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Generalized D-symmetric Operators II

S. Bouali and M. Ech-chad

Abstract. Let H be a separable, infinite-dimensional, complex Hilbert space and let A, B ∈ L(H),

where L(H) is the algebra of all bounded linear operators on H. Let δAB : L(H) → L(H) denote the

generalized derivation δAB(X) = AX − XB. This note will initiate a study on the class of pairs (A, B)

such that R(δAB) = R(δA∗B∗ ).

1 Introduction

Let L(H) be the algebra of all bounded linear operators on an infinite dimensional

complex Hilbert space H. For an operator A in L(H), the inner derivation on A, δA, is

defined on L(H) by δA(X) = AX−XA for each X in L(H).The generalized derivation

operator δAB associated with (A, B), defined on L(H) by δAB(X) = AX − XB has

been much studied, and many of its spectral and metric properties are known (see

[2, 6, 7, 9]).

J. G. Stampfli [8], J. H. Anderson, J. W. Bunce, J. A. Deddens, and J. P. Williams [1],

and S. Bouali and J. Charles [4, 5] gave some properties and characterizations of D-

symmetric operators, the class of operators that induce derivations for which the

norm closures of their ranges are self-adjoint. In order to generalize these results, we

initiate the study of a more general class of D-symmetric operators, in other words,

the class of pairs of operators A, B ∈ L(H) that have R(δAB) = R(δA∗B∗), where

R(δAB) is the norm closure of the range of δAB. We call such pairs D*-symmetric.

Notations

(i) For A ∈ L(H), σ(A) is the spectrum of A.

(ii) Let K(H) be the ideal of all compact operators. For A ∈ L(H), let [A] denote

the coset of A in the Calkin algebra C(H) = L(H)/K(H).

(iii) C1(H) is the ideal of trace class operators.

(iv) For A, B ∈ L(H), R(δAB)
U

denotes the ultraweak closure of R(δAB), and

L(H) ′U denotes the continuous linear forms in the ultraweak topology.

(v) Let M be a subspace of L(H). We denote the orthogonal of M in the dual space

of L(H),L(H) ′, by Mo.

(vi) For g and ω two vectors in H, we define g ⊗ ω ∈ L(H) as follows:

g ⊗ ω(x) = 〈x, ω〉g for all x ∈ H.
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2 D*-symmetric Pairs

Definition 2.1 Let A, B ∈ L(H). If R(δAB) = R(δA∗B∗), we say that (A, B) is

D*-symmetric.

Theorem 2.2 Let A, B ∈ L(H). If A and B are D-symmetric operators with disjoint

spectra, then (A, B) is D*-symmetric.

Proof Let X ∈ R(δAB). There exists a sequence (Xn)n ⊂ L(H) such that

‖δAB(Xn) − X‖ → 0. Consider the operators on H ⊕ H

M =

(

0 X

0 0

)

, Mn =

(

0 Xn

0 0

)

, and T =

(

A 0

0 B

)

.

It follows that

δT(Mn) =

(

0 δAB(Xn)

0 0

)

‖ · ‖
−→

(

0 X

0 0

)

= M.

Thus M ∈ R(δT). Since A and B are D-symmetric operators with disjoint spectra,

then T is D-symmetric by J. G. Stampfli [8, p. 260]. Hence there exists a sequence

(Nn)n ⊂ L(H ⊕ H) such that δT∗(Nn)
‖ · ‖
−→M. A simple calculation proves that there

exists a sequence (Yn)n ⊂ L(H), such that δA∗B∗(Yn)
‖ · ‖
−→X. Thus R(δAB) ⊂ R(δA∗B∗).

We obtain the reverse inclusion in the same way.

Remark 2.3 Let A and B be two cyclic subnormal operators with disjoint spectra.

A and B are D-symmetric operators by [4, Thm. 2.5]. Since σ(A) ∩ σ(B) = ∅,

Theorem 2.2 implies that (A, B) is D*-symmetric.

