by 8 (X) we denote the algebraic hull of the Lie algebra
spanned by X. Let X = S + N be the Jordan decomposition of X. Then from [5,
Chapter II, Theorem 10] (see also [2, §7]), it follows that 95 (X) = gr(S) ® gr(N).
Moreover, gr(N) is spanned by N, by [5, Chapter II, §13, Proposition 1]. So the
problem is reduced to finding g7(X) when X is semisimple.

The following theorem is proved in [5].

THEOREM 2 (CHEVALLEY). Let X € gl(n, F') be semisimple, and let K O F be an
algebraic extension containing the eigenvalues aq,...,an of X. Let U € GL(n, K)
be such that Y = UXU™! is in diagonal form, with the o; on the diagonal. Set
A={(e1,...,en) €Z™ |, e;a; = 0}. Then

1. 9x(X) =U"tgr(Y)U and

ax(Y) = {diag(al,...,an) | a; € K and Zeiai =0 for all (e1,...,e,) € A};
i

2. 9p(X) ® K = 9g(X);
3. 9p(X) C Ap(X) where Ap(X) is the associative F-algebra with 1 generated
by X.

The first part of statement 1 is straightforward. Let G (X) denote the small-
est algebraic subgroup of GL(n, K) such that its Lie algebra contains X. Then
Gr(X) = U'Gk(Y)U and 8g(X) = Lie(Gg(X)) = U tLie(Gg(Y))U =
U='gr(Y)U. The second part of statement 1 is [5, §13, Proposition 2]. State-
ment 2 follows from the proof of [5, §13, Theorem 10]. Furthermore, statement 3 is
[5, §14, Proposition 14]. (There, it is shown that gr(X) is contained in the asso-
ciative algebra (not necessarily with 1) generated by X. However, for us it will be
more convenient to add the identity.)

In the remainder of this section we use the same notation as in Theorem 2. In
particular, we let X be a semisimple n X n-matrix with coefficients in the field F’
of characteristic 0. We let K be a finite extension of F' containing the eigenvalues
ai,...,a, of X. Furthermore, A = {(e1,...,e,) € Z" | >, e;o; = 0}, and Ag =
{(e1,...,en) € Q" | >, eio; = 0}. By Ap(X) we denote the associative algebra
with 1 generated by X. The algorithm for constructing 8(X) is based on the
following lemma.

LEMMA 2. For e = (e1,...,e,) € Q" and i > 0, set A;(e) = ZZ:1 exal. Let
I=X%X,...,X*" be a basis of Ap(X). Set

t
T = {(70,...,%) € Fith ZAi(Q% =0 foralle € AQ}.

=0
Then 8¢(X) = {32F_,mX" | (Y0,---,7) € T}

Proof. LetY = diag(av, ..., a,). Then thereisa U € GL(n, K) with UXU ! =Y.
Here ¢ + 1 is the degree of the minimal polynomial of X. Then since the mini-
mal polynomial of a semisimple matrix is the square-free part of its characteristic
polynomial, the minimal polynomial of ¥ (over K) is the same as the minimal
polynomial of X (over F). Hence Ax(Y) is spanned by I,Y, Y2, ... Y.

Set y = ZZ:O 7Yt Write y(k, k) for the entry in y on position (k, k). Then by
Theorem 2, y € gx(Y) if and only if for all e € A we have ), epy(k,k) = 0. It
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is clear that in this statement we may replace A by Ag. Indeed, A is a subgroup
of Z™ and hence it is finitely generated (see, for example, [20, Corollary II.3.k]).
Furthermore, a Z-basis of A will also be a Q-basis of Ag.

