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A liquid drop impacting a rigid substrate undergoes deformation and spreading due to
normal reaction forces, which are counteracted by surface tension. On a non-wetting
substrate, the drop subsequently retracts and takes off. Our recent work (Zhang et al., Phys.
Rev. Lett., vol. 129, 2022, 104501) revealed two peaks in the temporal evolution of the
normal force F(t) – one at impact and another at jump-off. The second peak coincides with
a Worthington jet formation, which vanishes at high viscosities due to increased viscous
dissipation affecting flow focusing. In this article, using experiments, direct numerical
simulations and scaling arguments, we characterize both the peak amplitude F1 at impact
and the one at takeoff (F2) and elucidate their dependency on the control parameters: the
Weber number We (dimensionless impact kinetic energy) and the Ohnesorge number Oh
(dimensionless viscosity). The first peak amplitude F1 and the time t1 to reach it depend
on inertial time scales for low viscosity liquids, remaining nearly constant for viscosities
up to 100 times that of water. For high viscosity liquids, we balance the rate of change
in kinetic energy with viscous dissipation to obtain new scaling laws: F1/Fρ ∼ √

Oh and
t1/τρ ∼ 1/

√
Oh, where Fρ and τρ are the inertial force and time scales, respectively, which

are consistent with our data. The time t2 at which the amplitude F2 appears is set by the
inertiocapillary time scale τγ , independent of both the viscosity and the impact velocity
of the drop. However, these properties dictate the magnitude of this amplitude.

Key words: drops

† Email addresses for correspondence: vatsalsanjay@gmail.com, binzhang0710@gmail.com,
cunjinglv@mail.tsinghua.edu.cn, d.lohse@utwente.nl

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1004 A6-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

98
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:vatsalsanjay@gmail.com
mailto:binzhang0710@gmail.com
mailto:cunjinglv@mail.tsinghua.edu.cn
mailto:d.lohse@utwente.nl
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.982&domain=pdf
https://doi.org/10.1017/jfm.2024.982


V. Sanjay, B. Zhang, C. Lv and D. Lohse

1. Introduction

Drop impacts have piqued the interest of scientists and artists alike for centuries, with the
phenomenon being sketched by da Vinci (1508) in the early 16th century and photographed
by Worthington (1876a,b) in the late 19th century. It is, indeed, captivating to observe
raindrops hitting a solid surface (Kim et al. 2020; Lohse & Villermaux 2020) or ocean
spray affecting maritime structures (Berny et al. 2021; Villermaux, Wang & Deike 2022).
The phenomenology of drop impact is extremely rich, encompassing behaviours such
as drop deformation (Biance et al. 2006; Chevy et al. 2012; Moláček & Bush 2012),
spreading (Laan et al. 2014; Wildeman et al. 2016), splashing (Xu, Zhang & Nagel 2005;
Riboux & Gordillo 2014; Thoraval et al. 2021), fragmentation (Villermaux & Bossa 2011;
Villermaux 2020), bouncing (Richard & Quéré 2000; Kolinski, Mahadevan & Rubinstein
2014; Chubynsky et al. 2020; Jha et al. 2020; Sharma & Dixit 2021; Sanjay, Chantelot &
Lohse 2023a) and wetting (de Gennes 1985; Fukai et al. 1995; Quéré 2008; Bonn et al.
2009). These behaviours are influenced by the interplay of inertial, capillary and viscous
forces, as well as additional factors like non-Newtonian properties (Bartolo, Josserand
& Bonn 2005; Bartolo et al. 2007; Smith & Bertola 2010; Gorin et al. 2022) of the
liquid and even ambient air pressure (Xu et al. 2005), making the parameter space for
this phenomenon both extensive and high-dimensional.

Naturally, even the process of a Newtonian liquid drop impacting a rigid substrate is
governed by a plethora of control parameters, including but not limited to the drop’s
density ρd, diameter D0, velocity V0, dynamic viscosity ηd, surface tension γ and
acceleration due to gravity g (figure 1a). To navigate this rich landscape, we focus on
two main dimensionless numbers that serve as control parameters (figure 1b): the Weber
number We, which is the ratio of inertial to capillary forces and is given by

We = ρdV2
0 D0

γ
; (1.1)

and the Ohnesorge number Oh, which captures the interplay between viscous damping
and capillary oscillations, offering insights into how viscosity affects the drop’s behaviour
upon impact,

Oh = ηd√
ρdγD0

. (1.2)

Additionally, the Bond number

Bo = ρdgD2
0

γ
(1.3)

compares gravity with inertial forces and is needed to uniquely define the non-dimensional
problem.

The drop impact is not only interesting from the point of view of fundamental research
but also finds relevance in inkjet printing (Lohse 2022), the spread of respiratory drops
carrying airborne microbes (Bourouiba 2021; Ji, Yang & Feng 2021; Pöhlker et al. 2023),
cooling applications (Kim 2007; Shiri & Bird 2017; Jowkar & Morad 2019), agriculture
(Bergeron et al. 2000; Bartolo et al. 2007; Kooij et al. 2018; Sijs & Bonn 2020; He et al.
2021; Hoffman et al. 2021), criminal forensics (Smith & Brutin 2018; Smith, Nicloux &
Brutin 2018) and many other industrial and natural processes (Rein 1993; Yarin 2006;
Tuteja et al. 2007; Cho et al. 2016; Hao et al. 2016; Josserand & Thoroddsen 2016; Liu,
Wang & Jiang 2017; Yarin, Roisman & Tropea 2017; Yarin et al. 2017; Wu et al. 2020).
For these applications, it is pertinent to understand the forces involved in drop impacts,
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Figure 1. (a) Problem schematic with an axisymmetric computational domain used to study the impact of a
drop with diameter D0 and velocity V0 on a non-wetting substrate. In the experiments, we use a quartz force
sensor to measure the temporal variation of the impact force. The subscripts d and a denote the drop and air,
respectively, to distinguish their material properties, which are the density ρ and the dynamic viscosity η. The
drop–air surface tension coefficient is γ . The grey dashed–dotted line represents the axis of symmetry, r = 0.
Boundary air outflow is applied at the top and side boundaries (tangential stresses, normal velocity gradient
and ambient pressure are set to zero). The domain boundaries are far enough from the drop not to influence its
impact process (Lmax � D0, Lmax = 8R in the worst case). (b) The phase space with control parameters: the
Weber number (We, dimensionless kinetic energy) and the Ohnesorge number (Oh, dimensionless viscosity),
exemplifying different applications.

