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Maximum Principles for Subharmonic
Functions Via Local Semi-Dirichlet Forms

Kazuhiro Kuwae

Abstract. Maximum principles for subharmonic functions in the framework of quasi-regular local
semi-Dirichlet forms admitting lower bounds are presented. As applications, we give weak and strong
maximum principles for (local) subsolutions of a second order elliptic differential operator on the
domain of Euclidean space under conditions on coefficients, which partially generalize the results by
Stampacchia.

1 Introduction

In this paper, we show maximum principles for €-subharmonic functions in the
framework of quasi-regular local semi-Dirichlet forms (€, F) with lower semibound-
edness. The maximum principle for (sub)harmonic functions with respect to Lapla-
cian on the domain of Euclidean space has played an important role in partial dif-
ferential equations, spectral geometry and so on. In particular, the weak maximum
principle assures the uniqueness of the solution of a Dirichlet boundary value prob-
lem. Consider a bounded open domain G in R? and the second order elliptic operator
L defined by —Lu = —(1/2) div(aVu) + (b, Vu)pa + div(ug) + cu with a uniformly
elliptic symmetric matrix valued measurable function a on G and bounded coeffi-
cients b, b con Gwith c — divh > 0 on G in the distributional sense. In Gilbarg—
Trudinger [22], maximum principles for the subsolution u € H'(G) of Lu = 0
are presented. In the case of the second order elliptic operator L with coefficients

be LG — RY), b e (G — RY), c e LT=U%G) for p,qg > d > 3 and uni-
formly elliptic a on G, a weak (resp. strong) maximum principle for the subsolution
(resp. solution) u € HI(G) of Lu = 0isprovedif p = q =d and ¢ — divh > ¢
on G with positive constant ¢y (resp. p = d, g > dand ¢ = divh = 0 on G) by
Stampacchia [42]. Here H! (G) is the completion of C!(G) with respect to the norm
of H'(G). R.-M. Hervé and M. Hervé [23] also gave a version of a generalized (weak)
maximum principle in the framework of Stampacchia under mild conditions. It is
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well known that the generalized (weak) maximum principle is a consequence of the
weak maximum principle. Their generalized (weak) maximum principle is weaker
than a usual generalized maximum principle and is described on a neighborhood on
the boundary (see [23, Théoreme 4]). After that, Chen and Wu [7] showed Stam-
pacchia’s weak maximum principle for the subsolution u € H'(G) of Lu = 0 under
the same conditions without assuming ¢ — divh > ¢ > 0 on G, but they assume
the boundedness of G and the bound of the sum of norms of |b|, [b| € L%(G) and
¢ € LY?(G) is the same as half of the upper bound of a. Edmunds—Evans [11] also
presented a weak maximum principle under the coercivity of forms. They also con-
sidered the case for d = 1, 2. Putting by := b — b, their condition is that |bo| € LP(G)
forp > 1ifd=2,orforp>1ifd=1.

The second purpose of this paper is the application of our maximum principles
and showing an extension of Stampacchia’s weak maximum principles without as-
suming the coercivity of forms. More precisely, under d > 1, the finiteness of the
volume of G and a milder condition than the integrability of coefficients, we prove a
weak maximum principle for the local subsolution u € H{(G)joc of Lu = 0 having
an (&E-)upper bounded (strictly €-quasi-)continuous extension for (not necessarily
bounded) open set G, and also give strong maximum principles (see Theorems 8.1
and 8.4 below). However, our strong maximum principle does not completely cover
Stampacchia’s (see Remark 8.5). We also give the complete extension of Stampac-
chia’s (also Chen and Wu’s) weak maximum principle for the subsolution u € H'(G)
of Lu = 0 under the same conditions as above, but without assuming the finiteness of
the volume of G (see Theorem 8.2 and Remark 8.4). Our conditions for coefficients
b, E, c are related to the classical Hardy inequality, cf. [12, 14].

Let us state our framework and main theorems. Let X be a separable metric
space and m a o-finite Borel measure on X. We consider a quasi-regular local semi-
Dirichlet form (&, ) with a lower bound —y on L*(X;m) (y > 0). Under the
quasi-regularity of (€, F), we may assume that X is a Lusin topological space (see
Remark 4.3 below). Here (&, F) is said to be a semi-Dirichlet form with a lower bound
—~ on L*(X; m) if (€,,F) is a non-negative definite coercive closed bilinear form
on L*(X;m) and foru € F, u" A1 € Fand E(ut A 1,u — u* A1) > 0, where
Ey(u,v) := E(u,v) + y(u,v)m, u,v € F. In this definition, (£,,F) on L2(X;m) is
also a semi-Dirichlet form in the usual sense as in [32]. See the definitions of semi-
Dirichlet form and its quasi-regularity in Section 3 below. We fix a non-empty open
set G with non-empty boundary and consider the part space (£, Fg) on L*(G; m)
(see Definition 3.1 below), which is again a local quasi-regular semi-Dirichlet form
with a lower bound —v on L*(G; m). Let (F¢)j,. be the family of functions locally in
F; (Definition 3.2) and u € (‘{}:G)loc is said to be €g-subharmonic on G if there exists
an exhaustion {G;} of €-quasi-open sets with u|g, € Fs|g, and =, Gi = G €g-q.e.
such that &(u,v) < 0forv € =, FE.. If X is locally compact and m is a Radon
measure on X with full support, then for u € (F¢)),., @ function locally in Fg in the
ordinary sense (see the argument before Proposition 3.2), u is €g-subharmonic on
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Gifand only if E(u,v) < 0forallv € F N C§(G). We further need the following
assumption.

Assumption 1.1 (i)  There exists an m-Hunt diffusion process M = (€2, X;, Py)
associated with (&, F).

(ii) M satisfies Py(76 < o0) = 1 m-a.e. x € X, where 76 := inf{t > 0| X; ¢ G} is
the first exit time from G.

See Definition 4.2 for the definition of an m-Hunt diffusion process. We expose
several criteria for Assumption 1.1(ii).

Proposition 1.1 Take a finely open (nearly) Borel set O. Under Assumption 1.1(i),
the following are sufficient conditions for Py(1o < 00) = 1 m-a.e. x € X.

(i)  Mis a transient doubly Feller process and O is relatively compact open.

(i) X\ Oisnon E-polar, (€, F) is irreducible and M is recurrent, that is, Rf = 0 or
= 00 for any nonegative Borel function f on X.

(iii) M is transient, m(O) < oo and the dual form (g, F) of (€,F) is also a semi-
Dirichlet form with the same lower bound —~ on L*(X; m).

(iv)  (&,F) is a symmetric Dirichlet form with a lower bound 0 on L*(X; m), m(O) <
00, and assume one of the following:
(@) (Eo,TF0) is transient;
(b) M admits a symmetric heat kernel p,(x, y) satisfying the Nash-type esti-

mate sup, ¢ x pi(x,y) < Ct=/? for some v > 0, C > 0.

Remark 1.1 Assumption 1.1(i) is satisfied if X is a locally compact separable metric
space, m is a positive Radon measure with full topological support and (£,5) is a
local regular semi-Dirichlet form with a lower bound —v on L?(X;m). This was
noted by Carrillo-Menendez [6]. It should be true that Assumption 1.1(i) holds if
(€, 9) is a strictly quasi-regular local semi-Dirichlet form (&, F) with a lower bound
— on L*(X; m). This was shown by Albeverio, Ma, and Rockner [2] for v = 0. For
general v > 0, the proof should be described.

Under Assumption 1.1, we have the following.

Theorem 1.1 (Weak maximum principleI) Suppose that Assumption 1.1 holds. Let
1 € (F6)1oc N C(G) be an upper bounded E g-subharmonic function on G.

(i)  Wehave supg u < supyg u'; in particular, supg u = supyg u if u > 0 on 0G.
(ii)  If1is Eg-harmonic on G, then supg u = supy u.

Theorem 1.2 (Comparison principle, Harnack’s first theorem) Suppose Assump-
tion 1.1 holds. Then the following assertions hold.

(i) Letuce (‘{}:G)loc be an upper bounded € g-subharmonic function on G which has
a continuous extension u on G. Then u < 0 on G implies u < 0 on G.
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(ii)  Suppose that 1 is Eg-harmonic on G and v = 0. Let {u,}pen C (F6)ioe N
Cy(G) be a family of bounded € -harmonic functions on G possessing continuous
extensions on G. Assume that u, converges uniformly on OG. Assume that G is
either relatively compact or u, € F|g. Then there exists an € g-harmonic function
ue (3".@)10C N Cy(G) such that u,, converges to u uniformly on G.

The next corollary is a slightly extended version of the above theorem.

Corollary 1.1 (Weak maximum principle II) Let G be an E-quasi-open set with a

non E-polar E-quasi-boundary E-0G. Suppose that Assumption 1.1 holds. Let u €

(F6)1oc be an Eg-subharmonic function on G which has a strictly &-quasi-continuous

extension u on X such that u is E-upper bounded on G°. Then

(i) Wehave E-supze u < E-supg o u'. In particular, E-supze t = E-supg o6 U
ifu >0 &-q.e.on IG.

(i)  If1is Eg-harmonic on G, then E-supge t = E-supg o U.

Here €-sup, means the €-quasi-essentially supremum on A defined by

E-sup f:=inf{lk e R| {f >k} NAis E-polar};
A

f is said to be E-upper bounded on A if E-sup, f < oo; and f is called strictly E-
quasi-continuous on X if there exists a strictly E-nest {F,} of closed sets such that
flr,ugay is continuous on F, U {A}. Note that if f is &-quasi-continuous on an
&-quasi-open set A, then E-sup, f coincides with the m-essentially supremum on
A (see the definitions of (strictly) E-nest and €-quasi-continuity, and €-quasi-open
sets in Section 3 below).

Now we state our strong maximum principle.

Consider a quasi-regular local semi-Dirichlet form (&, F) with a lower bound —v
on L?(X;m) again. We assume that there exists a Borel right process M” associated
with the semi-Dirichlet form (€., F) in the usual sense. Denote by C((X) the family
of Borel finely continuous functions with respect to M” (see the definitions of fine
continuity, m-tightness and m-special standardness in Definition 4.2). We say that
M?" satisfies the absolute continuity condition with respect to m if the transition kernel
p! (x,dy) of M7 is absolutely continuous with respect to m(dy) for any ¢t > 0 and
x € X. And (&€,,9) is called irreducible if any Borel set B with the property that
Igu € J for u € F always satisfies m(B) = 0 or m(B°) = 0. We have the following.

Theorem 1.3 (Strong maximum principleI) Suppose that M" satisfies the absolute
continuity condition with respect to m and (€.,, F) is irreducible. Let u € Froc N Cr(X)
be an E-subharmonic Borel function on X.

(1) Ifu attains its maximum at some xo € X, then we have ut = u* (xp).
(if)  Suppose that 1 is E-harmonic on X. If u attains its maximum at some xy € X,
then we have u = u(xg).
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The next corollary is an easy consequence of the above theorem.

Corollary 1.2 Under the same conditions as in the above theorem, we have the fol-
lowing. Letu € Froc N C¢(X) be an E-subharmonic function on X. Assume that u is not
constant on X.

(1) If u attains its maximum at xy € X, then u(xg) < 0, namely, u has no non-
negative maximum in X.
(ii)  Suppose that 1 is E-harmonic on X. Then u does not attain its maximum in X.

Theorem 1.4 (Strong maximum principleII)  Suppose that M7 satisfies the absolute
continuity condition with respect to m and (€., F) is irreducible. Let u € Fioc be an
E-subharmonic finely upper semi continuous Borel function on X with respect to M”
and G a nonempty finely open set.

(1) Ifu attains its maximum at any xg € G, then we have u™ = u* (xp).
(ii)  Suppose that 1 is E-harmonic on X. If u attains its maximum at any xy € G,
then we have u = u(xy).

The constitution of this paper is as follows: in Section 2, we summarize the basic
facts on coercive closed forms which are needed to analyze positivity preserving or
semi-Dirichlet forms later. In Section 3, we build up several useful tools and prop-
erties of quasi-regular local positivity preserving forms and also quasi-regular local
semi-Dirichlet forms. In Section 4, we analyze the (Borel) right processes on Radon
spaces associated with quasi-regular semi-Dirichlet forms with lower bounds. In Sec-
tion 5, we give an irreducibility criterion for quasi-regular semi-Dirichlet forms with
lower bounds and a criterion for connectedness of the fine topology of corresponding
right process, which are utilized in the proof of our strong maximum principle. In
Section 6, we investigate the structure of £-subharmonic functions for quasi-regular
local positivity preserving/semi-Dirichlet forms with lower bounds. In Section 7, we
give the proofs of Theorem 1.1, Corollary 1.1, and Theorem 1.2, and finally we prove
Theorems 1.3 and 1.4. In Section 8, we first apply our maximum principles to the
framework of the second order elliptic equation with Hardy class coefficients as noted
above and extend Stampacchia’s weak maximum principles. Secondly, we show that
a regular strongly local symmetric Dirichlet form associated with a doubly Feller dif-
fusion admitting a continuous heat kernel satisfies the strong maximum principle in
our sense.

2 Coercive Closed Forms

Throughout this paper, we basically assume that X is a separable metric space and m
is a o-finite Borel measure on X. Denote by B(X) the topological o-field or Borel
functions on X and by B, (X) the bounded Borel functions. We take another point
A and endow Xp := X U {A} with a topology of one point compactification if
X is locally compact; otherwise A is added as an isolated point. Let B(Xa) be the
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topological o-field on Xa. The measure m can be extended on (Xa, B(Xa)) by set-
ting m({A}) = 0. Let L°(X;m) be the totality of m-measurable real functions on
X, LP(X;m) the totality of p-th power m-integrable functions on X for p > 0, and
L*°(X; m) the totality of bounded m-measurable functions on X. We let

K(X):={peLl'(X;m)|0< ¢ <1m-ae onX}.

Every positive Borel measure i on X admits the support of o defined by supp[p] :=
{x € X | u(G) > 0 for any open neighborhood G of x}. For u € L°(X;m), we set
supplu] := supp(|u|m]. For functions u, v on X, we write u V v := max{u,v},
uAv:=min{u,v}, u" := uVO0,u" := (—u) V0. For a subfamily A of L°(X;m),
we denote Ay := A N L>®(X;m), At := {u € A | supp[u] is compact}, A* (or A,)
={ueA|u>0mae}, A (or A_):={u € A| u <0 m-ae.}. For subfamilies
A, Ay of LO(X;m), weset Ay AAy = {uAv|u€ A,veA}and A VA, =
{uvv|ue A,veA,}. Notethat AV{0} # A" in our notation. Let £ be a bilinear
form with domain J on the real Hilbert space L?(X; m) with inner product (-, - ),,
and norm || - [|o. We set E,(u,v) := E(u,v) + a(u,v)m, a > 0, g(u,v) = &(v, u),
€°(u,v) = (1/2){&(u,v) + E(u,v)} and E(u,v) := (1/2){E(u,v) — E(u,v)} for
u,v € F. We call €°, & the symmetric, anti-symmetric part of &, respectively. We
simply write E(u) := E(u,u), Eq4(u) := Eo(u,u) foru € F a > 0. Fixy > 0. A
bilinear form (&, F) with dense domain F in L2(X; m) is called a coercive closed form
with a lower bound —~ on L*(X; m) if the following conditions hold:

i (8?/,, F) is non-negative definite and closed on L?(X; m).
* (Weak sector condition) for each o > =, there exists a constant K, > 0 such that
1Ea(u, V)| < Koo, ) /2E,(v,v)!/? for any u,v € F.
When v = 0, we may omit the phrase “with a lower bound 0”. If (£, F) is a coercive
closed form with a lower bound —v on L?(X; m), then clearly (€4,T) is a coercive
closed form on L*(X; m).
The following projection theorem is due to Stampacchia.

Theorem 2.1 ([33, Ch. 1. Theorem 2.6]) Let (€, F) be a coercive closed form with a
lower bound —v on L*(X; m) and T' a non-empty closed convex subset of F. Let ] be a
continuous linear functional on F and o« > . Then there exists a unique v € T" such
that Eo(v,w) > J(w) forallw € I' —v. HereI' —v := {w—v | w € T'}. In particular,
if I is a closed subspace of F, then E,(v,w) = J(w) forallw € T.

Corollary 2.1 (a-projection) Let (€, F) be a coercive closed form with a lower bound
—v on L*(X;m) and T a non-empty closed convex subset of F. For any u € F and
o > 7, there exists a unique v € I such that E,(u —v,w) < Oforallw € I' —v. In
particular, if T is a closed subspace of F, then E,(u — v, w) =0 forallw € T,

Proof It suffices to set J(v) := &, (u, v) in the previous theorem. This completes the
proof. ]
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For any coercive closed form (&, ) (resp. the dual form (E, F)) with a lower
bound —v on L*(X;m) and o > ~ we say that v specified in the above corollary
with respect to (€, F) (resp. (E, F)) is the a-projection (resp. a-coprojection) of u on
I denoted by II{ (1) (resp. ﬁ%(u)).

Let (€, F) be a coercive closed form with a lower bound —v on L2(X;m). Ap-
plying Theorem 2.1 to (&, F) for J(w) := (f, W), f € [*(Xsm), and [ := F, we
get a family (G, ) (resp. ((A;a )a>~) of strongly continuous resolvents (resp. coresol-
vents) on L*(X; m), a family (T})~ (resp. (ﬁ),>o) of strongly continuous semigroups
(resp. cosemigroups) on L?(X; m) and a closed operator L (resp. f) on L*(X; m) such
that for o >

€0(Gof,v) = Ea(v,Guf) = (f, V) for f € IX(X;m),v € T,

* Gof = [0 e ®Tfds, Gof = [[° e T.f dsfor f € L*(X;m),

* L (resp. ) is the generator of T; (resp. ﬁ): T, = e'*, t > 0 (resp. ﬁ = e’z, t>0)
with the property that (a«—~)G,, (resp. (« —’y)@a) and e~ " T, (resp. e_””ﬁ) are con-
tractive operators on L?(X; m). It is known thai there 1/5\ a one-to-one correspondence
among (€, F), (Ga)asys (Ti)i0 and L (resp. (€, F), (Ga)asy» (Ti)i>0 and f).

Proposition 2.1 Let (€,F) be a coercive closed form with a lower bound —~ on
L*(X;m) and T a closed subspace of F. For any u,v € F and o > -y, we have

(T (1), v) = &0 (TTR (1), T (V) = € (u, TIE(v)).

