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Abstract

In this paper, we prove that for a transcendental meromorphic function f (z) on the complex plane, the
inequality T(r, f) < 6N(r, 1/(f2f ® — 1)) + S(r, f ) holds, where  is a positive integer. Moreover, we
prove the following normality criterion: Let .# be a family of meromorphic functions on a domain D and
let k be a positive integer. If for each f € &, all zeros of f are of multiplicity at least k, and f 2f ) # |
for z € D, then & is normal in the domain D. At the same time we also show that the condition on
multiple zeros of f in the normality criterion is necessary.
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1. Introduction

In 1979 Mues [1] proved that for a transcendental meromorphic function f (z) in
the open plane, f%f’ — 1 has infinitely many zeros. This is a qualitative result.
Later, Zhang [2] obtained a quantitative result, proving that the inequality T'(r, f) <
6N (r, 1/(f2f' — 1)) + S(r, f ) holds. Naturally, we ask whether the above inequality
is still true when N (r, 1/(f*f’ — 1)) is replaced by N(r, 1/(f*f® — 1)). In this
paper, we solve this problem and obtain

THEOREM 1. Let f (z) be a transcendental function in the complex plane and let k
be a positive integer. Then

1
T(r,f) < 6N (r, f_ziT‘)—-—_l—) + S(r,f).
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From Theorem 1, we have at once:

COROLLARY. Let f (z) be a transcendental meromorphic function and let k be a
positive integer. Then f*f ® — 1 assumes every non-zero finite value infinitely often.

Using Mues’ result, Pang [2] proved:

THEOREM A ([2)). Let Z be a family of meromorphic function on a domain D. If
each f € F satisfies f*f' # 1, then Z is normal on domain D.

Now, utilizing Theorem 1 we also can obtain the following theorem:

THEOREM 2. Let F be a family of meromorphic functions on a domain D and let
k be a positive integer. If for each f € F, f has only zeros of multiplicity at least k
and f*f ® #£ 1, then F is normal on domain D.

The following example shows that the condition on multiple zeros of f in Theorem 2
is necessary.

EXAMPLE. Let k > 2 be a positive integer and & = {nz*"!' : n = 1,2,...}. So,
each f € & satisfies f2f ' # 1. But & is not normal at the origin.

2. Some lemmas

LEMMA 1. Let f (z) be a transcendental function. Then f2f ® is not identically
constant.

PROOF. Suppose that f2f ® = C. Obviously, C # 0. So f # Oand 1/f® =
C'f®/f . Hence we obtain

(k)

1
3T(r,f)=m (r, f_3) + 0(1l) = 0(1) {m (r, [}—-—) + 1] = S(r,f).
This contradicts the assumption that f (z) is a transcendental function. O

LEMMA 2. Let f (z) be a transcendental meromorphic function, g(z) = f2f ® — 1
and h(z) = g'/f = ff**D 4 2f'f X, Then

QD) 3T(.f) < NG f)+2N (r, %) N (r, é) N (r, %) S0 1)
(2.2) (IN(r.f)— /V(r,f)]'f'M(r,f) + 2m (r, %—) + N (r, %)

< N(r, —l-) + S(r, f).
8
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PROOF. By Lemma 1, we know g # C and h # 0. Set

1 _fUY g
£33 frgr
SO
3m(rf)<m( )+S(rf)<N( g)—N(r,—,)-i-S(r,f)
=17(r,g)+N<r,l)—N(r,l/>+S(r,f)
4 8
=N(r,g)+N(r,£-)—N(r,f1h>+S(r,f)
—_ 1 1 1
=N(r,g)+N(r,—)—~N(r,}-> (r E)-i-S(r,f)
Hence

3T(r,f)=3m (r, fl) + 3N (r, }1—) + O()

< N(r,f)+2N (r, i) +N (r, 1) —N (r, l) + 8(r, f).
f g h

Thus the inequality (2.1) is proved. Since

376 = m )+ NG ) +2m (17 ) + 28 (1) + 000,
the inequality (2.2) can be obtained. |

LEMMA 3. Let f (2), g(2), h(z) (k = 2) be as stated above and let

2 __ _ _
o = 20+ ) — 3k + T)(k* — 4k 29)’ ay =2(k + 2)(k + 3)(k + 5),
(k+3) as = —4k + 3)(k + 1),
= —(k + 5)(k* — 4k — 29), as = 4(k* — 4k — 29),
and .
g @) g @) W)Y
@3 Fo=a (g(z)) T <g<z)) ”“”(h(z))
K@)\ (g (@) W (z))
o (h(z)> T\ 5 7o)
Then F % 0.