as these forces can lead to soil erosion (Nearing, Bradford & Holtz 1986) or damage to
engineered surfaces (Gohardani 2011; Ahmad, Schatz & Casey 2013; Amirzadeh et al.
2017). We refer the readers to Cheng, Sun & Gordillo (2022) for an overview of the recent
studies unravelling drop impact forces (see also Li et al. (2014), Soto et al. (2014), Philippi,
Lagrée & Antkowiak (2016), Zhang et al. (2017), Gordillo, Sun & Cheng (2018), Mitchell
et al. (2019) and Zhang et al. (2019)).

These forces have been studied by Zhang et al. (2022), employing experiments and
simulations and deriving scaling laws. A liquid drop impacting a non-wetting substrate
undergoes a series of phases – spreading, recoiling and potentially rebounding (Chantelot
2018) – driven by the normal reaction force exerted by the substrate (figure 2). The
moment of touchdown (see figure 2a,b, t = 0 to t1) (Wagner 1932; Philippi et al. 2016;
Gordillo et al. 2018) is not surprisingly associated with a pronounced peak in the temporal
evolution of the drop impact force F(t) owing to the sudden deceleration as high as 100
times the acceleration due to gravity (Clanet et al. 2004) (figure 2a, F1/(ρdV2

0 D2
0) ≈

0.82, 0.92, 0.99 for Oh = 0.0025, 0.06 and 0.2, respectively; at t1 ≈ 0.03
√
ρdD3

0/γ ). The
force diminishes as the drop reaches its maximum spreading diameter (figure 2a,b, t = tm).
Zhang et al. (2022) revealed that also the jump-off is accompanied by a peak in the normal
reaction force, which was up to then unknown (figure 2a, F2/(ρdV2

0 D2
0) ≈ 0.37, 0.337, 0.1

for Oh = 0.0025, 0.06 and 0.2, respectively; for the second force peak amplitude – at time

t2 ≈ 0.42
√
ρdD3

0/γ after impact). The second peak in the force also coincides with the
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Figure 2. Comparison of the drop impact force F(t) obtained from experiments and simulations for the
three typical cases with impact velocity V0 = 1.2, 0.97, 0.96 m s−1, diameter D0 = 2.05, 2.52, 2.54 mm,
surface tension γ ≈ 72, 61, 61 mN m−1 and viscosity ηd = 1, 25.3, 80.2 mPa s. These parameters give Oh =
0.0025, 0.06, 0.2 and We = 40. For the three cases, the two peak amplitudes, F1/(ρdV2

0 D2
0) ≈ 0.82, 0.92, 0.99

at t1 ≈ 0.03
√
ρdD3

0/γ and F2/(ρdV2
0 D2

0) ≈ 0.37, 0.337, 0.1 at t2 ≈ 0.42
√
ρdD3

0/γ , characterize the inertial
shock from impact and the Worthington jet before takeoff, respectively. The drop reaches the maximum

spreading at tmax when it momentarily stops and retracts until 0.8
√
ρdD3

0/γ when the drop takes off (F = 0).
The black and grey dashed lines in (a) mark F = 0 and the resolution F = 0.5 mN of our piezoelectric force
transducer, respectively. (b) Four instances are further elaborated through numerical simulations for (We =
40,Oh = 0.0025), namely (i) t = 0 (touchdown), (ii) t = 0.03

√
ρdD3

0/γ (t1), (iii) t = 0.2
√
ρdD3

0/γ (tmax) and

(iv) t = 0.42
√
ρdD3

0/γ (t2). The insets of (a) exemplify these four instances for the three representative cases
illustrated here. The experimental snapshots are overlaid with the drop boundaries from simulations. We stress
the excellent agreement between experiments and simulations without any free parameters. The left-hand part
of each numerical snapshot shows (on a log10 scale) the dimensionless local viscous dissipation function
ξ̃η ≡ ξηD0/(ρdV3

0 ) = 2Oh(D̃ : D̃), where D is the symmetric part of the velocity gradient tensor, and the
right-hand part the velocity field magnitude normalized with the impact velocity. The black velocity vectors
are plotted in the centre of mass reference frame of the drop to clearly elucidate the internal flow. Also see
supplementary movies SM1–SM3 available at https://doi.org/10.1017/jfm.2024.982.

formation of a Worthington jet, a narrow upward jet of liquid that can form due to flow
focusing by the retracting drop (figure 2a,b, t = t2). Under certain conditions (We ≈ 9,
Oh = 0.0025), this peak can be even more pronounced than the first. This discovery is
critical for superhydrophobicity which is volatile and can fail due to external disturbances
such as pressure (Lafuma & Quéré 2003; Callies & Quéré 2005; Sbragaglia et al. 2007;
Li et al. 2017), evaporation (Tsai et al. 2010; Chen et al. 2012; Papadopoulos et al. 2013),
mechanical vibration (Bormashenko et al. 2007) or the impact forces of prior droplets
(Bartolo et al. 2006a).
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The role of viscosity on drop impact forces

glycerol ρd ηd γ

(wt %) (kg m−3) (mPa s) (mN m−1)

0 1000 1 72
50 1124 5 61
63 1158 10 61
74 1188 25.3 61
80 1200 45.4 61
85 1220 80.2 61

Table 1. Properties of the water–glycerol mixtures used in the experiments. Here ρd and ηd are the density and
viscosity of the drop, respectively, and γ denotes the liquid–air surface tension coefficient (Jha et al. 2020).
These properties are calculated using the protocol provided in Cheng (2008) and Volk & Kähler (2018).