In particular, 11} (G, f), g) = (f, ﬁfi(@ag))for any f,g € L2(X; m).

A coercive closed form (€, ) with a lower bound —v on L*(X; m) is called a pos-
itivity preserving form if in addition

* (Positivity preserving property) foreveryu € F,u* € Fand E(u™,u™) < 0.

The next proposition is shown in [34].

Proposition 2.2 ([34]) Suppose that (€,F) is a coercive closed form with a lower
bound —~ on L*(X;m). Let (Ga)as~ (resp. (Ty)iso) be the associated resolvent
(resp. semigroup) on L*(X; m). Then the following are equivalent.

(i) Foralue F,ut,u €eFand E(u,u") <0.

(ii)) Forallue F,u~ € Fand E(u,u™) < y|lu= |3

(iii) Forallu e F,u* € Fand E(u,u*) > —||u'|3.

(iv) Fora > yand f € L*(X;m), 0 < f implies0 < aG,f.

(v)  Fort>0and f € L*(X;m), 0 < f implies0 < T; f.

Hence, a coercive closed form (€, F) with a lower bound —v on L?(X; m) is posi-
tivity preserving if and only if for & > 7y (resp. t > 0), G, f > 0 m-a.e. (resp. T, f >
0 m-a.e.) if f > 0 m-a.e.

For any positivity preserving form (€, F) with a lower bound —~ on L*(X;m),
(g, JF) and (€°,TF) are also positivity preserving forms with a lower bound —v on
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L*(X;m) (see [34, Remark 1.4(i)]). In particular, for any positivity preserving form
(&, ) with a lower bound —~ on L?(X;m), J is a vector lattice, namely,

(2.1) uveF = unvedF, EwAv)<Ewu)+EW).

A coercive closed form (&, F) with a lower bound —v on L2(X; m) is called a semi-
Dirichlet form if it satisfies

* (Semi-Dirichlet property) for every u € &,
u"A1€TF and E(wAlLu—u"Al)>0.

The next proposition is due to Kunita [24] which is a generalization of [33, Ch. I,
Proposition 4.3, Theorem 4.4]. We will give a proof for the reader’s convenience.

Proposition 2.3 ([24]) Suppose that (€,F) is a coercive closed form with a lower
bound —~ on L*>(X; m). Let (Ga)as~ (resp. (T})i>0) be the associated resolvent (resp.
semigroup) on L*(X; m). Then the following are equivalent.

(i) PForalueFanda>0,uhNaec FandE(uNa,u—ula)>0.

(i) FPorallue Fut N1 eFandEW Nl,u—u"N1)>0.

(iii) Forallue Fut ANl €FandEu+u ANlu—u* A1) > —v|lu—u* A1
(iv) Fora >~yand f € [*(X;m), 0 < f < 1implies0 < aG,f < 1.

(v)  Fort>0and f € L*(X;m),0< f < 1implies0 < T,f < 1.

Proof Except (iii) = (iv) the proof is the same as in [33, Ch L. Proposition 4.3, The-
orem 4.4]. We only prove (iii) = (iv). Let f € L*(X;m) with 0 < f < 1 and set
u:=aG,f fora >~. Then (u* A1 — f,u—u" A1), > 0asproved in [33, Ch. L
Theorem 4.4]. We have

0> —C&u+u"ANLu—u"' A1) —Ex(u—u" ANl,u—u" A1)
= 28w, u—u" A1) =2y|lu—u" A1
=2(a —Y)|lu—u" A3 +2a(" A1 — fiu—u" A1),

> 2(a—)|lu—u" ALl3 >0,

which implies || — u" A 1]|; = 0,hence 0 < u < 1. [ |

Hence, a coercive closed form (&€, F) with a lower bound —v on L*(X;m) is a
semi-Dirichlet form if and only if for &« >  (resp. t > 0), 0 < aG,f < 1 m-ae.
(resp. 0 < T; f <1 m-ae.) if0 < f <1 m-a.e. [33, Ch. L. Proposition 4.3].

A coercive closed form (€, ) with a lower bound —v on L?(X;m) is called a
Dirichlet form (with a lower bound —~) if both (€, F) and (g, F) are semi-Dirichlet
forms (with a lower bound —v on L(X; m)).
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For any semi-Dirichlet form (€, F) with a lower bound —v on L*(X;m), (€,F),
(g, JF) and (€°,F) are positivity preserving forms with the same lower bound [34,
Remark 1.4(iii)]. So & is a vector lattice.

A coercive closed form (€, F) on L?(X; m) with lower bound — is said to be local
(resp. left-strongly local) if and only if E(u, v) = 0 if supp[u] N supp[v] = & (resp. u
is a constant m-a.e. on a neighborhood of supp(v]) for any u,v € F with compact
supports.

Definition 2.1 (Excessive functions in L?) Let (€,F) be a coercive closed form
with a lower bound —v on L?(X; m) and (T});~o the associated strongly continuous
semigroup on L?(X; m). Fix a > 0. A function u € L*(X; m) is said to be a-excessive
with respect to (€,F) if u > 0 m-a.e. and e”*Tiu < u m-a.e.on X forall ¢t > 0.
We simply say excessive instead of 0-excessive. Remark that for u € L*(X;m) with
e T < um-ae onXforallt > 0, u > 0 m-a.e. on X automatically holds if
a > .

The next lemma is shown in [34] under the positivity preserving property of
forms. We give another proof, somewhat irrelevant, to this property.

Lemma 2.1 Fixana > . Let (€,F) be a coercive closed form with a lower bound
—v on L*(X;m) and u € L*(X; m) satisfies that e"*' T,u < u m-a.e. forallt > 0. If
v € Fandu < v m-a.e., then u € F. Further assume the positivity preserving property
of (€, F). Then the same conclusion holds for any a-excessive function u and o € [0, ].

Proof First we take v > ~. It suffices to show that sup,., €% (u,u) < oo in
view of [33, Ch. I, Theorem 2.13(i)], where 8(’3*“)(f,g) = O(f — BGa+sf,g)m for
f,g € L*(X;m) is the approximating form for (€, ). We can see that E5%)(f, ¢) =
Ea(BGorafr8) and Ea(BGaraf, BGaaf) < EB(S, f) for f € X(X;m), g € T.
Hence |EP9(f, g)| < K €4(g,8)/2EP(f, /)2, Thus

eI (u,u) < €V (u,v) < Ko€a(v, )20 (u, w)'/2.

We obtain SUPs-g B (y,u) < K2E,(v,v) < oco. Next we prove the conclusion
for an a-excessive u satisfying u < v with v € Fand a € [0,7]. In this case,
u is automatically 3-excessive for any 3 > <, because of the positivity preserving
property of (T;)s~¢. So the assertion follows from the first argument. This completes
the proof. ]

The next lemma is a generalization of [18, Theorem 2.2.1] and [34, Remark 3.4].

Lemma 2.2 Let (€,F) be a positivity preserving form with a lower bound —~ on
L*(X;m). Foru € F and o > 0, the following are equivalent to each other.

(i) u<e “Tium-ae foranyt > 0.
(ii)  u < BGupu m-a.e. forany 8 > v — a.
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(iii) E4(u,v) <O0forve F*.

Proof The case for @ > « is shown in [34, Remark 3.4]. The implication (i) =
(i) is clear. Noting €, (4, Go+5v) = (4 — BGaspl, V), With the positivity preserving
property of the dual form, we see the equivalence (ii) < (iii), where we use the fact
that (p — v)G,v — vin Sfﬁ—norm as p — oo. Next we prove (iii) = (i). Suppose
v € L2(X;m). Setting Tt(a) = e YT, and Tt(a) 1= e YT, we have

t d t
(u—e “"Tou,v), = —/ —(TS(“)u7 V) ds = / (v — L)Ts(“)u, V) ds
o ds 0

t t
:/ Ea(Tu,v) ds :/ Eolu, TWv) ds < 0.
0 0

This completes the proof. ]

Let H(X) be a family of m-measurable real functions on X as follows:

H(X) :={h e [°(X;m) | h > 0 m-a.e. on X

and h*m is a o-finite Borel measure on X}.

Definition 2.2 (h-transform) Let (€, F) be a coercive closed form on L?(X; m). For
h € H(X), we define

Fh .= {u e I*(X; W*m) | uh € T}, &h(u, v) := &(uh,vh) for u,v € F".

Then (&",F") is a coercive closed form on L2(X;h*m), and (&, F) is called the
h-transform of (€, F). Note that (€, F) is positivity preserving if and only if (el Fh
is also, and (€, F) is local if and only if (£, F") is local.

Let (&, F) be a positivity preserving form on L*(X; m) and (G, )a~0 the associated
resolvent on L?(X;m). It is essentially shown in [34] that for 1-excessive h € H(X) N
L*(X; m) with respect to (€, F), (€, F") is a semi-Dirichlet form on L*(X; h*m). In
particular, if h := Gy with ¢ € K(X), then h € H(X) [34, Lemma 3.6]. Hence
(&M FM)is a semi-Dirichlet form on L>(X; h?m). Let (°, F) be the symmetric part of
a positivity preserving form (€, F) and (G2),~o the associated resolvent on L*(X; m).
Take an h° := Gy with ¢ € K(X). Then ((Eo)ﬁ’o , Fh*Yis a symmetric Dirichlet
form on L2(X; (h°)*m).

3 Potential Theories on Positivity Preserving and Semi-Dirichlet
Forms

Throughout this section we treat the case v = 0. The case v > 0 can be reduced to
this case if we replace € with €. Let (€, J) be a coercive closed form on L*(X;m). For
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a closed subset F of X, we set Fp := {u € F | u = 0 m-a.e. on X \ F}. An increasing
sequence {F, },en of closed subsets of X is said to be an &-nest or generalized nest if
U2, T, is 8}/2-dense in F. A subset N of X is said to be E-polar or E-exceptional if
there exists an -nest {F, },en such that N C (72 (X \ F,). A statement P = P(x)
depending on x € X is said to be “PE-q.e.” if there exists an E-polar set N such that
P(x) holds for x € X \ N. A function u is said to be -quasi-continuous if there exists
an &-nest {F, },en such that u|g, is continuous on F, for each n € N. A subset E of
X is said to be E-quasi-open if there exists an E-nest {F, },cn such that EN F,, is open
with respect to the relative topology on F, for each n € N. €-quasi-closedness can be
similarly defined. For two subsets A, B of X, we write A C B&-q.e.if I < Iz E-q.e.
and A = B €-q.e. if [, = Iz €-q.e. If a function u has an €-quasi-continuous m-ver-
sion, we denote it by 7. We shall recall the notion of quasi-regularity of a positivity
preserving form (€, F) on L*(X; m) as follows [34, Definition 4.9]:

(QR1) There exists an E-nest of compact sets.

(QR2) There exists an 8}/ ?_dense subset of F whose elements have €-quasi-contin-
uous m-versions.

(QR3) There exist an E-polar set N C X and u, € F, n € N having E-quasi-
continuous m-versions u,, n € N such that {u, },en separates the points of
X\N.

(QR4) There exists an €-q.e. strictly positive £-quasi-continuous m-version h of an
a-excessive function in F for some « € 10, 0o[.

Under the conditions (QR1), (QR2) and (QR3), the last condition (QR4) is equiv-
alent to the following (QR4’) and (QR4"’) (see [34, Proposition 4.11; Lemma 4.12]):

(QR4’)  There exists an m-a.e. strictly positive m-version of an a-excessive function
hin F for some o € ]0, 00 and an €-quasi-continuous function g such
that h < g m-a.e. on X.

(QR4") One can choose {u,},eny and N C X in (QR3) with the property that
X\ N c U, 2, {u. #0}.

We also remark that (QR2), and (QR4’) or (QR4) together imply that every u € F

has an £-quasi-continuous m-version [34, Lemma 4.12(i)].

Lemma 3.1 Let (§,F) be a positivity preserving form on L>(X;m). Then (&,F) is
quasi-regular if and only if so is the symmetric part (E°,F) of (€,F). In particular,
(&€, 9) is quasi-regular if and only if so is the dual form.

Proof Note that for an increasing sequence {F,} of closed sets, {F,} is an E-nest if
and only if it is an £°-nest. Suppose that (€, F) is quasi-regular. Then (QR1)—(QR3)
and (QR4’’) hold for (£°,F). We set h° := G with ¢ € K(X). Then h° € Fis
1-excessive with respect to (€°,F) and h° > O0m-a.e. on X (see [34, Lemma 3.6]).
Owing to the quasi-regularity of (€, F), h° has an £°-quasi-continuous m-version.
Hence (QR4’) holds for (€°,F). The converse is similar. This completes the proof.

|
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Proposition 3.1 ([34, Theorems 3.5,4.14]) Let (€, F) be a positivity preserving form
on L*(X; m) and (G,)a>o be the resolvent associated with (€, F). Let h be an m-a.e.
strictly positive ai-excessive function in & for some v € 10, 00(. Then (&€,F) is quasi-
regular if and only if so is (E", F), equivalently (E" | ") is a quasi-regular semi-Dirich-
let form on L*(X; h*m).

Corollary 3.1 Let (E°,F) be the symmetric part of a positivity preserving form (€, F)
on L*(X;m) and (G2)ao be the resolvent associated with (£°,F). We set h° := Gj¢
with o € K(X). Then (€,F) is quasi-regular if and only if (€°)¥", F"°) is a quasi-
regular symmetric Dirichlet form on L*(X; (h°)*m).

Proof It is easy to see the assertion by Lemma 3.1 and Proposition 3.1. This com-
pletes the proof. ]

The following lemma is essentially shown in [34]. (See [34, Corollary 4.5] and
[26, Lemmas 3.1, 3.2].) We omit the details.

Lemma 3.2 Let (€, ) be a positivity preserving form on L*(X; m).

(i) Let u be an E-quasi-continuous function and E an E-quasi-open set. If u > 0
m-a.e. on E, then u > 0 €-g.e. on E.

(ii) Any m-negligible E-quasi-open sets are E-polar.

(iii) Let {{F*},en}ren be a countable family of E-nests. Then there exists a sub-
sequence {n(l,k)}ien of {n} depending on k € N with n(l,k) > I such that F; :=
Ny Fﬁ(hk) makes an E-nest. In particular, for a countable family {f;} (resp. {A;})
of E-quasi-continuous functions (resp. E-quasi-closed sets), we can take common E-nest
{Fu} such that g, is continuous on F,, (resp. AjNF, is closed) for all j,n € N. Hencea
countable intersection (resp. union) of E-quasi-closed (resp. -open) sets is E-quasi-closed

(resp. -open).

If (€, F) is a semi-Dirichlet form on L?(X; m) which satisfies (QR1)—(QR3), then
(QR4) is automatically satisfied (see Remarks at pp. 834 and 4.10 in [34]). If a coer-
cive closed form (&, F) on L*(X; m) is a quasi-regular semi-Dirichlet form, namely,
the conditions (QR1)—-(QR3) hold for (€, F), then there exists an m-equivalence class
M/ ~ of m-tight special standard processes £-properly associated with (€, F) (see
Definition 4.2(viii), (ix), (x) for the notions of m-equivalence, m-tight, (m-)special
standardness below). Conversely if a Borel right m-tight m-special standard process
M is associated with a semi-Dirichlet form (€, F) on L?(X; m), then (€, F) is quasi-
regular and the right process is €-properly associated with (€, F). More generally,
by Fitzsimmons [13], for any right process on a co-Souslin space associated with a
semi-Dirichlet form (€, F) on L*(X; m), (€, F) is quasi-regular and the right process
is E-properly associated with (€, F). The E-proper association with (€, F) of a spe-
cial standard process M = (2, Foo, F1, X;, ¢, Px) means that x — fQ f(X¢(w))Py(dw)
is an &-quasi-continuous m-version of T f for f € B, (X) N L*(X; m).
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Lemma 3.3 Let (&, ) be a quasi-regular positivity preserving form on L*(X; m). The
following are equivalent.

(1) (&, F) is local.

(i)  E&(u,v) = 0ifu,v € F have disjoint supports.

(iii)  E(u,v) = 01ifu,v € F satisfy uv = 0 m-a.e.

Proof The implication (ii) = (i) is trivial. The equivalence (ii) < (iii) is due to
Schmuland [39]. The proof of the implication (i) = (ii) is the same as in the proof
of (i) = (ii) of [33, Ch. V. Proposition 1.2]. This completes the proof. [ |

Definition 3.1 (Partspace) Let (&, ) be a coercive closed form on L*(X; m) which
satisfies the condition that every u € J has an £-quasi-continuous m-version u. Let
E be a subset of X. We define

Fe={ueF|u=0Eqe.onX\E}, Eg(u,v):=~E(u,v)foruve Fg.

If E is a closed set, then JFg is a closed subspace of F. Under the condition that
F is a closed subspace of F, we can consider the resolvent (GE),~q on L*(X;m)
associated with (€, F) by way of Theorem 2.1, that is, for each f € L?(X; m) there
exists GE f € Fg such that €,(GE f,v) = (f,v),, for any v € Fg. Then we see that

11§, (Go f) = GL f for f € L*(X;m) under the closedness of Fg in F. If E is €-quasi-
open, (Ep, Fg) is called the part space of (€,F) on E.

The following lemma is easy to check.

Lemma 3.4 Let (€, F) be a coercive closed form on L*(X; m). Let {F,} be an increas-
ing sequence of closed subsets of X and take an h € H(X).

(i) {Fu}nen is an E-nest if and only if it is an Sh—nest/Elf—nest. In particular, €-
polarity (resp. &-quasi-upper-semi-continuity) is equivalent to E"-polarity/E"-polarity
(resp. E"-quasi-upper-semi-continuity/E"-quasi-upper-semi-continuity).

(ii) Suppose that every u € F has an E-quasi-continuous m-version. Let E be an E-
quasi-open set. Assume that h is an E-q.e. strictly positive E-quasi-continuous function
on X. Then (Fg)" = (F)g and (EM)p(u,v) = (Eg1)"(u,v) for u,v € (Fp)" = (F").

Proof (i) is trivial. We show (ii). It is easy to see
(Fp)" = {u € *(X; W*m) | uh € Fg}
= {u € L*(X;W*m) | uh € Fand tth = 0 €-q.e. on E}
={ued"|i=08"qe onE} = (F");
and for u, v € (F")g,
(EME(u, v) := EMu,v) = E(uh,vh) + (uh,vh),, = (Eg)"(u,v).

