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Abstract

We study configurations of disjoint Lagrangian submanifolds in certain low-dimensional
symplectic manifolds from the perspective of the geometry of Hamiltonian maps.
We detect infinite-dimensional flats in the Hamiltonian group of the two-sphere
equipped with Hofer’s metric, prove constraints on Lagrangian packing, find instances
of Lagrangian Poincaré recurrence, and present a new hierarchy of normal sub-
groups of area-preserving homeomorphisms of the two-sphere. The technology involves
Lagrangian spectral invariants with Hamiltonian term in symmetric product orbifolds.
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1. Introduction and main results

1.1 Overview
A symplectic structure ω on an even-dimensional manifold M2n can be viewed as a far-reaching
generalization of the two-dimensional area on surfaces: by definition, ω is a closed differential
2-form whose top wedge power ωn is a volume form. The group Symp(M,ω) of all symme-
tries of a symplectic manifold, i.e. of diffeomorphisms preserving the symplectic structure,
contains a remarkable subgroup of Hamiltonian diffeomorphisms Ham(M,ω). When M is closed
and its first cohomology vanishes, Ham coincides with the identity component of Symp. At
the same time, in classical mechanics, where M models the phase space, Ham arises as the
group of all admissible motions. This group became a central object of interest in symplectic
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topology in the past three decades. In spite of that, some very basic questions about the alge-
bra, geometry and topology of Ham(M,ω) are far from being understood even when M is a
surface.

Let us briefly outline the contents of the paper. First, we obtain new results on Hofer’s bi-
invariant geometry of Ham(M,ω) in the case where M = S2 is the two-dimensional sphere.
We establish, roughly speaking, that Ham(S2) contains flats of arbitrary dimension, thus
solving a question open since 2006. A similar result was obtained simultaneously and indepen-
dently, by using a different technique, in a recent paper by Cristofaro-Gardiner, Humilière, and
Seyfaddini [CHS21]. Furthermore, our method yields an infinite hierarchy of normal subgroups
of area-preserving homeomorphisms of the two-sphere, all of which contain the normal subgroup
of homeomorphisms of finite energy discovered in [CHS21]. In addition, we find a new constraint
on rotationally symmetric homeomorphisms of finite energy.

Second, we extend a number of elementary two-dimensional phenomena taking place on
S2 to the stabilized space S2 × S2, where the area of the second factor is ‘much smaller’
than that of the first. These phenomena include constraints on packing by circles, which cor-
respond to packings by two-dimensional tori after stabilization, and a version of Poincaré
recurrence theorem for sets of zero measure in the context of Hamiltonian diffeomorphisms.
Furthermore, we prove a stabilized version of our results on Hofer’s geometry presented
above.

To illustrate the stabilization paradigm, an elementary area count shows that one cannot fit
into the sphere of unit area k pairwise disjoint Hamiltonian images of a circle L bounding a disk
of area > 1/k. We shall show that the same is true for L× equator in the stabilized space. Here
the area/volume control miserably fails: a two-dimensional torus does not bound any volume in
a four-manifold.

The first instance of such a stabilization was discovered in a recent paper by Mak and Smith
[MS21], who studied constraints on the displaceability of collections of curves on S2. Recall,
that a set X ⊂M is called displaceable if there exists a Hamiltonian diffeomorphism φ with
φ(X) ∩X = ∅. This notion, introduced by Hofer in [Hof90], gives rise to a natural ‘small scale’
on symplectic manifolds. Mak and Smith noticed that certain ‘small sets’ on M become more
rigid when one looks at them in the symmetric product, a symplectic orbifold (M)k/Symk

where Symk stands for the permutation group. On the technical side, our main observation is
that a powerful Floer-theoretical tool, Lagrangian spectral invariants with Hamiltonian term,
as developed by Leclercq–Zapolsky and Fukaya–Oh–Ohta–Ono, extends to Lagrangian tori in
symmetric product orbifolds and can be applied to the study of the above-mentioned questions
on Hamiltonian maps. With this language, our paper provides a toolbox for measurements of
large energy symplectic effects on small geometric scales by using Floer theory in symmetric
products.

Let us note that the idea of looking at configuration spaces of points on a surface, the
two-sphere in particular, in order to construct invariants of Hamiltonian diffeomorphisms
goes back to Gambaudo and Ghys [GG04]. Technically, it turns out that for this paper
it is beneficial to work with symmetric products, which are certain compactifications of
unordered configuration spaces, and instead of the sphere to look at a certain stabilization
of it to a four-manifold. Thus, our approach can be considered as a ‘symplectization’ of
that by Gambaudo and Ghys. Furthermore, the central objects of interest to us are cer-
tain collections of pairwise disjoint Lagrangian submanifolds which in some sense govern
Hamiltonian dynamics. These are the Lagrangian configurations appearing in the title of the
paper.

2484

https://doi.org/10.1112/S0010437X23007455 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007455


Lagrangian configurations and Hamiltonian maps

1.2 Flats in Hofer’s geometry
In [Hof90] Hofer has introduced a remarkable bi-invariant metric on the group Ham(M,ω) of
Hamiltonian diffeomorphisms of a symplectic manifold (M,ω). It can intuitively be thought of
as the minimal L∞,1 energy required to generate a given Hamiltonian diffeomorphism. For a
time-dependent Hamiltonian H in C∞([0, 1] ×M,R) we denote by {φt

H}t∈[0,1] the Hamiltonian
isotopy generated by the vector field Xt

H given by

ω(Xt
H , ·) = −dHt(·),

whereHt(·) = H(t, ·) for all t ∈ [0, 1]. We say thatH has zero mean if
∫
Ht ω

n = 0 for all t ∈ [0, 1].
When the symplectic manifold is closed, the Hofer distance of φ ∈ Ham(M,ω) to the identity is
defined as

dHofer(φ, id) = inf
φ1

H=φ

∫ 1

0
max

M
|H(t,−)| dt,

where the infimum is taken over all zero mean Hamiltonians generating φ. It is extended to
arbitrary pairs of diffeomorphisms by the bi-invariance,

dHofer(ψφ, ψφ′) = dHofer(φψ, φ′ψ) = dHofer(φ, φ′),

for all φ, φ′, ψ ∈ Ham(M,ω).
The non-degeneracy of dHofer was studied in many further publications such as [Vit92, Pol93]

and was proven to hold for arbitrary symplectic manifolds in [LM95]. Let us mention also that
Hofer’s metric naturally lifts to a (pseudo-)metric on the universal cover H̃am(M,ω), where the
question about its non-degeneracy is still open in full generality. We refer to [Pol01] for a detailed
introduction to the Hofer metric and many of its aspects and properties.

The main question related to the Hofer metric, Problem 20 in [MS17], is whether its diameter
is infinite for all symplectic manifolds, and when it is, which unbounded groups can be quasi-
isometrically embedded into (Ham(M,ω), dHofer).

Theorem A. The additive group G = C∞
c (I) of compactly supported smooth functions on an

open interval I with the C0 distance embeds isometrically into Ham(S2) endowed with dHofer.

This settles a question of the first author and Kapovich from 2006, cf. Problem 21 [MS17]. A
similar result was obtained simultaneously and independently in [CHS21] by completely different
methods based on periodic Floer homology. As, by a classical theorem [Ban93, Théorème 10, p.
187] from a book of Banach, every separable metric space admits an isometric embedding into
C0

c (I), and by smooth approximation, the latter is quasi-isometric to C∞
c (I), Theorem A implies

the following.

Corollary 1. Every separable metric space admits a quasi-isometric embedding into Ham(S2)
endowed with dHofer.

For closed surfaces of higher genus, flats of arbitrary dimension were found in [Py08]. The
proof is based on the fact that such a surface admits an incompressible annulus foliated by non-
displaceable closed curves. Symplectic rigidity of these curves yields the result. The lack of such
an annulus in the case of S2 requires a new tool, Lagrangian estimators, which we develop by
using Lagrangian Floer theory in orbifolds, see §§ 2 and 6.

In fact, our method of proof yields the following statement about Hofer’s geometry in dimen-
sion four. Throughout the paper S2(b) stands for the sphere equipped with the standard area
form normalized in such a way that the total area equals b. We abbreviate S2 = S2(1).
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For a > 0, consider a symplectic manifold Ma = S2 × S2(2a). The natural monomorphism

ι : Ham(S2) → Ham(Ma), φ �→ φ× id,

satisfies dHofer(ι(φ), ι(ψ)) ≤ dHofer(φ, ψ).

Theorem B. Assume that a > 0 is small enough. The isometric monomorphism Φ : G →
Ham(S2) from Theorem A can be chosen in such a way that

Ψ = ι ◦ Φ : (G, dC0) ↪→ (Ham(Ma), dHofer)

is a bi-Lipschitz embedding. Furthermore, the monomorphism of the universal covers Ψ̃ : G →
H̃am(Ma) covering Ψ is an isometric embedding.

1.3 Lagrangian packing
Let Kr be a simple closed curve on the sphere S2 = S2(1) bounding a disk of area 1/k > r >
1/(k + 1), k ∈ N, k ≥ 2. Let S ⊂ S2(2a) be the equator. Note that the Lagrangian torus Λr =
Kr × S can be Hamiltonianly k-packed intoMa, that is, there are k Hamiltonian diffeomorphisms
φ1 = id, φ2, . . . , φk of Ma such that {φj(Λr)}1≤j≤k are pairwise disjoint. Indeed, such a packing
exists for Kr ⊂ S2.

Theorem C (Lagrangian packing). One cannot pack Ma = S2 × S2(2a) by k + 1 Hamiltonian
images of Λr if a is sufficiently small.

We present an argument, based on asymptotic Hofer’s geometry, in § 3.6.

1.4 Lagrangian Poincaré recurrence
Using Lagrangian packing obstructions, we are able to make the following progress on the well-
known Lagrangian Poincaré recurrence conjecture in Hamiltonian dynamics [GG19]. It is a
version of the classical Poincaré recurrence theorem, but in the setting of Lagrangian submani-
folds instead of sets of positive measure. Note that except for the case of surfaces, this is a purely
symplectic question, since Lagrangian submanifolds do not bound and they have zero measure.

Let Λr ⊂Ma be a Lagrangian torus as in § 1.3. For an arbitrary Hamiltonian diffeomorphism
φ ∈ Ham(Ma), consider the recurrence set

Rφ := {n ∈ N : φnΛr ∩ Λr �= ∅}.
Theorem D (Lagrangian recurrence). The lower density of Rφ is at least 1/k.

We remark that while in [GG18] a similar statement was proven for specific rigid Hamiltonian
diffeomorphisms of complex projective spaces (pseudo-rotations) and arbitrary Lagrangians, we
provide the first non-trivial higher-dimensional examples of Lagrangian submanifolds satisfying
the recurrence property for all Hamiltonian diffeomorphisms.

1.5 Area-preserving homeomorphisms of S2

It has been established by Cristofaro-Gardiner, Humilière and Seyfaddini [CHS21] that the group
GS2 of symplectic homeomorphisms of the sphere possesses a non-trivial normal subgroup GF

S2

of homeomorphisms of finite energy. These are the homeomorphisms φ for which there exists
a sequence of Hamiltonian diffeomorphisms ψj and a constant C > 0 such that dC0(ψj , φ) → 0
and dHofer(ψj , id) ≤ C. This is achieved by showing that radially symmetric Hamiltonian homeo-
morphisms of bounded energy satisfying a certain monotone twist condition must, in a precise
sense, have finite Calabi invariant. We extend this result as follows.

Let z : S2 → [−1/2, 1/2] be the moment map for the standard S1-action on S2. It is the height
function for the standard embedding of S2 in R3 scaled by a factor of 1/2. Let h : [−1/2, 1/2) → R
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be a smooth function that vanishes on [−1/2, 0]. Consider φ ∈ GS2 generated by H = h ◦ z: it
is the C0-limit of φi = φ1

Hi
∈ Hamc(D2) ⊂ Ham(S2) for Hi = hi ◦ z for hi approximations to h

constant near 1/2 which agree with h on [−1/2, 1/2 − 1/i].

Theorem E. If φ ∈ GF
S2 , then the primitive of h is a bounded function.

The proof is based on a combination of [CHS21, Lemma 3.11], an interesting soft result
relating C0-smallness, supports, and the Hofer metric, with our Lagrangian spectral estimators.
It turns out that suitable linear combination of these invariants are continuous with respect to
the C0 topology on Ham(S2) and extend to the group GS2 . In fact, our invariants give rise to an
infinite series of pairwise distinct normal subgroups of GS2 containing GF

S2 , see § 5 for a precise
formulation.

Remark 2. It is easy to see that if h is bounded, then φ ∈ GF
S2 . It would be very interesting

to bridge the discrepancy between this observation and Theorem E further. Note that there do
exist unbounded functions h whose primitives are bounded. We expect that arguments along the
lines of Sikorav’s trick as in § 3.4 and lower bounds in terms of further linear combinations of
the ck,B invariants could be useful to this end.

Remark 3. We note that a suitable generalized limit construction (e.g. the Banach limit or the
limit with respect to a non-principal ultrafilter) yields the existence of many homomorphisms
φ �→ C(φ) ∈ R on the group of φ as in Theorem E that coincide with the Calabi invariant of
φ ∈ Hamc(D2) if H = h ◦ z extends smoothly to S2.

1.6 Organization of the paper
In § 2 we introduce and list the properties of Lagrangian estimators, our main technical tool.
The detailed construction of the estimators via Lagrangian Floer theory in symmetric products,
as well as the proof of their properties is presented in § 6.

Section 3 deals with flats in Hofer geometry. We prove Theorems A and B, and present a
result on infinite-dimensional flats in subgroups of Hamiltonian diffeomorphisms of the disk with
vanishing Calabi invariant. In addition, we derive an estimate on the asymptotic Hofer norm
which is used in the proof of Theorem C on Lagrangian packing. This proof can be found in
§ 3.6.