In contrast to our prior study Zhang et al. (2022), which fixed the Ohnesorge number
to that of a 2 mm diameter water drop (Oh = 0.0025), our present investigation reported
in this paper explores a broader parameter space. We systematically and independently
vary the Weber and Ohnesorge numbers, extending the range of Oh to as high as 100.
This comprehensive approach enables us to develop new scaling laws and provides a
more unified understanding of the forces involved in drop impact problems. Our findings
are particularly relevant for applications with varying viscosities and impact velocities
(figure 1).

The structure of this paper is as follows. Section 2 briefly describes the experimental
and numerical methods. Sections 3 and 4 offer detailed analyses of the first and second
peaks, respectively, focusing on their relationships with the Weber number (We) and the
Ohnesorge number (Oh). Conclusions and perspectives for future research are presented
in § 5.

2. Methods

2.1. Experimental method
In the experimental set-up, shown schematically in figure 1(a), a liquid drop impacts a
superhydrophobic substrate. For water drops, such a surface is coated with silanized silica
nanobeads with a diameter of 20 nm (Glaco Mirror Coat Zero; Soft99) resulting in the
advancing and receding contact angles of 167 ± 2◦ and 154 ± 2◦, respectively (Gauthier
et al. 2015; Li et al. 2017). On the other hand, for viscous aqueous glycerine drops,
the upper surface is coated with an acetone solution of hydrophobic beads (Ultra ever
Dry, Ultratech International, a typical bead size of 20 nm), resulting in the advancing
and receding contact angles of 166 ± 4◦ and 159 ± 2◦, respectively (Jha et al. 2020).
The properties of the impacting drop are controlled using water–glycerine mixtures with
viscosities ηd varying by almost two orders of magnitude, from 1 to 80.2 mPa s. Surface
tension is either 72 mN m−1 (pure water) or 61 mN m−1 (glycerol), while density ρd
ranges from 1000 to 1220 kg m−3, as detailed in table 1 (Cheng 2008; Volk & Kähler
2018; Jha et al. 2020). We note that using liquids such as silicone oil can provide a broader
range of viscosity variation when paired with a superamphiphobic substrate (Deng et al.
2012). Additionally, employing drops of smaller radii facilitates the exploration of higher
Ohnesorge numbers (Oh, see (1.2)). The drop diameter D0 is controlled between 2.05
and 2.76 mm by pushing it through a calibrated needle (see Appendix A for details).
Consequently, we calculate Oh using the properties in table 1. The Weber number (We,
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see (1.1)) is set using the impact velocity V0 varying between 0.38 and 2.96 m s−1

by changing the release height of the drops above the substrate. All experiments are
conducted at ambient pressure and temperature. The impact force is directly measured
using a high-precision piezoelectric force transducer (Kistler 9215A) with a resolution
of 0.5 mN. During these measurements, the high-frequency vibrations induced by the
measurement system and the surrounding noise are spectrally removed using a low-pass
filter with a cutoff frequency of 5 kHz, following the procedure in Li et al. (2014), Zhang
et al. (2017), Gordillo et al. (2018) and Mitchell et al. (2019). The experiment also employs
a high-speed camera (Photron Fastcam Nova S12) synchronized at 10 000 f.p.s. with a
shutter speed 1/20 000 s. Throughout the manuscript, the error bars are of a statistical
nature (one standard deviation) and originate from repeated trials. They are visible if they
are larger than the marker size. We refer the readers to the supplementary material of
Zhang et al. (2022) and Appendix A for further details of the experimental set-up and
error characterization of the dimensionless control parameters.

2.2. Numerical framework
In the direct numerical simulations employed for this study, the continuity and the
momentum equations take the form

∇ · v = 0 (2.1)

and
∂v

∂t
+ ∇ · (vv) = 1

ρ
(−∇p + ∇ · (2ηD)+ f γ )+ g, (2.2)

respectively. Here, v is the velocity field, t is time, p is pressure and g is acceleration due
to gravity. We use the free software program Basilisk C that employs the well-balanced
geometric volume of fluid (VoF) method (Popinet 2009, 2018). The VoF tracer Ψ
delineates the interface between the drop (subscript d,ψ = 1) and air (subscript a,ψ = 0),
introducing a singular force f γ ≈ γ κ∇Ψ (κ denotes interfacial curvature, see Brackbill,
Kothe & Zemach (1992)) to respect the dynamic boundary condition at the interface. This
VoF tracer sets the material properties such that density ρ and viscosity η are given by

ρ = ρa + (ρd − ρa)Ψ (2.3)

and
η = ηa + (ηd − ηa)Ψ, (2.4)

respectively. This VoF field is advected with the flow, following the equation

∂Ψ

∂t
+ ∇ · (vΨ ) = 0. (2.5)

Lastly, we calculate the normal reaction force F (t) by integrating the pressure field p at
the substrate,

F (t) =
(∫

A
( p − p0) dA

)
ẑ, (2.6)

where, p0, dA and ẑ are the ambient pressure, substrate area element and the unit vector
normal to the substrate, respectively.

