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FACTORIZATIONS OF OUTER FUNCTIONS AND EXTREMAL
PROBLEMS

by TAKAHIKO NAKAZI*
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The author has proved that an outer function in the Hardy space H' can be factored into a product in which
one factor is strongly outer and the other is the sum of two inner functions. In an endeavor to understand
better the latter factor, we introduce a class of functions containing sums of inner functions as a special case.
Using it, we describe the solutions of extremal problems in the Hardy spaces H? for 1 £p<oco.
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1. Introduction

N, N, and H? for 1 £p< oo denote the Nevanlinna class, the Smirnov class and the
Hardy space, respectively on the open unit disc U in the complex plane. A function 4 in
N, is called outer if it is not divisible in N, by a non-constant inner function. A
function g in H' is called strongly outer if the only functions f in H! such that f/g is
non-negative are scalar multiples of g. If g is not outer and so g=gh for some inner g,
then f=(1+¢)%h belongs to H' and f/g=(1+4q)*/q is non-negative. A norm one
function in H! is outer if and only if it is an extreme point of the unit ball of H'[2]. On
the other hand, a norm one function in H! is strongly outer if and only if it is an
exposed point of the unit ball of H' (cf. [2, 12]. Like outer functions, strongly outer
functions appear in many important areas, for example, function theory, operator theory
and prediction theory.

It is not difficult to give a characterization of a strongly outer function similar to the
above definition of an outer function. If g is divisible in H' by a sum of two inner
functions q,, q, where g, +4g, is not constant and Img,q, <0 almost everywhere, then
S =—ig,—q,)g/(q, +q;) is not a scalar multiple of g and f/g is non-negative because
—i(q, —9,)/(q, +q2) 20 almost everywhere. Thus g is not strongly outer. The converse is
also true by the following factorization theorem [12].

Theorem. If an outer function h in H' is not strongly outer, then h=(q, +q,)g where
both q, and q, are inner, Img,q, <0 almost everywhere, (¢, —q,)~ " is summable and g is
strongly outer. If q, is a finite Blaschke product of degree n then so is q,.
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The aim of this paper is to gain a better understanding of this theorem and of the
sum of two inner functions. The sum of two inner functions appeared in H. Helson’s
papers [7] and [8]. D. Sarason [15] examined cases in which the sum of two non-
constant inner functions is outer. In this paper, we introduce functions in H? which
have the form; k=s+ g5 where s is in L? and q is inner. If s=1, then k=1+gq. If s=¢,
and g=gq,q, where q, and g, are inner, then k=q,+q,. If f is the square of H?
function s+ g5, then put g, =the inner part of f+iq and q,=the inner part of f—igq.
Then Img,q,<0, q,+q, is non-constant and f is divisible in H! by g, +q,. By the
remark above the Theorem, f is not strongly outer. The following factorization theorem
can be proved easily by a theorem of E. Hayashi ([5, 6]).

Theorem. If an outer function h in H' is not strongly outer, then h=(s+ q8)*g where q
is a non-constant inner function, s+ qs is in H* and g is strongly outer.

Proof. Suppose h=k? and k is outer in H. By a theorem of E. Hayashi ([4, 5)),
H? n(k/k)H? =g(H* © zqH?)

and k/k=gg,/g, where q is inner and g3 is strongly outer. Hence k=Ig, where
le H* © qzH? and §/*20. Put s=1/2, then I=s+¢5 and h=1%g3.

In this theorem, we should like to be able to choose s+¢g§=gq,; +¢, for some inner
functions ¢, and ¢,. Unfortunately we could not do except in some special cases [12].
Note that by an example of J. Inoue [9], we cannot choose s+4g5=1+q.