In § 4 we deduce Theorem D on Lagrangian recurrence from the packing constraint by a
combinatorial argument.

In § 5 we prove the C0-continuity of certain linear combinations of our invariants and present
applications to normal subgroups of the group of area-preserving homeomorphisms of S2.

We conclude the paper with a discussion of further directions in § 7.

2. Lagrangian estimators

In this section we introduce three slightly different flavors of Lagrangian estimators, the main
technical tool of the present paper. These are functionals with a number of remarkable proper-
ties defined on the space of time-dependent Hamiltonians (spectral estimators), on the group of
Hamiltonian diffeomorphisms (group estimators), and on the Lie algebra of functions on a sym-
plectic manifold (algebra estimators). They somewhat resemble, but are different from, partial
symplectic quasi-morphisms and quasi-states introduced in [EP06], respectively (see Remark 7).

We rely on the theory of Lagrangian spectral invariants [Lec08, LZ18, FOOO19] in the
setting of bulk-deformed Lagrangian Floer homology [FOOO09] for symplectic orbifolds [CP14]
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and crucially its recent investigation [MS21] in the context of Lagrangian links in symplectic four-
manifolds. The output of our construction is a new invariant of a Hamiltonian diffeomorphism of
S2 that instead of being supported on a single non-displaceable Lagrangian circle is supported
on a non-displaceable configuration of pairwise disjoint and (in general) individually displaceable
Lagrangian circles.

We start with a couple of preliminary notions and notation. Let z : S2 → [−1/2, 1/2] be the
moment map for the standard S1 = R/Z-action on S2. It is instructive to think that S2 = S2(1)
is the round sphere of radius 1/2 in R3 equipped with the standard area form divided by π, and
z is simply the vertical Euclidean coordinate.

Let k ≥ 1 be a positive integer, and let 0 < C < B be two positive rational numbers such
that 2B + (k − 1)C = 1.

Denote by L0
k,B ⊂ S2 be the configuration of k disjoint circles given by L0

k,B =
⋃

0≤j<k L
0,j
k,B,

where
L0,j

k,B = (z)−1(−1/2 +B + jC). (1)

Let 0 < a < B − C be a rational number. Consider the symplectic manifold Ma = S2 ×
S2(2a). Denote by S the equator of S2(2a) and put Lk,B = L0

k,B × S, Lj
k,B = L0,j

k,B × S for
0 ≤ j < k.

For an open subset U of a 2n-dimensional symplectic manifold and a Hamiltonian H
supported in [0, 1] × U we define the Calabi invariant as

Cal({φt
H}) =

∫ 1

0

∫
U
Ht ω

n.

Moreover, Cal defines a homomorphism Cal : H̃amc(U) → R.
Finally, we call an open set U displaceable from a subset V if there exists a Hamiltonian

diffeomorphism θ such that θ(U) ∩ V = ∅.
Now we are ready to formulate the main result of the present section.

Theorem F (Lagrangian spectral estimators). For each k,B, a as above, with B, a rational,
there exists a map

ck,B : C∞([0, 1] ×Ma,R) → R

satisfying the following properties.

1. (Hofer–Lipschitz) For each G,H ∈ C∞([0, 1] ×Ma,R),

|ck,B(G) − ck,B(H)| ≤
∫ 1

0
max |Gt −Ht| dt.

2. (Monotonicity) If G,H ∈ C∞([0, 1] ×Ma,R) satisfy G ≤ H as functions, then

ck,B(G) ≤ ck,B(H).

3. (Normalization) For each H ∈ C∞([0, 1] ×Ma,R) and b ∈ C∞([0, 1],R),

ck,B(H + b) = ck,B(H) +
∫ 1

0
b(t) dt.

4. (Lagrangian control) If (Ht)|Lj
k,B

≡ cj(t) ∈ R for all 0 ≤ j < k and t ∈ [0, 1], then

ck,B(H) =
1
k

∑
0≤j<k

∫ 1

0
cj(t) dt.
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5. (Independence of Hamiltonian) For H ∈ C∞([0, 1] ×Ma,R) with zero mean, the value

ck,B(H) = ck,B(φH)

depends only on the class

φH = [{φt
H}] ∈ H̃am(Ma)

in the universal cover of Ham(Ma) generated by H.

6. (Subadditivity) For all φ, ψ ∈ H̃am(Ma),

ck,B(φψ) ≤ ck,B(φ) + ck,B(ψ).

7. (Calabi property) If a Hamiltonian H ∈ C∞([0, 1] ×Ma,R) is supported in an open set of
the form [0, 1] × U , where U ⊂Ma is disjoint from Lk,B, then

ck,B(φH) = − 1
vol(Ma)

Cal({φt
H}).

8. (Controlled additivity) If ψ = φH ∈ H̃am(Ma) for a Hamiltonian H ∈ C∞([0, 1] ×Ma,R)
supported in [0, 1] × U for an open set U ⊂Ma disjoint from Lk,B, then for all φ ∈ H̃am(Ma)

ck,B(φψ) = ck,B(φ) + ck,B(ψ).

Remark 4. In fact, the controlled additivity property of ck,B holds under the more general
assumption that

(Ht)|Lj
k,B

≡ cj(t) ∈ R

for all 0 ≤ j < k and t ∈ [0, 1]. However, since we do not use this stronger version, we chose to
omit it for simplicity of exposition.

In turn, this implies by homogenization that the following holds.

Theorem G (Lagrangian group estimators). For each k,B, a as above, with B, a rational, there
exists a map

μk,B : C∞([0, 1] ×Ma,R) → R

satisfying the following properties.

1. (Hofer–Lipschitz) For each G,H ∈ C∞([0, 1] ×Ma,R),

|μk,B(G) − μk,B(H)| ≤
∫ 1

0
max |Gt −Ht| dt.

2. (Monotonicity) If G,H ∈ C∞([0, 1] ×Ma,R) satisfy G ≤ H as functions, then

μk,B(G) ≤ μk,B(H).

3. (Normalization) For each H ∈ C∞([0, 1] ×Ma,R) and b ∈ C∞([0, 1],R),

μk,B(H + b) = μk,B(H) +
∫ 1

0
b(t) dt.

4. (Lagrangian control) If (Ht)|Lj
k,B

≡ cj(t) ∈ R for all 0 ≤ j < k and t ∈ [0, 1], then

μk,B(H) =
1
k

∑
0≤j<k

∫ 1

0
cj(t) dt.
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5. (Independence of Hamiltonian) For H ∈ C∞([0, 1] ×Ma,R) with zero mean, the value

μk,B(H) = μk,B(φH)

depends only on the class

φH = [{φt
H}] ∈ H̃am(Ma)

in the universal cover of Ham(Ma) generated by H.

6. (Conjugation invariance) For all φ, ψ ∈ H̃am(Ma) we have

μk,B(ψφψ−1) = μk,B(φ).

7. (Positive homogeneity) For all φ ∈ H̃am(Ma) and m ∈ Z≥0

μk,B(φm) = m · μk,B(φ).

8. (Commutative subadditivity) If φ, ψ ∈ H̃am(Ma) commute, φψ = ψφ, then

μk,B(φψ) ≤ μk,B(φ) + μk,B(ψ).

9. (Calabi property) If a Hamiltonian H ∈ C∞([0, 1] ×Ma,R) is supported in an open set of
the form [0, 1] × U , where U ⊂Ma is displaceable from Lk,B, then

μk,B(φH) = − 1
vol(Ma)

Cal({φt
H}).

The proof is given in § 6.3.4.

Remark 5. The rationality of B, a is necessary for the Lagrangian control property and the
Calabi property. In our applications to Hofer’s geometry this will not lead to a loss of generality
because Q is dense in R. Note also that ψφψ−1 in the conjugation invariance property (Property 6
of Theorem G) depends only on φ and the image of ψ under the natural map H̃am(Ma) →
Ham(Ma). We note that if ψ2 = id and φψ = ψφ in H̃am(Ma), then

μk,B(φψ) = μk,B(φ). (2)

Indeed commutative subadditivity implies that −μ(ψ) ≤ μ(φψ) − μ(φ) ≤ μ(ψ), while positive
homogeneity yields μ(ψ) = 0. Moreover, note that by the Hofer–Lipschitz property one can
naturally extend μk,B to a map C0([0, 1] ×M,R) → R satisfying a directly analogous list of
properties.

Remark 6. While it is not directly pertinent to our applications in this paper, it would be
interesting to explicitly calculate the restriction of ck,B and μk,B to π1(Ham(Ma)). It will be
determined by the valuation of a suitable Seidel representation evaluated on Gromov’s loop of
infinite order in π1(Ham(Ma)) and respectively its homogenization.

It turns out to be useful to consider the restriction of μk,B to the space C∞(Ma,R) of
Hamiltonians which do not depend on time. We recall that the Poisson bracket of two func-
tions F,G ∈ C∞(Ma,R) is defined as {F,G} = dF (XG). The following list of properties is a
direct consequence of those in Theorem G: note that quasi-additivity and vanishing follow from
commutative subadditivity and the Calabi property of μk,B.
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Theorem H (Lagrangian algebra estimators). The map C∞(Ma,R) → C∞([0, 1] ×Ma,R),
F �→ H(t, x) = F (x), induces a map

ζk,B : C∞(Ma,R) → R

ζk,B(F ) = μk,B(H)

which satisfies the following properties.

1. (C0-Lipschitz) For each G,H ∈ C∞(Ma,R),

|ζk,B(G) − ζk,B(H)| ≤ |G−H|C0 .

2. (Monotonicity) If G,H ∈ C∞(Ma,R) satisfy G ≤ H as functions, then

ζk,B(G) ≤ ζk,B(H).

3. (Normalization)

ζk,B(1) = 1.

4. (Lagrangian control) If H|
Lj

k,B
≡ cj ∈ R for all 0 ≤ j < k, then

ζk,B(H) =
1
k

∑
0≤j<k

cj .

5. (Invariance) For all ψ ∈ Ham(Ma) and H ∈ C∞(Ma,R) we have

ζk,B(H ◦ ψ−1) = ζk,B(H).

6. (Positive homogeneity) For all H ∈ C∞(Ma,R) and t ∈ R≥0,

ζk,B(t ·H) = t · ζk,B(H).

7. (Quasi-additivity and vanishing) If F,G ∈ C∞(Ma,R) Poisson-commute, {F,G} = 0, then

ζk,B(F +G) ≤ ζk,B(F ) + ζk,B(G)

and if in addition G is supported in U displaceable from Lk,B, then

ζk,B(F +G) = ζk,B(F ) + ζk,B(G) = ζk,B(F ).

Finally, we consider the restriction of the invariants μk,B, ζk,B to Hamiltonians on S2 by
means of the stabilization by the zero Hamiltonian.

Theorem I. The map C∞([0, 1] × S2) → C∞([0, 1] ×Ma), F �→ H = F ⊕ 0, that is,H(t, x, y) =
F (t, x) induces maps

c0k,B : C∞([0, 1] × S2,R) → R,

μ0
k,B : C∞([0, 1] × S2,R) → R,

ζ0
k,B : C∞(S2,R) → R,

by means of

c0k,B(F ) = ck,B(H), μ0
k,B(F ) = μk,B(H), ζ0

k,B(F ) = ζk,B(H).

These maps satisfy the corresponding lists of properties as in Theorems F–H with Ma replaced
by S2, Lj

k,B by L0,j
k,B, and Lk,B by L0

k,B everywhere.
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In addition, c0k,B and μ0
k,B satisfy the following stronger independence of the Hamilto-

nian property: c0k,B(H) and μ0
k,B(H) for a mean-normalized Hamiltonian H ∈ C∞([0, 1] × S2,R)

depend only on φ = φ1
H ∈ Ham(S2).

As a function

c0k,B : Ham(S2) → R

it satisfies the subadditivity, Calabi, and controlled additivity properties. As a function

μ0
k,B : Ham(S2) → R

it satisfies the conjugation invariance, positive homogeneity, commutative subadditivity, and the
Calabi properties. In particular,

|ζ0
k,B(H)| ≤ dHofer(φ1

H , id)

for all H ∈ C∞(S2,R).

Proof. The proof of all statements is immediate, except for stronger independence of the
Hamiltonian. To this end, we observe that by a classical result of Smale π1(Ham(S2)) ∼= Z/2Z.
Let ψ be its generator. Since π1(Ham(S2)) lies in the center of H̃am(S2), the result for μ0

k,B fol-
lows from (2). For c0k,B we have c0k,B(ψ) = 0 by Lagrangian control, since ψ is generated by the

mean-zero Hamiltonian F = z : S2 → [−1/2, 1/2]. Hence, by subadditivity, for all φ ∈ H̃am(S2)
we have c0k,B(φψ) ≤ c0k,B(φ). Replacing φ by φψ and using ψ2 = id, we obtain the inequality
c0k,B(φ) ≤ c0k,B(φψ) in the reverse direction. �

Remark 7. We observe that the maps ζ0
k,B, and hence also ζk,B, are not partial symplectic quasi-

states for k > 1. Indeed, ζ0
k,B equals 1/k for the cut-off of the indicator function of a small

neighborhood of L0,0
k,B, a circle of our configuration having the smallest area. However, this circle

is displaceable, a contradiction with the vanishing axiom for quasi-states. However, it is not hard
to see that the choices involved in the Floer data defining ζ0

1,1/2 can be chosen in such a way
that it coincides with the symplectic quasi-state ζ0 on S2 (which is, in fact, unique: see [PR14,
Exercise 5.4.29]).

3. Hofer’s geometry: proofs and further results

Here we apply the techniques of Lagrangian estimators to the proof of our main applications to
Hofer’s geometry. Note that for proofs of Theorems A and B we need the simplest Lagrangian
configurations consisting of two circles.