Now y(k, k) = Zzzo vk, and hence >, _; exy(k, k) = Zzzo A;(e)v;. Now set

t
Y = {(70, o) € KPP ZAZ-(Q)% =0forallec AQ}.
i=0
Then by Theorem 2 we see that gx(Y) = {>t_o%Y" | (f0,---,7) € YT'}. By
the same theorem, 9x(X) = U 'gg(Y)U, and hence gx(X) = {ZZ:O’ViXi |

(Fyoa s a’yt) € T/}

Now let Xi,...,Xs be any basis of gr(X). Then according to Theorem 2(2)
they are also a basis of §x(X). So gx(X) consists of >, 3;X; with 3; € K.
By Theorem 2(3), X; € Ap(X). Hence 9x(X) N Ap(X) consists of >, 5, X; with
0; € F. We conclude that 8x(X) N Ap(X) = gp(X). From this we get the desired
conclusion. 0

In order to use this result for a practical algorithm, we restrict to the case
where F' is an algebraic number field. Then we have the following the algorithm for
computing gr(X).

ALGORITHM 4. Let the notation be as above. We suppose that F is a number field.
This algorithm computes an F-basis for 8p(X).

1. Compute an algebraic extension K O F containing the eigenvalues aq, . . ., auy,
of X.

2. Compute (a Q-basis for) Ag.

3. Compute (an F-basis for) T (where Y is as in Lemma 2).

4. Return the set consisting of ZE:O v X% where (Yo,...,7:) Tuns through the
basis of the previous step.

Proof. First we show that all steps are computable. First of all, by iteratively
factoring polynomials over number fields we can compute a number field K O F
containing the eigenvalues aq,...,a, of X. Furthermore, K has a finite Q-basis,
and a finite F'-basis. Then by writing the a; on a Q-basis of K we can derive a set
of linear equations for Ag, and hence we can compute a basis of this space. Note
that A;(e) depends linearly on e. Hence, in order to compute T, it is enough to
consider e in a Q-basis of Ag. So by writing the A;(e) on an F-basis of K, we can
derive a set of linear equations for Y. Therefore, we can compute a basis of this
space. The last step is trivially computable.

The correctness of the algorithm follows from Lemma 2. O

EXAMPLE 1. Let X € gl(4,Q) have minimum polynomial T* + bT? + ¢ with D =
b2 — 4c not a square in Q. Then the eigenvalues of X are a; = o, ap = —av, a3 = f3,
a4 = —f3, where a? = 1(=b+ /D) and ? = 2(~b — V/D). Then o and 3 cannot
be proportional over Q (otherwise o and 3% would be as well). Hence the a; span
a two-dimensional subspace of K. So dim A = 2, and is spanned by e! = (1, 1,0,0),
e? =(0,0,1,1). Then Ag(el) = 2, Aq(e!) = Asz(e!) = 0, Ag(el) = 2a2. For €? we
get the same, except that Ag(e?) = 242 So

T ={(0,---,73) € Q| 270 + 2a%ys = 279 + 28%y2 = 0} .
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Hence Y consists of (0,71,0,73). We conclude that g(X) is spanned by X, X3.

As remarked in the introduction, Algorithm 4 works only in cases where the
splitting field is of moderate size. Now we show how the algorithms of Section 2
can be used to avoid constructing this field. For simplicity we assume that the
characteristic polynomial of X is square-free. The generalisation to the general
case is straightforward. Let f be the characteristic polynomial of X, and let o
(1 <i < n) be the roots of f with fixed ordering in some field ' D Q.

First we find A := {e € Z"| Z?:l e;o; = 0} using g; := x; and either Algorithm
2 or Algorithm 3. Let e = (ey,...,e,) be a basis element of A. The second step
consists of solving the equations that define T (cf. Lemma 2). For ¢ > 0, set g;(e) =
Sor_enh, and A(e) == gi(e)(ai, ..., ay). Let t +1 be the degree of the minimal
polynomial of X. Then, again with Algorithm 2 or 3, we find all integral (or,
equivalently, rational) linear dependencies of the A;(¢), that is, all vectors u =
(u1,...,uy) € QF with 3, u;A;(e) = 0. Let M (e) denote the Q-vector space spanned
by all those vectors u. Then T is equal to the intersection of all M (e), where e runs
through a basis of A. So in this way we find a basis of T, and hence a basis of ggp(X)
(cf. Algorithm 4).

