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ON THE SIZE OF INTEGER SOLUTIONS OF ELLIPTIC EQUATIONS

YANN BUGEAUD

We improve upon earlier effective bounds for the magnitude of integer points on an
elliptic curve £ defined over a number field K. We slightly refine the dependence
on the discriminant of K. In most of the previous papers, the estimates obtained
are exponential in the height of £. In this work, taking also into consideration the
prime ideals dividing the discriminant of £, we provide a totally explicit bound
which is only polynomial in the height.

1. INTRODUCTION

Let K be a number field and denote by OK its ring of integers. The first effective
bound for the integer solutions (x, y) G OK of the elliptic equation

y2 - x3 + ax + b,

where a, b € OK satisfy 4a3 + 27b2 ̂  0 was given by Baker [1] in the case K = Q, as
a consequence of his powerful estimates for linear forms in logarithms. He showed that

where H denotes the height of the polynomial f(X) = X3 + aX + b, that is, here,
max{|a|, \b\}. Later, this bound was considerably improved and generalised to arbitrary
K by several authors, including Sprindzuk [13], Schmidt [10], Poulakis [9], Pinter [8]
and Hajdu and Herendi [5]. The approach followed in [13] and [10] goes back to Siegel
[11] and can easily be adapted to the study of superelliptic equations (see Voutier
[14] and Bugeaud [2]), while the other two methods are specific to the case of elliptic
equations. Indeed, Poulakis uses the "multiplication by 2" on an elliptic curve and
Pinter and Hajdu and Herendi argue as Baker, reducing the problem to the study of
Thue equations.

In the present work, we rework the approach of Poulakis [9] and improve upon
his estimate thanks to a careful study of the unit equation involved in the proof. Our
main improvement concerns the dependence on the discriminant of the ground field
K. Moreover, we show (see also [2]) that the dependence on the height of / is only
polynomial if we take also the discriminant of / (and, even, only the prime ideals
dividing it) into consideration, and we make explicit all the numerical constants.
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2. STATEMENT OF THE RESULTS

Let K be a number field of degree d and denote by £>K its discriminant and by
O K its ring of integers. Let a and b be algebraic integers in K satisfying 4a3 + 27fe2 ^ 0
and consider the elliptic equation

(E) y2 = x3+ax+b in (x,y)&OK.

The main motivation of this work is to give a detailed presentation of the less known
method introduced by Chabauty [4] (see also Lang [6, p. 140] and Poulakis [9]), which
is based on the group law defined over the points on an elliptic curve. We deduce two
new upper bounds for the size of the solutions of (E), which slightly improve the results
of Schmidt [10], obtained by the "classical" method, and those of Poulakis. We pay
particular attention to the dependence on the parameters of the field K and also on the
height H (for the definition, see Section 3) and on the discriminant A/ = —4a3 — 2762

of the polynomial f(X) = X3 + aX + b.
Throughout this paper, we denote by h(a) the absolute multiplicative height of

the algebraic number a (for the definition, see Section 3). Further, the notation log+a;
stands for max{loga;, 1}.

THEOREM 1 . All the solutions (x, y) of (E) satisfy

max{h(x),h(j/)}

^H35 exp{(100d)lood |X?K|12[NK/Q(A/)|r (log|Z?K N K / Q C A / ) ! )
 2 4 d ~ 1 } .

Thanks to a precise estimate of the different of a number field extension (see
Lemma 1), we are able to refine the dependence on | N K / Q ( A / ) | and to produce a
bound involving only the prime numbers dividing it.

Denote by p i , . . . ,pt the distinct prime ideals in OK dividing A/ and let P
(respectively Q) be the greatest prime factor (respectively the greatest square-free
divisor) of | N K / Q ( A / ) | . Theorem 2 below considerably improves and generalises to
the number field case the estimate of Pinter [8].

THEOREM 2 . All the solutions (x, y) of (E) satisfy

max{h(z),h(y)} < H35 exP{(l00(t + d))im+d)P24dQad \DK\6 (log|Z)K

REMARKS. With the classical approach we obtain slightly weaker results than the above
theorems. Precisely, we are able to get alternatively | D K | 2 4 or |Z?K|12 log+log+.ff
instead of |Z?K |12 in Theorem 1 (to see this, follow carefully the proof of [2, Theorem
1]) and |£>K|12 instead of |-DK|6 in Theorem 2. These improvements are due to the
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particular form of the unit equation we deduce here. We point out that the numerical
constants computed in Theorems 1 and 2 are not too big : this is a consequence of
recent improvements of Waldschmidt [15] and Kunrui Yu [16] concerning linear forms
in logarithms.