This completes the proof. ]

https://doi.org/10.4153/CJM-2008-036-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2008-036-8

Maximum Principles 835

Proposition 3.2 (Quasi-regularity of part spaces) Let (E, F) be a positivity preserv-

ing form on L*(X;m) and E an &-quasi-open set. Then the following assertions hold.

(1) If (&, F) is quasi-regular, then (Eg, Fg) is a quasi-regular positivity preserving
form on L*(E; m).

(ii)  Suppose that (€,F) is quasi-regular. For N C E, N is Eg-polar if and only if N
is E-polar, and G C E, G is Eg-quasi-open if and only if G is E-quasi-open.

Proof First we show (i). Let (€,F) be a quasi-regular positivity preserving form
on L*(X;m). By (QR4), there exists an €-q.e. strictly positive &-quasi-continuous
m-version h of an a-excessive function in F. Then (E", ") is a quasi-regular semi-
Dirichlet form on L*(X; h®m). By [26, Lemma 3.4(ii)] and Lemma 3.4,

((ERE, (F)E) = ((Ep)h, (FR)")

is a quasi-regular semi-Dirichlet form on L?(E; h*m). In particular, (3")g is dense
in L?(E; h*m) and (E" ,13/2—c0mplete, hence Fy, is dense in L2(E; m) and (£)Y/?-com-
plete. Then (€, Fr) is a coercive closed form on L?(E; m). The positivity preserving
property of (g, Fg) is clear. Applying Lemma 3.4(i) to (g, Fg) with h|p € H(E),
for any increasing sequence {F, },cn of closed subsets of E, {F,} is an (€5)" -nest if
and only if it is an Eg-nest. Hence (QR1) holds for (€, Fr) and every v € (Fp) =
(F™)g has an €g-quasi-continuous m-version. Applying [26, Lemma 3.4] to (€", F™),
we can conclude that every -polar subset of E is (€ E)Z—polar, hence Eg-polar and
for every £-quasi-continuous function u on X, u|g is (€5)" -quasi-continuous on E,
hence € g-quasi-continuous on E. Since h is € -quasi-continuous and &" -q.e. strictly
positive on X, hg is (SE)Z—quasi—continuous and (EE)ﬁ—q.e. strictly positive on E by
[26, Lemma 3.4(ii)]. Consequently h|g is €g-quasi-continuous and Eg-q.e. strictly
positive on E. Note that for u € Fg, u/h € (Fp)" has an €g-quasi-continuous
m-version. Therefore we can conclude that every u € Fy has an Eg-quasi-continuous
m-version, namely, (QR2) holds for (g, Fr). In particular, hf := GEp with ¢ €
K (E) satisfies that hf € Jg, hf > 0 m-a.e. on E and h* has an €;-quasi-continuous
m-version. Hence (QR4)’ holds for (€g, F¢). Note that (QR3) and (QR4)’’ hold
for ((EE)Z, (F5)"). There exist an (EE)Z-polar set N(C E)and u, € (Fp)",n € N
having (€ E)Z—quasi—continuous m-versions i, such that {1, } ,cn separates the points
inE\Nand E\N c U {#, # 0}. Set N:= NU{x € E| h = 0}. Then N
is Eg-polar and u,h € Fg,n € N are Eg-quasi-continuous functions satisfying that
{#,h} nen separates the points in E\ N and E\ N c (J22, {#i,h # 0}. Therefore
(QR3) and (QR4)"’ hold for (g, Fk).

Finally we show (ii). The assertion is proved in the case that (£, ) is a quasi-
regular semi-Dirichlet form on L?(X; m) (see [26, Lemma 3.5]). Combining Propo-
sition 3.1 with Lemma 3.4, we can confirm (ii). This completes the proof. ]

Definition 3.2 (The space of functions locally in F) Let (€, F) be a quasi-regular
positivity preserving form on L?(X; m). We define a family of sequences of €-quasi-
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open sets denoted by = as follows:
E:= {{Gu}nen | Gy is E-quasi-open forall n € N,
G, C Gy E-qee.and X = @1 G, &-q.e.},
Eept := {{Gu}nen € Z | G, is relatively compact for all n € N}.

Then we let

Froc := {u € L°(X;m) | HE,}peny € Eand Ju, € F

such that u = u,, m-a.e. on E, }.

The space Fyo. is called the space of functions locally in F in the broad sense.
For u € Jioc, there existsa {G;} € Zand {1;} C F such that u = u; m-a.e. on G;.
Then we say that such {G;} is attached to u € Fio.. For u € Fioc, we set

E(u) == {{Gp}nen € 2 | {G,} is attached to u},

Eept(u) := Z(u) N Ecpe.

Let E be an €-quasi-open set. We can similarly define Zg, Zg for (€, IE), and
Eg(u), Bgcpe(u) foru € (?E)loc' Recall that the Eg-quasi-open subset of E is €-quasi-
open. Further we define

Frgoc == {u € L'(Esm) | I{Eitien € Egand Ju; € F

such that u = u; m-a.e. on E,»} .

Remark 3.1 1If (€,F) is a quasi-regular semi-Dirichlet form on L*(X;m), 1 € Froc
(see [26, Theorem 4.1]). This property cannot be expected in the general framework
of quasi-regular positivity preserving forms.

Lemma 3.5 Let (&, ) be a quasi-regular positivity preserving form on L*(X; m).

(i) For an E-quasi-open set E, each u € f}'E_’lOC admits an (Eg-q.e. finite) Eg-quasi-
continuous m-version u on E and SFEJM = (Fp)ioe. In particular, F|p C (FE)ioc-

(i)  Foru € Fioc, there exists a {G;} € Z(u) such that u is bounded on each G;.

Proof (i) Owing to the quasi-regularity of (€, Fg) on L*(E;m), hf := GE¢p with
¢ € K(E) has an Eg-quasi-continuous m-version HE which is & g-q.e. strictly positive
on E by [34, Proposition 4.13]. Then the same proof as in [26, Lemma 4.1; Theorem
4.2] works in the present context.
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(ii) Since u € Fioc admits an €-quasi-continuous m-version, we may assume the
&-quasi-continuity of u. By assumption, there is an {E;} € =(u). Then

Gi={x € E | |ux)| <i}

satisfies the desired assertion. This completes the proof. ]
The following is proved similarly to [33, Ch. III, Proposition 1.5(i),(ii)].

Proposition 3.3 Let (€,F) be a quasi-regular positivity preserving form on L*(X; m)
and h a function on X having an E-quasi-continuous m-version h. For each subset B of
X, weset Lyg:={weF|w> h &-q.e. on BY. Suppose that Lyp # @ is a closed
convex subset of F. Then there exists hg, Zg € Ly, p such that €,(hg, w) > E,(hg, hg)
and &€, (w, ﬁg) > Ea(ﬁg,ﬁg) forallw € Ly p. Further if h € F and Fp: is a closed
subspace of &, then hy = h — 115 h and ﬁg =h- f[‘:}m h, in particular,

_—

(Gaf)y =Gof —GEf and (Gof)y=Guf —GEf
for f € L*(X;m).

Definition 3.3 (Weighted capacity, [2,33,34]) Let (€,F) be a quasi-regular pos-
itivity preserving form on L*(X;m). Let h (resp. g) be a 1-excessive (resp. 1-co-
excessive) function in F. For each open subset O of X, L0 and L, o are closed
in F, hence one can consider h}, and g}, constructed in the above proposition and
set Cap;, ,(0) := &:(hg, &) Take h := Gip and g == G with ¢ € K(X). Then
Cap;, (0) = (S, P)m = (85, ©)m- So we set Cap,, (0) := (h}, ). For any subset B
of X Cap,,(B) := inf{Cap,(O) | B C O, Ois open}.
Further we set for g := Glap with ¢ € K(X)

Caplﬁg(O) = sup{Capuﬁg(O) | u € Fis 1-excessive and u < 1}.

For any subset B of X, Cap, ,(B) := inf{Cap, ,(O) | B C O, Ois open}.

Then both Cap;, and Cap, , are Choquet capacities and for an increasing sequence
of closed sets {F,}, it is an E-nest if and only if lim,_,o, Cap, (X \ F,) = 0 (see
[34, Theorem 4.4]). By [34, Proposition 4.8], Fp- and L, 3 is closed in F. Combining
[34, Proposition 4.13] and [32, proof of Theorem 2.10], we can confirm Cap,(B) =
(h}, ©)m for any subset B of X.

Definition 3.4 (s.E-quasi-notions, [2,33]) We say that an increasing sequence of
closed sets {F, } is said to be strictly E-nest (write s.E-nest) if

lim Caplﬁg(X \ F,) = 0.
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A subset N is said to be strictly E-polar (write s.E-polar) if there exists an s.E-nest
{F,} such that N C (0,2, F; and a function u on X is said to be strictly &-quasi-
continuous (write s.E-quasi-continuous) if there exists an s.E-nest {F,} such that
u|p,u{ay} is continuous on F, U {A}.

Lemma 3.6 Let (§,F) be a quasi-regular positivity preserving form on L*(X;m),
{E,} an E-q.e. increasing sequence of E-quasi-open sets and E an E-quasi-open set.
Then the following are equivalent.

(i) {E.} € E

Gi) U2, T, is &)/ *-dense in F.

(i) U2, Ff is 1% dense in F.

(iv)  lim, oo E1(GYf — G f) = 0 for f € L2(X;m).

Proof In view of Proposition 3.2(i), we may assume X = E. In order to prove the
equivalence (i) < (ii), it suffices to show the case that (€, F) is a quasi-regular sym-
metric Dirichlet form on L?(X; m) by Corollary 3.1. We set h := G, with ¢ € K(X).
Then for any increasing sequence {F,} of closed set, {F,} is an -nest if and only if
Cap,(X \ F,) = 0, hence for N C X, N is €-polar if and only if Cap,(N) = 0
[33, Ch. III, Theorem 2.11]. By Proposition 3.3, we can see that (ii) is equivalent to
lim, .« Cap, (X \ E,) = 0 in the same way as [33, Ch. III, proof of Theorem 2.11].
On the other hand, (QR1) implies that every £-quasi-closed set is quasi-compact
with respect to Cap,, (see [15]). Then [15, Theorem 2.10] tells us that (i) is equiva-
lent to lim,_,», Cap, (X \ E,) = 0.

Next we show (ii) < (iii). The implication (ii) = (ii) is trivial. Suppose (ii). Ow-
ing to the weak sector condition and the positivity preserving property, there exists
K; > O such that forall u € F,

(3.1 E1(u") < K7€ (uw).

Take a u € F*. Then there exists a sequence {u;} C |J;~, Fg, which 8}/ *_converges
touasi — oo. By (3.1), {uf } is E}/z—bounded, so the Banach—Saks theorem implies
(iii).

Finally we show (ii) < (iv). The implication (iv) = (ii) is easy. We only prove (ii)
= (iv). We may assume f € L3(X;m). Let h = G, f and recall h, = G, f — G f.
Since {E,} is £-q.e. increasing, {hi } is m-a.e. decreasing in view of a version of [33,
Ch. I11, Proposition 1.5(iv)]. Then 'Ehere exists Noo 1= lim, o0 hi in L*(X;m), hoo €
F and h};ﬁ — hoo in E;-weakly as n — 00 (see the proof of [3”3, Theorem 2.11]).
Suppose (ii). Then we have h, = 0 similarly to [33, Ch. III. Theorem 2.11 (2.5)].
Therefore El(h}sﬁ, h}sﬁ) < Sl(hlfn, G, f) — 0asn — oo. This completes the proof. B

Let (€,9) be a quasi-regular positivity preserving form on L*(X;m) and set
h® = Giy, ¢ € K(X) as before. Then ((8")’110 LF") is a quasi-regular symmetric
Dirichlet form on L?(X; (h°)?>m). By Lemma 3.4(i), for an increasing sequence {F, }
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of closed sets, {F, } is an &-nest if and only if it is an (€° )]fo -nest. Hence the E-polarity
and &-quasi-upper-semi-continuity can be reduced to the cases with respect to
((80)}1‘0,3"}10). So we can consider &-quasi-closure, E-quasi-interior and E-quasi-
support of a measure charging no E-polar sets by way of the weighted capacity with
respect to ((Eo)ﬁ’o ,F") on LA(X; (h°)2m) (see Fuglede [15]). For a set A, denote by
Ac (resp. A®™) the €-quasi-closure (resp. &-quasi-interior) of A.

Lemma 3.7 Let (§,9) be a quasi-regular positivity preserving form on L*(X; m) and
E an E-quasi-open set. For an increasing sequence {F, } of closed sets contained in E, the
following are equivalent.

(i)  {F.}isan Eg-nest of (Eg, Fg).
(i) {FE™} e =g

Proof The assertion is shown in the case that (€, J) is a quasi-regular semi-Dirichlet
form (see [26, Lemma 3.3]). The present assertion is an easy consequence from this
fact and the above observation. This completes the proof. ]

Lemma 3.8 Let (€,5) be a quasi-regular positivity preserving form on L*(X; m) and
E an &-quasi-open set. For any {G;} € Ej, there exists an {E;} € Zp such that
Eig C Eiy1 €-q.e.and E; C G; E-q.e. foreachi € N.

Proof We may assume X = E. It suffices to set E; := {x € X | h% > 1/i}. Here
hGi = GIG"c,o,Ngo € X(X) and GIG" is the 1-resolvent with respect to (Eg,, Fg,) on
L*(G;;m). By h% = 0 €-q.e. on X \ G;, we have E; C G; &-q.e. Since h% = h — hl,
with b == G, {ch} is an €-q.e. increasing sequence and converges to h in F as
i — 00 by Lemma 3.6(iv). By using the Banach—Saks theorem, we can conclude that
WG converges to hasi — oo &-q.e. Thus

ESc{xeX|H% >1/iyC{xeX|h% >1/i} CEy E-qe.

and X = [J;°, E; E-qee. because h > 0 E-q.e. [

Let X be alocally compact separable metric space and m a Radon measure with full
topological support. A semi-Dirichlet form (€, F) on L?(X; m) is said to be regular if
FNCy(X) is Si/z—dense in ¥ and uniformly dense in Cy(X). In this context, we also
consider another localized space Fi,c, which is called the space of functions locally in
JF in the ordinary sense:

Fioc :== {u € L°(X;m) | for any relatively compact open set G

there exists ug € F such that u = ug m-a.e. on G} .

Clearly Fjoc C Froc.
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Proposition 3.4 (Regularity of part spaces) Suppose that X is a locally compact
separable metric space and m is a Radon measure with full topological support. Let
(&,9) be a regular semi-Dirichlet form on L*(X; m) and G a nonempty open set. Then
(g, F ;) is a regular semi-Dirichlet form on L*(G; m).

Proof By the same proof of [18, Lemma 1.4.2], we can confirm that for any u €
Co(X), there exists a u, € F N Cy(X) such that supp[u,] C {x € X | u(x) # 0},
n € Nand u, is uniformly convergent to u as 1 — 0o. Hence F5NCy(G) is uniformly
dense in Cy(G). Next we show that F; N Cy(G) is (86)}/2-dense in F;. Consider an
increasing sequence {O;} of relatively compact open sets with O; C O;;; C G for
alli € Nand G = |JZ, O;. By using Lemma 3.6, it suffices to prove that every
u e (Fo)pis Si/z-approximated by an element of F5 N Cy(G) for a fixed i € N.
Owing to the first argument, we can take 1); € F N Cy(X) with 1); = 1 on O; and
¥; = 00on O%,. Let iy € F N Cy(X) be an 8}/2—approximating sequence to u and set
U = (—||ullooti) V Ui A ||t||cothi. Then uy € Fg N Co(G) is Si/z—bounded by use
of (2.1), and is L*-convergent to u. The Banach—Saks theorem tells us the assertion.
This completes the proof. u

Finally, we present the case for v > 0.

Definition 3.5 Let (€,) be a positivity preserving or a semi-Dirichlet form with
a lower bound —v on L*(X; m).

* An increasing sequence of closed sets {F,} is said to be an E-nest (resp. s.E-nest)
ifitis an £, -nest (resp. 5. -nest). Hence every €,-quasi notion (resp. s.€.-quasi
notion) concerning (€., F) is said to be £-quasi notion (resp. s.€,-quasi notion)
respectively.

* (&,9) is said to be quasi-regular if (€, F) is so.

* For a set A, E-quasi-interior (resp. E-quasi-closure) of A is defined to be an
&,-quasi-interior (resp. £,-quasi-closure) of A.

* (&,9)is said to be local if (€, F) is so.

* Suppose X is a locally compact separable metric space and m is a positive Radon
measure with full support. Then we call (€,5) a regular semi-Dirichlet form
with a lower bound —v on L*(X; m) if (€4,T) is a regular semi-Dirichlet form
on L*(X; m).

4 Analysis on Right Processes Associated with Semi-Dirichlet Forms

To analyze right processes, we prepare the following spaces.
Definition 4.1 A topological space X is said to be a Radon (resp. Lusin) space if
X is homeomorphic to a universally (resp. Borel) measurable subset of a compact

metric space. A topological space X is said to be a Souslin (resp. co-Souslin) space
if X is homeomorphic to (resp. a complement of ) an analytic subset of a compact
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metric space. The following inclusions hold: {Polish space} C {Lusin space} C
{Souslin space} U {co-Souslin space} C {Radon space}.

Throughout this section, we assume in addition that X is a Radon space and
M = (Q, Fo, F1, X, C, {Px }xex) is a right process on X in the sense of Getoor [19] or
Sharpe [40]. That is, M is a normal strong Markov process possessing right continu-
ous sample paths X, P,-almost surely for all x € X, and h(X;) is also right continuous
P,-almost surely for all x € X and any a-excessive function h(cw > 0). It should be
noted that M does not necessarily have the Borel measurability of

x = pf(x) = / f(X;)dP,, t>0,
Q
nor of

x = Rof(x) := / e Yp flx)dt, >0,
0

for any non-negative/bounded Borel measurable function f on X. Let B*(X) be
the universal completion of B(X). Then p; preserves the class of B*(X)-measurable
bounded functions. M is called a Borel right process if p, preserves the Borel mea-
surability for all £ > 0. The notion of right process treated in [33] is actually a
Borel right process over a Hausdorff space X with B(X) = o(C(X)). Recall that a
B*(X)-measurable function h is said to be a-excessive if for any x € X, e~ p,h(x) <
h(x) for all + > 0 and lim,|g e~ p;h(x) = h(x). Let B¢(X) be the o-field gener-
ated by {h | his a-excessive for some o > 0}. Then B(X) C B¢(X) C B*(X),
of{h | hisO0-excessive} C B(X) and p, preserves the class of B°(X)-measurable
bounded functions.