We leverage the axial symmetry of the drop impact (figure 1a). This axial symmetry
breaks at large We (≥100 for water drops and even larger Weber number for more
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viscous drops), owing to destabilization by the surrounding gas after splashing (Xu et al.
2005; Eggers et al. 2010; Driscoll & Nagel 2011; Riboux & Gordillo 2014; Josserand
& Thoroddsen 2016; Zhang et al. 2022). To solve the governing equations ((2.1)–(2.5)),
the velocity field v and time t are normalized by the inertiocapillary scales, Vγ =
√
γ /(ρdD0) and τγ =

√
ρdD3

0/γ , respectively. Furthermore, the pressure is normalized
using the capillary pressure scale pγ = γ /D0. In such a conceptualization, Oh and We
described in § 1 uniquely determine the system. The Ohnesorge number based on air
viscosity Oha = (ηa/ηd)Oh and air–drop density ratio ρa/ρd are fixed at 10−5 and 10−3,
respectively, to minimize the influence of the surrounding medium on the impact forces.
Lastly, we keep the Bond number Bo (see (1.3)) fixed at 1 throughout the manuscript.
In our system, the relevance of gravity is characterized by the dimensionless Froude
number Fr = V2

0/(gD0) = We/Bo which compares inertia with gravity. Throughout this
manuscript, Fr > 1 and gravity’s role is subdominant compared with inertia (for detailed
discussion, see Appendix B). The substrate is modelled as a no-slip and non-penetrable
wall, whereas vanishing stress and pressure are applied at the remaining boundaries to
mimic outflow conditions for the surrounding air. The domain boundaries are far enough
from the drop not to influence its impact process (Lmax � D0, Lmax = 8R in the worst
case). At t = 0, in our simulations, we release a spherical drop whose south pole is
0.05D0 away from the substrate and is falling with a velocity V0. It is important to note
that large experimental drops may deviate from perfect sphericity due to air drag as they
fall after detaching from the needle and potential residual oscillations from detachment.
These shape perturbations are more pronounced in cases with low Weber and Ohnesorge
numbers. To quantify this non-sphericity, we measure the drop’s aspect ratio (horizontal to
vertical diameter) immediately before substrate contact. The precise preimpact drop shape
can significantly influence subsequent impact dynamics (Thoraval et al. 2013; Yun 2017;
Zhang et al. 2019). In our experiments, we constrain our analysis to drops with aspect
ratios between 0.96 and 1.05. Given this narrow range, we posit that the impact of these
shape variations is negligible compared with the experimental error bars derived from
repeated trials under identical nominal conditions. The simulations utilize adaptive mesh
refinement to finely resolve the velocity, viscous dissipation and the VoF tracer fields.
A minimum grid size Δ = D0/2048 is used for this study.

To ensure a perfectly non-wetting surface, we impose a thin air layer (minimum
thickness ∼Δ/2) between the drop and the substrate. This air layer prevents direct contact
between the liquid and solid (Kolinski et al. 2014; Sprittles 2024), effectively mimicking
a perfectly non-wetting surface. The presence of this air layer is crucial for capturing the
dynamics of drop impact on superhydrophobic surfaces, as it allows for the formation of
an air cushion that can significantly affect the spreading and rebound behaviour of the
drop (Ramírez-Soto et al. 2020; Sanjay et al. 2023a). While this approach does not fully
resolve the microscopic dynamics within the air layer itself, such as the high-velocity
gradients and viscous dissipation inside the gas film once it thins below a critical size
(∼10Δ), it has been shown to accurately capture the macroscopic behaviour of drop impact
in the parameter range of interest (Ramírez-Soto et al. 2020; Alventosa, Cimpeanu &
Harris 2023; Sanjay et al. 2023b; García-Geijo, Riboux & Gordillo 2024). We refer the
readers to Sanjay (2022) for discussions about this ‘precursor’ air film method and to
Popinet Collaborators (2013–2023), Sanjay (2024) and Zhang et al. (2022) for details on
the numerical framework.
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Figure 3. Anatomy of the first impact force peak amplitude at low Oh in between 0.0025 and 0.2, see colour
legend: We dependence of the (a) magnitude F1 normalized by the inertial force scale Fρ = ρdV2

0 D2
0 and

time t1 to reach the first force peak amplitude normalized by (b) the inertial time scale τρ = D0/V0 and (c)

the inertiocapillary time scale τγ =
√
ρdD3

0/γ . The Jupyter notebook for producing the figure can be found:
https://www.cambridge.org/S0022112024009820/JFM-Notebooks/files/figure3/figure3.ipynb.

3. Anatomy of the first impact force peak

This section elucidates the anatomy of the first impact force peak and its relationship with
the Weber We and Ohnesorge Oh numbers, first for the inertial limit (§ 3.1, Oh 	 1) and
then for the viscous asymptote (§ 3.2, Oh � 1). The results of this section are summarized
in figure 3 that shows an excellent agreement between experiments and simulations
without any free parameters.

3.1. Low Ohnesorge number impacts
For low Oh and large We, inertial force and time scales dictate the drop impact dynamics
(figures 3 and 4). As the drop falls on a substrate, the part of the drop immediately
in contact with the substrate stops moving, whereas the top of the drop still falls with
the impact velocity (figure 4, from t = t1/4 until t = t1). Consequently, momentum
conservation implies

F1 ∼ V0
dm
dt
, (3.1)

1004 A6-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

98
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.cambridge.org/S0022112024009820/JFM-Notebooks/files/figure3/figure3.ipynb
https://doi.org/10.1017/jfm.2024.982


The role of viscosity on drop impact forces

0 1

–1

1

–1

1

O
h 

=
 0

.0
0
2
5

O
h 

=
 0

.1
O
h 

=
 0

.0
0
2
5

O
h 

=
 0

.1

D0/2

t = t1/4 t = t1/2 t = t1 t = 2t1

‖v‖/V0

(a)

(b)

�
P/

(4
γ
/
D

0
)

�
P/

(ρ
V2 0

)

Figure 4. Direct numerical simulations snapshots illustrating the drop impact dynamics for We = (a) 40 and
(b) 2. The left-hand side of each numerical snapshot shows the pressure normalized by (a) the inertial pressure
scale ρdV2

0 and (b) the capillary pressure scale γ /D0. The right-hand side shows the velocity field magnitude
normalized by the impact velocity V0.

where the mass flux dm/dt ∼ ρdV0D2
0 (Soto et al. 2014; Zhang et al. 2022). As a result,

the first peak amplitude scales with the inertial pressure force (figure 3a)

F1 ∼ Fρ, where Fρ = ρdV2
0 D2

0, (3.2)

for high Weber numbers (We > 30, F1 ≈ 0.81Fρ). Furthermore, the time t1 to reach F1
follows

t1 ∼ D0

V0
= τρ, (3.3)

where, τρ is the inertial time scale. The relation between (3.2) and (3.3) is apparent from
the momentum conservation which implies that the impulse of the first force peak is equal
to the momentum of the impacting drop, i.e. F1t1 ∼ ρdV0D3

0 = Fρτρ (see Gordillo et al.
(2018), Zhang et al. (2022) and figure 3b,c). These scaling laws depend only on the inertial
shock at impact and are wettability-independent (Zhang et al. 2017; Gordillo et al. 2018;
Zhang et al. 2022). For details of the scaling law, including the prefactors, we refer the
readers to Philippi et al. (2016), Gordillo et al. (2018) and Cheng et al. (2022).