3.1 Proof of Theorem A
Step 1: construction. We start with a more explicit formulation of the theorem. Consider a
symmetric interval I = (−b, b) for b < 1/6. Let

FI ⊂ C∞
c (I)

be the space of even compactly supported smooth functions on I. In other words, FI consists of
functions h ∈ C∞

c (I) satisfying h(x) = h(−x) for all x ∈ I. Endow FI with the C0 norm

|h|C0 = max
I

|h|,

which induces the distance function dC0(h1, h2) = |h1 − h2|C0 . Observe that the group G =
C∞

c ((0, b)) with the C0 distance naturally embeds into FI by even extension.
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Consider the standard symplectic sphere (S2, ω) of total area 1. It admits a Hamiltonian
S1-action whose zero-mean normalized moment map z : S2 → R has image [−1/2, 1/2]. We
define the following embedding

Φ : FI → Ham(S2),

keeping in mind that the Hofer metric works with zero-mean Hamiltonians. We first build an
embedding of FI to the space I of even functions of integral zero in C∞([−1/2, 1/2]). To a
function h ∈ FI we associate h# ∈ I defined by h#|(−b,b) = h, h#|(1/2−b,1/2](x) = −h(1/2 − x),
h#|[−1/2,−1/2+b)(x) = −h(−1/2 − x), extended by zero to [−1/2, 1/2]. Now, for h ∈ FI we
consider the mean-zero Hamiltonian Γ(h) ∈ C∞(S2,R) given by

Γ(h) = h# ◦ z,
and let

Φ(h) = φ1
Γ(h)

be the time-one map of Γ(h). It is immediate by construction that this map Φ : FI → Ham(S2)
is a homomorphism and for all h1, h2 ∈ F

dHofer(Φ(h1),Φ(h2)) = dHofer(Φ(h1 − h2), id) ≤ |h1 − h2|C0 . (3)

We claim that the monomorphism of groups

Φ : (FI , dC0) ↪→ (Ham(S2), dHofer)

is an isometric embedding.

Step 2: proof of the claim. Note that by (3), the main step in the proof of the claim is the
inequality

dHofer(Φ(h), id) ≥ |h|C0 ∀h ∈ FI . (4)

As |(−h)|C0 = |h|C0 and

dHofer(Φ(−h), id) = dHofer(Φ(h)−1, id) = dHofer(Φ(h), id)

for all h ∈ FI , it is sufficient to prove (4) under the assumption that |h|C0 = h(x0) > 0. Note that
in this case h(x0) = h(−x0), and hence either x0 = 0, or we can assume that x0 ∈ (0, b). Consider
B = 1/2 − x0. For1 x0 ∈ [0, b) we consider ζi = ζ0

2,Bi
, where Bi = 1/2 − xi, and xi ∈ (0, b) is a

sequence of rational numbers converging to x0. Here we fix a rational parameter 0 < a < 1/2 − 3b
for defining ζ0

2,Bi
as in Theorem I. By continuity of h we now have

h(xi)
i→∞−−−→ h(x0) = |h|C0 .

Now by the Lagrangian control property of ζi we have

ζi(Γ(h)) = h(xi),

and by the Hofer–Lipschitz and independence of Hamiltonian properties

dHofer(Φ(h)) ≥ ζi(Γ(h))

for all i. Therefore, taking limits as i→ ∞ we obtain

dHofer(Φ(h)) ≥ |h|C0

as required. This finishes the proof. �

1 When x0 = 0, (4) follows from a result of the first author [Pol98]. See [EP03, EP09] and [LZ18] for alternative
proofs.
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Remark 8. We note that the interval I = (−1/6, 1/6) in the claim of Step 1 is the best possible
using the method we describe in this paper. Indeed, the disconnected Lagrangian given by
z−1({±(1/6 + δ)}) yields a Lagrangian in the symmetric square that is displaceable from itself.
(See § 6 for a description of the framework.) Moreover, Sikorav’s trick in § 3.4 shows that this
embedding is not isometric for b > 1/6.

Remark 9. Note also that for any odd function h(z) ∈ C∞(S2,R), that is h(−z) = −h(z), φ1
h is

conjugate to its inverse. Indeed, for the involution R ∈ Ham(S2) given by R(x, y, z) = (x,−y,−z)
we have h ◦R−1 = −h so (φ1

h)−1 = φ1
−h = φ1

h◦R−1 = R ◦ φ1
h ◦R−1. Therefore, dHofer(φ1

2h, id) ≤
C = 2dHofer(R, id). Hence, all such odd autonomous Hamiltonians generate one-parametric sub-
groups in the ball of Hofer of radius C around the identity. From this perspective, it is natural
that our construction is based on even functions.

3.2 Proof of Theorem B
Let I = (−b, b) for b < 1/6 and 0 < a < 1/2 − 3b. Arguing as in the proof of Theorem A we get
that the monomorphism Ψ̃ : FI → H̃am(Ma) covering Ψ is an isometric embedding.

In order to pass from the universal cover to the group itself, we shall restrict ourselves to the
subspace F0

I ⊂ FI consisting of functions h with h(0) = 0. Note that the image of G = C∞
c ((0, b))

in FI lies in F0
I .

Let us show that the monomorphism of groups

Ψ = ι ◦ Φ : (F0
I , dC0) ↪→ (Ham(Ma), dHofer)

is a bi-Lipschitz embedding. It suffices to show that there exists K ≥ 1 such that for all h ∈ FI

dHofer(id,Ψ(h)) ≥ 1
K

|h|C0 . (5)

Suppose without loss of generality that ‖h‖C0 = h(r) > 0 with r ∈ (0, b).
Consider the invariant μ2,B : H̃am(Ma) → R provided by Theorem G for

1/2 > B = 1/2 − r ≥ 1/2 − b.

In order to proceed further, we have to understand the effect of the fundamental group
π1(Ham(M)). It is a finitely generated abelian group. In fact, by [AM00, Theorem 1.1]
we have π1(Ham(M)) ∼= Z ⊕ Z/2Z ⊕ Z/2Z. The Z/2Z terms appear from the natural maps
π1(Ham(S2)) → π1(Ham(M)) corresponding to the two components ofM = S2 × S2. The Z term
is the well-known Gromov loop [Gro85], investigated in detail by Abreu and McDuff [McD87,
AM00]. Set T = Z/2Z ⊕ Z/2Z for the torsion part of G = π1(Ham(M)), and let A = G/T ∼= Z

be its free part. Note that π1(Ham(M)) ⊂ Z(H̃am(M)) is a central subgroup. As in the proof of
Theorem A it is easy to see that μ2,B vanishes on T and by commutative subadditivity descends
to H̃am(M)/T . However, the same is not clear for A. We proceed differently.

Observe that by [Ost06, Theorem 1.2] there exists a homogeneous Calabi quasi-morphism ρ :
H̃am(M) → R that is 1-Lipschitz in the Hofer metric and restricts to a non-trivial homomorphism
G → R. It vanishes on the torsion T so we can consider it to be a homomorphism ρ : A → R.
Choosing a generator g of A, we have ρ(gk) = k · ρ(g) for a positive constant ρ(g). It is also
known that ρ(Ψ(h)) = h(0) = 0 for h ∈ F0

I . This follows from ρ yielding a symplectic quasi-state
on C∞(Ma,R) and S × S ⊂Ma, where S ⊂ S2 is the equator, being a stem (see [EP06, EP09,
PR14]).
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Define the map

νr : H̃am(M) → R2,

νr(φ̃) = (μ2,B(φ̃), ρ(φ̃)).

Let Ψ̃ : F0
I → H̃am(M) be the homomorphism covering Ψ.

Observe that νr is 1-Lipschitz in Hofer’s metric, where R2 is endowed with the l∞ norm.
By the above-mentioned properties of ρ, and by Lagrangian control of μ2,B, we can calculate

for an arbitrary element Ψ̃(h)gkf covering Ψ(h), where f ∈ T , that

νr(Ψ̃(h)gkf) = νr(Ψ̃(h)gk) = (μ2,B(Ψ̃(h)gk), ρ(Ψ̃(h)gk)) = (μ2,B(Ψ̃(h)gk), kρ(g)).

This implies that

|νr(Ψ̃(h)gkf)| ≥ max{|h|C0 − |k|dHofer(g, id), |k|ρ(g)} ≥ C2|h|C0 ,

for C2 = ρ(g)/(ρ(g) + dHofer(g, id)), the last step being an easy optimization in |k|.
Therefore, we have

C2|h|C0 ≤ |νr(Ψ̃(h)gkf)| ≤ dHofer(Ψ̃(h)gkf, id),

and, hence,

dHofer(Ψ(h), id) ≥ 1
K

|h|C0

for K = 1/C2 ≥ 1. This finishes the proof. �

3.3 Almost flats in the kernel of Calabi
We call a map

f : (X, dX) → (Y, dY)

of metric spaces almost isometric if there exists a constant D ≥ 0 such that

dX(p, q) −D ≤ dY (f(p), f(q)) ≤ dX(p, q) +D

for all p, q ∈ X.
Fix the interval

Ik = (−1/2 + 1/(k + 1),−1/2 + 1/k).

Consider μk,B with 1/k > B > 1/(k + 1). Note that in this case B > C, so μk,B is well-defined.
We prove that the space of all functions Gk ⊂ C∞

c (Ik) with zero mean admits an almost isometric
embedding into (Ham(S2), dHofer). Recall that for a proper open subset U ⊂ S2 its symplectic
form is exact, and the Calabi homomorphism

CalU : Hamc(U) → R

is defined as CalU (φ) = CalU ({φt
H}) for any H ∈ C∞

c ([0, 1] × U,R) with φ = φ1
H . Observe that

by the natural constant extension we have the inclusion Hamc(U) → Ham(S2). In particular,
ker(CalU) can and shall be considered to be a subgroup of Ham(S2). Starting from the following
result we require configurations Lk,B for all values of k.

Theorem J. Let Φk : (Gk, dC0) → (Ham(S2), dHofer) be given by

Φk(h) = φ1
H

for H = k · h ◦ z. Then Φk is a bi-Lipschitz almost isometric group embedding, whose image
lies in ker(CalD), where D = D1/k is the open cap of area 1/k around the south pole.
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Furthermore, for each proper open set U ⊂ S2 there is a bi-Lipschitz almost isometric embedding
of C∞

c (I) of an open interval I into ker(CalU).

A similar result is proved in [CHS21].
The proof of this statement is similar to that of Theorem A, with the additional observa-

tion that by the conjugation invariance of μk,B we may suppose that the open set U contains
D1/k for k sufficiently large. Moreover, passing from smooth functions on an interval, say
C∞

c ((−1
2 + 1/(k + 1),−1

2 + 1/2(k + 1) + 1/2k)) to functions in Gk can be easily carried out by
odd extension about the midpoint υk = −1

2 + 1/2(k + 1) + 1/2k of Ik. On the one hand, by use
of Lagrangian estimators for the lower bound, and the evident upper bound on the Hofer norm
via the Hamiltonian, we obtain

|h1 − h2|C0 ≤ dHofer(Φk(h1),Φk(h2)) ≤ k|h1 − h2|C0

for all h1, h2 ∈ Gk. Hence, Φk is bi-Lipschitz. On the other hand, estimating dHofer(Φk(h1),
Φk(h2)) = dHofer(Φk(h1 − h2), id) via Sikorav’s trick (see § 3.4) we obtain

dHofer(Φk(h1),Φk(h2)) ≤ |h1 − h2|C0 +Dk

for a constant Dk depending only on k. This proves that Φk is almost isometric. (We remark
that one can show that Dk < 2 for all k.)

Finally, analogously to the proof of Theorem B, we can show that these almost isometric
embeddings extend to stabilizations on the level of universal covers and remain bi-Lipschitz
embeddings on the level of groups.

Theorem K. Let k ≥ 2, 1/(k + 1) < B < 1/k and 0 < a < ((k + 1)/(k − 1))B − 1/(k − 1). The
monomorphism of groups

Ψk = ι ◦ Φk : (Gk, dC0) ↪→ (Ham(Ma), dHofer)

is a bi-Lipschitz embedding. In fact, there exists K ≥ 1 such that for all h1, h2 ∈ Gk

1
K

|h1 − h2|C0 ≤ dHofer(Ψk(h1),Ψk(h2)) ≤ k|h1 − h2|C0 .

At the same time, the monomorphism Ψ̃k : Gk → H̃am(Ma) covering Ψk is an almost isometric
embedding.

Question 10. In [FOOO12] a family of non-displaceable Lagrangian tori was constructed on
S2 × S2. It is possible to prove that these tori yield the existence of large flats in Ham(S2 × S2).
These flats do not come by stabilization from S2. Is it possible to prove that they cannot be at a
finite Hofer distance from a flat supported in an arbitrarily small neighborhood of a symplectic
divisor of the form {pt} × S2?

3.4 The asymptotic Hofer norm
Let (M,ω) be a closed symplectic manifold. The asymptotic Hofer (pseudo-)norm ν(φ̃) of an
element φ̃ ∈ H̃am(M,ω) is defined as follows:

ν(φ̃) = lim
m→∞

1
m
d̃Hofer(φ̃m, id),

where d̃Hofer is the Hofer pseudo-norm on H̃am(M,ω). For φ ∈ Ham(M,ω) we define its asymp-
totic Hofer norm ν(φ) similarly, or alternatively ν(φ) = inf ν(φ̃) where the infimum runs over all
φ̃ ∈ H̃am(M,ω) covering φ.
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The Hofer norm is known to yield quantitative invariants of subsets in symplectic manifolds,
for instance the displacement energy [Hof90] (see also [Pol01]). It turns out that the asymptotic
Hofer norm produces an invariant of subsets of symplectic manifolds controlling their packing
number.