4. The permutation module

Here we use the same notation as in the previous section. In this section we make
some observations that on some occasions directly give a basis of g9p(X).

Let f be the characteristic polynomial of X. Let K be the splitting field of f, and
G = Gal(K/F). We represent G as a permutation group on the roots aq, ..., a;, of
f. Let M be the permutation module of G over Q; that is, M has basis wy, ..., w,
and 0-w; = wy(;). On many occasions we will write the elements of M as row vectors.
Then o(a1,...,a,) = (ag-1(1);- - ,A5-1(n)). There is a direct sum decomposition of
G-modules M = My @ M, where My = {3, a;w; | Y, a; = 0} and M, is spanned
by w1 + ...+ wy,.

Let (e1,...,e,) € Ag and o € G; then

0= U<Z€¢Qi> = Z €ilg () = Z €o—1(4) i
It follows that Ag is a G-submodule of M. So by Maschke’s theorem, Ag =
Vi@ ...®V,, where the V. are irreducible G-submodules.
From Lemma 2 we recall that A;(e) =Y _, eka};7 where e € Q.

LEMMA 3. Write f = 2" +a12" ' +...4+a,. Then the G-submodule My C M occurs
in Ag if and only if a1 = 0. Furthermore, A;(e) = Tr(X"), where e = (1,1,...,1)
spans M .

Proof. We have a; = 0 if and only if ), a; = 0; hence the first statement holds.
Set e = (1,1,...,1). Let Y be as in the proof of Lemma 2. Then A;(e) = >, af =
Tr(Y?) = Tr(X?).

LEMMA 4. Suppose that f is square-free, and that My is irreducible. Then aq = 0
implies that Ag = My and a1 # 0 implies that Ag = 0.
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Proof. Note that Ag cannot contain My since in that case a vector like
(1,-1,0,...,0) would be contained in Ag, implying that oy = o (which is im-
possible because f is square-free). Hence the lemma follows by Lemma 3. O

COROLLARY 1. Suppose that f is irreducible. Let Ap(X) denote the associative
algebra generated by X. Suppose that G is 2-transitive, or that F = Q and n is
prime. If Tr(X) = 0, then 8p(X) consists of all X' € Ap(X) with Tr(X') = 0;
otherwise, 8p(X) = Ap(X).

Proof. If G is 2-transitive, then My is irreducible, by [12, Corollary 29.10]. If n = p
is prime, then Mj is irreducible over Q. This can be proved as follows. First of
all, since G is transitive it contains a p-cycle. Now we let H be the subgroup
generated by this p-cycle. Then M is also an H-module. Moreover, as H-module it
is isomorphic to the regular module, that is, to the module afforded by the left action
of H on the group algebra QH. The H-submodules of QH are exactly the ideals
of QH. But QH is isomorphic to Q[z]/(aP — 1), which by the Chinese remainder
theorem is isomorphic to Q ® Q[x]/(xP~1 + 2P~2 + ... + 1). We conclude that QH
splits as the direct sum of two simple ideals. Hence the H-module M is a direct
sum of two simple submodules. So the same holds for M when viewed as G-module.

Now the result follows by Lemmas 3 and 4. O

In particular, if G = S,, or G = A,, (n > 4) then we can easily compute §(X).

REMARK. If the Galois action is known, then on some occasions we can use
Algorithm 1 to give a more efficient algorithm for finding a basis of

A= {(el,...,en) | Zi:eiai :o}.

As above, we denote the permutation module of G by M. We assume that M has a
unique decomposition as direct sum of irreducible G-modules, M = V1 ®...@V,.. The
uniqueness of this decomposition is equivalent to all of the V; being non-isomorphic.
In that case we can compute the direct sum decomposition of M by computing
a maximal set of orthogonal primitive idempotents in the centre of the algebra
Endg (M) (which consists of all linear maps T': M — M with T(o(v)) = o(T(v))
forv e M and o € G). It also follows that Ag =V, ... & V;,. Now for each V; we
do the following. For each element (eq,...,e,) in a basis of V;, we check whether
> eic; = 0, using Algorithm 1. Then A is equal to the direct sum of the V; that
pass this test.