2. Bad parts of outer functions

In this section we study a function in H? which has the form s+ g5 where s is in L2
and g is an inner function. If []}-, (q9;+4j) where g; and g; are inner functions for
1<j<n, then []’., (9;+4;)=s+45 for g=[]7-, q;9). Two natural questions are the
following: (1) When is s+ 45 an outer function? (2) When can s+ 45 be divisible in H? by
1+4 where q' denotes some nonconstant inner function? The question (1) is related
with a paper of D. Sarason [15]. He studied it when s+¢5 is a sum of two inner
functions. The question (2) is related with a paper of J. Inoue [9]. By the second
theorem in the Introduction, Inoue’s result is the following: There exists an outer
function f in H? which is not divisible in H? by any nonconstant 1+¢ but is divisible
in H? by some nonconstant s+¢s, where q and ¢’ are inner functions. Because of the
first theorem in the Introduction, we are also interested in nonconstant outer function
q, +4g, such that both ¢, and g, are inner functions, Img,q, <0 almost everywhere and
(g9, —g,) ! is summable.

Proposition 1. Suppose s is a nonnegative function in N, and s~ ' is summable. If
i—s=gq,l where q, is an inner function and | is an outer function, then q,=(i+s/i—s)q, is
an inner function, q,+q, is an outer function, Img,q,<0 almost everywhere and
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(91 —q,) ™! is summable. If s is a rational function, then both q, and q, are finite Blaschke
products of the same degree.

Proof. Since |g,| =1 ae. on 0U and q,=(i+s)/l, q, is inner. Since gq,+q,=2il,
g, +4, is outer. By a simple calculation,

—Imgq, _ —i(q,— Qz)_s>0 ae.

|‘11+‘12|2 q:+4;

and so Im§,q,<0 ae. on 9U. Since (q,—q,) '=(i—s)/(—2s) and s~! is summable,
(9, —4q,) ! is summable. If s is a rational function, by [7] the number of zeros of s—i
and that of s+i are equal. Hence ¢, and g, are finite Blaschke products of the same
degree.

In Proposition 1, if s= —z/(1—z)?, then g, and g, have degree one. However even if
g, and g, have degree one and q, + ¢, is outer, Img,q, is not necessarily non-negative.
In fact, suppose |a| <1 and |p|=1. Then, pz+p(z—a/l—az) is outer if and only if
|Rep| s |a| [15]. However Imz(z—a/1 —az) is not non-negative on dU.

Proposition 2. Suppose s+qs is in H?, where q is an inner function and s is in L2
Then s+q5 is an outer function if and only if there exists a function t in L? such that
s+(t—qt) is an outer function.

Proof. If I=s+(t—qt) is outer, then s+g5=1+qgle H* and gle H>. Hence ql=q,! for
some inner function g,. Then s+g§=I1+q(})=K1+qg,) and hence s+g§ is outer.
Conversely if s+g5=2l is outer, then gl=! and hence s+¢5=1+gl. Let k=I—s, then
k+qk=0 and so k=t—qt, where t=k/2. Thus I=s+(t—gt) is outer.

Corollary 1. Suppose s+qs is in H?, where q is an inner function and s is in L% If s
and q satisfy one of the following (1) ~ (3), then s+ g5 is an outer function.

(1) s is an outer function.

(2) q=4,q, and s=q.h where q, and q, are inner functions, h is an outer function and
q>,h=ah for some complex number a.

(3) =919, and s =q,h where {q;};-, , 3 are inner functions, h is an outer function,
g,h=qsh, and q, +q5 is an outer function.

Proof. (1) is clear by Proposition 2 and (2) is a special case of (3). For (3), let
t=(q5—q,)h/4, then

qt=249(q3:h— 3, k) =g,h—q:h) =Hq, —q3)h

because q,h=q;h. Hence t—qt=(q;—q,)h/4 and so s+(t—qt) (g3+49.)h/2. This
implies (3) because q, + g5 is outer.

https://doi.org/10.1017/50013091500023282 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500023282

538 TAKAHIKO NAKAZI

Proposition 3. Suppose q, is an inner function and s+ qs is a non-zero function in H?,
where q is an inner function and s is in L%. Then s+ g5 is divisible in H*> by 1+q, if and
only if there exists a function t in L? such that q{s+(t—qt)}=q,{s+(t—qt)}. In
particular, if gs=q,s then s+ qs is divisible by 1+¢,.