Let A ⊂M be a compact subset. Its packing number k(A) ∈ N ∪ {∞} is defined as the
maximal k such that there exist θ1, . . . , θk ∈ Ham(M,ω) with θ1(A), . . . , θk(A) pairwise disjoint
(θi(A) ∩ θj(A) = ∅ for all i �= j).

Let C∞
0 (M ; R) denote the space of mean-zero smooth functions on M . For f ∈ C∞

0 (M ; R),
set φ̃f ∈ H̃am(M,ω) for the class of the time-one Hamiltonian isotopy which it generates.

Definition 11. Let A ⊂M be a proper compact set. Its α-invariant is

α(A) = inf
U⊃A

sup{ν(φ̃f ) | f ∈ C∞
0 (M ; R), |f |C0 = 1, supp(f) ⊂ U, f |A ≡ 1},

where the infimum runs over all open neighborhoods U of A.

Remark 12. A more elaborate alternative invariant α′(A) would be the infimum over open neigh-
borhoods U of A of constants a > 0 such that the map ιU : ker(CalU ) → H̃am(M,ω) is coarse
Lipschitz with constant a > 0, that is

dHofer(ιU (φ̃), ιU (ψ̃)) ≤ a · dHofer(φ̃, ψ̃) + b

for all φ̃, ψ̃ ∈ ker(CalU ) and b ≥ 0 independent of φ̃, ψ̃. It is easy to see that α(A) ≤ α′(A) and
Proposition 13 below applies to α′(A) as well.

In view of Sikorav’s trick [Sik90, HZ94], which we recall below in detail for the reader’s
convenience, we obtain the following.

Proposition 13. The packing number of A satisfies

k(A) ≤
⌊

1
α(A)

⌋
,

where the right-hand side is by convention ∞ if α(A) = 0.

Proof of Proposition 13. It is sufficient to prove that k(A) ≤ 1/α(A). If α(A) = 0, there is noth-
ing to prove. Hence, we suppose that α(A) > 0. Then we can prove the equivalent statement
that α(A) ≤ 1/k(A).

Suppose that M can be packed by l copies of A. Namely, let θ1 = id, . . . , θl ∈ Ham(M,ω)
yield an l-packing of A in M : {θj(A)}1≤j≤l are pairwise disjoint. Let U ⊃ A be a sufficiently
small open neighborhood of A so that {θj(U)}1≤j≤l are pairwise disjoint. Set Uj = θj(U) for
1 ≤ j ≤ l. Let f ∈ C∞

0 (M ; R), |f |C0 = 1, supp(f) ⊂ U , f |A ≡ 1 be as in the definition of α(A).
For 1 ≤ j ≤ l, fj = f ◦ θ−1

j satisfies supp(fj) ⊂ Uj .

Let us show that ν(φ̃f , id) ≤ 1/l, as calculated in H̃am(M,ω), which implies our claim.
Indeed, by the conjugation invariance of Hofer’s pseudo-metric on H̃am(M,ω),

dHofer(φlt
f , φ

t
f1

· . . . · φt
fl

) ≤ C,

where C ≤ 2(dHofer(θ1, id) + · · · + dHofer(θl, id)) is independent of t. However,

φt
f1

· . . . · φt
fl

= φt
F ,

F = f1 + · · · + fl.

As |F |C0 = 1 we obtain that ν(φf ) = (1/l)ν(φF ) ≤ 1/l, which proves the proposition. �
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Next, we study the asymptotic Hofer norm in the following situation. Let M = S2 with a
round area form of total area 1. We write z for the vertical coordinate scaled by a factor of 1/2. Let
us fix B > C > 0 with 2B + (k − 1)C = 1. Consider a Lagrangian configuration �1≤j≤k{z = zj},
where

zj = −1/2 +B + (j − 1)C, j = 1, . . . , k. (6)

Denote by σB,C the measure (1/k)
∑k

j=1 δzj . By using Lagrangian estimators μBi,k as in

Theorem G, for rational Bi
i→∞−−−→ B, we get that for every smooth function h = h(z) on S2

with zero mean the asymptotic Hofer norm satisfies

ν(φh) = lim
t→+∞

dHofer(φt
h, id)

t
≥

∫
h dσB,C . (7)

Let us emphasize that in this definition the flow φt
h naturally lifts to the universal cover H̃am

and we consider Hofer’s metric there.

Question 14. Is this estimate sharp?

As a test, we fix small δ > 0 and

r ∈
(

1
k + 1

,
1
k

)
,

and consider hr,δ to be a smoothing of the indicator function of

[−1/2 + r − δ,−1/2 + r + δ],

which we arrange to have zero mean by extending it to [−1/2 + r − δ,−1/2 + r + 5δ] as an odd
function about the midpoint −1/2 + r + 2δ of the interval. Choose B = r, put

C =
(1 − 2B)
(k − 1)

.

Note that hr,δ has |hr,δ|C0 = 1 and equals 1 on the circle Kr := L0,0
k,B of area r and is supported

in its δ-neighborhood. Since B > C, we can apply inequality (7) with the measure σB,C and get

u(r) := lim inf
δ→0

ν(φhr,δ
) ≥ 1

k
.

At the same time, note that there exists a packing of S2 by k copies of the support of h, so by
Proposition 13 u(r) ≤ 1/k. Thus, u(r) = 1/k, so the estimate is sharp.

Presumably, progress in the direction outlined in § 7.1 will yield efficient lower bounds on the
asymptotic Hofer norm for more general autonomous Hamiltonians.

3.5 Stabilization
Consider now the stabilization of the Hamiltonian diffeomorphism φhr,δ

constructed in § 3.4. Fix
a closed symplectic manifold (P,Ω) and put

Φr,δ := φhr,δ
× id ∈ Ham(S2 × P ).

Put
uP (r) = lim

δ→0
ν(Φr,δ).

Question 15. Is uP (r) > 0?

If the answer is affirmative, it would be interesting to calculate or estimate this quantity.
Our method, based on spectral invariants in Lagrangian Floer theory on orbifolds, yields ‘yes’
when (P,Ω) is a 2-sphere of area 2a with B + a > C. In fact, we have in this case uP (r) = 1/k
as above.
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Now we discuss another version of the stabilization. Let S ⊂ P be a closed Lagrangian
submanifold, and let fW be a smoothing of the characteristic function of a small Weinstein
neighborhood W of S. Consider the Hamiltonian hr,δfW . We denote by uS(r) the lower limit of
the corresponding asymptotic Hofer norm when r → 0 and W shrinks to S.

Question 16. Under which assumptions on S does one have uS(r) > 0?

For instance, when P is S2 of area 2a with B > C + a and S is the equator, Hamiltonians
hr,δfW , are concentrated near Λr := Kr × S, and the same argument based on Theorem G and
Proposition 13 yields

uS(r) = 1/k. (8)

3.6 Lagrangian packing via Hofer’s geometry
Here we use identity (8) for the asymptotic Hofer norm in order to deduce Theorem C.

Proof of Theorem C. Equation (8) implies that α(Λr) ≥ 1/k, whence by Proposition 13,
k(Λr) ≤ k. �
Remark 17. Theorem C can be interpreted as follows.2 Consider m = k + 1 Hamiltonian copies
L1 = φ1(Λr), . . . , Lm = φm(Λr), where φj ∈ Ham(Ma) for all 1 ≤ j ≤ m, of Λr in Ma. Then
the collection {Lj}1≤j≤m has the following ‘Borromean’ property: for every proper subset I
of {1, . . . ,m} there exist {θj ∈ Ham(Ma)}j∈I such that {θj(Lj)}j∈I are pairwise disjoint, but
for I = {1, . . . ,m} such a disjoinment does not exist. Of course, this is part of a general phe-
nomenon, which arises for any compact set A ⊂M with finite packing number k(A), if we take
m = k(A) + 1.

Question 18. Is it possible to prove that for a larger than B − C one can pack k + 1 Hamiltonian
images of Λ or more? The recent methods of Hind and Kerman [HK21] might help produce
packings of this kind.

4. Lagrangian Poincaré recurrence: proof

Proof of Theorem D. Denote by K the complete graph with vertices Z≥0. Edge-color K as fol-
lows: the edge ij is blue if φiΛ ∩ φjΛ �= ∅, and it is red otherwise. By Theorem C, this coloring
does not possess any red complete subgraph with k + 1 vertices. Fix a maximal red complete
subgraph, say, Q.

Since Q is maximal, each vertex outside Q is connected to some vertex in Q by a blue edge.
Put N = mk, and consider the graph BN with vertices {0, . . . , N} connected only by the blue
edges. The positive integer m will play the role of the large parameter in the proof. In particular,
we assume that the maximal element q of Q is ≤ mk.

The number of vertices in BN \Q is at least (m− 1)k + 1. Denote by d the maximal degree of
a vertex fromQ in BN . Then, by counting outcoming blue edges fromQ we get (m− 1)k + 1 ≤ dk
which yields d ≥ m. It follows that some vertex p ∈ Q has at least m blue outcoming edges in BN .

Note now that the coloring is invariant under positive translations. It follows that 0 has
at least m− q outcoming blue edges (we can lose at most q edges as roughly speaking the
corresponding vertices will become negative after the shift by −p), yielding

|Rφ ∩ [0,mk]| ≥ m− q.

We conclude the proof by noticing that (m− q)/mk → 1/k as m→ +∞. �

2 We thank Ivan Smith for bringing this interpretation to our attention.
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Furthermore, we observe that the same estimates work in general whenever a subset Λ ⊂ X
of a set X cannot be (k + 1)-packed into X by powers of a given invertible map φ : X → X. For
instance, this is the case when (X, ν) is a measure space of total measure 1, Λ is a subset of
positive measure, k = �1/ν(Λ)�, and φ is any invertible measure-preserving transformation. In
this setting a stronger statement follows from the Ergodic Theorem [Ber85, Theorem 1.2]: there
exists a sequence im of density ≥ 1/ν(Λ) such that ν(Λ ∩ φ−i1Λ ∩ · · · ∩ φ−imΛ) > 0 for all m.
However, in our Lagrangian situation the same method is not applicable: indeed our Lagrangian
Λ is a measure-zero subset which does not bound a positive-measure subset. For a different
example in symplectic topology, we could consider X to be a symplectic manifold, φ ∈ Symp(X)
a symplectomorphism, Λ an open ball of a given capacity, and k its packing number. That this
sometimes gives sharper bounds than simply the volume constraint is one of the paradigms of
modern symplectic topology, initiated in [Gro85, MP94, Bir01].

5. C0-continuity and non-simplicity

We observe that the collection of Lagrangian spectral estimators c0k,B contains sufficient data to
provide new C0-continuous invariants on Ham(S2) that extend to the group of area-preserving
homeomorphisms GS2 of the two-sphere. Following the strategy of [CHS20, CHS21] this is
shown to yield alternative proofs of the non-simplicity of the group of compactly supported
area-preserving homeomorphisms of the two-disk, known as the ‘simplicity conjecture’ [MS17,
Problem 42] by way of proving the ‘infinite twist conjecture’ [MS17, Problem 43], as well as that
of GS2 . We refer to the above references for the original proofs of these conjectures by using
periodic Floer homology, as well as for ample further information about the non-simplicity ques-
tions and their historical context. We shall also rely on the following result [CHS21, Lemma 3.11]
proven by soft fragmentation methods.

Lemma 19. Let U ⊂ S2 be a disk. Then for all ε > 0 there exists δ > 0 such that if φ ∈ Ham(S2)
satisfies dC0(φ, id) < δ then there exists ψ supported in U such that dHofer(φ, ψ) < ε.

This allows us to prove the following C0-continuity result. Consider the C0-closure groups
GS2 = Ham(S2)C0

and GD2 = Hamc(D2)C0
inside the corresponding homeomorphism groups. It

is a well-known fact that these groups coincide with the groups of orientation and area-preserving
homeomorphisms of S2 and of area-preserving homeomorphisms of D2 with compact support (see,
e.g., [Mül14] and references therein).

Theorem L. The map

τk,k′,B,B′ : Ham(S2) → R,

τk,k′,B,B′ = c0k,B − c0k′,B′

is 2-Lipschitz in Hofer’s metric, is C0-continuous, and extends to GS2 .

Proof. Let U be the open disk of area min{B,B′} disjoint from

L0
k,k′,B,B′ = L0

k,B ∪ L0
k′,B′ .

Then by the Calabi property we obtain that τ = τk,k′,B,B′ satisfies τ(ψ) = 0 for all ψ supported
in U . (Indeed, in this case it is easy to find a Hamiltonian H supported in U that generates ψ.)
For ε > 0 consider δ > 0 provided by Lemma 19. For θ ∈ Ham(S2) define the C0-neighborhood
Uθ,δ = {θφ | dC0(φ, id) < δ}. Then for each θφ ∈ Uθ,δ

|τ(θφ) − τ(θψ)| ≤ 2ε
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for ψ supported in U provided by Lemma 19. However, in view of the controlled additivity
property and the above vanishing property of τ , we have τ(θψ) = τ(θ). Hence,

|τ(θφ) − τ(θ)| ≤ 2ε,

which proves the C0-continuity of τ . Note that it proves more: in fact, τ is uniformly con-
tinuous with respect to the uniform structure on Ham(S2) given by the neighborhoods Vδ =
{(θ, ψ) | dC0(θ−1ψ, id) < δ}, for δ > 0, of the diagonal in Ham(S2) × Ham(S2). Therefore, τ
extends to GS2 . �

It is convenient to consider L0
1,1/2 = S ⊂ S2 to be the standard equator. Let τk,B = τk,1,B,1/2,

where c01,1/2 is the Lagrangian spectral invariant of S ⊂ S2. By Theorem L, τk,B extends to GF
S2 .

We remark that with minor modifications the argument below also works for τk,k′,B,B′ with k′, B′

fixed.