Figure 3 further illustrates that this inertial asymptote is insensitive to viscosity
variations up to 100-fold as F1 ∼ Fρ and t1 ∼ τρ for 0.0025 < Oh < 0.2. However,
deviations from the inertial force and time scales are apparent for We < 30 (figure 3),
a phenomenon also reported in earlier work (Soto et al. 2014; Zhang et al. 2022). In these
instances, inertia does not act as the sole governing force but instead complements surface
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Figure 5. Anatomy of the first impact force peak amplitude for viscous impacts from our numerical
simulations: the Oh dependence of (a) the magnitude F1 normalized by the inertial force scale ρdV2

0 D2
0 and (b)

the time t1 to reach the first force peak amplitude normalized by inertial time scale τρ = D0/V0. (c) The Re
dependence of the magnitude F1 normalized by the inertial force scale ρdV2

0 D2
0 as compared with the (implicit)

theoretical calculation of Gordillo et al. (2018). The black line corresponds to the scaling relationship described
in § 3.2. The Weber number is colour-coded.

tension, which dictates the pressure inside the drop ( p ∼ γ /D0 throughout the drop for
We � 1, figure 4b). Zhang et al. (2022) proposed an empirical functional dependence as

F1 =
(
α1ρdV2

0 + α2
γ

D0

)
D2

0, (3.4)

based on dimensional analysis, with α1 and α2 as free parameters which were
determined to be approximately 1.6 and 0.81, respectively, for water (Oh = 0.0025). These
coefficients only deviate marginally in the current work despite the significant increase
in Oh as compared with previous works (Cheng et al. 2022; Zhang et al. 2022). This
consistency underscores the invariance of the pressure field inside the drop to an increase
in Oh (close to the impact region, figure 4a and throughout the drop, figure 4b).

3.2. Large Ohnesorge number impacts
Figure 5 reaffirms the findings of § 3.1 for low Oh that the first impact peak amplitude
F1 and the time to reach this peak amplitude t1 scale with Fρ and τρ , respectively.
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Figure 6. Direct numerical simulations snapshots illustrating the drop impact dynamics for We = 100 and
Oh = (a) 0.05, (b) 0.5 and (c) 5. The left-hand side of each numerical snapshot shows the viscous dissipation
function ξη normalized by the inertial scale ρdV3

0/D0. The right-hand side shows the velocity field magnitude
normalized by the impact velocity V0.

As the Ohnesorge number increases further, the first impact force peak amplitude
normalized with Fρ begins to increase, indicating a transition around Oh ≈ 0.1, where
viscosity starts to play a significant role. At large Oh, we observe the scaling relationship
(figure 5a)

F1 ∼ Fρ
√

Oh. (3.5)

The drop’s momentum is still ρdV0D3
0 which must be balanced by the impulse from

the substrate, F1t1 (see § 3.1, Gordillo et al. (2018), Zhang et al. (2022) and figure 5b).
Consequently, the time t1 follows

t1 ∼ τρ√
Oh
. (3.6)

Figure 5 further shows that these scaling laws are weakly dependent on the Weber
number, as viscous dissipation consumes the entire initial kinetic energy of the impacting
drop (figure 6). Once again, we stress that using the water–glycerol mixtures limits the
range of Oh that we can probe experimentally. We further note that the first peak is robust
and does not depend on the wettability of the substrate. Consequently, to compare with
the existing data such as those in Cheng et al. (2022) with different liquids to cover a
wider range of liquid viscosities and to account for the apparent We-dependence, we plot
F1 compensated with Fρ against the impact Reynolds number Re ≡ √

We/Oh = V0D0/νd.
For the low Re regime, such a plot allows us to describe the We dependence on the prefactor
more effectively, as illustrated in figure 5(c). However, it is important to note that some
scatter is still observed at high Re values, which can be attributed to the We dependence of
the impact force peak amplitude. This lack of a pure scaling behaviour demonstrates how
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the interplay between kinetic energy and viscous dissipation within the drop dictates the
functional dependence of the maximum impact force on Oh.

To systematically elucidate these scaling behaviours in the limit of small Re, we need
to find the typical scales for the rate of change of kinetic energy and that of the rate of
viscous dissipation for the drop impact system. First, we can readily define an average rate
of viscous dissipation per unit mass as

ε̄ ∼ 1
τρ

1
D3

0

∫ τρ

0

∫
Ω

νd(D : D) dΩ dt, (3.7)

where νd is the kinematic viscosity of the drop and dΩ is the volume element where
dissipation occurs. Notice that ε̄ has the dimensions of V3

0/D0, i.e. length squared over
time cubed or velocity squared over time, as it should be for dissipation rate of energy per
unit mass. We can estimate Ω = D2

footlν (figure 6), where Dfoot is the drop’s foot diameter
in contact with the substrate and lν is the viscous boundary layer thickness. This boundary
layer marks the region of strong velocity gradients (∼V0/lν) analogous to the Mirels (1955)
shockwave-induced boundary layer. For details, we refer the authors to Schlichting (1968),
Schroll et al. (2010) and Philippi et al. (2016). Consequently, the viscous dissipation rate
scales as