Theorem 2.4 For A, B in L(H) the following are equivalent:

(i) (A, B) is D*-symmetric;

(ii) δA∗(A)L(H) + L(H)δB∗(B) ⊆ R(δAB) ∩ R(δA∗B∗);

(iii) A∗R(δAB) + R(δAB)B∗ ⊆ R(δAB) and AR(δA∗B∗) + R(δA∗B∗)B ⊆ R(δA∗B∗).

Proof (i) ⇒ (ii). For all X ∈ L(H) we have

δA∗(A)X = δA∗B∗(AX) − AδA∗B∗(X) and XδB∗(B) = δAB(X)B∗ − δAB(XB∗).

Since AR(δA∗B∗) ⊆ AR(δAB) ⊆ R(δAB) and R(δAB)B∗ ⊆ R(δA∗B∗)B∗ ⊆ R(δAB), it

follows that

δA∗(A)L(H) + L(H)δB∗(B) ⊆ R(δAB).

The implication (ii) ⇒ (iii) is a consequence of the following identities. For all X and

Y in L(H),

A∗δAB(X) + δAB(Y )B∗
= δAB(A∗X + Y B∗) + δA∗(A)X + Y δB∗(B)
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and

AδA∗B∗(X) + δA∗B∗(Y )B = δA∗B∗(AX + Y B) − δA∗(A)X − Y δB∗(B).

(iii) ⇒ (i). Suppose that (iii) holds. Then A∗nR(δAB) ⊆ R(δAB) for each n in N. We

always have the inclusion AmR(δAB) ⊆ R(δAB) for each m in N.

We shall prove that R(δAB)o
= R(δA∗B∗)o. Let f ∈ R(δAB)o and X ∈ L(H).

Observe that

A∗nAX − AA∗nX = A∗nδAB(X) − δAB(A∗nX)

for each n in N. Hence A∗nAX−AA∗nX ∈ R(δAB) for each n in N. A similar argument

using mathematical induction on m shows that A∗nAmX−AmA∗nX ∈ R(δAB) for each

n and m in N. Thus f (A∗nAmX) = f (AmA∗nX) for each n and m in N. It follows that

f (eαAeβA∗X) = f (eβA∗eαAX) for all complex numbers α and β.

An induction argument shows that

f
(

(αA + βA∗)nX
)

=

n
∑

k=0

(

n

k

)

f
(

(αA)k(βA∗)n−kX
)

for each n in N and for all complex numbers α and β. Hence

f (eαA+βA∗X) = f (eαAeβA∗X) = f (eβA∗eαAX)

for each X in L(H) and for all complex numbers α and β. A similar argument using

R(δAB)B∗ ⊆ R(δAB) shows that

f (XeαB+βB∗) = f (XeαBeβB∗) = f (XeβB∗eαB)

for each X in L(H) and for all complex numbers α and β.

Since f (AX) = f (XB), it follows by induction that f (AnX) = f (XBn) for all

n ∈ N, and hence f (eαAX) = f (XeαB) or f (eαAXe−αB) = f (X) for all α ∈ C and

X ∈ L(H). These relations yield, for all λ ∈ C, the equations

f (eıλA∗Xe−ıλB∗) = f (eıλAeıλA∗Xe−ıλB∗e−ıλB)

= f (eı(λA+λA∗)Xe−ı(λB∗+λB)).

Define the function g on C as follows:

g(λ) = f (eıλA∗Xe−ıλB∗).

Since λA+λA∗ and λB∗+λB are self-adjoint operators, then eı(λA+λA∗) and e−ı(λB∗+λB)

are unitary operators . Thus for all λ ∈ C,

|g(λ)| ≤ ‖ f ‖‖X‖.

By Liouville’s theorem, the entire function g side must be constant. In particular, the

derivative vanishes at λ = 0. This gives f (A∗X − XB∗) = 0 for all X ∈ L(H). Thus

R(δAB)o ⊆ R(δA∗B∗)o. We obtain the reverse inclusion in the same way.
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Corollary 2.5 If A and B are normal operators, then (A, B) is D*-symmetric.