PROOF. Suppose that F(z) = 0, we claim that
i) g@ #0;
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(i) h(z) #0;

(iii) all zeros of f (z) are simple.

Suppose first that z; is a zero of g(z) of multiplicity [ (! > 1). From g(z;) =0
and g = f3f® — 1 we can get f (z;) # 0, 00. Since z; is a zero of order (I — 1) of
g’ = f h we have that z; be a zero of h(z) of multiplicity / — 1. Using the Laurent
series of F(z) at the point z;, we can get the coefficient of (z — ;)%

A() = (a1 + as + z5)* — (az + a3 + 2a4 + as)l + (a3 + ay).

From the definitionof a;, i = 1, ..., S, we have

k+95%*k+7 P

— 2
T3 k + 1Yk 4+ 5k + Tl + 2(k + 1)*(k + 3).

All) =—
Obviously, A(l) # 0 for all positive integers [. So the point z; is a pole of F(z) which
contradicts F(z) = 0. Hence conclusion (i) g(z) # O holds.

Suppose next that z; is a zero of h(z) of order [ (I > 1). By (i) we have g(z,) # 0, oc.
Using the Laurent series of F(z) at the point z;, we can get the coefficient of (z — z,) >
as B(l) = —asl + a,I*. From the definition of a;, i = 1, ..., 5, we have

B() = =2k + D(k+3)k + 51 —4¢k+ Dk +3)I* <0,

so that the point z; is a pole of F(z) which contradicts F(z) = 0. Hence conclusion (ii)
h{z) # 0 holds.
Using h(z) = ff ®*Y + 2f'f ® and (ii) (h(z) # 0), we can get (iii).

Set ¢(z) = h(z)/g(z), we can deduce that ¢ (z) is an entire function, all zeros
of ¢ (2) can occur only at multiple poles of f (z) and the following expressions hold:
g _fh W_g . ¢ ¢
g 2 fo =TS fets

Substituting the above two equalities in the expression (2.3) for F(z), we get

2.4) (ay + as + as)f 2> + (ay + a3 + 2a;, + as)f ¢’

N N 2
+ [03 (%) + a4 (%) :I+(az+a3)f,¢50-

Obviously, a; +a; = (k+5)2(k+7) # 0and ¢ # 0, otherwise g'/g = f ¢ = 0, that
is, g = C which contradicts the result of Lemma 1.
Thus, by the equality (2.4), we have

, 1

(2.5) f'= aln(Z)+fl|2(2)+f2¢113(2),
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where ,;(z) (i = 1, 2, 3) are differential monomials of (¢'/¢). Differentiating both
sides of (2.5), we have

fr=- %%ln(l) + 2@+ S 0@ + 1@ + 2ff Bln(a)
+1% [%z,g(z) + 1;3(z)] .
Using the above equality and (2.5), we get
£ = @+ f (@) + @) + £ @)
where l;(z) (i = 1,...,4) are differential monomials of (¢'/¢). Continuing the

above process we obtain

1
(2.6) f®= alkl @) + f (@) + f20la(@) + - + f M uaa (2),

where I;;(z) (i = 1, ..., k = 2) are differential monomials of (¢'/¢).
Now, suppose z; is a zero of f. Combining (2.5), (2.6) and ¢ (z3) # 0, 0o, we have

1 1
(z3) = ), fP@)= L (z3).
f(z) 5@ 1), f(z) @) x1(z3)
Further, by the above two equalities and the expression for g(z) and h(z) in Lemma 2,
we have
’ (k) 2
8(z) = =1, h(z3) =2f () " (23) = 5 (23l (23).
$*(z3)

Substituting the above equality in the expression for ¢ (z) = h(z)/g(z) we have

2.7) $*(z23) = =201 (23) 1 (23).