Proof of Theorem E. Recall that we are given a smooth function h : [−1/2, 1/2) → R vanishing
on [−1/2, 0]. Consider φ ∈ GD2 ⊂ GS2 generated byH = h ◦ z. Assume that a homeomorphism φ,
generated by the HamiltonianH, lies inGF

S2 , i.e. φ is the C0-limit of Hamiltonian diffeomorphisms
of Hofer’s norm ≤ C. Then |τk,B(φ)| ≤ 2C for all k. Observe now that by Lagrangian control
and normalization properties, for every rational B ∈ (0, 1/2),∣∣∣∣∣

∫ 1/2−B

0
h(s) ds

∣∣∣∣∣ = (1 − 2B) lim
k→+∞

|τk,B(φ)| ≤ 2C. (9)

Hence, h has bounded primitive. �
Question 20. Formula (9) shows that one can reconstruct the Calabi invariant of rotationally
symmetric Hamiltonian diffeomorphisms by using invariants τk,B. Does such a reconstruction
exist for more general symplectomorphisms?

Now we prove the following consequence of Theorem E (compare [LeR10]). Recall first that,
as explained in [CHS20, Proposition 2.2] by a well-known argument of Epstein and Higman
[Hig54, Eps70], the group GF

S2 contains the commutator subgroup [GS2 , GS2 ] of GS2 . Therefore,
the quotient group Q = GS2/GF

S2 is abelian. Hence, every subgroup H0 ⊂ Q of Q is normal and
its preimage H = π−1(H0) under the natural projection π : GS2 → Q is a normal subgroup of
GS2 containing GF

S2 . The results [CHS20, CHS21] on the non-simplicity of GS2 are equivalent
to the construction of various explicit embeddings R ↪→ Q. Using our spectral invariants, we
provide an explicit embedding of a large function space into Q whose image contains all these
copies of R.

Let G ⊂ C1((0, 1/2]) denote C1-functions constant near 1/2, and let Gb denote bounded such
functions.

Theorem M. The map j : G → GS2 , ρ �→ φ, where φ is given by H = h ◦ z as above where
h(s) = −ρ′(1/2 − s) for s ∈ (0, 1/2) and h(s) = 0 for s ≤ 0, induces a monomorphism

G/K ↪→ GS2/GF
S2

for a subgroup K ⊂ Gb. In particular, every subgroup of G/Gb yields a normal subgroup of GS2

containing GF
S2 .

Proof. From the homomorphism j : G → GS2 we immediately obtain a homomorphism j1 = π ◦
j : G → Q = GS2/GF

S2 . It suffices to prove that K = Ker(j1) ⊂ Gb. Now if ρ ∈ Ker(j1), then φ =
j(ρ) ∈ GF

S2 . By Theorem E this implies that ρ is bounded, that is, ρ ∈ Gb. �
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Remark 21. It is easy to see by construction that direct analogues of Theorems E and M hold
for GD2 and GF

D2 .

Remark 22. It would be interesting to compare K and Gb. See Remark 2.

Remark 23. Finally, it is easy to see that, for instance, Theorem J about the existence of flats
in Ham(S2) extends naturally to the groups Hameo(S2),Hameoc(D2) from [OM07] with their
respective Hofer’s metrics, and possibly further to GF

S2 , G
F
D2 .

6. Lagrangian spectral invariants and estimators

Here we construct Lagrangian estimators described in § 2 by using Lagrangian spectral invariants
in symmetric products, and prove Theorems F and G. Interestingly enough, a remarkable Toeplitz
tridiagonal matrix, the Ak Cartan matrix, naturally appears in the course of our calculation of
the critical points of the Landau–Ginzburg superpotential combined from smooth and orbifold
terms.

6.1 Lagrangian Floer homology with bounding cochains and bulk deformation
We briefly discuss the general algebraic properties of the Lagrangian Floer homology theory with
weak bounding cochains and bulk. We refer to [MS21] for a slightly more detailed discussion, and
to the original work [FOOO09, FOOO10, FOOO11, FOOO12, FOOO19] for all detailed defini-
tions. We also remark that the Fukaya algebra of a Bohr–Sommerfeld Lagrangian submanifold
in a rational symplectic manifold, that is when [ω] is contained in the image of H2(M ; Q) inside
H2(M ; R), was constructed in [CW22] by classical transversality techniques. Hence, one could
feasibly carry out all constructions in this paper by the above techniques, when restricted to the
rational setting, which is sufficient for our purposes. We also note that we establish our result
as a rather formal consequence of the methods of [FOOO09, FOOO19, MS21], hence it applies
with whichever perturbation schemes these papers do.

For a subgroup Γ ⊂ R, define the Novikov field with coefficients in the field K = C as

ΛΓ =
{ ∑

j

ajT
κj

∣∣∣∣aj ∈ K, κj ∈ Γ, κj → +∞
}
.

This field possesses a non-Archimedean valuation ν : ΛΓ → R ∪ {+∞} given by ν(0) = +∞, and

ν
( ∑

ajT
κj

)
= min{κj | aj �= 0}.

For now we may assume that Γ = R, but later it will be important to choose a smaller subgroup.
We often omit the subscript Γ, and write Λ for ΛΓ. Set Λ0 = ν−1([0,+∞)) ⊂ Λ to be the subring
of elements of non-negative valuation, and Λ+ = ν−1((0,+∞)) ⊂ Λ0 the ideal of elements of
positive valuation.

Given a closed connected oriented spin Lagrangian submanifold L ⊂M , and an ω-tame
almost complex structure on M , considering the moduli spaces of J-holomorphic disks with
boundary on L and with boundary and interior punctures, and suitable virtual perturbations
required to regularize the problem, as well as suitable homological perturbation techniques, yields
the following maps. First, considering only k + 1 boundary punctures, for k ≥ 0, we have the
maps

mk : H∗(L; Λ)⊗k → H∗(L; Λ).

These maps satisfy the relations of a curved filtered A∞ algebra. Furthermore, these maps
decompose as mk =

∑
mk,βT

ω(β), where the sum runs over the relative homology classes
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β ∈ H2(M,L; Z) of disks in M with boundary on L. Moreover, considering also l interior
punctures yields maps

ql,k : H∗(M ; Λ)⊗l ⊗H∗(L; Λ)⊗k → H∗(L; Λ).

Given a ‘bulk’ class b ∈ H∗(M ; Λ+) we can deform the mk operations to

mb
k (x1 ⊗ · · · ⊗ xk) =

∑
r≥0

qr,k(b⊗r ⊗ x1 ⊗ · · · ⊗ xk).

The operations mb
k for k ≥ 0 also satisfy the relations of a curved filtered A∞ algebra, and

decompose into a sum mb
k =

∑
mb

k,βT
ω(β) as above, over the relative homology classes β ∈

H2(M,L; Z) of disks in M with boundary on L.
Furthermore, given a ‘cochain’ class b = b0 + b+ for b0 ∈ H1(L; C) and b+ ∈ H1(L; Λ+), we

define the b-twisted A∞ operations with bulk b ∈ H∗(M ; Λ+) as follows: first set

mb,b0
k,β = e〈b0,∂β〉mb

k,β .

These operations again satisfy the curved filtered A∞ equations. Now, to further deform by
b+ ∈ H1(L; Λ+), we set

mb,b
k,β(x1 ⊗ · · · ⊗ xk) =

∑
l≥0

∑
mb,b0

k+l,β(b+⊗ · · · ⊗ b+⊗x1 ⊗ b+⊗ · · · ⊗ b+⊗xk ⊗ b+⊗ · · · ⊗ b+),

where the interior sum runs over all possible positions of the k symbols x1, . . . , xk appearing in
this order, and l symbols b+, and finally we set

mb,b
k =

∑
β

Tω(β)mb,b
k,β .

The operations mb,b
k also satisfy the curved filtered A∞ equations. Moreover, if b0 − b′0 ∈

H1(L; 2π
√
−1Z), then mb,b

k = mb,b′
k , b = b0 + b+, b

′ = b′0 + b+.
Given b ∈ H∗(M ; Λ+), we say that b = b0 + b+ ∈ H1(L; Λ0) is a weak bounding cochain for

{mb
k} if there exists a constant c ∈ Λ+ such that∑

k

mb,b0
k (b+⊗ · · · ⊗ b+) = c · 1L,

where 1L ∈ H0(L; Λ0) is the cohomological unit. We call c = Wb(b) the potential func-
tion of the weak bounding cochain b. Note that it depends only on the class of b in
H1(L; Λ0)/H1(L; 2π

√
−1Z), which is well-defined as there is no torsion in H1(L; Z). We shall

henceforth consider bounding cochains as elements of H1(L; Λ0)/H1(L; 2π
√
−1Z).

Now we have the following result regarding Lagrangian tori, which was first proven in the
context of Lagrangian torus fibers of toric manifolds in [FOOO10, Theorem 4.10] and [FOOO11,
Theorem 3.16].

Theorem N [FOOO12, Theorem 2.3]. If L ∼= Tn is a Lagrangian torus and all elements of
H1(L; Λ0)/H1(L; 2π

√
−1Z) are weak bounding cochains for {mb

k}, then if b is a critical point of
the potential function

Wb : H1(L; Λ0)/H1(L; 2π
√
−1Z) → Λ+

with H1(L; Λ0)/H1(L; 2π
√
−1Z) ∼= (Λ0/2π

√
−1Z)n identified with Λ0 \ Λ+ by the exponential

function, then mb,b
1 = 0 and hence the (b, b)-deformed Floer cohomology of L is isomorphic to

H∗(L; Λ). Moreover, this implies that L is non-displaceable by Hamiltonian isotopies in M .
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Finally, we note thatH∗(L; Λ) ∼= H∗(L; C) ⊗C Λ possesses a non-Archimedean filtration func-
tion A determined by requiring that the basis E = E0 ⊗ 1, for E0 = (e1, . . . , eB) a basis of
H∗(L; C) be orthonormal in the sense that A(ej ⊗ 1) = 0 for all 1 ≤ j ≤ B, A(0) = −∞, and for
all (λ1, . . . , λB) ∈ ΛB,

A
( ∑

λjej ⊗ 1
)

= max{A(ej ⊗ 1) − ν(λj)}.

It is important to note that the A∞ algebra {mb,b
k } from Theorem N has unit 1L ∈ H∗(L; Λ) of

non-Archimedean filtration level A(1L) = 0.

6.2 Lagrangian spectral invariants
In this section we discuss Lagrangian spectral invariants. While essentially going back to
Viterbo [Vit92], they were defined in Lagrangian Floer homology by a number of authors
in varying degrees of generality, starting with Oh [Oh97], Leclercq [Lec08], and Monzner,
Vichery, and Zapolsky [MVZ12]. However, the two main contributions that are relevant to our
goals are the paper of Leclercq and Zapolsky [LZ18] in the context of monotone Lagrangians,
and of Fukaya, Oh, Ohta, and Ono [FOOO19, Definition 17.15] in the context of Floer homology
with bounding cochains and bulk deformation.

6.2.1 Discrete submonoids and their associated subgroups. First we formulate the spaces of
possible values of our spectral invariants. Following [FOOO19], consider elements b ∈ H∗(M ; Λ0),
b ∈ H1(L; Λ0). We say that they are gapped if they can be written as

b =
∑

g∈G(b)

bgT
g, bg ∈ H∗(M ; C),

b =
∑

g∈G(b)

bgT
g, bg ∈ H1(L; C),

where G(b), G(b) are discrete submonoids of R≥0. In practice, all relevant elements b, b will be
gapped, so we assume that they are for the rest of this section.

Given an ω-tame almost complex structure J on M define the submonoid G(L, ω, J) to be
generated by the areas ω([u]) of all J-holomorphic disks u with boundary on L. It is discrete by
Gromov compactness. Note that in the orbifold setting below, one includes both areas of smooth
holomorphic disks and those of orbifold holomorphic disks.

Definition 24. Let G(L,b, b) ⊂ R≥0 be the discrete submonoid generated by the union
G(b) ∪G(b) ∪G(L, ω, J). Furthermore, let Γ(b), Γ(b), Γ(L, ω, J), Γ(L,b, b) be the subgroups
of R generated by the monoids G(b), G(b), G(L, ω, J), G(L,b, b), respectively. We call (L,b, b)
rational if Γ(L,b, b) is a discrete subgroup of R.

Given a Hamiltonian H ∈ C∞([0, 1] ×M,R) we consider the chords x : [0, 1] →M with
x(0), x(1) ∈ L, satisfying ẋ(t) = Xt

H(x(t)) for all t ∈ [0, 1]. Furthermore, we restrict attention
to only those chords that are contractible relative to L. Set Spec(H,L) to be the set of all
actions of pairs (x, x) each consisting of a chord x and its contraction x to L, called a capping,
x : D →M , x|∂D∩{�(z)≥0} = x, x(∂D ∩ {�(z) ≤ 0}) ⊂ L. The action of (x, x) is given by

AH,L(x, x) =
∫ 1

0
H(t, x(t)) dt−

∫
x
ω.

2504

https://doi.org/10.1112/S0010437X23007455 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007455


Lagrangian configurations and Hamiltonian maps

Definition 25. Define the (b, b)-deformed spectrum Spec(H,L,b, b) of H,L by

Spec(H,L,b, b) = Spec(H,L) + Γ(L,b, b).

We recall that for two subsets A,B of R, A+B is the subset of R given by

A+B = {a+ b | a ∈ A, b ∈ B}.

6.2.2 Filtered Floer complex and spectral invariants. Consider a Hamiltonian H and L ⊂M
a Lagrangian as above. Let (b, b) be a weak bounding cochain with bulk deformation. Assuming
that (H,L) is non-degenerate, that is φ1

H(L) intersects L transversely, and {Jt}t∈[0,1] a time-
dependent ω-compatible almost complex structure on M , following [FOOO09, FOOO19] one
constructs a filtered finite rank Λ0-complex CF (H,L,b, b; Λ0), where Λ = ΛΓ for Γ = Γ(L,b, b).