Proof. If there exists a function ¢ in L? such that ¢{5+(¢—qt)} =q,{s+(¢—qt)}, then
s+qS§=s+t—qt+q(S+t—qt)=s+t—qt+q,(s+t—qt)=(s+t—qt)(1+q,) and hence s+
qs is divisible in H? by 1+ q,. Conversely if I=(s+¢5)/(1 +q,) is in H?, then

and hence ql=q,l. If k=[—s, then k=t—qt for some teL? and hence =5+ (t—qt).
This implies that g{5+(t—gt)} =q,{s+(t—qt)}.

Corollary 2. Suppose s+qs is in H?, where q is an inner function and s is in L2,

(1) If s is an outer function and gS#as for any a in C with |a| =1, then there exists a
non-constant inner function q, such that s+ g5 is divisible in H*> by 1+¢,.

(2) If h is an outer function, gh=q,q3h and s=q,h where q, and q, are inner functions,
then s+ g5 is divisible in H® by 1+4,.

(3) If q is a finite Blaschke product, then there exists a non-constant finite Blaschke
product q, such that s+ q5 is divisible in H? by 1+q,, or s+ g5 is not an outer function.

Proof. (1) Since s is outer, g5=gq,s for some inner function gq,. By the hypothesis, g,
is non-constant and hence Proposition 3 implies (1).
(2) g§=4q,9,h=¢q,s implies (2) by Proposition 3.
(3) Since G(s+g5)*=0 ae. on AU and ¢ is a finite Blaschke product, (s+g5)°=
[Ti=1 (z—a;)(1 —a;2)I%, where |a;| S1(1<j<n) and [ is outer in H*([2, 11]). Therefore if
5+ g5 is outer, then s+¢5=[[=; (—a;)"/*(z—a;)! and |a;| =1. Thus s+¢5 is divisible in
H? by z—a;.

When ¢, and q, are inner functions, we write q,<gq, if there exists a nonzero function
f in H! such that g,q,=f /| f | If both ¢, and q, are finite Blaschke product, then
q,=<q, is equivalent to (degree of q,) <(degree of q,). For each g in H', sing g denotes
the set of the unit circle on which g cannot be analytically extended.

Proposition 4. If g, and q, are inner functions and the inner part of q,+4q, is q, then
q<q, and g4<q,.

Proof. Let q,+q,=gh, then |gq, —h|=|dq.—h| =1. By a theorem of P. Koosis (cf.
[4, Chapter 4, Lemma 5.4]), g<gq, and ¢<gq;.
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Corollary 3. Suppose q, and q, are inner functions and q, + q,=qh where q is an inner
function and h is an outer function.
(1) If q, is a finite Blaschke product, then q is also a finite Blaschke product and (degree of
q) <(degree of q,).
(2) If (sing q,) N (sing q,) is empty, then q is a finite Blaschke product.
(3) Suppose q, =exp(—(a+z)/(a—2z)) and q, = —aexp(—(b+2)/(b—z)), where |a| = |b| =
1, b=—a and |a| =1. If a=1, then q=z or q is constant. If a#1, then q is always
constant, that is, q, +q, is an outer function.

Proof. (1) By Proposition 4, gq,=f/|f| for some function feH' and hence
d.(qf)=0 ae. on JU. If q, is a finite Blaschke product of degree m, qf =
[15-1 (z—a;)(1—a;2)! and n<m where |a;| £1(1<j<n) and ! is strongly outer. Hence g
is a finite Blaschke product of degree k and k<n.

(2) By Proposition 4, 4, = f/| f I for some function f € H! and hence gq, =g/g for some
outer function ge H2. Therefore §,qg=¢ and so qge H> © q,zH?. Hence sing q, 2sing
qg and by [10, Lemma 4], sing q,=2sing q. Similarly sing q,2sing q and by the
hypothesis ¢ is a finite Blaschke product.

(3) By (2), q is a finite Blaschke product. If g(x}=0 for some point xeU, then
exp(—(a+x)/(a~x))=aexp(—(b+ x)/(b—x)) and hence

_atx_ —b—+—x+ip and p=t+2nn
a-—x b—x

where n is some integer and a=e". If p=0 then g=z because a#b. Suppose p+#0. Then

xz—{<1 — zi)b-!—(l +g>a}x+ab=0.
p p

If A and B are the solutions of the above quadratic equation, then AB=ab= —1 and

A+B=<l+é)a— 1+=Ja.
p ( P)

This implies | A| = | B| =1 and contradicts | x| <1.