Set G(z) = ¢*(z) + 201 ()l (z). We distinguish two cases.
Case 1. G(z) # 0. By (2.7) and (iii) we have

(2.8 N (r, fi) =N (r, %) <N (r, é) < T(r, G) + O(1)
< O{T(r, ¢} + O(1),

h g1 1
2.9 T(r,¢) =m(r,¢)=m (r, E) =m (r, ——) <m (r, 7) + 8(r, f).
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Applying (2.2) of Lemma 2, and combining with N (r, 1/ G) = 0 we have

(2.10) m(r,1/f) =S f).

By (2.10), (2.9) and (2.8), we have

(2.11) N 1/f)=8f).

Combining (2.10) and (2.11) we get T(r, f) = T (r, 1/f) + O(1) = S(r, f). This
gives a contradiction, since f is a transcendental meromorphic function.

Case 2. G(z) = 0. Using the expression for G(z), and noting that [;,(z), i (z) are
differential monomials of (¢’/¢) we deduce that

(2.12) T(r,¢) =m(r,¢) = S(r, ¢).
Again, using the expression for G(z) and the fact that G(z) = 0 we have
2.13) ¢* = =201 () (2).

From (2.12), we deduce that ¢ (z) is a polynomial or a constant. If ¢ is a polynomial,
then the right-hand side of (2.13) is a constant or rational function and the left-hand
side of (2.13) is a polynomial, and this gives a contradiction. So ¢ is a constant. If
¢ = 0, using g'/g = f¢ = 0, we deduce that g is a constant, which contradicts
Lemma 1.

Hence, ¢ (z) = C, where C # 0. Substituting this equality in (2.4), we have

(a1 +as +as)CPf* + (@, + @) Cf ' =0,

so f' = Cif? thatis, (1/f) = —Cy, where C, # 0 is a constant. Then we deduce
that f (z) is a rational function, but this is impossible. This completes the proof. [

LEMMA 4. Let f (2), g(2), h(2), k = 2, F(2) be stated as above. Then all simple
poles of f (2) are zeros of F(z).

PROOF. Suppose z, is a simple pole of f (z), then

i a
fl)= — {1 + bo(z — 20) + bi(z — 20)* + O((z — 20)")},
(z — 20)
where a # 0, by, b, are constants. Since k > 2, we have
g)=ff% -1
(—D*kla? ) ) ,
= —————{1 4+ 2bo(z — 20) + (b + 2b1)(z — 20)* + O((z — 20)))}.

(Z —_ Zo)k+3
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g ( 1)k+1 kla?

f ( -2 )k+3
+ 0((z — 20)Y)}.

h(z) = {(k +3) + (k + Dbo(z — 20) + (k — Dby(z — 20)*

Hence, we have

1
g;: (Z( ) {(k+3) 2by(z — 20) + (2B} — 4b1)(z — z0)* + 0((2_20)3)}’
Ko (—1) 1 ) )
K (z—z)k+3 [(k+3) (k + Dbo(z — 20)
2
+[(/;+ 13) ~ 2k — 1)b](z_z°)z+ 0((Z—20)3)},

N 2 1
(%) = T {(k +3)2 — 4k + 3)boy(z — 20)

+ [4k + 9B — 8k + 3)by (z — 20)° + O((z — )},

AN 1
(i) = oo 3 — @~ 4b) e — 20" + 0~ 2
=<0

4
W I-_ 1 ) (k+1)2 ) ,
(Z)—(Z—Zo)zk-l-:‘}{( + ) [ k+3 bo'z(k_l)bl}(Z“Zo)
+ 0((z—z(>)3)}, '
h 2 1 1 ) 2
<ﬁ> T G- (k+3)2{(k+3) = 2(k + Dk + 3)"bo(z — 20)

+ [k + DXk + B2 — 4k — Dk +3)°81](z — 20)* + O((z — D)},

gw 1 2
Pl _20)2{(k+3) — Bk + T)bo(z — 20)

+ [Bk + by — 23k + 5)b11(z — 20)* + O((z — 20)7)}.