5. Degree 4

Here we use the observations of the previous section to give a complete descrip-
tion of 9 (X)), where X is a semisimple 4 X 4-matrix, with irreducible characteristic
polynomial.

Let f = z* 4+ ax® + bx? + cx + d be the characteristic polynomial of X, and
suppose that it is irreducible. Let G denote the Galois group Gal(K/F'), where K
is the splitting field of f. We remark that if F' = Q then it is straightforward to
determine G — for example, by the procedure outlined in [19, Theorem 106] . Note
that the case where G = Sy, Ay is settled by Corollary 1.
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PROPOSITION 1. Suppose that G is not isomorphic to Sy or Ay. Then
1. ifa=0 and a® — 4ab+8c # 0, then 8r(X) = {X' € Ap(X) | Tr(X') = 0};
2. ifa=0 and a® — 4ab+ 8¢ = 0, then 8r(X) is spanned by X, X3,
3. ifa#0 and a® — 4ab+ 8c # 0, then 8p(X) is spanned by I, X, X2, X3;
4. ifa#0 and a® — 4ab+ 8c = 0, then 8r(X) is spanned by I, X, X? + %X?’.

Proof. Since G is a transitive permutation group on four points, not isomorphic
to S4, A4, there remain the possibilities: G = Z/4Z, G = Dg and G = V.
These groups have respective generating sets {(1,2,3,4)}, {(1,2,3,4),(1,3)}, and
{(1,2)(3,4),(1,4)(2,3)}. In the first two cases the module My decomposes as a di-
rect sum of two submodules with bases {(1,-1,1,-1)}, {(1,0,-1,0),(0,1,0,—-1)}
(this holds for both cases). Now Ag cannot contain the second module (as in that
case some roots would be equal). If G = Vj, then My decomposes as a direct
sum of three submodules, respectively spanned by (1,1,—-1,-1), (1,-1,1,—1) and
(1,-1,-1,1). The G-module Ag cannot contain two of these vectors, as otherwise
after adding it would follow that two roots were equal.

So in all cases, after maybe renumbering the roots, there are the following possi-
bilities for Ag: Ag = 0, Ag is spanned by (1,1,1,1), or by (1,1,1,1), (1,1,—-1, —1),
or by (1,1,—-1,-1).

Let ay,...,a4 be theroots of f. Set a; = aj+as—ag—ay, as = a1 —as—az+ay
and a3 = a1 — @z + ag — ay. Then the product ajasas is a symmetric polynomial
in the ay; hence can be expressed in terms of the coefficients of f. It turns out
that —ajasa3 = a® — 4ab + 8c. So this number is zero if and only if A contains
(1,1,—1,—1). This proves statements 1 and 3 (cf. Lemma 3).

Suppose that a® — 4ab + 8¢ = 0. Then we can assume that A contains e =
(1,1,—1,—1). In order to obtain a basis of T (cf. Algorithm 4) we have to solve the
equation Z?:o A;(e)y; = 0. Note that Ag(e) = Ai(e) = 0. We know that oy +ag —
ag—ay = 0, and also that oy +as+az+as = —a. These two relations are equivalent
to o —|—0z2—|—%a= 0 and a3 + ay + %azO. Now As(e) = 2a§+aa2 —2aﬁ—aoz4
as the difference is equal to

(1 — a2 — 2a) (o1 + a2 + 3a) + (—az + as + 3a) (a3 + as + 3a) = 0.

Similarly, As(e) = —%a(2a§ + aay — 203 — aay) as the difference is equal to

(a? — Q1 — %aal + a% + aas + iaQ) (a1 —+ oo + %a)
+ (—a§ + azay + %aag — ozi —aqy — iaQ) (043 + oy + %a) =0.
From this it follows that 3aAs(e) + 4A3(e) = 0. Furthermore,
As(e) = 203 + acy — 203 — aay = 2(ay — ay) (ag + o + %a) )
From this we conclude that As(e) # 0. Indeed, as — ay # 0 as f is irreducible.