We set CF (H,L,b, b) = CF (H,L,b, b; Λ0) ⊗Λ0 Λ. The module CF (H,L,b, b) comes with
an non-Archimedean filtration function AH,L whose values are contained in

Spec(H,L,b, b) ∪ {−∞}.

Indeed, as a Λ-module CF (H,L,b, b) is given by the completion with respect to the action
functional of the vector space generated by pairs (x, x) of Hamiltonian H-chords from L to L con-
tractible relative to L, where we identify between (x, x), (x, x′) if v = x′#x− : (D, ∂D) → (M,L),
defined by gluing suitably reparametrized x′ and x−(z) = x(z) along their common bound-
ary chord, satisfies 〈[ω], [v]〉 = 0. In this case the filtration A is defined by declaring any
Λ-basis [(xi, xi)], for {xi} the finite set of contractible H-chords from L to L an orthogonal
Λ-basis of CF (H,L,b, b). Finally, the homology HF (H,L,b, b) of CF (H,L,b, b) is naturally
isomorphic to self-Floer homology HF (L,b, b) = HF ((L,b, b), (L,b, b)) of L deformed by (b, b).
We write ΦH : HF (L,b, b) → HF (H,L,b, b) for this isomorphism. In the setting of Theorem N
there is a natural isomorphism between HF (H,L,b, b) and H∗(L,Λ), which, in particular,
explains why L is not Hamiltonianly displaceable: if φ1

H(L) ∩ L = ∅ then CF (H,L,b, b) = 0 and,
hence, one must have HF (H,L,b, b) = 0.

For a ∈ R the subspace CF (H,L,b, b)a generated over Λ0 by all [(x, x̄)] satisfy-
ing AH,L(x, x̄) < a forms a subcomplex of CF (H,L,b, b). We denote its homology by
HF (H,L,b, b)a. It comes with a natural map HF (H,L,b, b)a → HF (H,L,b, b).

Given a class z ∈ HF (L,b, b), we define its spectral invariant with respect to H as in
[FOOO19, Definition 17.15] by

c(L,b, b; z,H) = inf{a ∈ R |ΦH(z) ∈ im(HF (H,L,b, b)a → HF (H,L,b, b))}.

In the following, we will primarily work with z = 1L, the unit of the algebra on HF (L,b, b)
induced by the mb,b

2 operation. Following the arguments of [FOOO19, Theorem 7.2], [LZ18,
Theorem 35] together with the argument in [PR14, Remark 4.3.2] for rational spectrality, it is
straightforward to show the following properties of the spectral invariant c(L,b, b; z,H).

(1) Non-degenerate spectrality: for each z ∈ HF (L,b, b) \ {0}, and Hamiltonian H such that
H,L is non-degenerate,

c(L,b, b; z,H) ∈ Spec(H,L,b, b).

(2) Rational spectrality: if Γ(H,b, b) is rational, then for z ∈ HF (L,b, b) \ {0}, the condition

c(L,b, b; z,H) ∈ Spec(H,L,b, b)

holds for each Hamiltonian H.
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(3) Non-Archimedean property: for each Hamiltonian H, c(L,b, b;−, H) is a non-Archimedean
filtration function on HF (L,b, b) as a module over the Novikov field Λ with its natural
valuation.

(4) Hofer–Lipschitz: for each z ∈ HF (L,b, b) \ {0},

|c(L,b, b; z, F ) − c(L,b, b; z,G)| ≤ max{E+(F −G), E−(F −G)},

where for a Hamiltonian H, we set E+(H) =
∫ 1
0 maxM (Ht) dt and E−(H) = E+(−H). Note

that E±(H) ≤
∫ 1
0 maxM |Ht| dt.

(5) Normalization: For each H ∈ C∞([0, 1] ×M,R) and b ∈ C∞([0, 1],R),

c(L,b, b; z,H + b) = c(L,b, b; z,H) +
∫ 1

0
b(t) dt.

(6) Monotonicity: if two Hamiltonians F,G satisfy Ft ≤ Gt for all t ∈ [0, 1], then
c(L,b, b; z, F ) ≤ c(L,b, b; z,G) for each z ∈ HF (L,b, b).

(7) Lagrangian control: if Γ(H,b, b) is rational and (Ht)|L = c(t) ∈ R for all t ∈ [0, 1] then
setting c+(H) = c(L,b, b; 1L, H) we have

c+(H) =
∫ 1

0
c(t) dt,

hence for all H ∈ C∞([0, 1] ×M,R),
∫ 1
0 minLHt dt ≤ c+(H) ≤

∫ 1
0 maxLHt dt.

(8) Homotopy invariance: for Ht of mean-zero for all t ∈ [0, 1], c(L,b, b; z,H) depends only on
the class φ̃H ∈ H̃am(M,ω) of the Hamiltonian isotopy {φt

H}t∈[0,1].
(9) Triangle inequality: for each z, w ∈ HF (L,b, b), and Hamiltonians F,G,

c(L,b, b;mb,b
2 (z, w), F#G) ≤ c(L,b, b; z, F ) + c(L,b, b;w,G),

where F#G(t, x) = F (t, x) +G(t, (φt
F )−1x) generates the flow {φt

Fφ
t
G}t∈[0,1].

6.3 Orbifold setting
We shall consider only a very simple kind of a symplectic orbifold X. It is called a global quotient
symplectic orbifold, and consists of the data of a closed symplectic manifold M̃ and an effective
symplectic action of a finite group G on it.

In fact, we shall only consider M̃ = Mk = M × · · · ×M for a symplectic manifold M
and the symmetric group G = Symk acting on M̃ by permutations of the coordinates.
The corresponding global quotient orbifold is called the symmetric power X = Symk(M)
of M .

The inertia orbifold IX of a global quotient orbifold X is itself a global quotient orbifold
given by the action of G on the disjoint union

⊔
g∈G M̃

g, where for g ∈ G, M̃g is the fixed

point submanifold of g, and f ∈ G acts by M̃g → M̃fgf−1
, x �→ fx. See [ALR07] for further

details.

6.3.1 Orbifold Hofer metric. While on a symplectic orbifold one can define smooth func-
tions and, hence, Hamiltonian diffeomorphisms, in the case of a global quotient orbifold
X, the data of a smooth Hamiltonian H ∈ C∞([0, 1] ×X,R) is equivalent to the data of a
G-invariant Hamiltonian H̃ ∈ C∞([0, 1] × M̃,R), that is H(t, g · x) = H(t, x) for all t ∈ [0, 1], x ∈
M̃, g ∈ G. In our particular case M̃ = Mk and our Hamiltonians satisfy H(t, x1, . . . , xk) =
H(t, xσ−1(1), . . . , xσ−1(k)) for all t ∈ [0, 1], x1, . . . , xk ∈M , and σ ∈ Symk. Given an orbifold
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Hamiltonian diffeomorphism φ of X, which is equivalently a G-equivariant Hamiltonian diffeo-
morphism φ̃ of M̃ that is generated by a G-invariant Hamiltonian H on M̃ , we define its orbifold
Hofer distance to the identity by

dHofer(φ, id) = inf
φ1

H=φ̃

∫ 1

0
max

M̃
H(t,−) − min

M̃
H(t,−) dt,

where the infinimum runs over all such G-invariant Hamiltonians generating φ̃. Finally, we
remark that orbifold Hamiltonian diffeomorphisms form a group Ham(X), it is isomorphic
to the identity component Ham(M̃)G of the subgroup of Ham(M̃) consisting of G-equivariant
Hamiltonian diffeomorphisms, and dHofer extends to a bi-invariant (non-degenerate) metric on
Ham(X). We denote by H̃am(X) the universal cover of this group with basepoint at the identity.
This is also a group.

6.3.2 Orbifold Lagrangian Floer homology with bulk and spectral invariants. It was explained
in [CP14] and summarized in [MS21] that the above setup of Lagrangian Floer homology with
weak bounding cochain and bulk deformation b, b holds in the setting of a smooth Lagrangian
submanifold L in the regular locus of a closed effective symplectic orbifold X (which for us
will be a global quotient orbifold M̃/G, and whose regular locus is M̃0/G where M̃0 is the
set of points with trivial stabilizer) with the additional feature that we may consider bulk
deformations by classes in the homology H∗(IX; Λ+) of the inertia orbifold of X by count-
ing holomorphic disks with possible orbifold singularities at the interior punctures. Furthermore,
the above constructions of spectral invariants and arguments proving their properties go through
in this situation.

6.3.3 Lagrangians in symmetric products and their spectral invariants. Consider S2 with the
symplectic form ω of total area 1. Under this normalization consider the Lagrangian configuration
L0,j

2,B, j = 0, 1, see (1). In [MS21] Mak and Smith show, as translated to our normalizations, that
if

M = (S2 × S2, ω ⊕ 2aω),

with 0 < a < 3B − 1 = B − C, then the Lagrangian link L2,B = L0
2,B × S1 inM is Hamiltonianly

non-displaceable: for all φ ∈ Ham(X), φ(L2,B) ∩ L2,B �= ∅.
The key observation of this paper is that, in fact, the proof of [MS21] gives strictly stronger

information. We recall their approach. The two connected components of L2,B are

Lj
2,B = L0,j

2,B × S,

where S ⊂ S2(2a) is the equator. Consider the product Lagrangian

L′
2,B = L0

2,B × L1
2,B ⊂ M̃ = M ×M.

Since L′
2,B is disjoint from the diagonal ΔM ⊂M ×M , it descends to a smooth Lagrangian

submanifold L2,B in the regular locus Xreg of the symplectic global quotient orbifold X =
(M ×M)/(Z/2Z), where Z/2Z acts by exchanging the factors. Similarly, in the situation of
configurations for arbitrary values (k,B) of parameters, one defines

L′
k,B = L0

k,B × · · · × Lk−1
k,B ⊂Mk,

and it descends to a Lagrangian Lk,B in the regular locus of Xreg the symplectic orbifold X =
Symk(M) = Mk/Symk, where the symmetric group Symk acts on Mk by permutations of the
coordinates.
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In [MS21] the authors have proved for k = 2, and we show in § 6.3.5 that the same extends to
arbitrary values of parameters (k,B) and a < ((k + 1)B − 1)/(k − 1) the following statement.

Theorem O. There exists an integrable almost complex structure JM on M such that with
respect to the complex structure J = Symk(JM ) on X = Symk(M), the Lagrangian Lk,B ⊂ X
has a well-defined Fukaya algebra in the sense of [FOOO09, CP14, FOOO19]. Moreover, this
Fukaya algebra admits gapped orbifold bulk deformation b and weak bounding cochain b with
the bulk-deformed Floer homology

HF ((Lk,B,b, b), (Lk,B,b, b)) ∼= HF (Lk,B,b, b)

of (Lk,B,b, b) with itself well-defined and isomorphic to H∗(Lk,B; Λ) with coefficients in the
Novikov field Λ = ΛΓ, where Γ = Γ(L,b, b). Moreover, for B ∈ (1/(k + 1), 1/2),

a ∈ (0, ((k + 1)B − 1)/(k − 1))

rational, b, b can be chosen in such a way that Γ is rational. Furthermore, HF (Lk,B,b, b) is an
associative unital algebra, and we denote its unit by 1Lk,B

.

The proof of this theorem appears in § 6.3.5. It implies, in particular, that the unit 1Lk,B
∈

HF (Lk,B,b, b) does not vanish. This enables us to use spectral invariants associated to this
element. For H ∈ C∞([0, 1] ×X,R) we set

σk,B(H) = c(Lk,B,b, b; 1Lk,B
, H).

Then σk,B satisfies the properties of Lagrangian spectral invariants, including rational spectrality,
from § 6.2.

(1) Spectrality: Γ(H,b, b) being rational, the condition

σk,B(H) ∈ Spec(H,L,b, b)

holds for each Hamiltonian H.
(2) Hofer–Lipschitz:

|σk,B(F ) − σk,B(G)| ≤ max{E+(F −G), E−(F −G)}.

(3) Normalization: For each H ∈ C∞([0, 1] ×M,R) and b ∈ C∞([0, 1],R),

σk,B(H + b) = σk,B(H) +
∫ 1

0
b(t) dt.

(4) Monotonicity: if two Hamiltonians F,G satisfy Ft ≤ Gt for all t ∈ [0, 1], then σk,B(F ) ≤
σk,B(G).

(5) Lagrangian control: Γ(H,b, b) being rational, if (Ht)|Lk,B
= c(t) ∈ R for all t ∈ [0, 1], then

we have

σk,B(H) =
∫ 1

0
c(t) dt,

hence for each Hamiltonian H,
∫ 1
0 minLk,B

Ht dt ≤ σk,B(H) ≤
∫ 1
0 maxLk,B

Ht dt.
(6) Homotopy invariance: for Ht of mean-zero for all t ∈ [0, 1], σk,B(H) depends only on the

class φH ∈ H̃am(X,ω) of the Hamiltonian isotopy {φt
H}t∈[0,1].

(7) Triangle inequality: for each two Hamiltonians F,G,

σk,B(F#G) ≤ σk,B(F ) + σk,B(G).
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6.3.4 Proof of Theorems F and G. We now prove Theorems F and G. For a Hamiltonian
F ∈ C∞(Ma,R) let H ∈ C∞(X,R) be the Hamiltonian on X determined by the Symk-invariant
Hamiltonian H̃ = F ⊕ · · · ⊕ F in C∞([0, 1] ×Mk,R), that is H̃(t, x1, . . . , xk) = F (t, x1) + · · · +
F (t, xk). Observe that if F is mean-zero, then so is H. Furthermore, if F1 �→ H1, F2 �→ H2, then
F1#F2 �→ H1#H2 and the map F �→ H induces a map H̃am(Ma) → H̃am(X).