By substituting all of the above equalities in the expression (2.3) of F(z) and per-
forming some easy calculations we obtain that F(z) = O((z — z0)). So, zp is the zero
of F(z). This completes the proof. ]

LEMMA 5 ([3]). Let F be a family of meromorphic functions on the unit disc A
such that all zeros of functions in F have multiplicity at least k. Let a be a real
number satisfying 0 < @ < k. Then F is not normal in any neighbourhood of 7o € A
if and only if there exist

(i) pointsz, € A, 74 = 2%

(ii) positive numbers py, px — 0; and
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(iii) functions f, € F
such that p° fi(zi + pi€) — g(§) spherically uniformly on compact subsets of C,
where g is a nonconstant meromorphic function.

3. Proof of theorems

PROOF OF THEOREM 1. When k = 1, this is the result of Zhang [4]. So we assume
that K > 2. By Lemma 3, F(z) # 0. Thus by Lemma 4 we have

(3.1 Ni(r.f) <N 1/F) < T(r, F) + O(1),

where in N, (r, f ) only simple poles of f (z) are to be considered. By (2.3), we know
that the poles of F(z) can occur only at multiple poles of f (z) or zeros of g(z), or
zeros of h(z), and all poles of F(z) are of multiplicity at most 2. So

(3.2) N(r, F) <2No(r,f)+2N(r,1/g) + 2N (r, 1/h) + S(r, f ),

where in N (r, f ) only multiple poles of f (z) are to be considered, and each pole is
counted only once. Obviously, we have

(3.3) m(r, F) = S(r, f).
By (3.1), (3.2) and (3.3), we have

(3.4) Ni(r,f) <2Nuo(r, f) +2N(r,1/g) + 2N (r, 1/ h) + S(r, f).
Combining Lemma 2, (2.1) and (3.4) gives

(35) 3T(rf) <3Na(rf)+2N(r 1/f)+3N(r, 1/g) + N(r, 1/h) + S(r. ).
On the other hand, using Lemma 2 and (2.2), we have

(3.6) 3Na(r f)+ N 1/h) <3[N(rn.f) =N )1+ N(r 1/h)
<3N(r,1/g) + S(r, ).

Thus, by (3.5) and (3.6), we obtain

3T(r.f) <6N(r 1/g) +2N(r, 1/f )+ S(r. f)
< 6N(r,1/g) +2T(r.f)+ S(r. f),

thatis, T(r, f) < 6N (r, 1/g) + S(r, f ). This completes the proof of Theorem 1. [
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PROOF OF THEOREM 2. We may assume that D = A. Suppose that & is not normal
on A. Then, taking @ = k/3 and applying Lemma 5, we can find f, € &, z, € A
and p, — 0+ such that

Fnzn + pn§)

a
n

= gn(§) — g(&)

locally uniformly with respect to the spherical metric, where g is a nonconstant
meromorphic function on C. By the assumption,

2E) @ EN® — 1 = pi 7 f Hzn + Pa)f P (20 + pa) — 1
= @0+ pub)f P (20 + puk) — 1

# 0.
So

(3.7 £@g%E) —1#£0 or gEePE ~-1=0.

By Hurwitz’s theorem, all zeros of g(£) are of multiplicity at least k and it is easy to
see that g2(£)g® (&) # 0. Hence, g2(§)g® (&) — 1 # 0. According to Mues’s result
(k = 1) and Theorem 1 (k > 2) we find that g(£) is not a transcendental meromorphic
function. If g(£) is a polynomial, then its degree is at most k — 1 which contradicts
the fact that the zeros of g(£) are of multiplicity at least k. If g(£) is a nonconstant
rational function, we set g(§) = Q(&)/P(&), where Q(§) and P(£) are two prime
polynomials and set p = deg(P) and ¢ = deg(Q). From (3.7) we deduce that there
exists a polynomial 4 (§) such that

h(£) +1
h(§) -

It is easy to- verify that the difference between the degree of the numerator of
g2 (&)g™ (&) and the degree of the denominator of g2(£§)g® (&) is 3(q — p) — k.
It follows from (3.8) that k = 3(¢ — p)and (¢ — p) = 1.

We set n = (¢ — p) and g(§) = ap€” + - -+ + a, + R(§)/ P (§), where R(§) and
P (&) are two prime polynomials and deg(P) — deg(R) > 0. Noting that g® (&) =
(R(&)/ P(£))®, it follows from (3.8) that deg(P) — deg(R) = —n, which contradicts
deg(P) — deg(R) > 0. Thus, we obtain our result. O

(3.8) & ©)ePE) =
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