The method used here also allows us to produce bounds for the S-integer solutions
of (E), but the dependence on P m a x, the greatest prime number lying below the prime
ideals involved in 5 is not very satisfactory : indeed, the exponent of Pmax is then linear
in £, rather than independent of t (see [2, Theorem 1]). The same remark applies to
the method used by Baker [1] (see [5]), which, however, does not seem to be applicable
when the field K is not the rational field Q .

Unlike the classical method, it seems, unfortunately, that the one of Chabauty

cannot be applied to practical resolutions of elliptic equations.

In the rational case, using t + 1 ^ P and Q ^ Pl, we crudely deduce from

Theorem 2 a considerable sharpening of the main result of Pinter [8].

COROLLARY 1 . If K = Q , all the solutions (z, y) of (E) satisfy

max{|z|, |2/|} ^ H35 exp{(100P)124(t+1)}}.
REMARK. Pinter [8] shows that, under the hypotheses of Corollary 1, there exists a

(very large) effectively computable numerical constant C\ such that max{|x|, \y\} ^

H23 exp< ( 2 P ) c " t + 1 ' I. Our improvement is mainly due to the new approach of

Bugeaud and Gyory [3] in giving new explicit upper bounds for the solutions of S-

unit equations, which allows us to replace the factor (t + I ) 2 by (t + 1).

3. NOTATIONS AND A LEMMA

For a number field K we shall always use the notation M R , £>K , RK and OK

for, respectively, the set of places on K, the discriminant of K , its regulator and its
ring of integers. If 5 is a finite set of places on K , including the set of infinite places,
we denote by Rs the 5-regulator of K (see [3] for the definition). We normalise the
valuations in the same way as in [3], then the (absolute) height of an algebraic number
a contained in K is defined by

h(c*)=(

For a polynomial F(X) = X1 + bi-iX1'1 + . . . + b0 e K[X], we define its height h(F)

by
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It is well-known (see [12, Chapter VIII, Theorem 5.9]) that

2"' f l h(a) < h(F) ^ 2'-1 I ] h(a).
a root of F a root of F

In the course of our proofs, we often refer the reader to lemmas and propositions
stated in [3]. However, we need an additional result.

LEMMA 1. Let K be a number field and let a ^ K be an algebraic integer, with

minimal defining polynomial f over K. Put L = K(a) and n = [L : K]. Denote by

Af the discriminant of f and by diffL/K the different of the extension L/K. Then we

have

\Di\ < \DK\n |NL/Q(diffL/K)| < \DK\n |NK / Q(A,) | .

More precisely, let p be a prime ideal in K dividing N L / K (diffL/K) and write

Then we have ordp(NL/K (diffL/K)) ^ (n — 1) + n max ordp (e;).

PROOF: This follows from [7, Proposition 4.9] and [7, Proposition 6.3]. D

4. PROOFS

REDUCTION TO A UNIT EQUATION. AS previously mentioned, our approach goes back

to Chabauty [4] (see Lang [6, page 140]) and has also been used by Poulakis [9]. It is

based on the group law defined over the set of rational points on (E). Although all we

need can be found in [9], it is convenient for the reader to give here a detailed account

of the method.

Let (x,y) e OK be a non-zero point on (E). In order to compute (s, t) € K2 such

that 2 (s, t) = (x, y), where

we set u := (3s2 + a)/(2£) and we consider the equation

(1) (x,y) = (-2* + n 2 , - ^ ± ^ +u(3s - U

Eliminating s between the two equalities induced by (1), we get

(2) u4 - 6xu2 - Syu - 3x2 - 4a = 0,
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which allows us to determine u, s = (u2 — x)/2 and t. Moreover, substituting the
values of a; and y given by (1) in equation (2) and replacing u2 by 2s + x, we get

(3) s4 - 4xs3 - 2as2 - 4oxs - 86s - 4bx + a2 = 0,

hence s is an algebraic integer and K(s) = K(u) .

Further, Sublemma 4.3 of [12, Chapter VIII] with Z = 1 and X = s yields

(3s2 + 4a) (s4 - 2as2 - 86s + a2) - (3s3 - 5as - 27s) (s3 + as + b) = 4o3 + 2762,

and we infer from (3) that N K ( S ) / Q ( S 3 + as + b) divides N K ( 8 ) / Q (4a3 + 2762). Setting
L := K(u) = K(s ) , we have proved that

(4) N L / Q ( s 3 + a s + 6) | N K / Q ( A / ) [ L : K ] .