We set

ck,B(F ) =
1
k
σk,B(H),

μk,B(F ) = lim
m→∞

1
m
ck,B(F#m).

The limit exists by Fekete’s lemma by the subadditivity property of σk,B. The Hofer–Lipschitz
property of ck,B and μk,B follows from that of σk,B by the subadditivity of Hofer’s energy
functional. The monotonicity, normalization, Lagrangian control, and independence of Hamil-
tonian properties are immediate consequences of those for σk,B. Note the factor 1/k in the
definition of ck,B: it serves for instance to obtain the Hofer–Lipschitz property with coefficient 1,
as E+(H) ≤ kE+(F ) for F �→ H. Similarly, if Ft|Lj

k,B
≡ cj(t), then Ht|Lk,B

≡
∑

0≤j<k cj(t).

Subadditivity for ck,B and commutative subadditivity for μk,B are direct consequences of the
subadditivity of σk,B. Positive homogeneity of μk,B is immediate from the definition of μk,B.

It remains to prove the conjugation invariance of μk,B, controlled additivity of ck,B and the
Calabi properties of ck,B and μk,B.

To prove conjugation invariance of μk,B, we note that by the subadditivity of σk,B and, hence,
of ck,B, we have for all m ∈ Z>0,

ck,B(φm) − qk,B(ψ) ≤ ck,B(ψφmψ−1) ≤ ck,B(φm) + qk,B(ψ), (10)

where qk,B(ψ) = ck,B(ψ) + ck,B(ψ−1). Hence, dividing by m and taking the limit as m→ ∞, we
obtain

μk,B(φ) = μk,B(ψφψ−1)

as required.
Now we prove the Calabi property. The proofs for ck,B and μk,B are identical, so we focus

on μk,B for example. Suppose that U ⊂Ma is disjoint from Lk,B. Given a Hamiltonian H ∈
C∞([0, 1] ×M,R) supported in [0, 1] × U , consider the Hamiltonian

G(t, x) = H(t, x) + b(t) (11)

such that for all t ∈ [0, 1],

b(t) = − 1
vol(Ma)

∫
U
H(t, x)ω2.

In that case μk,B(H) = 0. Hence, in view of the normalization property of μk,B we obtain

μk,B(G) = −
∫ 1

0
b(t) dt = − 1

vol(Ma)

∫ 1

0

∫
U
H(t, x)ω2 dt = − 1

vol(Ma)
CalU ({φt

H}).

Finally, to prove controlled additivity it suffices to observe that for H supported in [0, 1] × U
and each Hamiltonian F ∈ C∞([0, 1] ×Ma,R), there is a bijective correspondence between the
generators of the Lagrangian Floer complex of F#H and that of F , and, furthermore,

Spec(Lk,B,b, b; 1Lk,b
, F̃#H) = Spec(Lk,B,b, b; 1Lk,b

, F̃ ).
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The proof now proceeds by the spectrality and Hofer–Lipschitz axioms for the family F̃#sH
of Hamiltonians where s ∈ [0, 1], as that of the Lagrangian control property. We obtain that
ck,B(F#sH) is constant in s ∈ [0, 1] and, hence, ck,B(F#H) = ck,B(F ). The proof is now con-
cluded by the normalization axiom to pass to the mean-zero Hamiltonian G as in (11) instead
of H. �

6.3.5 Proof of Theorem O. We explain how the Floer-theoretical approach of Mak-Smith
[MS21, Remark 1.10] applies to multiple level sets of the moment map z : S2 → [−1/2, 1/2].
This allows us to prove Theorem O.

Consider our Lagrangian configuration L0
k,B ⊂ S2 of k Lagrangians on S2. For simplicity let

us shorten the notation: L0,i
k,B = Li, L0

k,B = L, i ∈ I = {0, . . . , k − 1}.
Now considering the manifolds L′

i = Li × S in M = Ma = S2 × S2(2a) for 0 < a < B − C,
where S ⊂ S2(2a) is the equator, we obtain a Lagrangian submanifold L′

k,B of M̃ = Mk

and a Lagrangian submanifold Lk,B of X = Symk(M). Recall that X is the global quotient
orbifold X = M̃/Symk where Symk denotes the symmetric group on k elements. Set also
L′ = �i∈IL

′
i.

We consider the orbifold Lagrangian Floer homology of Lk,B in X with bulk deformation
and bounding cochain (b, b) of a special form. As in [MS21], the bulk deformation will take the
form

b = βorb[Xγ ] + bsmooth

for bsmooth ∈ H4k−2(X; Λ+), βorb ∈ Λ+, γ a conjugacy class in G = Symk, and Xγ
∼= M̃g/C(g),

for any g ∈ γ and C(g) its centralizer, the connected component of the inertia orbifold IX of X
corresponding to γ. Of course [Xγ ] is the fundamental class of Xγ .

We make the following choice of γ which is important for our particular situation: γ is the
conjugacy class of transpositions in G = Symk, that is, the permutations of type (1)k−2(2). Note
that each element of γ is of order 2. It is also easy to calculate that Xγ

∼= M × Symk−2M .
Recall, following [OS04, MS21] that a map u : S → (X,Lk,B), for a stable disk S, corre-

sponds ‘tautologically’ to a map ν : Σ → (M,Lk,B), where πΣ : Σ → S is a degree k branched
cover: u is recovered from ν by u(z) = ν(π−1

Σ (z)) ∈ X = Symk(M). Vice versa, ν is obtained
as follows: first consider the fiber product of u and the projection p : Mk → X. This yields a
Symk-equivariant branched cover Σ̃ → S and a Symk-equivariant holomorphic map V : Σ̃ →Mk.
Consider V1 = π1 ◦ V : Σ̃ →M , where π1 : Mk →M is the projection to the first coordinate.
This map is invariant under the action of the stabilizer G1

∼= Symk−1 of 1 ∈ {1, . . . , k} under the
action of Symk. We then define πΣ : Σ → S to be the quotient Σ̃/G1 by the action of G1 with
the induced projection to S and the induced map V : Σ →M . It is then easy to see that the
boundary components correspond. Furthermore, the ωX -area of u coincides with the ωM -area
of ν. In particular, following the argument of [MS21, Lemma 3.2], one can show the
following.

Lemma 26. Let ν : (Σ, ∂Σ) → (M,L′) be obtained by tautological correspondence from a sta-
ble disk u : (S, ∂S) → (X,Lk,B). Then ∂Σ has k connected components. If Σ has k connected
components, then it consists of k disks. If Σ has k − 1 connected components, then it consists of
k − 2 disks and one curve with two boundary components.

We remark that of course Σ could have less than k − 1 connected components. However,
we shall not require knowledge of the topology of Σ in this case. Similarly, the curve with two
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boundary components obtained in the second case of Lemma 26 might or might not be an
annulus. However, only the annuli will contribute to the lowest order term of the superpotential.
For more details about the tautological correspondence we refer to [OS04, MS21].

Following the dimension calculations in [MS21, Section 3.1] we obtain the following analogue
of [MS21, Lemma 3.12].

Lemma 27. Suppose that for each b = b0 + b+ ∈ H1(Lk,B; Λ0), each non-constant
JX -holomorphic orbifold stable map u to (X,Lk,B) that contributes to the sum∑

k

mb,b0
k (b+⊗ · · · ⊗ b+), (12)

tautologically corresponds to a JM -holomorphic curve ν : (Σ, ∂Σ) → (M,L′) with non-zero
Maslov index μ(ν). Then

H1(Lk,B; Λ0)/H1(Lk,B; 2π
√
−1Z)

consists of weak bounding cochains. Moreover, for each such stable map u, the corresponding ν
satisfies μ(ν) = 2.

Dimension counting. For the reader’s convenience, we briefly outline dimension counting and
thus outline the proof of Lemma 27. It would be convenient to analyze a slightly more general
case when we have a pseudo-holomorphic map ν : (Σ, ∂Σ) → (N,Q), where Q = Q1 � · · · �Qk is
an n-dimensional Lagrangian submanifold of a symplectic manifold N . As was explained above,
this curve together with a k-fold branched cover Σ → S, where S is a disk, corresponds to
an orbifold disk u : (S, ∂S) → (X,K) in the k-fold symmetric product with the boundary on
K := (Q1 × · · · ×Qk)/Symk. (In our particular application, N = Ma, Q = Lk,B and K = Lk,B.)

Here Σ is a Riemann surface with k boundary components obtained as a degree k branched
cover of the disk S with �2 branch points of order 2. Thus, the total space of Σ’s, automor-
phisms taken into account, has dimension 2�2 − 3, where we used that dimPSL(2,R) = 3. Let
us emphasize that these �2 points automatically map by u to our component Xγ of the inertia
orbifold, constrained by orbifold bulk of codimension 0.

The space of parameterized holomorphic maps ν of Σ with n-dimensional Lagrangian
boundary has dimension nχ(Σ) + μ, where μ stands for the Maslov index of ν.

In addition, S is equipped with r boundary marked points which go to the bounding cochain
in K of codimension 1, and with �1 interior marked points which go to the smooth bulk of
codimension 2 in X. Finally, we have an extra output boundary point, w ∈ ∂Σ.

Combining this, we get that the virtual dimension of moduli space M of such curves u equals

dimM = nχ(Σ) + μ+ (r + 1 + 2�1) + (2�2 − 3) − r − 2�1,

where χ stands for the Euler characteristic. Furthermore, by the Riemann–Hurwitz formula,
χ(Σ) = k − �2. Finally, dimK = nk. It follows that

dimM = dimK + (2 − n)(k − χ(Σ)) + μ− 2.

Let us compute the Maslov index of curves ν corresponding to u which contribute to the
coefficient of the unit 1K ∈ H∗(K; Λ0) in the sum as in (12). We need the evaluation map u �→
u(w) from M to K to have non-zero degree and, in particular, dimM = dimK. Thus, we get

(2 − n)(k − χ(Σ)) + μ = 2. (13)

This finishes the general discussion of the dimension count. Now let us apply it in two
special cases relevant to us. In both cases, we use a toric almost complex structure and [MS21,
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Lemma 3.24] in order to show that the Maslov index is non-negative for the holomorphic curves
in question.

When N = S2, i.e. when we work directly on S2 without any stabilization, we have n = 1 so
(13) holds3 for an annulus Σ with Maslov 0. In fact, writing for a general curve u contributing
to the sum that �2 = k − χ(Σ), and noting that μ is non-negative and even in our situation, we
see that the only two possibilities are �2 = 0 and μ = 2, which corresponds to a smooth disk,
and �2 = 2 and μ = 0, which corresponds to an annulus.

When N = S2 × S2(2a), we have that n = 2 and the term involving Σ in formula (13) van-
ishes, giving μ = 2. In fact, using the more general fact that if u contributes to the sum, we must
have μ = (2 − n)(k − χ(Σ)) + μ ≤ 2, and μ being non-negative and even, implies that μ = 2 or
μ = 0. If the last option is impossible, we obtain μ = 2.

Furthermore, one can prove following [MS21, Lemma 3.25] that there exists an almost com-
plex structure JM on M such that the Maslov non-zero condition in Lemma 27 is satisfied. We
now outline how this is achieved.

When setting the Lagrangian Floer theory with bulk, and calculating the superpotential,
we perform the Fukaya trick to obtain the following situation. From the point of view of com-
plex structures one counts holomorphic curves with boundaries on K = �iKi with Ki = Ri × Si

instead of L′
i = Li × S where Ri and Si are small perturbations of Li and S of the form z−1(γi)

and z−1(δi) for δi ∈ R small with γi < γj , δi < δj whenever i < j. From the point of view of sym-
plectic areas of these holomorphic curves, they are still counted with respect to the L′

i. Indeed,
the correspondence between curves with boundary on L′ and those with boundary on K is carried
out by a suitable C1-small diffeomorphism of Ma carrying L′

i to Ki for each i.
Identifying S2 × S2 with CP 1 × CP 1, CP 1 considered as the Riemann sphere C ∪ {∞}, let Ri

be given as {|z| = ri} and Si = {|w| = ρi}. We require that the following non-resonance condition
is satisfied: for all 0 ≤ i < j ≤ k − 1, ri/rj < ρi/ρj and there are no non-zero integer vectors
ξ = (a1, . . . , ak), η = (b1, . . . , bk) ∈ Zk such that

∑
ai log(ri) =

∑
bi log(ρi). In this situation, by

following [Ahl78, Chapter 6, Section 5] and [MS21] it is easy to show the following.

Lemma 28. The non-constant curves ν : Σ →M from Lemma 26 have non-zero Maslov index:
μ(ν) �= 0. The same holds for the restriction of ν to any connected component of Σ with at least
two boundary components.

Indeed, by positivity of intersections and the contrapositive Maslov 0 assumption, the
analysis reduces to there being no simultaneous pair of holomorphic maps (ν1, ν2) from a
compact Riemann surface C with 2 ≤ l ≤ k boundary components to C sending the bound-
ary components to the circles of radii whose logarithms are −→r = (log(ri1), . . . , log(ril)) and
−→ρ = (log(ρi1), . . . , log(ρil)). For such a pair of maps, the period matrix Pl of periods of har-
monic conjugates of the harmonic measures wj corresponding to the boundary components of C
satisfies

Pl
−→r = 2πη ∈ 2πZl, Pl

−→ρ = 2πξ ∈ 2πZl.

Let us show this for the first projection ν1 : C → C, as the case of the second one is similar.
For such a pair of maps, the pull-back f : C → R of the harmonic function log(|z|) to C by
ν1 is a harmonic function on C that is constant on the boundary components of C. Therefore,
it decomposes as f =

∑
log(rj)wj . Furthermore, ef extends to the holomorphic function ν1 :

C → C. Hence, the harmonic conjugate of f must have periods in 2πZ, which is equivalent to
Pl
−→r ∈ 2πZl.