ε̄ ∼ 1
τρD3

0

∫ τρ

0
νd

(
V0

lν

)2

D2
footlν dt. (3.8)

To calculate Dfoot, we assume that the drop maintains a spherical cap shape throughout the
impact (figure 6). To calculate the distance the drop would have travelled if there were no
substrate, we use the relation d ∼ V0t. Simple geometric arguments allow us to determine
the relation between the foot diameter and this distance, Dfoot ∼ √

D0d (Lesser 1981;
Mandre, Mani & Brenner 2009; Zheng, Dillavou & Kolinski 2021; Bertin 2024; Bilotto
et al. 2023). Interestingly, this scaling behaviour is similar to the inertial limit (Wagner
1932; Bouwhuis et al. 2012; Philippi et al. 2016; Gordillo, Riboux & Quintero 2019) as
discussed by Langley, Li & Thoroddsen (2017) and Bilotto et al. (2023). Furthermore, the
viscous boundary layer lν can be approximated using

√
νdt (Mirels 1955; Eggers et al.

2010; Philippi et al. 2016). Filling these in (3.8), we get

ε̄ ∼ 1
τρD2

0

∫ τρ

0

√
νdV3

0
√

t dt, (3.9)

which on integration gives

ε̄ ∼ √
νdτρV3

0/D
2
0, (3.10)

where τρ is the inertial time scale. Here, we assume that for highly viscous drops, all
energy is dissipated within a fraction of τρ . Filling in (3.10) and normalizing ε̄ with the
inertial scales V3

0/D0,

ε̄

V3
0/D0

∼
√
νdτρ

D2
0

= 1√
Re

=
(

Oh√
We

)1/2

. (3.11)

Next, the kinetic energy of the falling drop is given by

K̇(t) ≡ dK(t)
dt

∼ ρdD3
0ε̄, where K(t) = 1

2
m(V(t))2, (3.12)
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and V(t) is the drop’s centre of mass velocity. The left-hand side of (3.12) can be written
as

K̇(t) = mV(t)
dV(t)

dt
= F(t)V(t). (3.13)

In (3.13), F(t) and V(t) scale with the first impact force peak amplitude F1 and the impact
velocity V0, respectively, giving the typical scale of the rate of change of kinetic energy as

K̇∗ ∼ F1V0. (3.14)

We stress that (3.14) states that the rate of change of kinetic energy is equal to the power
of the normal reaction force, an observation already made by Wagner (1932) and Philippi
et al. (2016) in the context of impact problems. Lastly, at large Oh, viscous dissipation
enervates kinetic energy completely giving (figure 6c, also see Philippi et al. (2016) and
Wildeman et al. (2016))

K̇∗ ∼ F1V0 ∼ ρdD3
0ε̄. (3.15)

Additionally, we use the inertial scales to non-dimensionalize (3.15) and fill in (3.11),
giving

F
Fρ

∼ ε̄

V3
0/D0

∼ 1√
Re

=
(

Oh√
We

)1/2

(3.16)

and using F1t1 ∼ ρdV0D3
0 = Fρτρ ,

t1
τρ

∼
(√

We
Oh

)1/2

. (3.17)

In summary, we use energy and momentum invariance to elucidate the parameter
dependencies of the impact force as illustrated in figure 5. The scaling arguments capture
the dominant force balance during the impact process, considering the relative importance
of inertial, capillary and viscous forces. As the dimensionless viscosity of impacting
drops increases, the lack of surface deformation increases the normal reaction force (3.16).
Further, the invariance of incoming drop momentum implies that this increase in normal
reaction force occurs on a shorter time scale (3.17).

4. Anatomy of the second impact force peak

This section delves into the anatomy of the second impact force peak amplitude F2 as a
function of the Weber We and Ohnesorge Oh numbers, summarized in figure 7. We once
again note the remarkable agreement between experiments and numerical simulations in
this figure.

Similar to the mechanism leading to the formation of the first peak (§ 3), also
the mechanism for the formation of this second peak is momentum conservation. As
the drop takes off from the surface, it applies a force on the substrate. As noted
in § 1 and Zhang et al. (2022), this force also coincides with the formation of a
Worthington jet (figure 2 iv). The time t2 at which the second peak is observed scales
with the inertiocapillary time scale and is insensitive to We and Oh (figure 7b,c). Once
again, we invoke the analogy between drop oscillation and drop impact to explain this
behaviour (Richard, Clanet & Quéré 2002; Chevy et al. 2012). At the time instant
t2 ≈ 0.44τγ , the drop’s internal motion undergoes a transition from a predominantly
radial flow to a vertical one due to the formation of the Worthington jet (Chantelot 2018;
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Figure 7. Anatomy of the second impact force peak amplitude: We dependence of the (a) magnitude F2
normalized by the inertial force scale Fρ = ρdV2

0 D2
0 and time t2 to reach the second force peak amplitude

normalized by (b) the inertiocapillary time scale τγ =
√
ρdD3

0/γ and (c) inertial time scale τρ = D0/V0.
The Jupyter notebook for producing the figure can be found: https://www.cambridge.org/S0022112024009820/
JFM-Notebooks/files/figure7/figure7.ipynb.

Zhang et al. 2022). Figure 8 exemplifies this jet in the Oh–We parameter space, which
is intricately related to the second peak in the drop impact force. For low Oh and large
We, the drop retraction follows a modified Taylor–Culick dynamics (Bartolo et al. 2005;
Eggers et al. 2010; Sanjay et al. 2022). As We is increased, the jet gets thinner but faster,
maintaining a constant momentum flux ρdV2

j d2
j , where Vj and dj are the jet’s velocity and

diameter, respectively (figure 8, Zhang et al. (2022)). This invariance leads to the observed
scaling F2 ∼ Fρ in this regime (F2 ≈ 0.37Fρ for We ≥ 30,Oh ≤ 0.01).