Corollary 2.6 Let U and V two isometries, then (U ,V ) is D*-symmetric.

Proof Let P = I −UU ∗. Then for all X ∈ L(H),

δU∗V∗(X) = δUV (−U ∗XV ∗) − PXV ∗.

Hence, to prove that R(δU∗V∗) ⊆ R(δUV ), it suffices to show that PX ∈ R(δUV ) for

all X ∈ L(H). Let

Tn =

n−1
∑

k=0

( k

n
− 1

)

U kPXV ∗k+1, n ∈ N
∗,

where N
∗

= N\{0}. A simple calculation shows that

δUV (Tn) − PX = −
1

n

n
∑

k=1

U kPXV ∗k.

Since 〈U jPx,U kPy〉 = 0 for j 6= k and x, y in H, then

(2.1)
∥

∥

∥

n
∑

k=1

U kPXV ∗kx
∥

∥

∥

2

=

n
∑

k=1

‖U kPXV ∗kx‖2 ≤ n‖PX‖2‖x‖2.

Thus ‖δUV (Tn) − PX‖ ≤ n− 1
2 ‖PX‖, that is, PX ∈ R(δUV ).

For the reverse inclusion, first prove that if Q = I − VV ∗, then PX ∈ R(δU∗V∗)

and XQ ∈ R(δU∗V∗) for all X ∈ L(H). Let

Sn =

n−1
∑

k=0

( k

n
− 1

)

U k+1PXV ∗k, n ∈ N
∗.

A simple calculation shows that

δU∗V∗(Sn) + PX =

1

n

n
∑

k=1

U kPXV ∗k.

It follows from (2.1) that ‖δU∗V∗(Sn) + PX‖ ≤ n− 1
2 ‖PX‖. Thus PX ∈ R(δU∗V∗).

Consider

Rn =

n−1
∑

k=0

( k

n
− 1

)

U k+1XQV ∗k, n ∈ N
∗.

Then

δU∗V∗(Rn) + XQ =

1

n

n
∑

k=1

U kXQV ∗k.
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Hence

(δU∗V∗(Rn) + XQ)∗ =

1

n

n
∑

k=1

V kQX∗U ∗k.

Thus ‖δU∗V∗(Rn) + XQ‖ ≤ n− 1
2 ‖QX∗‖, and so XQ ∈ R(δU∗V∗). Since

UδU∗V∗(X) = δU∗V∗(U X) − PX and δU∗V∗(X)V = δU∗V∗(XV ) − XQ,

then

UR(δU∗V∗) + R(δU∗V∗)V ⊆ R(δU∗V∗).

It follows from the proof of Theorem 2.4 that R(δUV ) ⊆ R(δU∗V∗). Thus (U ,V ) is

D*-symmetric.

Definition 2.7 ([3]) Let A, B be in L(H) and J be a two sided ideal of L(H). The

pair (A, B) is said to possess the Fuglede–Putnam property (F, P)J if AT = TB and

T ∈ J implies A∗T = TB∗.

Theorem 2.8 For A, B ∈ L(H), the following are equivalent:

(i) (A, B) is D*-symmetric;

(ii) (a) ([A], [B]) is D*-symmetric in C(H), and

(b) (A, B) and (B, A) have the property (F, P)C1
;

(iii) (a) ([A], [B]) is D*-symmetric in C(H), and

(b) R(δAB)
U

= R(δA∗B∗)
U
.

Proof Note that R(δAB)
U

= R(δA∗B∗)
U

if and only if

R(δAB)o ∩
(

L(H)
) ′U

= R(δA∗B∗)o ∩
(

L(H)
) ′U

.

On the other hand

(2.2) R(δAB)o ≃ R(δAB)o ∩ K(H)o ⊕ ker (δBA) ∩ C1(H),

[10, Thm. 3]. In particular,

R(δAB)0 ∩ L(H) ′U ≃ ker (δBA) ∩ C1(H).

This proves that R(δAB)
U

= R(δA∗B∗)
U

if and only if

ker (δBA) ∩ C1(H) = ker (δB∗A∗) ∩ C1(H).