We say that a right process M satisfies the absolute continuity condition with respect
to a measure m if P,(X; € dy) < m(dy) foranyt > 0and x € X.

Definition 4.2 Let M be a right process on X.

(i) A set B(C Xa) is called nearly Borel if there exist Borel subsets By, B, of Xa
such that By C B C B, and P,(X; € B, \ By, 3t € [0,00[) = 0 forall u € P(Xa).
Denote by B"(Xa) (resp. B"(X)) the family of nearly Borel subsets of X (resp. X).

(ii) For B € B"(X), we set

op(w) := inf{tr > 0| X;(w) € B},
op(w) := inf{t > 0| X;(w) € B},

7(w) := inf{t > 0 | X;(w) ¢ B}.

Then op (resp. o) is called the first hitting time (resp. first entry time) to B and 73
is called the first exit time from B. It well known for B € B"(X), op and 5 are F;-
stopping times and 753 = op A { Py-a.s. for x € X. We further define Hf f(x) =
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Eile 7 f(X,,)] = fx f(y)Hg (x,dy) for « > 0 and with f a nearly Borel non-
negative/bounded function on X. We see

Hg f(x) = Ex[e” "™ f(X5,.)] = Exle” "7 f(Xo,) : 05 < 0]

= E.[e " f(X,,) : o5 < (],

because f(A) := 0. We call Hg (x, dy) a-hitting distribution to B. Note that

o0

HiRuf(x) = E| / e F(X;) .
oB

(iii) A set A is called finely open if for each x € A, there exists a B € B"(X) such
that X\ A C Band P,(op > 0) = 1. The family of finely open sets defines a topology
on X which is called the fine topology of M.

(iv) A set A is called thin if there exists a B € B"(X) with A C B such that
P.(ocp = 0) = 0forall x € B, and A is said to be semi-polar if A C U:Zl A, for some
thin sets A,,.

(v) A set B € B"(X) is called m-polar if P,,(c4 < 0o) = 0. A set N is said to
be exceptional if there is an m-polar set B € B"(X) satisfying N C B. A statement
P = P(x) depending x € X is said to be “P holds q.e.” if there exists an exceptional
set N such that P(x) holds for x € X \ N.

(vi) AsetAiscalled finely open g.e. if there exists a finely open set B € B"(X) such
that A \ Band B\ A are exceptional. A function u defined q.e. on X is called finely
upper-semi-continuous q.e. if there exists an exceptional set N € B"(X) such that
X \ N is finely open and u is B"(X)-measurable and finely upper-semi-continuous
on X \ N. A function u defined q.e. on X is called finely continuous q.e. if both u and
—u are finely upper-semi-continuous q.e.

(vii) A set B € B"(X) is said to be M-invariant if there exists Qx\p € F such
that

Qx\p D {X{ N (X \ B) # @ forsome 0 < t < (}

and P,(Q2x\p) = 0 forall x € B. Here Xié stands for the closure of {X(w) | s € [0,¢]}
in X. Aset N € B"(X) is said to be (m-)properly exceptional if m(N) = 0 and X \ N
is M-invariant.

(viii) Two right processes M; and M, are said to be m-equivalent if there exists
a common m-properly exceptional set N outside of which their transition functions
coincide.

(ix) Let p be a positive measure on (Xa, B(Xa)). A right process M is called
p-tight if there exists an increasing sequence {K,} of compact sets in X such that
P, (lim, .o ox\k, < () = 0.

(x) Let u be a positive measure on (Xa,B(Xa)). A right process M is called
w-special standard if one (and hence all) probability measure v on (Xa, B(Xa)),
which is equivalent to p having the following properties:
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(a) (Leftlimits up to ¢) X,— := limyp; s X exists in X for all t € ]0, ([ P,-a.s.
(b) (Quasi-left-continuity up to {) Let 7, 7,, n € N be F}-stopping times such
that 7, T 7as n — oo. Then P, (lim, oo X;, # X, 7 < () = 0.
(c) (Special) Let 7, T be as above. Then X is o{{J, -, F? }-measurable.
Here F} is the completion of F; with respect to P, := f Xa P,v(dx).

(xi) A right process is called a special standard if it is p-special standard for all
probability measure 1 on (Xa, B(Xa)).

(xii) A right process is called a u-Hunt process if (a) and (b) hold with ¢ replaced
by oo and X by X for € P(Xa), and it is called an m-Hunt process if it is a p-Hunt
process for some 1 € P(Xa) equivalent to m. A right process is called a Hunt process
if it is a p-Hunt process for all 1 € P(Xa)

Remark 4.1 (i) Our definition of the M-invariance is due to [33] and seems to
be slightly weaker than the definition of M-invariance treated in [18]. However, for
a (Borel right) Hunt process M, these notions are equivalent to each other. Note that
the existence of the left limit up to the life time is not formulated for general (Borel)
right process. If M is a (Borel right) standard process, then a set B € B"(X) is M-
invariant if and only if P,(X; € B for "t € [0,([, X,_ € Bfor "t € ]0,([) = 1 forall
x € B. If further M is a (Borel right) Hunt process, then a set B € B"(X) is M-invar-
iant if and only if P, (X, € Ba for "t € [0,00[, X;_ € Ba for ¥t € ]0,00[) = 1 for
allx € B.

(ii) If M is a Borel right process, then every a-excessive(cr > 0) function is nearly
Borel measurable (see [19, (9.4)]), in particular, B¢(X) C B"(X).

(iii) If M satisfies the absolute continuity condition with respect to a measure 1,
then B¢(X) = B(X), in particular, M is a Borel right process (see [40, (10.25)]).

Definition 4.3 Let (€,5) be a semi-Dirichlet form with a lower bound —v on
L*(X;m). A right process M with state space X or its transition semigroup (p;)=o
is called associated with (€, J) if p,f is an m-version of T; f for allt > O and f €
B(X) N L*(X;m), and M is called (&-)properly associated if in addition, p,f is an
&-quasi-continuous for all t > 0 and f € B(X) N L*(X; m).

Remark 4.2 It is essentially shown in [33, Ch. IV, Exercise 2.7] that M is associated
with (€, F) if and only if R, f is an m-version of G, f forall & > v and f € B(X) N
L*(X;m). In [33], Borel measurability of p,f is assumed for each t > 0 and f €
B(X), but the above association holds without this Borel measurability.

The following is essentially due to Fitzsimmons [13, Theorem 3.22].

Theorem 4.1 Let M be a right process on X. Suppose that X is co-Souslinean. If M is
associated with a semi-Dirichlet form (€, F) with a lower bound —~ on L*(X;m), then
(€, 9) is quasi-regular and M is E-properly associated with (€, F).

Proof Let M be the subprocess of M by the multiplicative functional e~?*. Then
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M7 is associated with a semi-Dirichlet form (€., %) on L*(X;m). So by [13, Theo-
rem 3.22], M7 is m-tight m-special standard. Therefore, (€, F) is quasi-regular and
M7 is €, -properly associated with (€, F). That is, (€, F) is quasi-regular and M is
E-properly associated with (€, F). This completes the proof. ]

Remark 4.3 It should be noted that if (£, J) is a quasi-regular semi-Dirichlet form
on L*(X;m) (with lower bound 0), the associated Borel right m-tight special standard
process is not defined on the co-Souslin space as a whole space. However, in this case,
replacing the underlying space X with a countable union of compact sets derived
from (QR1), we may assume that X is Lusinian, hence co-Souslinean (see [33, Ch.
IV. 3.2(iii)]).

From now on to the end of this section, we fix a quasi-regular semi-Dirichlet form
(&,F) on L*(X; m) with a lower bound —v and a Borel right process M.

Lemma 4.1 Suppose that M is associated with (€,F). Fix « > 0 and a (nearly)
Borel function f € L*(X;m). Suppose that R,f € L*(X;m). Then R.f € F and
Ea(Raf,v) = (f, V) forallv € F.

Proof Note that for 3 > ~, Ggg = Rsg € F and €3(Rpg,v) = (g, V) forallg €
L*(X;m) and v € F. By resolvent equation, we see R, f = Rs(f+(B—a)Rof) €TF

and
Ea(Raf,v) = E3(Raf,v) + (= B)(Raf,V)m
= E(Rp(f + (B — a)Raf),v) + (@ — B)Raf, V)
=(f+(B—a)Raf, V) + (= B)Raf,V)m
=i, V)m-
This completes the proof. m

Lemma 4.2 Suppose that M is associated with (€,F). Let G be an open subset of
X. Then for u := R, f with f € B(X) N L2(X;m), o > v, H&u is an m-version of
ug = u— Hg'r(;((u).

Proof Fix a > . Recall that ug is characterized as a unique element satisfying
ut =um-ae.onG, E&,(usw)=0foralwe Fs.

Since M is associated with (€, F), we have H& i is a-excessive and Héu < u m-a.e.,
hence H3#i € F by Lemma 2.1. Note that 4, is also an a-reduced function of 1 on
G, which implies u¢ is a-excessive in F. Hence v := H&u A ul is a-excessive in
JF. In particular, €, (v, ug — v) > 0. On the other hand, v — uf € F leads us to
Ea(ud, v — ud) = 0. Therefore £, (v — ud, v — ul) = 0, hence ul < HXu m-a.e.

https://doi.org/10.4153/CJM-2008-036-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2008-036-8

Maximum Principles 845

Next we show the converse inequality. Let i be a Borel m-version of u¢, such
that #¢ = @ on G. Then {e"™ud(X,)} is an (F;, Pyy,)-supermartingale for ¢ €
K(X) with [,  @dm = 1. We obtain the converse inequality as in the proof of [18,
Lemma 4.2.1]. This completes the proof. ]

In the following lemma, without assuming the existence of dual processes, we have
the same assertion as in [18, Lemma 4.1.7] and [21, Proposition 6.9].

Lemma 4.3 Let o > 0 and let {u, } be a decreasing sequence of a-excessive functions
of M with limit u and suppose that u = 0 m-a.e. Then u = 0 q.e.

Proof The proof of [18, Lemma 4.1.7] or [21, Proposition 6.9] depends on the as-
sumption that X is Lusinian. We shall remark that the proof remains valid without
this assumption. Note that u is finely upper-semi-continuous and B"(X)-measur-
able, hence finely upper-semi-continuous q.e. We see that A,, := {u > 1/n} is finely
closed and B"(X)-measurable. As in the proof of [18, Lemma 4.1.7], A, is m-polar,
hence A := {u > 0} is m-polar by inf,cn 04, = 0. This completes the proof. [ |

Lemma 4.4 Fix « > 0. For any a-excessive function h of M, h < oo m-a.e. on X if
and only if h < oo q.e. on X.

Proof Set B:= {x € X | h(x) = oo}. Then h, := % A 1is an a-excessive function
decreasing to Iz as n — oo and Iy = 0 m-a.e. By Lemma 4.3, we have [y =0 qe. W

Lemma 4.5 Suppose that M is associated with (€, F). Take o € K(X) and set h :=

G, +1¢. Let Cap,, be the h-weighted capacity with respect to (€., F).

(i)  Let {G,} be a decreasing sequence of open sets. Then lim,_,, Cap,(G,) = 0 if
and only if lim,,_, Hg:lRA/Hcp =0gq.e

(ii)  For any set N, N is exceptional if and only if N is E-polar. In particular, the
notion E-q.e. coincides with the notion g.e.

Proof (i) Suppose lim,_,, Cap,(G,) = 0. Since
Cap;,(Gy) = (B, @)m = (HE ' Rys10, 0)m

by Lemma 4.2, we have lim,,_, Hg:lR,yH(p = 0 q.e. from Lemma 4.3. Conversely,
by Lemma 4.2, lim,,_, o, H’GY:“RA,H(,O = 0 q.e. gives Cap,(G,) = (Hg:lRﬁ,ﬂ% O —
Oasn — oo.

Next we show (ii). First we show the only if part. Let K be a compact m-polar
set and {G,} a decreasing sequence of open sets with G,4; C G, for all n € N and
K =2, Gu. The quasi-left-continuity up to ¢ and the right continuity of sample
path for M imply that Px(nlirrgo oG, # 0k, lim,_,c0g, < () = 0foranyx € X.
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Hence

~ oo
lim HE''Ryv1p(x) = Ex / e’(”l)S(p(Xs)ds}
n—00 -J lim og,

n— oo

- o0
= E, / e (X)) ds: lim og, < c}
- im_ oG, e

<E| / e () ds] =0

L oy
for m-a.e. x € X by P,,(0x < 00) = 0, which implies lim, ., Cap,,(G,) = 0 from
(i) and Lemma 4.3. Thus we have the E-polarity of K. Let N be a Borel m-polar
set. Since (€, F) is quasi-regular, there exists an €-nest {K,,} of compact sets. Then
X = U2, Ky is a Lusin space with respect to the relative topology on X. Then the
trace of Cap,, on Xisa Choquet capacity, hence Choquet’s capacitability theorem
tells us Cap,(N) = Cap,(N N 5(\) = supgnnx Cap,(K) = 0. Next we prove the
if part. Suppose that N is an C-polar set. Then there exists a decreasing sequence
{G,} of open sets with N C G, and Cap,,(G,) = (Hg:lR,YH(p, ©)m — 0asn — oo.
We set B := (0,2, G,. We have H)"'Ry11p = 0 m-ae. on X, by Hg:rlRWHcp — 0,
n — oo m-a.e. on X. Since ¢ > 0 m-a.e., P,(op < o0) = Pu(op < () = 0,
which implies the m-polarity of B, hence the exceptionality of N. This completes the
proof. ]

Lemma 4.6 Suppose that M is associated with (€, F). Then the following properties
hold.

(i)  Let A be an m-null B"(X)-measurable finely open set. Then A is m-polar.

(ii)  Let u be a finely upper-semi-continuous q.e. function with respect to M. If u >
0 m-a.e. on a finely open set E € B"(X), thenu > 0 g.e. on E.

(iii)  For any exceptional set N, there exists a properly Borel exceptional set B contain-
ing N.

Proof We first prove (ii) in the case that u is a finely upper-semi-continuous

B"(X)-measurable function and E = X. Weset A := {u < 0} and 4, := {u <

—1/n}. Then A is an m-negligible finely open B"(X)-measurable set and A, is a

finely closed B"(X)-measurable set. Let G, be an open set containing A,. We have

for f,g € L2(X;m) and a > ,

(H3 Rof,@)m < (HE, Rafs O
- (Gaf - H(;»‘G%(Gaf);g)m
= (f,Gag — 1§, (Gag)m-

If we put f = I, we have Hy Rsla(x) = 0 m-ae. x € X for 8 > «. Since
limg_.oo BR3IA(y) = 1 for any y € A,, we get Pp,(0a, < 00) = 0, which im-
plies P,,(04 < 00) = 0 by UflilAn = A. Next we prove (i). Let A € B"(X) be an
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m-negligible finely open set. Then —I, is a finely upper-semi-continuous B"(X)-
measurable function such that —I, > 0 me-a.e. By the first argument, we have
—I4 > 0 q.e. which implies the m-polarity of A. (ii) and (iii) can be obtained from
(i) as in the proofs of [18, Lemma 4.1.5; Theorem 4.1.1] by using Lemma 4.5 (i). H

Theorem 4.2 ([13, Theorem 4.3]) Suppose that M is associated with (€,F). Then
any semi-polar sets of M are exceptional.

Proof The assertion follows [13, Theorem 4.3] by noting that semi-polarity (resp.
exceptionality) with respect to M is equivalent to the semi-polarity (resp. exception-
ality) of M”, because for any B € B"(X), we have P}(ocp = 0) = Py(op = 0) and
Pl(op < ¢) = Py(0p < () in view of the construction of the subprocess M" by e~
(see [4, Ch. IIL. 3]). [ |

Lemma 4.7 ([18, Theorem 4.2.2, Lemma 4.2.2(i)]) Suppose that M is associated
with (€, ). Then the following hold.

(1) Ifuis E-quasi-continuous, then u is finely continuous q.e. More specifically, there
exists a Borel properly exceptional set N such that u is B"(X)-measurable on X\N
and for any x € X \ N, P,(u(X,) is right continuous art € [0,([) = 1.

(if)  Ifu € Fis finely continuous g.e., then u is E-quasi-continuous.

Proof In view of Lemma 4.5, (i) (resp. (ii)) is similarly proved as in Theorem 4.2.2
(resp. Lemma 4.2.2) in [18]. This completes the proof. [ |

Proposition 4.1 ([18, Lemma 4.3.1, Theorems 4.4.1, 4.6.1])  Suppose that M is as-
sociated with (€, F). Then the following hold.

(i)  Foranyset B € B"(X), f € B(X) N L*(X;m) and o > v, HYR, f is an
&-quasi-continuous m-version of G f — 115 (G, f); in particular, RE f is an
&-quasi-continuous m-version of G5 f :=I1§ (G, f).

(ii)  Eis E-quasi-open if and only if E is finely open g.e.

(iii)  u is E-quasi-continuous if and only if u is finely continuous q.e.

Proof The proof of (i) is standard as in the proof of [18, Lemma 4.3.1]. Combining
(i) and Theorem 4.2, (ii) and (iii) can be obtained in the same way as the proof of
[18, Theorem 4.6.1]. This completes the proof. ]

By Proposition 4.1, we recognize an £-quasi-open (resp. £-quasi-closed) set as a
finely open, (resp. finely closed) nearly Borel, set. In particular, for an £-quasi-open
(resp. -closed) set E we define of := o, where Eis a finely open (resp. closed) nearly
Borel £-q.e. version of E.

For a nearly Borel set E, Mg := (€, X}, Py)xcp,, defined by X} := X, if t < ox\g
and XF := Aift > ox\> is called the part process on E. For an £-quasi-open set E,
we use the same notation Mg for Mz. The transition function ( pE)i~0 of Mg is given
by pff(x) = Ex[f(X;) : t < ox\g] (see [18, A.2]).
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Theorem 4.3 ([18, Theorems 4.4.2, 4.4.3] and [13, Theorem 5.10]) Suppose that
M is associated with (€,F). Let E be an E-quasi-open set. Then (Eg, Fg) is associated
with Mg in the sense that (TE);~q on L*(E; m) corresponding to (€, F) is determined
by the transition function (p);~o of Mg. Moreover, pEf is an €g-quasi-continuous
m-version of TE f for any f € B(E) N L*(E; m).