Secondly, as + ay = —%a would entail that oy — oy =0 as a1 + ag = —%a.

Suppose that a # 0. Then the equation

3
Z Ai(e)vi=0
1=0
4

is equivalent to (—z-73 + 73)Asz(e) = 0, and we have just seen that Az(e) # 0. So

Y3 = %72, and statement 4 is proved.
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If a = 0, then As(e) = 0 and the equation ), A;(e)y; = 0 reduces to vy, = 0.
Also, ¢/ = (1,1,1,1) € A. Then by adding e and ¢’ we see that as = —a; and
ay = —asz. So Aj(e') = As(e’) = 0, and Ag(e/) = 4. So we get the equation
4~p = 0. This proves statement 2. O

The calculations in the final part of the proof have been done with the help of
MAGMA. Using similar calculations, more results of the same flavour can be derived.
Without proof, we state the following result.

PROPOSITION 2. Let X be a 6 x 6-matriz with irreducible characteristic polynomial
p = 28+ ax® +ba* + ca® + da? + ex + f. Suppose that the Galois group has number
4,6, 7,8, or 11 in the classification of transitive groups in MAGMA. Set

r=c+ 2 (a® — Eab) and 1y =e— £a’+ £a’b— tad.
Then
1. ifri=ro =0 and a # 0, then 8p(X) is spanned by
a —5a® 5a
I. X *XZ XS X2 7X4 XS,
T2 a5 54 + 6 A

2. ifry =19 =a=0, then 9p(X) is spanned by X, X3, X?;

3. if one of r1,r2 is nonzero, then 8r(X) is equal to Ap(X) if a # 0, and equal
to {X' € A(Xp) | Tr(X') =0} ifa=0.

6. FEzxzamples

To generate a set of input examples we used the database of polynomials over the
rationals with given Galois groups by Kliiners and Malle [14]. In this database the
nth transitive permutation group on d points is denoted 47;,. For each polynomial
of degree d (6 < d < 12) with Galois group isomorphic to 47;,, we computed the
companion matrix X of f and used this as input to our algorithms. In Figure 1 we
plot the running times for the computation of gg(X) using the algorithm in Section
3, both using an exact, algebraic representation of the splitting field of f as well as
the algorithms of Section 2, against the logarithm of the group size. From the data
presented, it is clear that the runtime of all three algorithms depends mainly on the
size of the Galois group of f, that is, the degree of the splitting field. Also, clearly,
the algebraic representation of the splitting field has the worst runtime behaviour.
In Figure 2, we use a variation of the algorithms in Section 3, where instead of
using the bounds from Algorithm 1, we compute the relations with a much smaller
bound, and the ‘verify’ them using twice the p-adic precision. While this does not
of course give guaranteed results, nevertheless, in all cases where the bounds were
small enough to use them, the output obtained in this way was correct. Since this
approach does not depend directly on the size of the splitting field, we can use this
for larger degrees.

From both the figures we notice that for the purpose of computing algebraic
hulls, it does not matter whether Algorithm 2 or 3 is used. For proven results, the
time is always dominated by the proof step, while the actual computation takes
only negligible time — even in large degrees and large Galois groups.
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Figure 1: Time vs. log # Gal(f) for f of degree 6, 8, 9 and 10 and all transitive
groups with proven bounds. C is used for data coming from the algebraic, exact
representation of the splitting field, B is time using Algorithm 3, and A is that
using Algorithm 2.
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Figure 2: Time vs. log# Gal(f) for f of degree 6, 8, 9, 10, 12, 14 and 15 and
all transitive groups, using heuristic bounds. C is used for data coming from the
algebraic, exact representation of the splitting field, B is time using Algorithm 3,
and A is that using Algorithm 2.
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