3 We thank Cheuk Yu Mak for this clarification.
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Now note that Pl is symmetric and has a one-dimensional kernel corresponding to constants,
which is spanned by (1, . . . , 1). Hence, ξ, η ∈ Zl \ {0}, and yet

〈−→r , ξ〉 =
1
2π

〈−→r , Pl
−→ρ 〉 =

1
2π

〈Pl
−→r ,−→ρ 〉 = 〈η,−→ρ 〉,

which cannot hold under the non-resonance condition.
As a consequence, the conditions of Lemma 27 are satisfied. What remains is to show that

for suitable choices of b, the superpotential Wb has critical points.
Recall that I = {i ∈ Z | 0 ≤ i < k}. Consider the coordinates {pi, qi} on

H1(Lk,B; Λ0)/H1(Lk,B; 2π
√
−1Z) ∼= (Λ0 \ Λ+)I

corresponding to the basis {ei, fi} of H1(Lk,B; C) given by the circles Li, Si oriented in the
direction of the Hamiltonian flow of z on S2. More precisely, pi = exp(xi), qi = exp(yi) where
xi, yi ∈ Λ0 are the coordinates on H1(Lk,B; Λ0) = H1(Lk,B; C) ⊗ Λ0 corresponding to {ei, fi}.

For i ∈ I set n(i) to be the number of j ∈ I such that j > i and s(i) to be the number of
j ∈ I such that j < i. Of course, n(i) + s(i) = k − 1 for all i ∈ I.

The part of the superpotential corresponding to smooth disks in X with boundary on L is
given by

Wsmooth = T a
∑
i∈I

(qi + q−1
i ) +

∑
i∈I

(Tn(i)C+Bpi + T s(i)C+Bp−1
i ).

We let D1 denote the divisor in X corresponding to D(1) ×Mk−1 for the toric divisor D(1) =
z−1({±1/2}) × S2(2a) ⊂M .

Consider the bulk deformation b = βorb[Xγ ] + βD1 for βorb, β ∈ Λ+ ∪ {0}. Then the smooth
part of the superpotential Wb is

Wb
smooth = T a

∑
i∈I

(qi + q−1
i ) + eβ

∑
i∈I

(Tn(i)C+Bpi + T s(i)C+Bp−1
i ).

It remains to calculate the leading order term of the orbifold disk part Wb
orb of the superpotential.

By analyzing the area of each Maslov index 2 tautological curve ν : (Σ, ∂Σ) → (M,K), considered
as a curve with boundary on L′, with Σ having ≤ k − 1 connected components, we see that the
area of its homology class ν∗[Σ, ∂Σ] ∈ H2(M,L′) is:

(1) at least C + a if its projection to the first factor in M = S2 × S2(2a) does not pass through
either pole; and

(2) at least B + C if its projection to the second factor does not pass through either pole.

Furthermore, in the first case the minimal area C + a is achieved when Σ has k − 1 connected
components, k − 2 disks and one curve with two boundary components, and ν is constant on
each disk component. Indeed, if in the first case Σ has at most k − 2 connected components, then
the area of ν will be at least 2C + a: its projection to the first factor covers at least two annuli
contributing at least 2C to the area, and by Lemma 28 its projection to the second factor must
pass through a pole, contributing at least a to the area. Now on the curve with two boundary
components, ν coincides with the curves analyzed in [MS21, Section 3.3], whereby it contributes
to the leading order term of Wb

orb only if the curve is an annulus.
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By choosing translation-invariant trivializations of the tangent bundles of Ki suitably,4 and
selecting βorb ∈ Λ+ so that

β2
orb

2
TC+a = TB, (14)

Wb
orb is now given by

Wb
orb = TB

∑
i∈I\{k−1}

εi · p−1
i+1pi(qi+1 + q−1

i ) + o(TB)

for signs εi ∈ {±1}, where o(TB) denotes higher-order terms of valuations strictly greater than B.
The superpotential of interest is

Wb = Wb
smooth +Wb

orb.

Note that
Wb

smooth = T a
∑
i∈I

(qi + q−1
i ) + TB(pk−1 + p−1

0 ) + o(TB)

since eβ = 1 + o(1) ∈ 1 + Λ+ and, hence,

Wb = T a
∑
i∈I

(qi + q−1
i ) + TB

(
pk−1 + p−1

0 +
∑

i∈I\{k−1}
εi · p−1

i+1pi(qi+1 + q−1
i )

)
+ o(TB).

Lemma 29. For each β ∈ Λ+ ∪ {0} the superpotential Wb has critical points.

Proof of Lemma 29. We start by finding solutions to the leading order term of the equation
dWb = 0.

We first consider derivatives in qi:

∂qiW
b = T a(1 − q−2

i ) + o(T a), (15)

where the higher-order terms start with valuation at least B. Hence, the solutions to the leading
order of this equation are qi ∈ {±1}. Let us choose qi = 1 for all 0 ≤ i < k.

Now we proceed to consider the derivatives in the pi, for 0 < i < k − 1:

∂piW
b = 2TB(−εi−1p

−2
i pi−1 + εip

−1
i+1) + o(TB), (16)

for i = 0
∂p0W

b = TB(2ε0p−1
1 − p−2

0 ) + o(TB) (17)

and for i = k − 1
∂pk−1

Wb = TB(−2εk−2p
−2
k−1pk−2 + 1) + o(TB). (18)

The solutions to the leading order equations are, hence, pi ∈ C satisfying

p−1
i−1p

2
i p

−1
i+1 = σi, 0 < i < k − 1, (19)

p2
0p

−1
1 = σ0, p−1

k−2p
2
k−1 = σk−1

for certain numbers σi ∈ R \ {0}. Let us search for solutions pi ∈ C \ {0} of the form pi = exp(Pi),
for Pi ∈ C. Choosing Ci such that σi = exp(Ci), we obtain that it is enough to find Pi ∈ C such

4 We trivialize the tangent bundle of Li where i is even and of Si where i is odd along the S1-action on S2, and
that of Li where i is odd and of Si where i is even along the inverse S1-action. See [Cho04, MS21] for further
details on trivializations and orientations.
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that for P = (P0, . . . , Pk−1), C = (C0, . . . , Ck−1)

AP = C,

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
0
...

...
0

0 . . . 0 −1 2 −1
0 . . . 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the standard Ak Cartan matrix. Since this is a Toeplitz tridiagonal matrix, its eigenvalues are
known to be

2
(

1 + cos
(

jπ

k + 1

))
, 1 ≤ j ≤ k.

In particular, it is invertible. Hence pi = ξi := exp(Pi) for P = A−1C is a solution to the lowest
order term of the critical point equation.

In summary, qi = 1, pi = ξi are solutions to the leading order term of dWb = 0. As in [MS21],
following [FOOO11], we proceed to a solution to the full equation dWb = 0, for b corresponding
to β, inductively in the T -adic valuation. Rewrite the equation dWb = 0 in the form

q2i = 1 + Fq,i,

p−1
i−1p

2
i p

−1
i+1 = σi + Fp,i, 0 < i < k − 1,

p2
0p

−1
1 = σ0 + Fp,0,

p−1
k−2p

2
k−1 = σk−1 + Fp,k−1,

where Fp,i, Fq,i = o(1) are the higher-order terms. Since qi = 1, pi = ξi are solutions to the
zero order term of this equation, we search for solutions to the full equation in the form
qi = exp(Qi), pi = ξi exp(Pi) for Qi, Pi of positive valuation.5 Observe that the matrix 2 id⊕A,
where 2 id corresponds to the derivative of the left-hand side of the equation in the qi variables
and A corresponds to that in the pi variables, is invertible. Hence, proceeding order by order in
Qi, Pi we obtain the existence of genuine solutions.

Note that as β is an element in Λ+ ∪ {0}, it is gapped with respect to a discrete submonoid
Gβ ⊂ R≥0.

To make the iterative method work, we look at gapped elements of Λ0 with exponents in a
suitable discrete submonoid G ⊂ R≥0. Specifically, we start with the monoid G0 = G(Lk,B, ω, J)
generated by areas of (orbifold) holomorphic disks with boundary on Lk,B. By means of the tau-
tological correspondence it is contained in the submonoid G(M,Lk,B) generated by a,B,C. Now
let G1 be the submonoid generated by G0, Gβ and (B − C − a)/2 coming from (14). Consider
the subsets Ga

1 = {g ∈ G1 | g > a}, GB
1 = {g ∈ G1 | g > B}. We have Ga

1 − a,GB
1 −B ⊂ R>0. The

gapped submonoid G that we work with is that generated by Ga
1 − a and GB

1 −B. Indeed the
exponents of the coefficients of all Fq,i, Fp,i will be contained in it: the coefficients of Fq,i are
contained in Ga

1 − a by (15), and the coefficients of Fp,i are contained in GB
1 −B by (16), (17),

5 Note that for R = R0 + R+ ∈ Λ0 of valuation 0, where R0 ∈ C, R+ ∈ Λ+, exp(R) = exp(R0) · exp(R+) by
definition.
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and (18). Since it is gapped we may enumerate its elements as g0 = 0 < g1 < g2 < · · · , and work
inductively assuming a solution modulo T gj and seeking a solution modulo T gj+1 . �

Remark 30. In principle, the choice β = 0 is sufficient for our purposes. However, different choices
of β might lead to different spectral invariants. It would be interesting to explore this dependence
further.

Proof of Theorem O. It is a direct consequence of Theorem N and Lemma 29. �

7. Further directions

7.1 Other configurations
Consider a finite collection C := {Li}, i = 1, . . . , k of pairwise disjoint embedded circles in S2.
Each such collection defines a graph ΓC whose vertices are the connected components of S2 \ L
with L =

⊔
Lj , and a pair of components are joined by an edge if they have a common boundary

circle. Note that ΓC is a tree. In addition, the tree is vertex-weighted: the weight of a vertex is the
area of the corresponding component. We denote the weighting by wC . An elementary inductive
argument shows that the pair (ΓC , wC) determines C up to a Hamiltonian isotopy.

For given collection C, take a > 0, and denote by L the image of
∏

(Li × S1
eq) in the kth

symmetric product of S2 × S2(2a).

Question 31. For which vertex-weighted tree (ΓC , wC) can one define non-trivial Lagrangian
estimators coming from the Lagrangian orbifold Floer homology of L, with an appropriate choice
of a > 0?

An obvious necessary condition for non-vanishing of the Floer homology is that for every
Hamiltonian diffeomorphism φ ∈ Ham(S2), the symmetric product of

φ× id ∈ Ham(S2 × S2(2a))

does not displace L. This is equivalent to the following matching property : for every φ ∈ Ham(S2)
there exists a permutation σ such that

φ(Li) ∩ Lσ(i) �= ∅ ∀i ∈ {1, . . . , d}.

It would be interesting (and seems to be not totally trivial) to describe this matching property
in terms of the vertex-weighted tree (ΓC , wC).

Note that in the present paper we dealt with the case of a linear graph with the weight
w(v) = B if the vertex v has degree 1, and w(v) = C if the degree of v is 2. One readily checks
that the inequality B > C is equivalent to the matching property.

In addition, it would be interesting to explore the analogue of Question 31 on higher genus
surfaces.

It is an intriguing and completely open question whether the methods of the present paper are
applicable to Lagrangian configurations on more general symplectic manifolds. Symplectic toric
manifolds provide a promising playground, in which case the simplest Lagrangian configuration
is provided by (a suitable modification of) the collection of Bohr–Sommerfeld toric fibers.

Finally, we expect that generalizations of the quantitative methods used in this paper to
more complex configurations of Lagrangians would yield further results on quantitative symplec-
tic topology, including the Hofer metric and questions of C0 symplectic topology. We hope to
investigate them in a sequel.

2516

https://doi.org/10.1112/S0010437X23007455 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007455


Lagrangian configurations and Hamiltonian maps

7.2 Next destination: asymptotic cone of Ham(S2)
Flats in Ham(S2) described in Theorem A give rise to infinite-dimensional abelian subgroups in
the asymptotic cone (in the sense of Gromov [Gro07, 3.29]) of Ham(S2). Recall [CZ11] that the
latter is a group equipped with a bi-invariant metric which, roughly speaking, reflects the large-
scale geometry of (Ham(S2), dHofer). For closed surfaces of genus ≥ 2, the asymptotic cone of the
group of Hamiltonian diffeomorphisms contains a free group with two generators [AKK+19,
Cho22]. The construction is based on a chaotic dynamical system called the eggbeater map
(see [PS16] for symplectic aspects of this map). For the torus and the sphere, existence of a
free non-abelian subgroup in the asymptotic cone is still unknown. Furthermore, while there is a
hope that a suitable modification of eggbeaters could work in the case of torus, in the case of the
sphere egg-beaters fail to induce a non-abelian subgroup in the asymptotic cone (an observation
of Michael Khanevsky). It would be interesting to explore the algebraic and geometric structure
of the asymptotic cone of Ham(S2). As a first step, it would be natural to explore asymptotic
growth (in the sense of Hofer’s metric) of subgroups generated by a finite number of pairwise
‘highly non-commuting’ flats.

7.3 Comparison with periodic Floer Homology?
Instead of pulling back spectral estimators c0k,B on S2 from S2 × S2(2a) (see Theorem I), we
could have run our construction omitting the factor S2(2a). In other words, we could have worked
directly with orbifold Lagrangian spectral invariants on the symmetric products on S2. In this
way, the spectral estimators become well-defined when B = C = 1/(k + 1), which is the limiting
case for the assumptions of Theorem I. Interestingly enough, in this limiting case for certain
radially symmetric Hamiltonians, our invariants agree with the ones constructed in [CHS21] by
means of periodic Floer homology. It would be interesting to find a conceptual explanation of
this coincidence.
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