Proof By Proposition 4.1, RE f is an €-quasi-continuous m-version of GE f for o >
vand f € B(X) N L*(X;m). The first assertion follows from [33, Ch. IV. Exer-
cise 2.7]. The second assertion can be deduced by way of [33, Ch. IV. Proposition 2.8;
Exercise 2.9]. Note that B(E) = ¢(C(E)). Though the proof of [33, Ch. IV. Proposi-
tion 2.8] requires the existence of the dual process (see [33, Ch. IV. Lemma 2.1]), it is
possible to modify the proof in order to obtain the conclusion. In fact, if we change
D(M) specified in [33, Chapter IV. 2] to be a subfamily of B,(E) N L*(E; m), then
the function p satisfying [33, Ch. IV. (2.1)] can be constructed without dual process
(actually p := Ry41¢p with ¢ € B(E) N L*(E; m), ¢ > 0 on E does the job). Then the
proof of (ii)=-(i) [33, Ch. IV, Proposition 2.8] remains valid. [ |

Theorem 4.4 ([18, Theorem 4.3.1])  Suppose that M is associated with (€, F). Let B
be a nearly Borel subset of X. For eachu € F and a > ~, Hyu is an E-quasi-continuous
m-version of u — g u. In particular, for any 5 > ~ and u € J, we have Hgﬁ eJ
and Sg(Hgﬁ, v) = 0 for any v € Fp.. If we further assume that u € J is bounded and
m(B°) < oo, then the same assertion holds for 5 € [0, ~].

Proof The prooffor a > = is similar with the proof of [18, Theorem 4.3.1]. We omit
it. Next suppose 3 € [0,7v], u € F, and m(B°) < oo. Note that Rgcf is an m-ver-
sion of G¥ f for f € I*(X;m) and a > . Applying Lemma 4.1 to (Ep, Fp:), we
have Rgf f € Fpe forany f € L°°(B‘;m). The latter assertion is an easy consequence
through H§u — Hg17+ (o — ﬁ)Rnggﬁ = 0. This completes the proof. [ |

Theorem 4.5 Suppose that M is associated with (€, F). Then the following are equiv-
alent.

(1) (&, F) possesses the local property.

(ii)  For any open set G and o > 0, the a-hitting distribution Hg.(x, dy) to G is
concentrated on the boundary 0G for E-q.e. x € G.

(iii)  For any open set G and o > 0, the a-hitting distribution Hg.(x, dy) to G is
concentrated on the E-quasi-boundary E-0G for E-q.e. x € G.

(iv)  For any open set G, Py(X,,, ¢ 0G, 06 < 00) = 0 for E-q.e. x € G.

(v)  Forany open set G, Py(X,, ¢ €-0G,06 < 00) =0 for E-g.e. x € G.

(vi)  Py(X; is continuous atany t € [0,([) =1 for E-q.e. x € X.

Proof The implications (ii) < (iv), (iii) < (v) and (iii) = (ii) are trivial. For the
proof of (i) < (vi), see [32, Remark 3.10] and [33, Ch. V. 1], or [18, Theorem 4.5.1].
We only prove (i) = (iii) and (ii) = (i). Remark that [33, Ch. V. Lemma 1.8] cannot
be directly applied to show (i) <> (iii). Suppose (i). In the same way as the proof of
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Lemma 4.5.1(i) < (ii) in [18] with the help of Lemma 3.3 and Theorem 4.4, we have
Hgi(x) = 0 E-q.e. x € G for any u € F} with E-supp[u] C X'\ G’ anda > 7.
Here we use the fact that uv = 0 for any v € F; and such u as above. Take a Borel
function f with 0 < f < 1 on X and set u(x) := E,[ OJG e ™ f(X;)dt]. Thenu € F,
is €-quasi-continuous with 0 < u < IX\EE and u > 0 E-qee.on X \ GE¢, because
G® = G" €-q.e., where G" := {x € X | P,(0G = 0) = 1} is the set of regular points
for G. Then &-supp[u] C X'\ @8. Hence we have Ha(IX\ag (x) =0E&-qe.x €G,
consequently (ii) holds by Py(X,, ¢ G, 06 < 00) = 0 for x € G. The proof of (ii)
=> (i) is similar as in Lemma 4.5.1(ii) = (i) in [18]. This completes the proof. [ |

Lemma 4.8 (Fine full support) If M satisfies the absolute continuity condition with
respect to m, then m has hull topological support with respect to the fine topology of M.

Proof Suppose that E € B"(X) is a finely open set with m(E) = 0. It suffices to show
E = @. Since E is finely open, we have that Iz(X;) is lower-semi-right-continuous at
0 Py-a.s. for x € X, that is, P(Ig(Xo) < lim, |, Ig(X;)) = 1 for any x € X. Let {tx} be
any decreasing sequence which converges to 0. Then

I5(Xo) < lim Ig(X;) := sup inf Ip(Xj)
t—0 §>0 0<s<d

= inf Ig(X;,) < inf Ix(X,,
g}foqu (X)) < i‘;lf& £(Xy,)

S h_m IE(th)

k—o00

Hence Ig(x) = Ec[Ig(Xp)] < limy_,, E,[Iz(X,,)] = lim;_,, P«(X,, € E) = 0 for all
x € X, which implies E = @. ]

Corollary 4.1 Suppose that M is associated with (€, F). We assume that M satisfies
the absolute continuity condition with respect to m. Then the following are equivalent.

(1) (&, F) possesses the local property.

(ii)  For any open set G and o > 0, the a-hitting distribution Hg.(x, dy) to G is
concentrated on the boundary OG for any x € G.

(iii)  For any open set G and o« > 0, the a-hitting distribution H%.(x, dy) to G° is
concentrated on the E-quasi-boundary E-0G for any x € G.

(iv)  For any open set G, Py(X,,, ¢ 0G, 06 < 00) = 0 forany x € G.

(v)  Forany open set G, Py(X,, ¢ €-0G, 06 < 00) =0 foranyx € G.

(vi)  Py(X; is continuous atany t € [0,([) = 1 foranyx € X.

Proof Since M satisfies the absolute continuity condition with respect to m, for any
open set G, the part process Mg also has the same property. Let f be a non-negative
Borel function f. Then Hg f is a-excessive, hence finely continuous with respect
to Mg. Consequently, Hi. f = 0 €-q.e. on G implies HZ. f = 0 on G by applying
Lemma 4.8. So the proof of Theorem 4.5 remains valid. This completes the proof. H

https://doi.org/10.4153/CJM-2008-036-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2008-036-8

850 K. Kuwae

Theorem 4.6  Suppose that M is associated with (€, F). Let E be a finely open (nearly)
Borel set and {E,} a family of finely open (nearly) Borel sets. Then the following are
equivalent.

@) {E.} € Er

(i)  Py(lim,— o 75, = 7g) = 1 for m-a.e. x € X.

(iii) Py(lim,_ oo 75, = 7g) = 1 for E-g.e. x € X.

Further assume that E,, C E,y; forn € Nand E = U:il E,, and M satisfies the absolute
continuity condition with respect to m. Then (i)—(iii) are equivalent to

(iv) Py(limy_ oo 75, = 7¢) = 1 forallx € X.

Proof We may assume v = 0 and E = X. In this case 7 is changed to be (. Recall
that hy. = Gip — Gy for h = Gy, ¢ € L2(X;m). For sucha o, R — R is an
E-quasi-continuous m-version of h1; . Then h}gz m-a.e. decreases to a function ho, €
F as n — oo. Moreover, it converges in L?(X;m) and &,-weakly converges. Sup-
pose (i). Then h}sﬁ converges in Ei/z—norm to hoo = 0 by Lemma 3.6. Hence Fﬁ}s
&-quasi-uniformly converges to 0, which implies (iii). The implication (iii) — (ii)
is clear. Conversely suppose (ii). Then h,, = 0, hence we have Sl(hlg, h}gz) <
81(1/11155‘7 Gi1p) — €1(hoo,G1p) = 0 as n — oo. Thus we obtain (i) by Lemma 3.6.
Next we prove the latter assertion. The implication (iv) = (iii) is trivial. We shall
show (i) = (iv). Set 7 := lim,_, o 7g,. Then we see 7 < (. We should prove P, (7 =
¢) = lforallx € X. It suffices to prove that R] p(x) := Ex[fOT e To(X;) dt] = Ryp(x)
forall x € X and ¢ € By(X) N L3(X;m) with 0 < ¢ < 1. Fix such a . We already
see that it holds for m-a.e. x € X. By construction, for each n € N, both R]¢ and
R, are excessive with respect to Mg, , consequently finely continuous on E,. Thus,
Rlp(x) = Ryp(x) for all x € E, for each n € N in view of Lemma 4.8. Therefore,
R7p(x) = Ryp(x) for all x € X, which implies (iv). |

5 Fine Connectedness of Right Processes Associated with
Irreducible Semi-Dirichlet Forms

We first treat a coercive closed form (€, J) with a lower bound —v on L*(X; m). Let
(T;)+=o be a strongly continuous semigroup on L?(X; m) associated with (&, F).

Definition 5.1 (Invariant set) Let (€,F) be a coercive closed form with a lower
bound —~ on L2(X; m). A subset B of X is said to be invariant with respect to (&, F)
or (T});~o if and only if T,(Izf) = IT, f forallt > 0 and f € L*(X;m).

Obviously B is invariant if and only if B is invariant, and B is invariant with re-
spect to the dual form (€, JF) or the dual semigroup (T});>o0.
The following theorem is due to Y. Oshima [37, Theorem 1.4.1].

Theorem 5.1 Let (E,F) be a coercive closed form with a lower bound —~ on L*(X; m).
Then B is an invariant set with respect to (€, F) if and only if for allu € F, Iyu € F
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and E(u,v) = E(Ipu, Igv) + E(Ipeu, Ipev) for u,v € .

The next theorem is essentially due to Fukushima in the framework of regular
symmetric Dirichlet forms [16, Theorem 2] and [18, Corollaries 4.6.2, 4.6.3].

Theorem 5.2 Let (€,F) be a quasi-regular semi-Dirichlet form with a lower bound
—v on L*(X; m). Suppose that there exists an m-tight special standard process M asso-
ciated with (€, F). Fix an m-measurable set B.
(i) Suppose that B is simultaneously €-quasi-open and E-quasi-closed. Further as-
sume that one of the following two conditions is satisfied:
(a) B isinvariant with respect to (€, F).
(b) (&,F) islocal, that is, M is a diffusion.
Then there exists a properly exceptional set N such that both B\ N and B\ N are M-in-
variant. Further assume that M satisfies the absolute continuity condition with respect
to m and B is finely open and finely closed Then B and B¢ are M-invariant. In particular,
N can be taken to be empty.
(ii) The following condition is equivalent to (a).
(¢) X can be decomposed as X = B+ B, + N where By (resp. B, ) is an M-invariant
nearly Borel m-version of B(resp. B°) and m(N) = 0.

Further assume that M satisfies the absolute continuity condition with respect to m. Then
the following condition is equivalent to (a).

(") X can be decomposed as X = By + B, where By (resp. B,) is an M-invariant
nearly Borel m-version of B(resp. B°).

Moreover, condition (c) yields that both By and B, specified in (c") are finely open and
finely closed (resp. open and closed) under the absolute continuity condition with respect
to m (resp. strong Feller property).
(iii) If we assume (b), then one (hence all) of the following conditions is equivalent

to (a) (or (c)).

(d) u € Fimplies Iyu € F.

(e) IB € f'}’loc-

(f) B has an E-quasi-open and E-quasi-closed m-version EofB.

Proof By use of the results in the previous section, the proof of the first part of (i)
(resp. (ii)) is similar to the proof of Lemma 4.6.3 (resp. Corollary 4.6.2) in [18]. The
proof of (a) < (f) is similar to the proof of [18, Corollary 4.6.3]. The proof of (e)
= (f) is clear. The proof of (a) = (f) follows from Theorem 5.1. d We first prove
(d) = (e). Set h := Gy with ¢ € K(X). Then h>o0 €-q.e. on X. Hence
Iy = Ig(nh A1) m-a.e.on {x € X | h> 1/n}. Since I[g(nh A1) € Fbynh A1 € TF,
we have Iy € Foc. Next we show the second part of (i). Suppose (a) or (b) and
the absolute continuity condition for M with respect to m, and assume that B and B¢
are finely open and finely closed. Then we have that for any o > 0, R,Ig = IzR,1
and R,Ip = IpR,1 m-a.e. on X. Both sides are finely continuous, which implies the
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M-invariance of B and B‘. Finally we show the second part of (ii). The implication
(a) = (') is essentially proved above by taking a finely open and finely closed nearly
Borel m-version of the invariant set B. Conversely suppose (c’). Then we see that
RuIpu = Iy Ryuand R,Ip,u = Iy, R, u for any a > 0 and u € L*(X;m). Hence B,
and B, are finely open and finely closed, and B is invariant. If M is a strong Feller
process, By and B, are open and closed. |

Definition 5.2 (Irreducibility) A coercive closed form (€, F) with a lower bound
—~ on L*(X; m) is called irreducible if for any invariant set B of (§,F), m(B) = 0 or
m(B) = 0.

Corollary 5.1 (Inheritance of irreducibility) Let (€Y, F) on L*(X;m'V) and
(€D F) on L*(X; m®)) be two quasi-regular semi-Dirichlet forms with the same lower
bound —~ having a common domain F C L*(X; m"V) N L*(X; m'?) and suppose that
(EW F) has the local property and there exists an m-tight special standard diffusion
process MY associated with (€Y, F). Here m"Y) and m® are o-finite Borel measures
on X. Suppose that E? (u, u) > EV(u, u) holds for u € F and m® > mV. Then the
irreducibility of €V implies the same property of €@,

Proof It is easy to see that every €?)-nest is an &-nest. Hence € -polarity (resp.
€?)_quasi-upper-semi-continuity) implies the &V)-polarity (resp. &V)-quasi-upper-
semi-continuity). Suppose that B is invariant with respect to (£®, F). Then condi-
tion (f) of Theorem 5.2 holds for (€®, F). Therefore it holds for ("), F). By apply-
ing Theorem 5.2(iii) again, we have the invariance of B with respect to (&M F). This
completes the proof. ]

Theorem 5.3 (Fine connectedness) Let (€,F) be a quasi-regular semi-Dirichlet
form with a lower bound —~ on L*(X; m). Suppose that there exists an m-tight special
standard process M associated with (€,F). Further assume that M satisfies the abso-
lute continuity condition with respect to m and (€, F) is irreducible. Then M is finely
connected; namely, if G is finely open and finely closed Borel set of M, G = @ or G = X.

Proof Suppose that G is a finely open and finely closed Borel set of M. Then G is
€-quasi-open and €-quasi-closed by Proposition 4.1(ii). We have that G is invariant
by Theorem 5.2. According to the irreducibility of (€, F), m(G) = 0 or m(G°) = 0,
hence G = @ or G° = & by Lemma 4.8. This completes the proof. ]

6 E&-Subharmonic Functions

Throughout this section, we fix v € [0, col.

Definition 6.1 Let (€,F) be a quasi-regular local positivity preserving form with
a lower bound —y on L*(X;m). For u € Fc and {G;} € Z(u) and v € Fg,, we
set E(u,v) := E(u;,v). Here u; € F is the function specified in the definition of
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u € Foc. Owing to the local property of (€,F), E(u, v) is well defined for u € Froc
and v € |2, Fg, with {G;} € E(u). Similarly we can define &, (u,v) for such u,v
and o > 0.

Definition 6.2 (E,-subharmonicity) Let (&, JF) be a quasi-regular local positivity
preserving form with a lower bound —v on L?(X;m). Fix an a > 0. A function
u € Floc is said to be &, -subharmonic relative to {G;} € Z(u) if €,(u,v) < 0 for
allv € U;fl S"a_ and u € F. is called &,-subharmonic or a (local) subsolution of
“(L — a)w = 0”if u is £,-subharmonic relative to any {G;} € Z(u). If —uis &,-
subharmonic, u is said to be &,-superharmonic or a (local) supersolution of “(L —
a)w = 07. If both u and —u are &,-subharmonic, u is said to be €,-harmonic or a
(local) solution of “(L — a)w = 0.

Lemma 6.1 Let (E,F) be a quasi-regular local positivity preserving form with a lower
bound —v on L*(X;m). For u € Fioc and o > 0, the following conditions are equiva-
lent.

(1)  wis E,-subharmonic.

(i)  wis E,-subharmonic relative to any {G;} € Ecpi(u).
(ili)  wuis E,-subharmonic relative to some {G;} € Zpe(14).
(iv)  wis &,-subharmonic relative to some {G;} € =(u).

Proof Theimplications (i) = (ii) = (iii) = (iv) are trivial. We shall prove (iv) = (i).
Suppose that u is £,-subharmonic relative to some {E;} € Z(u). Take {G;} € ZE(u)
andv € [, F¢.. Thenv € F¢ for somei € N. Noting {E; N G;}2, € Eg,, there

exists {v,} C U]Oil FE g, such that v, — vin (8Gl)1/ﬁ-norm by Lemma 3.6. Hence
Ea(ua V) = Sa(uiav) = hmn—>oo ga(uiavn) = hmn—>oo Ea(ua Vn) < 0. Here u; € F
with u = u; m-a.e. on G;. This completes the proof. ]

The next proposition ensures that the present definition of €-subharmonicity is an
extension of the £-subharmonicity in the framework of regular local semi-Dirichlet
forms.

Proposition 6.1 Suppose that X is a locally compact separable metric space and m is
a positive Radon measure on X with full topological support. Fix o > 0. Assume that
(&, F) is a regular local semi-Dirichlet form with a lower bound —~ on L*(X; m). Recall
that Fo is the family of functions locally in F in the ordinary sense. For u € JFi,, the
following conditions are equivalent.

(i)  wuis Ey-subharmonic.
(i)  Enlu,v) <0forve F,

cpt*

(i) Enlu,v) < 0forv e F* NCo(X).