(1) of Corollary 3 was proved by D. Sarason [15, Proposition 3]. Our proof is
different from his.

3. Projection

For each inner function g, we define two operators on L?
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5+4s s—qgs§

L(s)= 5

and Li(s)=

If g=1, then L(s) is the real part of s and L(s) is the imaginary part of s. In general,
|Lys)| <|s| and |L(s)| <|s|. Hence L, and L, are contractive. L, and L, commute
with multiplication operators by real valued functions in L®. Moreover on L2, we have
L,L,=L,and L,L;=0 and L,+ L, is the identity operator. By results of the last section,
we are interested in a function s such that L (s) belongs to HZ. Since g=(1+¢)?/|1+4|?
we define ¢'>=(1+g)/|1+gq|. Put

64 ,= {ge H* %c} is a real valued function}.

Theorem 5. Let g be a non-constant inner function. Then
{seL* L(s)e H*} =/ ,+iq'?L},

where L:={seL? s is a real valued function}. In particular, if s+q5 belongs to H* for
some s in L2, then s+qS=t+qt for some t in H>.

Proof. If ges/, then u=g/(1+q) is real and g=u(1+gq). Hence gg¢=g and so
L(g)=geH? If s=iq'?u and ue L} then L s)=0. This implies that {se L2: L (s)e H*}
2.4,+iq"?L%. Conversely, suppose g=L(s)eH? If g=0, then s=—g5 and s’=
—q|s|? Hence (ig'/*s)* = —gs*= |s| 220 and so ig'/%s= —u is real. Thus s=iq"/?u and

ueL} If g#0, s+¢q5=2g and
-

Put t=s/g—1, then t+t=0 and so t=iv for some vel: Hence s=g+ivg and
vg =q"'%u, where u=v3"?g is in L%. Thus s=g+iq'/>u. This completes the proof of the
theorem.

o |w
SRR

Corollary 4. Let q be a non-constant inner function. Then
{seH%: L(s)eH*} = +id

and hence H* © qzH?> =54 ;+is . L, is the projection from H*> © qzH? onto o, and has
kernel is/ .

Proof. If geo/,, then g=v(1+¢q) for some real valued function v and so g=q"%u
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where u=v|1+q|. Hence & ,=q"?L} and (¢"°L}) n H*=/,. Now Theorem 5 implies
the corollary.

The proof of Theorem 5 is related to that of [14, Theorem 3]. The equality in
Corollary 4, that is, H © qzH* =/ ,+io/ , is known by [12, (1) of Theorem 3].

Corollary 5. Let g be an inner function.

(1) If g=2", then o ,={3 - bjz: b;=b,_}.
2 Ifg= H, (= a,/|a, (z a,/l—a,z) andz, , (1= |ay|)< o0, then

© B+ BI © C 2
ﬂq={zc czB. § l¢] }

j=o 1—az ;= 0(1—|a1|)2(1+|a1|)

where B;=[liz1 (—a/|a;|) z—ay1—az), B;=[12;(—aj|a;|)(z—a/1-a;z), a,=0,
B,=1 and By=q.

Proof. (1) If se H* © qzH?, then s=)"_, a;z’ and hence s+¢5=)7-, (a;+a,_;)z’.

Now corollary 4 implies (1).
(2) If se H* © qzH?, then by [1]

s=Y, ci(l+|a;|)'?Bi(1-az)~'(1—|a;])

i=0

and Y 2, |c;|?<oco0. Hence

s+g5=Y (CJI_j +5:1‘_1_5].2>(1+|aj|)”2(1_|“1|)
J

> (¢;B;+¢zB,
y (L:g%u)(l+|aj|)‘/2(l—|aj|).

j=0
Now Corollary 4 implies (2).

A theorem of P. R. Ahern and D. N. Clark [1, Theorem 3.1], lets one describe </, for
arbitrary inner function gq.