Furthermore, the low We and Oh regime relies entirely on capillary pressure (figure 4).
Subsequently, F2 ∼ Fγ = γD0 for Oh < 0.01 and We < 30 (figure 7). This flow focusing
(figure 8) is most efficient for We = 9 (figure 9a, t2/2 < t < t2, Renardy et al. (2003) and
Bartolo, Josserand & Bonn (2006b)) where the capillary resonance leads to a thin-fast
jet, accompanied by a bubble entrainment, reminiscent of the hydrodynamic singularity
(figure 9, Sanjay, Lohse & Jalaal (2021) and Zhang et al. (2022)). The characteristic feature
of this converging flow is a higher magnitude of F2 compared with F1 (figure 7).

However, this singular jet regime is very narrow in the Oh–We phase space. Figure 9(b)
shows two cases for water drops (Oh = 0.0025) at different We (We = 5 and 12 for
figures 9b i and 9b ii, respectively). Bubble entrainment does not occur in either of
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Figure 8. Direct numerical simulations snapshots illustrating the influence of We and Oh on the inception of
the Worthington jet. All these snapshots are taken at the instant when the second peak appears in the temporal
evolution of the normal reaction force (t = t2). The left-hand side of each numerical snapshot shows the viscous
dissipation function ξη normalized by the inertial scale ρdV3

0/D0. The right-hand side shows the velocity field
magnitude normalized by the impact velocity V0. The grey velocity vectors are plotted in the centre of mass
reference frame of the drop to clearly elucidate the internal flow.

these cases. Consequently, the maximum force amplitude diminishes for these two cases
(figure 7). Nonetheless, these cases are still associated with high local viscous dissipation
near the axis of symmetry owing to the singular nature of the flow. Another mechanism to
inhibit this singular Worthington jet is viscous dissipation in the bulk. As the Ohnesorge
number increases, this singular jet formation disappears (Oh = 0.005, figure 9c i),
significantly reducing the second peak of the impact force. For even higher viscosities,
the drop no longer exhibits the sharp, focused jet formation seen at lower viscosities, and
the second peak in the force is notably diminished (Oh = 0.05, figure 9c ii).

Lastly, as Oh increases, bulk dissipation becomes dominant (apparent from increasing
Oh at fixed We in figure 8) and can entirely inhibit drop bouncing. Recently, Jha et al.
(2020) and Sanjay et al. (2023a) showed that there exists a critical Oh, two orders of
magnitude higher than that of a 2 mm diameter water drop, beyond which drops do not
bounce either, irrespective of their impact velocity. Consequently, the second peak in
the impact force diminishes for larger Oh, which explains the monotonic decrease of the
amplitude F2 observed in figure 7 for We > 30,Oh > 0.01.

5. Conclusion and outlook

In this work, we study the forces and dissipation encountered during the drop impact
process by employing experiments, numerical simulations and theoretical scaling laws.
We vary the two dimensionless control parameters – the Weber (We, dimensionless impact
kinetic energy) and the Ohnesorge number (Oh, dimensionless viscosity) independently to
elucidate the intricate interplay between inertia, viscosity and surface tension in governing
the forces exerted by a liquid drop upon impact on a non-wetting substrate.
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Figure 9. Direct numerical simulations snapshots illustrating the influence of We and Oh on the singular
Worthington jet: (a) (We,Oh) = (9, 0.0025); (b) Oh = 0.0025 with We = (i) 5 and (ii) 12; (c) We = 9 with
Oh = (i) 0.005 and (ii) Oh = 0.05. The left-hand side of each numerical snapshot shows the viscous dissipation
function ξη normalized by inertial scale ρdV3

0/D0. The right-hand side shows the velocity field magnitude
normalized by the impact velocity V0.

For the first impact force peak amplitude F1, owing to the momentum balance after
the inertial shock at impact, figure 10(a) summarizes the different regimes in the Oh–We
phase space. For low Oh, inertial forces predominantly dictate the impact dynamics,
such that F1 scales with the inertial force Fρ (Philippi et al. 2016; Gordillo et al. 2018;
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Figure 10. Regime map in terms of the drop Ohnesorge number Oh and the impact Weber number We to
summarize the two peaks in the impact force by showing the different regimes described in this work based
on (a) the first peak in the impact force peak amplitude F1 and (b) the second peak in the impact force peak
amplitude F2. Both peaks are normalized by the inertial force scale Fρ = ρdV2

0 D2
0. These regime maps are

constructed using ∼ 1500 simulations in the range 0.001 ≤ Oh ≤ 100 and 1 ≤ We ≤ 1000. The grey solid
line in (a) and dashed line in (b) mark the inertial–viscous transition (Re = 1) and the bouncing–no-bouncing
transition (Ohc = 0.53 for Bo = 1, see Sanjay et al. (2023a)), respectively.

Mitchell et al. 2019; Cheng et al. 2022; Zhang et al. 2022) and is insensitive to viscosity
variations up to 100-fold. As Oh increases, the viscosity becomes significant, leading to
a new scaling law: F1 ∼ Fρ

√
Oh. The paper unravels this viscous scaling behaviour by

accounting for the loss of initial kinetic energy owing to viscous dissipation inside the
drop. Lastly, at low We, the capillary pressure inside the drop leads to the scaling F1 ∼ Fγ
(Chevy et al. 2012; Moláček & Bush 2012).

The normal reaction force described in this work is responsible for deforming the
drop as it spreads onto the substrate, where it stops thanks to surface tension. If the
substrate is non-wetting, it retracts to minimize the surface energy and finally takes off
(Richard & Quéré 2000). In this case, the momentum conservation leads to the formation
of a Worthington jet and a second peak in the normal reaction force, as summarized in
figure 10(b). For low Oh and high We, the second force peak amplitude scales with the
inertial force (Fρ), following a modified Taylor–Culick dynamics (Eggers et al. 2010). In
contrast, capillary forces dominate at low We and low Oh, leading to a force amplitude
scaling of F2 ∼ Fγ . We also identify a narrow regime in the Oh–We phase space where a
singular Worthington jet forms, significantly increasing F2 (Bartolo et al. 2006b; Zhang
et al. 2022), localized in the parameter space for We ≈ 9 and Oh < 0.01. As Oh increases,
bulk viscous dissipation counteracts this jet formation, diminishing the second peak and
ultimately inhibiting drop bouncing.