Proof Take an increasing sequence {0, } of relatively compact open sets with O,, C
Oy1 for each n € N. Then {O,} € E(u) and Fpe = U~ Fo,. So the equivalence
(i) < (ii) is clear from the previous lemma. To show the equivalence (ii) < (iii), it
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suffices to show that F; N Cy(G) is €}/,{rzl-dense in F¢ for any open set G, which is
proved in Proposition 3.4. This completes the proof. ]

Lemma 6.2 Let (E€,F) be a quasi-regular local positivity preserving form with a lower
bound — on L*(X; m). Foreach o > 0 and u € L°(X; m), the following are equivalent.

i) u € Fioc and it is &, -subharmonic.

(ii)  There exists a {G;} € = such that u|g, € F|g, and it is (€g,)o-subharmonic for
alli € N.

(ili)  There exists an {E;} € E such that u
foralli € N.

E € (fr".E‘,)IOC and it is (Cg, ) o -subharmonic

Proof The implication (ii) = (iii) is trivial. First we prove (i) = (ii). It suffices to
show that for an £-quasi-open set G with u|¢ € F|g, u|g is (€)q-subharmonic. Take
such Gand {G;} € Z(u). Then {GN G;} € Eg(u) by Lemma 3.5(i). Since Fgng, C
F6.» Ealu,w) < 0forw e U2, FEqg,» which implies the (€),-subharmonicity of
u by Lemma 6.1.

Next we show (iii) = (i). Take an {O’]} € Zg (u). Let {F,} be a common &, -nest
of compact sets such that E;~ N F, is compact and O} N F, is open in F, for all
i,j,n € N. In view of the observation before Lemma 3.7, such an &,-nest can
be constructed as in the case of quasi-regular semi-Dirichlet form. We may assume
EE C Ei O; - O§‘+1 and E; = U;’il Oj- for all i, j € N by deleting adequate
&-polar sets. Then there existsa j = j(n,i) such that E;” NF, C O;“ NF,. Therefore
there exists a u; ; € Fp,, such that u = u; jm-ae. on E; N FE™, Putting G; :=
E; N FE we have {G;} € Z(u), which implies u € Floc. By assumption, for
eachi € N, Eq(u,w) < 0 forallw € U7, Fé- Take w € U 58 < US, 5%

Then there is an i € N with w € F} and w, € 32, FE such that {w,} is 8%21—
4 J
convergent to w. Hence &, (u, w) = lim, o €4(u, w,) < 0. Applying Lemma 6.1

again, u € Floc and u is &,-subharmonic. This completes the proof. [ |

Corollary 6.1 Suppose X is a locally compact separable metric space and m is a posi-
tive Radon measure on X with full support. Let (€, F) be a regular local semi-Dirichlet
form with a lower bound —~ on L*(X; m). For each a > 0 and u € L2 (X;m), the
following are equivalent.

(i)  u € Foc and it is € -subharmonic.
(ii)  For any relatively compact open set G, u|g € F|g and it is (), -subharmonic.
(iii)  For any relatively compact open set E, u|g € (Fg)ioc and it is (Eg),-subharmonic.

Proof The proof is the same as in the above lemma. The local boundedness of u
is only used in the proof of u|g € (Fg)ioc in (ii) = (iii). We omit the details. This
completes the proof. ]

Let T be abounded linear operator on L*(X; m) admitting m-a.e. defined bounded
kernel ¢, namely, there exists a kernel : X x B(X) — [0, co] with #(x, X) < oo for
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any x € X such that Tf(x) = [, ]?()/)t(x, dy) m-a.e. x € X for any Borel m-ver-
sion f of f € I2(X;m). Take u € L%(X;m). We define Tu in the following way:
Tu(x) := fx u(y)t(x,dy) for some non-negative Borel m-version # of u. Then Tu is
m-a.e. well defined and satisfies 0 < Tu < 0o m-a.e. Note that (G,)asy and (T¢);>0
associated with a quasi-regular semi-Dirichlet form (€, F) with a lower bound —+ on
L*(X; m) are families of bounded linear operators on L?(X; m) admitting m-a.e. de-
fined bounded kernels if there exists a Borel right process M associated with (€, F).

Definition 6.3 (Excessive functionin L°(X;m)) Let (€, F) be a quasi-regular local
semi-Dirichlet form with a lower bound —v on L*(X; m) and (T;);~( semigroup as-
sociated with (&, F). Fix a > 0. A function u € L°(X;m) is said to be a-excessive
with respect to (€, F) if u > 0 m-a.e. and e~ Tyu < u m-a.e. forallr > 0.

Lemma 6.3 Let (€,F) be a quasi-regular local semi-Dirichlet form with a lower
bound —v on L*(X;m) and G an &-quasi-open set. Assume that there exists a Borel
right process M associated with (€, F). Take « > v and u € F*|g. Suppose that u
is (E¢)qa-superharmonic on G. Then u is a-excessive with respect to (Eg, Fg). If we
further assume u € F}|g and m(G) < oo, then the same assertion holds for o € [0, v].

Proof First suppose & > v and u € F¥|g. Take v € F* with u = v m-a.e. on
G. Suppose that u is (€g),-superharmonic on G. We have that v — H&.v € Jg is
(€6)a-superharmonic by Theorem 4.4. According to Lemma 2.2, v — HE&.V satisfies
e ' pC(v — H&v) < v — H%Vm-a.e. on G forall t > 0. Noting that e p’H2. v <
H&.v m-a.e.on G for all t > 0, we have e pSv < v m-a.e. on G for all t > 0. Next
suppose o € [0,7], u € F}|g and m(G) < co. Then the same proof works as above
by way of Theorem 4.4. This completes the proof. ]

The following theorem extends [44, Lemma 3(a),(b)] and Lemma 2.2.

Theorem 6.1 Let (€,F) be a quasi-regular local semi-Dirichlet form with a lower
bound —~ on L*(X;m). Furthermore, we assume that there exists a Borel right process
M associated with (€,F). Foru € F_and o > 0, the following are equivalent to each
other.

(1) e “Twu<uforanyt > 0.

(ii)  BGaspu S uforany f >y — a.
(iii)  uis E-superharmonic.

Proof The implication (i) = (ii) is clear. We show the implication (ii) = (iii). We
may assume a > 0, because the case for @« = 0 can be obtained from this. First we
assume o > 7. Weset G; := {x € X | "> 1/i,u(x) < i}, where h := Gy ¢
with o € L*(X;m), 0 < ¢ < 1 m-ae. Then {G;} € Z with m(G;) < oo for each
i € N. Further we set E; := {x € X | h% > 1/i}, where h% := ijrlgo. Then
{E;} € Zand E; C G; by the proof of Lemma 3.8. Set L?,’E,- ={ueTg |u>
1&-qe.onE;}. Then ih% A1 € Lf"Ei # . By Stampacchia’s projection theorem,
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there exists a unique ej € LleE,. such that ¢ = 1 &-q.e. on E; and €, (e, w) > 0
for w € FF. In particular, ej{_ is (€g,)a-superharmonic. We may take {G;}, {E;}
as finely open Borel sets. Further, E.[e” % :0p, < 7g,] is an €-quasi-continuous
m-version of ef; . For general o > 0, we set ef, := Ec[e”“"%i:0p < 7g,]. Then by
g — egi + (o — 5)R§*’\E"eg = 0, e is an a-excessive function in F¢, with respect
to (Eg;, Fg,) for all a >0 by way of Lemma 2.2. Here we apply Lemma 4.1 to
Rg"\E"eg € L*(G;;m), because m(G; \ E;) < m(G;) < oo. From (ii), u; := u A ief.
satisfies ﬁGg;aui < wy;foral f > a —~, hence u; € Fg, and {E;} € =(u) by
Lemma 2.1. Therefore u; is (€, ), -superharmonic by Lemma 2.2. Take v € | J;~, FE.
Then €,(u,v) = Eu(u;,v) > 0 forv € I and some i € N.

Next we show the implication (iii) = (i). We may assume « > 0 and the E-quasi-
continuity of u. Set G; := {x € X | h> 1/i, u(x) < i} asin (ii) = (iii). We can
retake G; so that {G;} € Z(u) and for each i € N there exists u; € F;, with u = u; m-
a.e. on G;. We may take {G;} as finely open Borel sets. Since u is €, -superharmonic,
Eolu,v) > O0forallv € Ufil F¢.- In particular, u; on G; is (Eg, ), -superharmonic.

—at

Then by Lemma 6.3, we have e~ p%u < u m-a.e. on X. Letting i — 0o, we obtain

the assertion. This completes the proof. ]

Corollary 6.2 Let (€,5) be a quasi-regular local semi-Dirichlet form with a lower
bound —~ on L*(X; m). Furthermore, we assume that there exists a Borel right process
M associated with (€, F). Then 1 is E-superhamonic.

Proof It suffices to show 1 € Fjoc. Fix ¢ € L*(X;m) with 0 < ¢ < 1 and set
h:= Gap for a > 7. Then nh A 1is an a-excessive function in F by Lemma 2.1. We
letE, := {h > 1/n}. Wesee {E,} € Eand 1 = nh A 1 m-a.e. on E,,. [ |

Theorem 6.2 Suppose that (€,F) is a regular local semi-Dirichlet form with a lower
bound —v on L*(X; m) in the framework of locally compact separable metric space X
having a positive Radon measure m with full support. Furthermore, we assume that
there exists a Borel right process M associated with (€,F). Fix o > 0. Let u be an
a-excessive function with respect to (€, F). Suppose u € Ly° (X; m), or that there exists

av € Fioc such that u < v m-a.e. on X. Then u is an & -superharmonic function in
+

loc*
Proof In view of the previous theorem, it suffices to show u € Fj,c under the present
condition. First we assume that u € L% (X;m). Let {A;} be an increasing sequence
of relatively compact open sets with A; C Ajy1, i € Nand [, A; = X. We set
Lﬁ’x = {u € Fa,, | u > lm-ae. onA;}. Owing to the regularity of (€4,,,, Fa,,,)
on L*(Ajy; m), L’fjj‘t # o for each i € N. By assumption, u is -excessive for any
08 > 7, hence, we may assume « > «. Then there exists a unique S Lf‘x such that
Ealeq,w) > Euley ,eq) forallw € L‘f’x. We see (e, w) > 0forw € SFXM and
ei. = 1 m-a.e. on A;. In particular, e, is an a-excessive function in Fy,,, with respect
to (€a,,,, Fa.,,) (see [33, Ch. IIL Proposition 1.5]). We set u; := u A ||| o0 (a;;m)€ -

i+l
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By the same reason as in the proof of (ii) = (iii) in Theorem 6.1, u; is an a-excessive
function in Fy,,, .
the latter case. Suppose that there exists v € F,. such that u < v. Let {A;} as above.
Wesee Ly 4, := {w € F | w > um-ae.onA;} # @. Then there exists a unique
uy, € Fsuchthat &, (uy , w) > E,(uy, uy ) forallw € L, 4,. Wesee E,(ujj,, w) >0
for w € F*. In particular, u3. is an a-excessive function in F with respect to (€, F).
We then have uj = u m-a.e. on A;, because u A uj; is an a-excessive function in F
by Lemma 2.1. This implies # € Fjoc. This completes the proof. ]

Since u = u;m-a.e. on A;, we can conclude u € JFj,.. Next we treat

Theorem 6.3 (Weierstrass Type Theorem) Let (€, F) be a quasi-regular local semi-
Dirichlet form with a lower bound —v on L*(X; m). Assume that there exists a Borel
right process M associated with (€, F). Further assume that 1 € Fyo. is E-harmonic.
Take {v,} C Fioc. Then we have the following:

(i) Suppose that there exist common {G;} € ()2, E(v,) and v € L°(X;m) such
that v, is uniformly bounded on G; and it converges to v uniformly on G; as n — oo for
each i € N. If v, is E-superharmonic for all n € N, then v € Fio. and it is E-super-
harmonic.

(ii) Suppose that v, € L*°(X;m) is uniformly convergent to some v € L>(X;m). If
vy, is E-superharmonic for alln € N, then v € Froc and it is E-superharmonic.

(iii) Assume that (€, ) is a regular local semi-Dirichlet form with a lower bound
—v on L*(X; m), where X is a locally compact separable metric space and m is an ev-
erywhere dense positive Radon measure m on X. Suppose that v, € Fioc N L2 (X; m) is
L (X5 m)-convergent to some v € LY2(X;m). If v, is E-superharmonic for alln € N,
then v € Foc and it is E-superharmonic.

Proof (ii) and (iii) are clear from (i) except the assertion v € JF, in (iii). First we
show (i). By assumption, there exists a constant M; > 0 such that

Wy =v,+M; >0, wi=v+M; >0

m-a.e. on each G;. We get TtG"wn < w, m-a.e. on G; by Theorem 6.1, hence th;iW <
w m-a.e. on G;, which implies that v|g, € (Fg,),,. and its £,-superharmonicity by
using the €-harmonicity of 1 again. Owing to Lemma 6.2, we have the assertion.
Finally we show v € Fj, in (iii). Let G be a relatively compact open set. We easily see
that v|g € (Fg)ioc and its €g-superharmonicity in the same way as above. Hence we
have the assertion by Corollary 6.1. This completes the proof. ]

Lemma 6.4 Let (§,F) be a quasi-regular local semi-Dirichlet form with a lower
bound —~ on L*(X;m). Assume that there exists a Borel right process M associated
with (€, F). Fix an E-quasi-open set O. Take o« > y and v € JF. Then the following are
equivalent.

(1)  vis(Ep)y-subharmonic.
(i) v—H&v <e “pO(v— H4V), m-a.e. on O for allt > 0.
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(iii) v <e “pPv+E [e V(Xop )00 < t], m-a.e. on O forallt > 0.

In particular, if v is (Eo)q-subharmonic (resp. (€o)q-superharmonic) for o > -, then
v < H3.V (resp. v > H@.v) m-a.e. on O.

Moreover, if v € Fp, and m(O) < oo, then the equivalence above holds for the case
a € [0,v]. In particular, if v € Fp, m(O) < oo and Py(1o < o0) = 1 m-a.e.
x € O, then (E0)q-subharmonicity (resp. (Eo)a-superharmonicity) of v implies v <
HQ.V (resp. v > H3.V) m-a.e. on O for o € [0,7].

Proof The equivalence (ii) <> (iii) is an easy calculation. Take o > 0. If & € [0, 7],
we assume v € F, and m(O) < oo. As in the proof of Lemma 6.3, we have that
(€0)a-subharmonicity of v is equivalent to the (€¢),-subharmonicity of v — H&.v €
Fo, because of the (€p)q-harmonicity of Hj.v, which is equivalent to (ii) by Lem-
ma 2.2, so we show the latter assertion. Let v € Fbe an (€p),-subharmonic function.
Suppose a > 1. Since v and H3.V are in L?(X; m), we see that e~ pO(v — H3.v) is
bounded in L*(O; m) with respect to t > 0, which implies the L2(O; m)-convergence
o pO(y — H2.V) to 0 as t — o0o. Taking a subsequence of ¢, we have the desired
assertion. Next suppose & € [0,7], v € Fp, m(0O) < oo and Py(70 < o0) =1
m-a.e. Then, by way of the proof of Lemma 6.3 again, we have (ii). By assumption,
e pO(v — HA.v) is estimated above by 2||v| «Px(t < 7o) for each x € O. Letting
t — 00, we obtain the result. Finally we note that the boundedness of v is also used
to apply Theorem 4.4 to H3.v for a € [0, «y]. This completes the proof. ]

ofe

Theorem 6.4 Let (€,F) be a quasi-regular local semi-Dirichlet form with a lower
bound —~ on L*(X; m). Assume that there exists a Borel right process M associated with
(€,9). Take o > 0.

(i) Let n be a convex function satisfying n(0) < 0. Suppose thatno f —n(0) € F
for any f € F. Then for every E-harmonic function u, the function 1 o u is
E-subharmonic.

(ii)  Take p > 1. Suppose that |f|P € F for any f € Fy. Then for every € ,-harmonic
function u and p > 1 the function |ul|? is €, -subharmonic.

(iti) Letu,v € Foc be Eq-subharmonic functions. Then u\ v is also €, -subharmonic.

Proof We first show (i). Take an &-harmonic function u. Let {G;} € Z(u) and
u;,v; € F such that u = u; m-a.e. on G;. We may assume that for each i € N, u; is
bounded on X and m(G;) < co. By assumption, we see w; := n o u; —n(0) € F. By
Lemma 6.4, £g,-harmonicity of u; is equivalent to

u = piu; +E~[i‘vi(XaGf):UG§ <t]

m-a.e. on G;. Let K (x, -) be a kernel defined by

Ki(x,A) == pSi(x,A) + B (Xo )06 < 1.
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Then K/ (x, -) is a Markov kernel. Indeed, oc: < t implies oG < (, hence we see
K(x,X) = 1. Applying Jensen’s inequality to 7, we have

n(ui(x)) = n(Kju;(x)) < Ki(n 0 u;)(x),

which implies w; < p,G’ wi + E.[w; (X, ):0G: < t] m-a.e. on G;. Hence we obtain the
& g,-subharmonicity of w; € F by Lemma 6.4. Therefore 7 o u is &-subharmonic by
Lemma 6.2, (0) < 0 and Corollary 6.2.

Next we show (ii). The proof is quite similar to (i) by replacing K!(x, -) with
K} (x,-) defined by K;* (x, A) := e~ p{ (x, A) + Ex[e “"*14(X,,):0¢: < t]. Note
that Kf'a(x, -) is not necessarily a Markov kernel, but a sub-Markov kernel. Let u
be an €,-harmonic function and u; the (€, ),-harmonic function as discussed. By
Holder’s inequality, we have

i ()P = [Ku; ()P < (K1) KE ] ()
< K |uwi]P (%),

— QO Ge
e ©

which imlpies |u;|? < e~ p&|u;|P + E.[

Ui|P(Xppe)i0G < t] m-ae. on G;.
Hence we obtain the (£g,),-subharmonicity of |u;|?. Therefore |u|? is &€,-subhar-
monic.

Finally we show (iii). Let {G;} € Z(u) N Z(v) and u;,v; € F such that u = u;,
v = v; m-a.e. on G;. We may assume that for each i € N, u; and v; are bounded on X
and m(G;) < oco. By Lemma 6.4, (€g,)-subharmonicity of u; is equivalent to u; <
ptG" u; + E. [IZ(X%_?):UG; < t] m-a.e. on G;. Thus we have the (¢, ),-subharmonicity
of u; Vv;. Conse(iuently, u V vis €,-subharmonic. This completes the proof. [ |

Remark 6.1 If the dual form (g, F) is also a semi-Dirichlet form on L(X; m) with
the same lower bound —+, then any Lipschitz continuous function 7 satisfies that
no f—n(0) € Fforany f € F. Consequently |f|? € Fforany f € Fp, p > 1.