4. Extremal problems

Let 1Sg<oo and 1/p+1/i=1. If ¢€eL', we denote by T the continuous functional
defined on the Hardy space H” by
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TY) = § S)He¥0)n

A function f in H®, which satisfies T5(f)= || T5|| and || f||,=1, is called an extremal
function. A function ¢ in L' is called an extremal kernel when ||¢|,=|| T%|. The
existence and uniqueness of extremal functions and extremal kernels is known for
1<p=< oo (cf. [3, Theorem 8.1]). For p=1, the situation is very different. An extremal
function may not exist, the dual extremal kernel always exists and is unique if an
extremal function exists (cf. [3, Theorem 8.1]). For p=1, the set S, of all extremal
functions is defined by

S,={feH" Ty f)=||Ty|| and | f| =1}

S, has been described in general by E. Hayashi [5, 6]. In this section, we describe S,
completely in ways different from that of E. Hayashi. Moreover using the result we
describe extremal kernels and extremal functions for 1 <p < co.

Theorem 6. Suppose p=1 and S, is nonempty. Then there exist an inner function q
and a strong outer function g which satisfy the following (1) ~(4).
(1) The unique extremal kernel of Ty is G |g| /8.
(2) f is a member of S, if and only if

_ s+45)\>
f Y‘]o(l +qo) g

where y is a positive constant, || flli=1, qo is an inner function, s is in H* © qzH* and
(s +g5)/(1 + q,) is an outer function in H>.
(3) f is a member of S, if and only if

S =740t +q901)g,

where y is a positive constant, || f || =1, qo is an inner function, t is in H> © qzH? and
t+qqot is an outer function in H?> © qzH?.
(4) f is a member of S, if and only if

f=v{(s+a5)* +(t+q1)}s,
where y is a positive constant, || f|| =1, and s and t are in H* © qzH>.

Proof. (1) is known from [5].
(2) If f=7q0(s +45/1+4q0)’g, then
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LA g L1 +d0l? [s+as]” |g]_ I_I

10 4q) 5+99)7 g

and hence feS, Conversely, if feS, and f=qoh?, where g, is inner and h is outer,
then y,(1+4o)*h*€ S, for some positive constant y,. Since (1+go)h is outer in H?, by a
theorem of E. Hayashi ([5, 6]),

H? n qo(h/h)H? = go(H* © qzH?)
and qo(h/h)=34o/qo, Where q is inner and g=g3, is strongly outer. Hence (14 qo)h= kg,
where ke H* © gzH? and gk*20. Since ke, by Corollary 4, k=s+45 for some
function se H2© qzH2 Now gqoh belongs to go(H? © qzH?) because qoh=gqq(k/h)h.
Therefore goh/g, belongs to H>© qzH? and hence h/go=(s+¢5)/(1+q,) belongs to
N, n L?=H?2. This implies (2).
(3) Put (s+g5)/(1 +gg)=! in (2); then

Hence I =qq,! and so I =t+qq,t, where t=1/2 € H?. This implies (3).

(4) By (2), the ‘if part is clear. Conversely if feS, then by (2) f= gok’g, where
k=y"*(s+g5)/(1+go). Since gqok?= | k|% gk=gok and hence ke H* © qzH?. By Coroll-
ary 4, k=I4+im for some functions I, me </, and hence q,k=I—im for some inner
function q,. Thus q,k>=1>+m? and hence (quk2= | k|2. Therefore g, =g,. Corollary 4
implies (4) because f =y{I*+m?}g.

If (s+¢5)/(1+4q,) belongs to H? then go<q and (s+¢5)/(1+q,) belongs to H>©
qzH?. In fact, if I=(s+¢5)/(1+q,), then by the proof of (3) of Theorem 6, gl=qol.
Hence | belongs to H>©gqzH? and g,<gq because goq=1I*/|1|%. Theorem 7 and
Theorem 1 in [13] describe extremal kernels and extremal functions in case 1 <p<o0.