Thus (ii) ⇔ (iii).

Clearly the above shows that (i) ⇒ (iii). Suppose that (iii) holds. Let f ∈ R(δAB)0.

Then by (2.2), we have f = f0 + fT such that f0 ∈ R(δAB)o ∩ K(H)o and T ∈

ker (δBA) ∩ C1(H) (where fT(X) = tr(XT) for each X in L(H)). Since R(δAB)
U

=

R(δA∗B∗)
U

, it follows that T ∈ ker (δB∗A∗) ∩ C1(H). Let Z ∈ R(δA∗B∗). Then
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[Z] ∈ R(δ[A∗][B∗]). Since ([A], [B]) is D*-symmetric in C(H), then [Z] ∈ R(δ[A][B]).
There exists a sequence of operators (Xn)n in L(H) and a sequence (Kn)n of compact

operators in K(H) such that AXn − XnB + Kn → Z. But

f0(AXn − XnB + Kn) = f0(AXn − XnB) + f0(Kn) = 0,

and thus f0(Z) = 0. It follows that f0 ∈ R(δA∗B∗)o ∩ K(H)o, and hence f ∈
R(δA∗B∗)o. Therefore, R(δAB)o ⊆ R(δA∗B∗)o. We obtain the reverse inclusion using a

similar argument.

Corollary 2.9 If U and V are two isometries, then (U ,V ) has the property (F, P)C1
.

Proof (U ,V ) is D*-symmetric by Corollary 2.6. It follows from Theorem 2.8 that

(U ,V ) has the property (F, P)C1
.

Theorem 2.10 Let A, B ∈ L(H). If there exist two nonzero elements f and g in H,

and λ ∈ C, such that B( f ) = λ f , B∗( f ) 6= λ f and A∗(g) = λg, then (A, B) is not

D*-symmetric.

Proof Since for all λ ∈ C, R(δAB) = R(δ(A−λ)(B−λ)), we may assume without loss of

generality that λ = 0. Note that B∗ f = ω 6= 0, where ω ⊥ f . If X = ‖ω‖−2(g ⊗ ω)

and Y ∈ L(H), then

〈

(A∗X − XB∗) f , g
〉

= 〈A∗X( f ), g〉 − 〈XB∗ f , g〉

= 〈0, g〉 − 〈X(ω), g〉 = −〈g, g〉 = −‖g‖2

and
〈

(AY − Y B) f , g
〉

= 〈Y f , A∗g〉 − 〈0, g〉 = 0.

Suppose that A∗X−XB∗ ∈ R(δAB)
U
. Then there exists a net (Yα)α in L(H) such that

for all x and y in H, we have:

〈

(AYα − YαB)x, y
〉

−→
〈

(A∗X − XB∗)x, y
〉

,

so that

0 =

〈

(AYα − YαB) f , g
〉

−→
〈

(A∗X − XB∗) f , g
〉

= −‖g‖2.

It follows that g = 0. This proves that A∗X − XB∗ /∈ R(δAB)
U

, that is, R(δAB)
U

6=

R(δA∗B∗)
U

. Consequently we obtain that (A, B) is not D*-symmetric by Theorem 2.8.
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Theory: Adv. Appl., 2, Birkhäuser, Basel-Boston, MA, 1981, pp. 319–328.
[10] , On the range of a derivation. Pacific J. Math. 38(1971), 273–279.

Department of Mathematics and Informatics, Faculty of Sciences Kénitra, B. P. 133 Kénitra, Morocco
e-mail: said.bouali@yahoo.fr

Lycée mixte de Missour, 33250 Missour, Morocco
e-mail: m.echchad@yahoo.fr

https://doi.org/10.4153/CMB-2010-094-2 Published online by Cambridge University Press

http://dx.doi.org/10.1090/S0002-9939-98-03996-3
http://dx.doi.org/10.1016/0024-3795(94)00003-V
http://dx.doi.org/10.1215/S0012-7094-56-02324-9
https://doi.org/10.4153/CMB-2010-094-2