7 Proofs of Maximum Principles

We fix an open set G with non-empty boundary 9G and a quasi-regular local semi-
Dirichlet form (€, F) with a lower bound —v on L*(X; m).

Proof of Proposition 1.1 (i) For any relatively compact open neighborhood U of O,
My is also transient. Under the doubly Feller property of M, My is a strong Feller
process. Then we see

E.[7o] = E[ / " Io(xt)dt} < RVIp(x) < 0o
0

in view of [20, Corollary 2.3]. Hence we have the assertion.

https://doi.org/10.4153/CJM-2008-036-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2008-036-8

860 K. Kuwae

(ii) Owing to the irreducibility of (€, F), M is either transient or recurrent in
view of the ergodic decomposition of M (see [28]). If X \ O is non &-polar, then
the irreducibility of (&, ) implies Py(ox\0 < o0) > 0 m-ae. x € X. Then the
recurrence of M implies the assertion.

(iii) Since the dual form (g, F) has Markov property, X, the corresponding dissi-
pative part m-a.e. coincides with X, (see [28]). Here X, = {xeX| @f(x) < oo}
for some f € L!(X;m) and X, is m-a.e. invariant under the choice of such f. Un-
der the transience of M, we have )/fd = X4 = X m-a.e. by [28, Theorem 1.3]. So
Io € LY(X; m) yields RIp < oo m-a.e., which implies the assertion.

(iv) We set u(x) := Py(10 = o00) for x € X. Then u satisfies u = pPu m-a.e.
on X. By m(O) < oo, u = pu € L*(O;m), hence u € Fp. Owing to Lemma 2.2,
u is a non-negative €p-subharmonic function on O. In particular, E(u,u) = 0,
which implies # = 0 m-a.e. on O in view of the transience of (€, Fo). Suppose that
the Nash-type estimate holds. Then the following Nash inequality holds (see [5] or
[38, Theorem 4.3]): there exists C > 0 such that

IFIR" < cer, NIFIRY, vfed.

From this and ||ul|; < m(O) < oo, we have ||ul|, = 0, hence u vanishes m-a.e.
on X. |

Proof of Theorem 1.1 First we prove (i). By Theorem 4.3, the part process Mg =
(£2,XC, P) on G is associated with (g, F;). Take a {G,} € ZEg(u) and u, € Fg
such that u = u, m-a.e. on G, and &(u,¢) < 0 forany ¢ € (J,2, FE . We may
assume that G, is a finely open Borel set, m(G,) < oo and u is bounded on G,. In
particular, we may assume that u, € (Fg)p is an Eg,-subharmonic function. Take
¢ > supys u*. Then uy := (4 — £)* is also €g-subharmonic by Theorem 6.4, because
£ > 0and the €g-superharmonicity of 1. Similarly (u,—¢)* is also ¢, -subharmonic.
By assumption, Py (7, < 00) = 1 m-a.e. x € X for each n € N. Then by Lemma 6.4,
we have (4, — )" < He: (4, — )" m- ae on G,. Thus uy < Hge uy m-a.e. on G,, for
all n > m by noting u = u, q.e. x € G We extend u, € C(G) to 11y € C(Xa) with
i/ (A) = 0and 7 = ug on G. Note that P(lim,, ., 76, = 76) = 1 m-a.e.x € X by
Theorem 4.6 and H: uy(x) = E.[uy (X7, )]. Owing to the quasi-left-continuity up to
00, we have uy < Hg-uy m-a.e. on G,,;, which implies (u — )" < Hge(u — £)* m-a.e.
on G. Then (u(x) — 0)* < E;[(u(Xsy) — )" 106 < (] = 0 m-a.e. x € G. Hence
supg u < £. Letting ¢ — sup, u*, we arrive at the result.

Next we prove (ii). Take an £ > sup,;u. Since 1 is Eg-harmonic, (u — ) is
also €s-subharmonic by Theorem 6.4. In the same way as in the proof of (i), we can
conclude (u — /)t < Hg(u — £)* m-a.e. on G. Therefore, we have the conclusion.
This completes the proof. u

Proof of Corollary 1.1 The proof is similar to that of Theorem 1.1. We first show
(i). Take £ > E-supg you" and {G,} € Eg(u) as in the proof of Theorem 1.1 and
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set 1y := (u— £)". Then we have u; < Hg: tiy m-a.e. on Gy, for all n > m in the same
way as in the proof of Theorem 1.1. Recall that there exists a s.€-nest { F;} such that
U|F,ugay is continuous on Fr U {A}. Since

Heeug(x) = Ex[u(Xr,,):76 < ox\p ] + Ex[th (X, ) 176 = ox\g,]

n

< Eun(Xr,):76 < ox\p ] + (E-sup )" Pu(76 > ox\R),
G

letting n — 0o, we have

up(x) < Ex[iy(X7,):76 < ox\g] + (E-sup )" P(16 > ox\p,), m-ae.x€G
G

by the quasi-left-continuity up to co and the continuity of # on FyU{A}. Letting k —
oo with [2, Lemma 3.4], we get uy(x) < Hgtg(x) = 0 m-a.e. x € G, hence u(x) <
&-supg you' €-q.e. x € G. Consequently, we have E-supze u < E-supg o u". The
proof of (ii) is similar to that of Theorem 1.1(ii). This completes the proof. ]

Proof of Theorem 1.2 (i) is an easy consequence of Theorem 1.1(i) and Corol-
lary 1.1(i). We shall show (ii). Note that |u, — u,| is €g-subharmonic by Theo-
rem 6.4(iii). Hence supg |u, — ttm| < supyg |ty — | — 0as n,m — oo. So there
exists a u € Cp(G) such that supg |u, — u| — 0 as n — oco. Owing to Theorem 6.3,
we have u € (F6)j, and its €g-harmonicity. This completes the proof. ]

Proof of Theorem 1.3 The proof of (ii) is similar to the proof of (i). We only prove
(i). Since u*(xo) > 0 and 1 is E-superharmonic, u* (xp) — 1 € Foc N C¢(X) isanon-
negative €-superharmonic function, hence so is v := u* (xg) — u* = (" (x9) — u) A
u(x). WesetY := {x € X | v(x) > 0}. Since v € C¢(X), v is also excessive with
respect to M7, so is Iy (see [27]). In particular, Iy is finely continuous with respect to
M". By Theorem 5.3, we getY = @ or Y° = &. Since xy € Y, we have Y = . This
completes the proof. ]

Proof of Theorem 1.4 The proof of (ii) is similar to the proof of (i). We only prove
(1). Since u*(xp) > 0 and 1 is E-superharmonic, u* (xy) — u € Foc isa non-negative
&-superharmonic finely lower-semi-continuous function, hence so is

vi=ut(xg) —u" = (ut(xg) — u) Aut(x).

Hence p;v < v m-a.e. by Theorem 6.1. By absolute continuity of p; (x, dy), aR,v(x)
is increasing as @ — oo for any x € X. We put ¥(x) :=7 lim,_, o0 @R, v(x). Then ¥
is excessive with respect to M. We see ¥ < v m-a.e. and by using the fine lower-semi-
continuity of v, 0 < v < ¥ on X. On the other hand, we know v = 0 on G. Hence
v = 0 m-a.e. on G, consequently ¥ = 0 on G. As in the argument of the proof of
Theorem 1.3, we have ¥ = 0 on X or ¥ > 0 on X. Theorefore ¥ = 0, which implies
v = 0. This completes the proof. ]
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8 Examples

Example 8.1 ([7,42]) Let G be a nonempty open set of R(d > 1) with the d-
dimensional Lebesgue measure m(dx) := dx. Weset L? (G — R4 := LP(G — R%m)
and LP(G) := L?(G — R) for p > 0. Let

HY(G) := {u € I*(G) | Vu € I*(G — R}

be the usual 1-order Sobolev space and H{(G) the completion of C§°(G) with re-
spect to the norm || - || () defined by [[ull3 ) = lullag) + |Vullag) Let G 2
x = ax) = (a;j(x))! j—1 be a symmetric RY ® R?-valued measurable function
and G 3 x — b(x),z(x) R?-valued measurable functions with expressions b(x) =
(0" (%), B*(%), . . ., (%)), bx) = (b'(x),B*(x), ..., b¥(x)), and G 3 x — c(x) a mea-
surable function on G. We assume a is uniformly elliptic on G: there exist constants
Ag > Mg > 0 such that

l€]? < (a(x)€, €)pe < Aglé]? forall € € RY x € G.

]a(/dz_ We further

assume v := ¢ — divb > 0 on G in Schwartz distributional sense, hence v is a Radon
measure on G. Then a, b, b, ¢, v can be extended on R? by putting

Here (-, - )« stands for the Euclidean inner product with || := (£, £)

a:= {(AG + )\G)/Z}((S’J);i\]:17

b,@, ¢:=0onR? \ Gand v(A) :=v(ANG)forA € B(R?). For u,v € Cgo(]R{d), we
define

ENu,v) = %/ (a(x)Vu(x), Vv(x))ge dx.
R

Then (£%,C5°(G)) is closable on L?(G) and its domain of the closure is H}(G). We
denote by (€%, H}(G)) the closure of (£%,C$°(G)) on L*(G). Let M* = (£, X;, P*) be
the diffusion process on R? associated with (€%, HY(G)).

Definition 8.1 (Hardy class function) A measurable function f on G is said to be
of Hardy class with respect to (€%, H}(G)) (write f € Sy(G)) if there exist constants
o(If]) € 10, 00[ and (| f|) € [0, oo such that

/ | fldm < S\ F)E uyw) + 4 (D]l for u € HLG).
G

If G = RY, we write Sy instead of Si(RY).

Clearly Sy C Su(G) C LfOC(G) for any open set G. By [14, Example 5.1] when
d > 3, LY*(G) C Sy(G) and for f € L¥*(G), 6(|f|) can be taken to be arbitrarily
small.

We prepare the following.
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Assumption 8.1 |b|%, |b2, |c| € Sy and

80 = /28([6P)/AG + \/20((B2) /A6 + 6(Je) < 1.

For u,v € C{)X’(]R{d), we set

E(u,v) = Eu,v) +/ (b(x), Vu(x))gav(x) dx

R4

+/ @(x),Vv(x))Rdu(x) dx+/ u(x)v(x)c(x) dx.
R

R4

Then under Assumption 8.1, in the same way as [14], there exist positive constants

My, My, y > o 1= 7([b]2)/2/ A0 ([B]2) + 7([b2)\/2/A6(b]2) +v(|c]) > 0 such

that for u,v € C(‘)X’(]R{d)

|E(u,v)| < MlHu”Hl(]R(d)HV”HI(]R{d)
Eq(u,u) > (1 —00)E%(uy u) + (v — 70)”““%2(11«4) > My ||ul| g ray-

Hence (€, C3°(RY)) is closable on L?(R?), with closure denoted by (€, H'(R)).
For u,v € H'(R%), we set

&b (u,v) := &%u,v) — / (bo(x), Vu(x))v(x) dx,

R4

where by := b — b. For u,v € C5°(G), we see

amwzewmm+/jummmﬂy

G

and (&, H}(G)) (resp. (EbU,Hé(G))) is a regular local semi-Dirichlet form with a
lower bound —v, on L*(G) (resp. —o + ¥(|c|)) and (€%, H}(G)) is the part space
of (€, H'(RY)) on G. Let M = (Q, X,, (g, PY) be the Hunt diffusion process on G
which is €-properly associated with (€, H} (G)) (see [6, Théoréme IV. 1.5]).

Remark 8.1 Ifb e LP(G — RY), be LY(G — RY) and ¢ € L'(G) with p,q,2r >
d > 3, then our assumptions except m(G) < 00, v := ¢ —divb > 0 on G are satisfied
by using the Sobolev inequality (see [14,41,42]).

Subexample 8.1 Let R? := {x € R? | x; > 0} be the upper half plane in R?
(d > 2). Then the following Hardy inequality holds (see [35, §2.1.6], [10, Theo-
rem 6]):

M(X)2 2 1 /d
dx <4 [ |Vu(x)|"dx forallu € Hy(RS).
R4 |xa|? R4
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Fix g, C > 0, A]R{d+ = A]R{d+ = 1and let

b(x) = (V2(4 +e)xg) "er,  b(x) := (V2(4 +e)xg) 'es,  clx) == Cx; 2,

where e; := (1,0,...,0), e; := (0,1,0,...,0). Then our assumptions are satisfied
with 0(|be|?) = 8/(4 +¢)? < 1/2 and v(dx) = c(x)dx. Note |b], |b|,c ¢ LP(R?) for
any p > 0.

Definition 8.2 (Dynkin and Kato class functions) A measurable function f on G
is said to be of the Dynkin (resp. Kato) class on G with respect to (€%, H(G)) (write
f € Sp(G) (resp. f € Sk(G)) if ¢y := ||REC f|l1() < oo for some/all @ > 0
(resp. lim, oo ¢o = 0). Here R%Cf(x) = fooo e~ p»C f(x) dr is the a-resolvent
of f with respect to M%. A measurable function f on R? is said to be of the local
Dynkin (resp. local Kato) class on G with respect to (€%, H' (R%)) (write fe SIBC(G)
(resp. f € S}?C(G)) if I f € Sp(R?) (resp. Ix f € Sk (R?)) for any compact set K in G.
When G = RY, we write Sp (resp. Sk) instead of Sp(G) (resp. Sx(G)) and also write
S}SC (resp. S}?C) instead of SIBC(G) (resp. S}?C(G)).

Our stochastic definition of Sk (G) is rather milder than that with the same no-
tation treated in [25]. However, S}?C(G) is consistent with [25]. It is known that
Sx(G) C Sp(G) C Su(G) C L, (G) (see [14]), hence S¢°(G) C SI°(G) C L, (G).
Moreover, L'(G) C Sk(G), Li,.(G) C SII?C(G) for2r >d > 2,orr > d =1 (see
[1, Theorem 1.4(iii)]). In view of [1, Theorem 4.5] or [9, Theorem 3.6], for d > 3,
f € Sp (resp. f € Sk) if and only if

sup / % dy < oo forsome/alle > 0 (resp. — O ase — 0).
x€ERL J |x—y|<e |x - yl

Therefore, for f € L'(R?) (resp. f € LL (G)) withd > 3, f € Sp (resp. f € SK(G))

if and only if R|f| € L>®(R?) (resp. R(Ix|f]) € L>®(R?) for any compact K C G).
Here

O S
RfGx) = A d / Gt T ady=as | T ay

with Ay :=T'(4 —1)/27%2.

Subexample 8.2 Supposed > 3. Fixan ¢ € [0, 1] and set . (t) := t2(—logt)'**.

(1+5)/2, and

Then ¢, is increasing on ]0,r.] and decreasing on [r., 1[ for r. = e~
©:(0+) = 0. We take a radially symmetric non-negative function f. € Co(R4 —
[0,00])) as follows: f-(x) := 1/p.(|x]) if |x| < r? and f.(x) := 0 if |x| > r.. Then
f. € LY72(RY) N L'(RY). Moreover f. € S by [1, Proposition 4.10] if ¢ > 0, but

fo ¢ Si5¢if e = 0. Indeed, if e = 0,

dy dy
RIBZ(O)ﬁ)(O) = Ad/ — N T = Ad/ - -
? 5,00 Polly DIy 520 [¥I*(=log|y])

https://doi.org/10.4153/CJM-2008-036-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2008-036-8

Maximum Principles 865

Lemma 8.1 Suppose |3|2, lc| € Su(G). Then there exists C, > 0 such that for
any u € C(G) [,u(x)*v(dx) < C1&{(u,u). In particular, Hj(G) is continuously
embedded in L*(G; v) and for u € Hy(G) [, u(x)*v(dx) < C1E{(u, ).

Proof Take u € C3°(G). Then
/ e dm < 61w, ) + 4Dl
G
and
[ 16Vl dm =2 [ 1. Vol
G G
< 2|Vl o) || [b] | 26

~ ~ 1/2
< 2|V BBPIE ) + A(BP) s )

~

= b|?
<2205/ (4000 + g )

o(|bf?)

This completes the proof. u

Corollary 8.1 Suppose \E\z, lc| € Su(G). Then v € S(G), that is, v is a smooth
measure on G with respect to (€%, H'(R%)).

Proof For any relatively compact open set O with O C G, it suffices to prove Ipv €
So(G). Take u € C3°(G). Then [, |u| dv < v(0)'/2,/C,&%(u, u). This completes the
proof. ]

We have the following weak maximum principle.

Theorem 8.1 Suppose Assumption 8.1 and m(G) < oco. Let u € Hé(G)10C NC(G)
be an upper bounded Eg-subharmonic function on G. Then supgu < supy;u’. In
particular, supgu = supygu if u > 0 on 0G. If further v = 0 on G, then supgu =

Sup;c U.
As corollaries we have the following.

Corollary 8.2  Suppose that b2, [b*, ¢ € S and m(G) < oo. Let u € HY(G),,. N
C(G) be an upper bounded & -subharmonic function on G. Then supg u < sup,c u".
In particular, supg u = supyg u if u > 0 on 0G. If further v = 0 on G, then supg u =
Sup;c U.

Corollary 8.3 Suppose |b| € LP(G), |/l;\ € LUG), c € L'*(G) for p,q,r > d > 2,
or p,q,r > 2d = 2 and m(G) < oo. Letu € Hé(G)10C N C(G) be an upper bounded

Eg-subharmonic function on G. Then supgu < supye u*. In particular, supgu =
Supyg U if u > 0 on OG. Furthermore, if v = 0 on G, then supg u = sup,; u.
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Recall that M® = (Q, X;, (g, PY) is associated with (€, H}(G)). To prove Theo-
rem 8.1, we need the following lemma.

Lemma 8.2 Suppose Assumption 8.1. Let u € H}(G) be a non-negative &-subhar-
monic function on G. Then u vanishes on G. In particular, if m(G) < oo, then PS(( <
00) = 1 m-a.e. x € G. More generally, if an open subset O of G satisfies m(O) < oo,
then PS(10 < 00) = 1 m-a.e. x € G.