Theorem 7. Suppose 1 <p<oo and 1/p+1/l=1. Then ¢ is the unique extremal kernel

and f is the unique extremal function of T4 if and only if there exist an inner function q
and a strong outer function g which satisfy the following:

- P s+qs
I73lal] ($55)
_ o (s+a5\" ),

f—qo(qu) g’

where qq is an inner function, || f || ,=1, ||®||:= || T3||, s€ H*> © qzH? and (s+ g3)/(1 + o)
is an outer function in H?.

and
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Proof. If ¢ is the unique extremal kernel and f is the unique extremal function of
T#%, then by [13, Theorem 1]

¢=doh, f = || Ty|| ~""Qh""

| T || ~'QH' €S4er do=0|h|'h7",

and

where h is outer with |¢| =|h| and Q is the inner part of f. By Theorem 6,

L =ty pl s+g5\?
| 5| Qh—qo<1+qo)g,

where g and g, are inner, g is strongly outer, ||g,(s+45/1+4q0)%¢|| =1, se H> © qzH>
and (s+¢5)/(1+4q,) is outer in H? Hence Q=gqo, h=| TL|| (s+45/1+40)*'g"" and
do=3qo(| k| '/H)=d(|2|/2)-
Thus
- s+g5\"
s=alelyry ) (LE) g
g +40
and

ATl e, pie e g (SFEENT i
f ||T¢|| qoh 40<1+q0> g

Theorem 6 is a generalization of [11, Theorem 2]. Theorem 7 is a generalization of
{13, Theorem 2]. But the descriptions are different from the previous ones. In those
descriptions, the bad part qo(s+q5/1 +qo)*/* is important. If f is an inner function, then
it is clear that || f+zH'|| =] f| for 1SISc0. If f=gqo(s+g5/1+go)*", then, by
Theorem 8, || f +zH'|| = | f||; for 1<I<o00. Theorem 8 also shows [13, Corollary 3].
To prove Theorem 8 we need the following lemma.

Lemma. Suppose 1<I<co0 and f=qh is in H', where q is an inner function and h is
an outer function. Then || f+zH'||=|f || if and only if gh*~"/|h|*~" is an inner
function.

Proof. For [#1 the lemma is known [13, Corollary 2]. Suppose I=1. By [3, p. 133],
if || f+zH"|| = || f]| 1> then there exists an extremal function Qe H* and |Q| =1 a.e. on
{6; f(e®)#0} and Qf =0 ae. on oU. Hence Q is inner and so f/|f| is inner. The
converse is clear.

Theorem 8. Suppose 1 <1< 0 and f is a nonzero function in H'.

() || f +2A?|| = || f || for an arbitrary function f in H.
(2) For 2<l<oo, || f+2H'|| = || f || if and only if
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f=q s+gs\¥ 2
1+Q ’
where q and Q are inner functions with 0<gq.
(3) For 1<1<2, || f+ZH|| = || f ||, if and only if

_(s+Q5\27!

where q and Q are inner functions with 9<Q. _
(4) Suppose 1=00 and Sj is nonempty. Then ||f+z'H°°|| = ||f||w if and only if f is an
inner function.

Proof. (1) is clear because f is orthogonal to ZH?2. Suppose f=gh where g is inner
and h is outer.
(@ If || f+zH'||=|| f||;» then by Lemma gh>~/|h|?>"'=Q is inner. Hence qgQK' 2=
|K~2|.If 1<t<i/l—2, then h'~2e H" and so h'~2e H'. Now Theorem 6 implies that

Qh'~2=Q (s+qu) and 0<q.

Hence h=(s+g5/1+Q)*'"? and so f=gq(s+q5/1+Q)*' 2. Conversely if f=
g(s+g5/1+Q)*'~2, then h=(s+45/1+Q)*"~ 2 and hence

B2 a(s+qs)2 [1+Q]%
|h|' 2 T(1+0)? |s+qs|2

=Q.

The lemma implies || f +zH'|| =
(3) If |jf+zH'|| =|| f||» then by the lemma gh*~Y/|h|*~'=Q is inner. Hence Qgh*~'=
and h*~'e H! because h'e H! and I>2—1>0. Again by Theorem 6

S\ 2
gh?*~'=gq (%-%) and g<0.

Hence h=(s+Q5/1+q)**™' and so f=q(s+0Q5/1+¢** . Conversely if f=
q(s+Qs/1+q)**~, then

2 .(s+Qs)2 [1+4] _

|h|’ L (1+q)2 |s+0s|? =0

The lemma implies || f +zA'|| = || .
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(4) If S is nonempty and || f +ZH®|| = || f || then f is inner by Theorem 6.
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