Our findings have far-reaching implications, not only enriching the fundamental
understanding of fluid dynamics of drop impact but also informing practical applications
in diverse fields such as inkjet printing, public health, agriculture and material science
where the entire range of Oh–We phase space is relevant (figures 1b and 10). While this
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has identified new scaling laws, it also opens avenues for future research. For instance, it
would be interesting to use the energy accounting approach to unify the scaling laws for the
maximum spreading diameter for arbitrary Oh (Laan et al. 2014; Wildeman et al. 2016).
Although, the implicit theoretical model summarized in Cheng et al. (2022) describes most
of data in figure 5, we stress the importance of having a predictive model to determine F1
for given We and Oh (Sanjay & Lohse 2024). The We influence on the impact force also
warrants further exploration, especially in the regime We 	 1 for arbitrary Oh (Chevy
et al. 2012; Moláček & Bush 2012) and drop impact on compliant surfaces (Alventosa et al.
2023; Ma & Huang 2023). Another potential extension of this work is to non-Newtonian
fluids (Martouzet et al. 2021; Agüero et al. 2022; Bertin 2024; Jin et al. 2023).

Supplementary material. Computational Notebooks files are available as supplementary material at https://
doi.org/10.1017/jfm.2024.982 and online at https://www.cambridge.org/S0022112024009820/JFM-Notebooks.
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Appendix A. Note on the error characterization for the control parameters

This appendix outlines the methodology for characterizing experimental errors in
quantification of the drop’s size and impact velocities which is crucial for accurate
calculation of the dimensionless control parameters We and Oh. The drop diameter
determination involves multiple steps. First, we measure the total mass (M100) of 100 drops
using an electric balance. From this mass, using the liquid density and assuming spherical
shape, we calculated the drop diameter (D0). We repeated this process five times, yielding
D0,1 to D0,5. The average of these measurements provided the final drop diameter (D0) and
its standard error. For impact velocity determination, we extracted data from experimental
high-speed imagery. By tracking the drop centre’s position in successive frames prior
to substrate contact, and knowing the frame rate, we calculated the impact velocity. We
repeated this process for five trials, obtaining V0,1 to V0,5. The average of these values
gave the final impact velocity (V0) and its standard error.

The standard errors for drop diameters do not exceed 0.13 mm. For instance, drops
with Ohnesorge numbers of 0.0025, 0.06 and 0.2 have diameters of 2.05 ± 0.13 mm,
2.52 ± 0.11 mm and 2.54 ± 0.09 mm, respectively. The standard errors for impact
velocities did not exceed 0.02 m s−1. For the same Oh values, the impact velocities were
1.2 ± 0.002 m s−1, 0.97 ± 0.01 m s−1 and 0.96 ± 0.01 m s−1, respectively. The combined
errors in D0 and V0 resulted in approximately ±7 % error in Weber number We and ±3 %

1004 A6-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

98
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.982
https://doi.org/10.1017/jfm.2024.982
https://www.cambridge.org/S0022112024009820/JFM-Notebooks
https://orcid.org/0000-0002-4293-6099
https://orcid.org/0000-0002-4293-6099
https://orcid.org/0000-0001-8550-2584
https://orcid.org/0000-0001-8550-2584
https://orcid.org/0000-0001-8016-6462
https://orcid.org/0000-0001-8016-6462
https://orcid.org/0000-0003-4138-2255
https://orcid.org/0000-0003-4138-2255
https://doi.org/10.1017/jfm.2024.982


The role of viscosity on drop impact forces

0

0

0.2

0.6

0.4

0.8

1.0

0.80.2 0.4 0.6

Bo = 0

Bo = 0.5

Bo = 1

Bo = 1.25

S
im

u
la

ti
o
n
s

F/
(ρ
dV

2 0
D

2 0
)

t/�ρdD3
0/γ

F1 = F(t = t1)

F2 = F(t = t2)

Figure 11. Comparison of the drop impact force F(t) obtained from simulations for the four different Bond
numbers Bo = 0, 0.5, 1, 1.25. Here, Oh = 0.06 and We = 40. Both force peaks F1 and F2 as well as time to
reach these peaks t1 and t2 are invariant to variation in Bo.

error in Ohnesorge number Oh. Consequently, the horizontal error bars, which relate to
errors in the control parameters, are smaller than the symbol sizes in our figures.

Appendix B. Role of gravity on drop impact forces

Following table 1 and considering the variation in impacting drop diameter (Appendix A),
the Bond number (1.3) in our experiments ranges from 0.5 to 1.25, introducing an
additional dimensionless control parameter alongside We and Oh. Gravity typically plays a
negligible role in these impact processes (Sanjay et al. 2023a; Sanjay & Lohse 2024). We
undertook a sensitivity test varying the Bond number from 0 to 1.25 in our simulations.
Figure 11 confirms the leading-order Bond invariance of the results as the impact force
profiles, including both force peaks F1 and F2 and their corresponding times t1 and t2,
remain invariant to these Bond number variations. Notably, while gravity does play a role
in drop impact dynamics, particularly for longer time scales and in determining the critical
Ohnesorge number Ohc for bouncing inhibition (see figure 10b and Sanjay et al. (2023a)),
its effect on the initial impact force peaks is minimal for the parameter range studied
here (large Froude numbers, Fr > 1). This Bond number invariance allows us to focus on
the more dominant effects of Weber and Ohnesorge numbers. Consequently, we selected
the representative value of Bo = 1, corresponding to a diameter of 0.00254 mm, density
1000 kg m−3, gravitational acceleration 10 m s−2 and surface tension 0.061 N m−1.
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