Proof We set M := ||u||L(g). It suffices to show M = 0. Take e > 0. Set ¢ :=
u/(M+e+u),w:= log(MI\f;fu) and u; := (u— £)* for £ > 0. Then we can confirm
o, w,up € HY(G)" in view of [33, Ch. I, Proposition 4.11]. Since u is &-subharmonic

on G,

0> E(u,up) = E(up, up) +€(/<E,Vug> dm + / cuy dm) .
G G

The last term is non-negative by ¢ — divd > 0 on G. Then we have E(uy, uy) < 0,
which implies 2% (1 — 69)||Vu||3 < 7ol|u¢||3. From this and Nash inequality

d d
LAY < CAIVAIRIAIYY,  Vf € HY(G),

we have

d 2 a/4
(8. el < €% (5rgy) el

i/ 27 i
< V"4 :
<G (/\Gu —50)) O uell2

Then ||uel], > 0 implies A(¢) > (%;SO))"’/Z, where A(¢) := m(u > ) and C; :=
(2 + d)"*2/4(m(B,(0))/4m)*?. Meanwhile,

M+e

2
") <« 2
log -———) " < il

Let£(n) := (1—n)(M+¢) forn € 10, 1[. Then A(4(n)) < ||w||3(log }1)*2. Combining
this and the above argument, for sufficiently small > 0, we have a contradiction.
Hence for small 7 > 0, [lugll> = 0, thatis, M < (1 — n)(M +¢). Since e > 0 is
arbitrary, we have M = 0.

Next we show the last assertion. We set u(x) := PS((sg = 00) for x € G. It is easy
to show u(x) = p,u(x), where p, f(x) := ES[f(X,)]. Since m(G) < oo, u € L*(G),
consequently u = p,u € H}(G). Then u is €-subharmonic on G by Lemma 2.2. The
proof of the rest is quite similar, and we omit it. ]

A(e)(

Proof of Theorem 8.1 By Lemma 8.2, Assumption 1.1(ii) is satisfied. So we can ap-
ply Theorem 1.1. Though the framework of Theorem 1.1 is slightly different from
the present one (M is not given as a part process on G), the method of the proof of
Theorem 1.1 remains valid. The quasi-left-continuity of M® up to oo plays the same
role as in the proof of Theorem 1.1. ]
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From now on, we give a complete extension of Stampacchia’s weak maximum
principle under Assumption 8.1. It is well known that C°°(G) N H'(G) is dense in
H'(G) with respect to || - ||1(g)-norm (see [11, Ch. V, Theorem 3.2]). By H'(G) C
H}(G)oc> €ach element of H'(G) has an €-quasi-continuous m-version on G. More
strongly, each u € H'(G) admits an €-quasi-continuous function # on G which is
an m-version of u on G by the denseness of C*°(G) N H'(G) in H'(G). We then
introduce a disorder < for u, v € H'(G) and the maximum in the sense of H!(G):

Definition 8.3 ([11, Ch. VI, Definition 3.1]) Let A be a subset of Gand u € H'(G).
Fix a real number k € R. We say that u is greater than (resp. less than) k on A in the
sense of H!(G), and denote u > k (resp. u < k) on A if there exists a sequence {uj} in
C*®(G) N HY(G) such that uj — uin H'(G) and for each j € N there exists an open
neighborhood U; of A in R? in the following form such that u; > k (resp. u; < k)
onU;NG:

Uj=U(e,0) == {x e R? | d(x,A) < e, |x| > 6}.
For u,v € H(G), u < vifand only if v — u = 0. For a subset A of G, we set

m:txf =inf{k e R| f < konA}.

We define miny f similarly. For A C Gand u,v € H'(G), u < v on A if and only
if u < v m-a.e. on A, then max, coincides with the m-essentially supremum on A
(see [11, Theorem 3.2]).

Remark 8.2 Our disorder < is slightly different from what is defined in [42], be-
cause the 1-order Sobolev space in [42] is defined as the completion of C'(G) with
respect to || - || (g)-norm. However, the strategy of the proof below remains valid
even if we adopt this definition.

Lemma 8.3 Fix/{ € R and take u € H*(G). Suppose u < £ on G. Then (u — 0)* €

HY(G).

Proof Since (u—¢)" is a normal contraction of u € H'(G), we have (u—¢)" € H'(G)
and

(8.2) [ =06 < lullmo-

Suppose that u < £ on JG. Let u; € C*°(G) N H'(G) and U; be the functions and
neighborhood of 9G such that #; < £ on U;NG. Then we see that (u; — )" € HY(G)
such that (u; — £)* vanishes on a neighborhood of 9G in G. By (8.2), {(u; — £)" } is
a bounded sequence in H}(G) and converges to (1 — £)* in L*(G) as j — oc. Hence
we have (u — £)* € H}(G) in view of the Banach—Saks theorem. [ |
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Then we have the following.

Theorem 8.2  Suppose Assumption 8.1. Let u € H'(G) be an &-subharmonic function
on G. Then maxg u < maxyc ut. In particular, maxg u = maxgc u if u = 0 on 0G. If
further v = 0 on G, then maxg U = maxyg U.

Remark 8.3 1If € satisfies the coercivity, that is, there exists ¢ > 0 such that
E(f, f) > chH%Il(G) for all f € H'(G), then the same result without assuming
m(G) < oo is proved by [11, Theorem 4.4]. But the argument of the reduction to
unbounded G in their proof seems to be unnecessary. Actually, in view of Lemma 8.3,
their proof remains valid without assuming m(G) < oo.

Proof of Theorem 8.2 Note H'(G) C H(G)ioc and every u € H'(G) has an
€-quasi-continuous version. We first show that any £-subharmonic function u €
H'(G) is m-essentially upper bounded under the condition maxyg u* < oc. For any
¢ > maxyg u*, we see uy := (u — £)* € H}(G) by Lemma 8.3. We have that the same
calculation as in the proof of Lemma 8.2 holds for u € H!(G). Then we can con-
clude A(¢) = 0 for sufficiently large ¢ by the argument after (8.1). The m-essentially
upper boundedness of # under maxyg u* < oo is now proved. Take ¢ > maxyg u”
again. We can conclude the &-subharmonicity of (u — £)* € H}(G) as in the proof
of Theorem 1.1. Then (u — £)* = 0 by Lemma 8.2, which implies u < ¢ m-a.e. on G.
Thus we obtain the desired result. Next suppose the E-harmonicity of 1 on G. Taking
¢ > maxyg u, we can conclude again the &-subharmonicity of (u — ¢£)* € H}(G) and
(u — £)* = 0 as noted above. Then u < ¢ m-a.e. on G. Therefore we arrive at the
desired result. [ |

Remark 8.4 In [42], the weak maximum principle for the subsolution u € H (G)
of Lu = 0 is only proved under the condition that b,/l; € LYG — RY and ¢ €
L2(G) for d > 3, and v(dx) > cydx on G for some constant ¢ > 0 [42, Théo-
réme 3.8], or ¢y = 0 with the coercivity of € on H}(G), that is, &(u, u) > c||u\|§I01(G),
u € H{(G) for some constant ¢ > 0 [42, Théoréme 3.6]. Chen and Wu [7] get rid of
the conditions ¢y > 0 and the coercivity of € in the weak maximum principle. But
they still assume that G is bounded and the sum of norms of b,g, ¢ is bounded by
the half of upper bound of 4, and they do not give the assertion for the case that v
vanishes.

To establish the strong maximum principle in our context, we further need a
stochastic argument.

Let (T%),-0 be the L?>(R%)-semigroup associated with (€%, H'(RY)). Then T¢ ad-
mits a symmetric jointly continuous heat kernel p?(x, y) on ]0, co[ x R? x R? such
that P{f(x) := [ pf(x,y)f(x)dy is an m-version of T} f for f € L2(R%) and
pi(x, y) satisfies the Aronson’s estimates [43]: there exists an M := M(Ag, Ag, d) €
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[1, 0o[ such that forall x, y € RY, t > 0

1

— —y|? M |2
We Mx—y|*/t < pix,y) < We Pe—y[*/Mt

It should be noted that the ball doubling condition and the strong Poincaré in-
equality hold for (£*, H' (R)) and the pseudo-distance/intrinsic metric derived from
(&%, H'(RY))isa complete metric compatible with the endowed topology. Hence the
parabolic Harnack inequality holds for the local solution of the parabolic equation
(L% — %)u = 0 [36,45]). Here L® is the L>(R?)-generator of (%, H'(R?)). In the
same way as [46], {P?} is a strong Feller semigroup, that is, P? f is bounded contin-
uous for bounded measurable f. Further {P?} is a Feller semigroup in view of the
upper Gaussian estimate and the estimation [46, Corollary 7.3] of the local Holder
continuity of the local solution of the above parabolic equation (see also [18, Exam-
ple 4.5.2]). Let M“ := (Q, X;, P{)(cpre be the Hunt process constructed by the Feller
semigroup {P?}. Then M” is a doubly Feller diffusion process [8]. Note that M? is
conservative [18, Example 5.7.1].

By the same argument in [9, Proposition 1.20, Theorem 2.4] and the strong Feller
property of M?, the part process M, on G admits a symmetric jointly continuous
kernel p©©(x, y) on ]0, 00[ X G x G defined by

(8.3) proCx, ) = plx, y) — ELIpt . (Xng, ey ]

We consider the Fukushima decomposition in the strict sense for coordinate func-
tionse'(x) ==« (i=1,2,...,d),x= (x',x%,...,x%):

X, —Xo=M,+N,, Pj-as.forallxe R?.

Here M, := (M}, M2, ..., M%), N, := (N}, N?,...,N%), M! is a local CAF in the
strict sense and an MAF locally of finite energy, and N/ is a local CAF in the strict
sense and a CAF locally of zero energy [17, Theorem 2]. Under M*, we consider the
following multiplicative functional L:

t 1 t
Li(= Li(by)) == exp[ / (a™'bo)* (X)dM; — 3 / (boa™ b)) (X,)ds| .
0

0

L, is a PA-supermartingale and a local P?-martingale for all x € R?\ Nj,, where Ny, is
the exceptional set for the PCAF fot |bo|>(X,) ds [18]. If |by| € L"(R?) withr > d > 2
or r/2 > d = 1, then L, is an exponential P?-martingale for all x € R?. More
generally, |by|?> € Sk implies the P?-martingale property of L, for any x € R?.

Let 5,(G) be the totality of smooth measures in the strict sense on G with respect
to (€%, H}(G)) (see the definition of S; in [18]). Since SID"C(G) - LIIOC(G), fe SIBC(G)

implies that I | f|m € Spo(G) for any compact set K in G, consequently | f|m € $1(G).
Hence we have the following.
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Proposition 8.1 Suppose that ¢ € SS°(G) and the distributional derivative &@i ofgi
is a measurable function in SS¢(G) fori = 1,2,...,d. Then v € S,(G). In particular,
ifc, ;b € Ll (G)with2r >d >2orr>d=1foreachi =1,2,...,d (especially, if

ceC(G), beC (G —RY), thenv € $(G).

In what follows, we assume |by|*m, v € S;(G). Further we set
LG
p,Gf(x) = Efé[f(Xt)L,e AT < TG} , x€G.

Here AE"]’G is the PCAF with respect to M{; admitting no exceptional set correspond-
ing to v under the Revuz’s characterization on G: for any t > 0 and non-negative
Borel functions f, h on G,
t t
Ef [ / f(X) dAg”LG} = / (fv, p&Ch) ds.
0 0

We omit the detailed definition of the PCAF of M{,, but it should be defined on the

path space over M?. The construction of AEV]’G under PZ with x € G is quite similar

to that of a PCAF admitting no exceptions over M*.
The following theorem is a special case of the results in [14].

Theorem 8.3 The following hold.

(i) pC extends to a strongly continuous semigroup P on L*(G).
(i)  (PY)i=o coincides with (TC);~o. Here TC is the L*(G)-semigroup corresponding
10 (€, H)(G)).

It should be noted that the multiplicative functional LI, is defined without
exceptional set under the condition |by|*m € S;(G). The subprocess constructed
on G by e pC is a right process satisfying the absolute continuity condition with
respect to m, because f = 0 m-a.e. and P{(L{r;y < o0) = 1forallx € G
together imply

E} [f(Xt)LtefAfMG < Tc;] =0 forallx e G.

On the other hand, if G is connected, then (€, H}(G)) is irreducible in view of Corol-
lary 5.1. Hence the strong maximum principle for €-subharmonic finely continuous
functions holds under (&, Hy(G)) as follows.

Theorem 8.4 Assume that G is connected. Suppose |bo|*m, v € Si(G). Letu €
Hé(G)10C N C(G) be an E-subharmonic function on G. If u attains its maximum at
some xog € G, then we have u™ = u* (xy). If further v = 0 on G, then u = u(x).

The following subexample due to K. Kurata (private communication) is not cov-
ered by Theorem 8.4.
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Subexample 8.3 (cf. [25, Remark 1.2]) Let f. be as in Subexample 8.2. We assume
Age = dge = 1, b = b= 0andc = (d—2)f-+2fi ford > 3, hence ¢ €
LY?(R9) N LL(R?). Then (€, H'(R?)) (in particular, (€, H{(G)) for any open set G)
enjoys the strong maximum principle by Theorem 8.4 if ¢ > 0, because f. € Sk in
this case. But v := cm ¢ Sy if € = 0. Indeed, in this case v(x) := —1/log x|, x # 0,
v(0) := 0 is harmonic on B, / 2(0) with respect to %A — c and v takes the minimum
0 at origin. Note that v # 0 on By, £(0). According to the stochastic proof of our
strong maximum principle, v = cm € S; means v = 0 on By, (0). So our strong
maximum principle does not work for ¢ = 0. However, u := —v(< 0) satisfies the

+ =

strong maximum principle in the sense that u u*(0) = 0, which is not covered

by Theorem 8.4.

Remark 8.5 In [42], a strong maximum principle is shown in the case that b €
UG — RY), b € LG — RY), ¢ € L9=9%(G) withq > d > 3,and ¢ = divh = 0
for €-harmonic functions by way of the local Holder continuity of the £-harmonic
function and the elliptic Harnack inequality for it. Our strong maximum principle
does not cover the Stampacchia’s result, however, if b € LP(G — R4), b € I1(G —
RY), ¢ € L'(G) with p,q,2r > d > 2or p/2,q/2,r > d = 1,¢ > 0, divh = 0,
then we can confirm |b|?, \E\z,c € Sk C Sy with small 6(|by|?) < Ag/2 by setting
b=0b= 0,c = 0onRY\ Gand |by|>m, v = cm € S,(G). This case is not included
in [42].

Example 8.2 (Doubly Feller symmetric diffusion process) Let (X, d) be a locally
compact separable metric space and m a positive Radon measure with full topo-
logical support. Consider a regular strongly local symmetric Dirichlet form (&, J)
on L*(X;m). Let G be an open subset of X. We assume that (&, F) is associated
with a doubly Feller m-symmetric diffusion process M admitting a jointly contin-
uous heat kernel p;(x, y) with respect to m. Then the part process Mg on G is a
strong Feller diffusion by Chung [8] which admits a jointly continuous heat kernel
pE(x,9), x,y, € G defined in a similar way as in (8.3) [9, Theorem 2.4]. In this con-
text, if G is a connected open set, then the part space (£, Fg) of (€, F) on L*(G; m)
is an irreducible regular strongly local Dirichlet form by [47]. Therefore we have the
following strong maximum principle (see also [27]).

Theorem 8.5 Suppose that G is connected. Let u € (T NC 1(G) be an Eg-sub-
harmonic function on G. If u attains its maximum at xy € G, then we have u = u(x).

Let us show some sufficient conditions for our assumptions. Let
B.(x):={yeX|dx,y) <r}

be the open ball with radius > 0 and center x € X. We assume the existence of
heat kernel p;(x, y) associated with (€, F) satisfying the Li—Yau Gaussian type esti-
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mates (HK): there exist positive constants C;, C,, Ry such that for any ¢t € 10, Ryx[,
x,ye X

C _o, diy? C, _g, oy
———e " < plxyy) K —————e
m(B_;(x)) PRSI = 0B 2 (0)

This condition is equivalent to the parabolic Harnack inequality (PHI): there exist
positive constants Cpy, Rpy such that for all open balls B,(x) with r € ]0, Rpy[ and
for any positive (local) solution of “(8;,+L)w = 0” in the cylinder set ]s—r2, s] X B,(x),
we have sup, # < Cpy infq, #, where Q_ = ]s — (3/4)r%,5 — (1/2)r*[ x By(x)
and Q_ := ]s — (1/4)r%,s[ x By, (x). We omit the detailed definition of the (local)
solution of “(0; + L)w = 0” (see [3,30]). Though the statement on the equivalence
between (HK) and (PHI) in [3] is only restricted to the case Ruyx = Rpy = 00, it
holds in this generality. The local Holder continuity estimate of the (local) solution
of “(0,+L)w = 0” also holds in this generality (see [45, (3.5)] or [38, Theorems 5.4.7,
5.5.1]).

Then there exists a doubly Feller diffusion process M = (2, X;, Py )xex such that
for Borel u € L*(X; m), Pyu(x) := fx pi(x, y)u(y)m(dy) is an m-version of T;u and

Pu(x) = E.[u(X;)] forallx € X.

The strong Feller property, that is, Piu € C,(X) for u € L>*(X; m), t > 0 is essentially
proved in [46] by use of (PHI). The Feller property of P,u follows from the upper
Gaussian estimate as above. At this stage, the above upper Gaussian estimate implies
Piu € Coo(X) for u € Coo(X) and the Holder continuity estimate of the (local)
solution of (0 + L)w = 0 yields Pu(x) — u(x) ast — 0 for u € Co(X) and
x € X. We remark that our assumptions are satisfied in the case that X is a complete
smooth Riemannian manifold with lower Ricci curvature bound and m is the volume
element derived from the Riemannian metric, and (&€, &) is a regular Dirichlet form
determined by the Laplace—Beltrami operator (see [38, Theorems 5.5.1, 5.5.3, 5.6.3—
5.6.6]).

Let X be an Alexandrov space of curvature bounded from below and of finite
Hausdorff dimension with Hausdorff measure m and (&, &) is the canonical Dirich-
let form on it [30,31]. Then the corresponding diffusion process M on X can be
constructed as a strong Feller process in view of [46]. But it is unclear that M has
the Feller property. However, we can directly prove the strong Feller property of Mg
[29]. Hence we have the same assertion as in Theorem 8.5 over Alexandrov spaces.
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