In all that follows we assume that f(X) is irreducible over L. However, our
bounds clearly remain valid if this is not the case. Let e\, e2 and e^ be the roots of the
polynomial / and denote by a an embedding satisfying a \\=. Id |L and o(e.\) = e.2-

In the field L ( d , e^), we have

(5) (s - ei) + (e2 - s) + (ei - e2) = 0.

We shall work with equation (5) in two distinct ways.

P R O O F OF T H E O R E M 1: By [3, Lemma 2] and (4) we obtain a unit 771 G

and an algebraic integer ui € L(ei) satisfying

(6) s - e i = u i f h and h(ttl) < | N K / Q ( A / ) | exp{(600d)24dflL(ei)}.

Equation (5) now becomes

"i^ v[a) + (ei - e2) = 0.

Let £ 1 , . . . ,er be a fundamental system of units in OL(e i) satisfying the properties
stated in [3, Lemma 1]. We can write

where £ is a root of unity and the 6i 's are rational integers. Notice that, in view of [3,
(iii) of Lemma 1], we have

(7) max{|6i|}<(12d)24''logh(ij1).
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Applying an estimate of Waldschmidt [15] seee [3, Proposition 1]) to give a lower bound
for

1 -
u i 1 -

we use that h(£j '/£*) ^ hfo)2 for 1 < i ^ r and we argue as in [3, Section 5, see the
displayed inequality after (33)] to deduce from r ^ 12d and (7) that

whence

(8) h(s - e i ) = log+ RL(ei) logh(Ul)}.

Using h(s) ^ 2h(ei - s) h(ei), t2 = (s - ei)(s - e2)(s - e3) and (6), we deduce from
(8) the upper bound

(9) /

max{h(z),h(2/)} < H35 e4>{(82d)100dRL{ei) log+ JJL(ei

Further, we infer from [9, proof of Theorem 3] that

(10) | £ » L ( e i ) | ^ 2 3 6 d | £ ) K | | |

Theorem 1 now follows from (8), (9), (10) and [3, inequality (5)]. D

PROOF OF THEOREM 2: Denote by pi , . . . ,pt the distinct prime ideals in OK

dividing A/ and let 5 be the set of places of K composed of the infinite places and
those places induced by the ideals pi, 1 ̂  i ^ t. Further, denote by Si (respectively
S2, S12) the set of all extensions to L(ei) (respectively L(e2), L(e!,e2)) of the places
in 5 and let P (respectively Q) be the greatest prime factor (respectively, the greatest
square-free divisor) of | N K / Q ( A / ) | .

Let £1 , . . . ,eu be a fundamental system of S\-units in L(d) . Obviously, u <
\2{d+ t) and ef ,. •. ,£i is a fundamental system of S2-units in L(e2). In view of
(4), ei — s (respectively e2 — s) is an Si-unit in L(ei) (respectively an 52-unit in
L(e2)) and we derive from (5) the equality

ei - e2 _ e2 - s _
e\ — s — s

We proceed as in [3, Section 5, see the displayed inequality before (42)] in order to
compute a lower bound for |A\ v , where v denotes any place in 5i2 . Omitting details,
we obtain

5, loglogh(ei -3)}.
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It remains for us to give a precise estimate of Rs1 • To this end, we first apply
Lemma 1 to bound the differents of the extensions L / K and L(e i ) /L , and we obtain

| N L / Q ( d i f f L / K ) | ^ 7 8d

and

Further, using Lemma 1 together with

|NL(ei)/Q(diffL(ei) /K)| = |NL/Q(diffL/K)|3 • |NL ( e i ) / Q(diffL ( e i ) / L) |

(see [7, Proposition 4.9]), we get after a few calculations that

(12) |D L ( e i ) |<8 4 0 d | i?K| 1 2 Q 1 7 d .

We infer from [3, inequalities (16) and (5)] that

(13) RSl < 1212t \DL(ei)\
1/2 ( loglD^I) 1 2 "- 1 niog+NK/qta).

i = l

Hence, by (11), (12) and (13), we get

h(ex - s) < if2 exp{(90(f+ d ) ) 1 0 0 ( t + d ) P 2 4 d Q 9 d |Z?K|6 ( l o g | D K | ) 1 2 d + 1 } .

To conclude, we argue as at the end of the proof of Theorem 1. D
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