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Maximum Principles for Subharmonic
Functions Via Local Semi-Dirichlet Forms

Kazuhiro Kuwae

Abstract. Maximum principles for subharmonic functions in the framework of quasi-regular local

semi-Dirichlet forms admitting lower bounds are presented. As applications, we give weak and strong

maximum principles for (local) subsolutions of a second order elliptic differential operator on the

domain of Euclidean space under conditions on coefficients, which partially generalize the results by

Stampacchia.

1 Introduction

In this paper, we show maximum principles for E-subharmonic functions in the

framework of quasi-regular local semi-Dirichlet forms (E,F) with lower semibound-

edness. The maximum principle for (sub)harmonic functions with respect to Lapla-

cian on the domain of Euclidean space has played an important role in partial dif-

ferential equations, spectral geometry and so on. In particular, the weak maximum

principle assures the uniqueness of the solution of a Dirichlet boundary value prob-

lem. Consider a bounded open domain G in R
d and the second order elliptic operator

L defined by −Lu = −(1/2) div(a∇u) + 〈b,∇u〉Rd + div(ub̂) + cu with a uniformly

elliptic symmetric matrix valued measurable function a on G and bounded coeffi-

cients b, b̂, c on G with c − div b̂ ≥ 0 on G in the distributional sense. In Gilbarg–

Trudinger [22], maximum principles for the subsolution u ∈ H1(G) of Lu = 0

are presented. In the case of the second order elliptic operator L with coefficients

b ∈ Lp(G → R
d), b̂ ∈ Lq(G → R

d), c ∈ Lq−d/2(G) for p, q ≥ d ≥ 3 and uni-

formly elliptic a on G, a weak (resp. strong) maximum principle for the subsolution

(resp. solution) u ∈ Ĥ1(G) of Lu = 0 is proved if p = q = d and c − div b̂ ≥ c0

on G with positive constant c0 (resp. p = d, q > d and c = div b̂ = 0 on G) by

Stampacchia [42]. Here Ĥ1(G) is the completion of C1(G) with respect to the norm

of H1(G). R.-M. Hervé and M. Hervé [23] also gave a version of a generalized (weak)

maximum principle in the framework of Stampacchia under mild conditions. It is
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well known that the generalized (weak) maximum principle is a consequence of the

weak maximum principle. Their generalized (weak) maximum principle is weaker

than a usual generalized maximum principle and is described on a neighborhood on

the boundary (see [23, Théorème 4]). After that, Chen and Wu [7] showed Stam-

pacchia’s weak maximum principle for the subsolution u ∈ H1(G) of Lu = 0 under

the same conditions without assuming c − div b̂ ≥ c0 > 0 on G, but they assume

the boundedness of G and the bound of the sum of norms of |b|, |̂b| ∈ Ld(G) and

c ∈ Ld/2(G) is the same as half of the upper bound of a. Edmunds–Evans [11] also

presented a weak maximum principle under the coercivity of forms. They also con-

sidered the case for d = 1, 2. Putting b0 := b− b̂, their condition is that |b0| ∈ Lp(G)

for p > 1 if d = 2, or for p ≥ 1 if d = 1.

The second purpose of this paper is the application of our maximum principles

and showing an extension of Stampacchia’s weak maximum principles without as-

suming the coercivity of forms. More precisely, under d ≥ 1, the finiteness of the

volume of G and a milder condition than the integrability of coefficients, we prove a

weak maximum principle for the local subsolution u ∈ H1
0 (G)loc of Lu = 0 having

an (E-)upper bounded (strictly E-quasi-)continuous extension for (not necessarily

bounded) open set G, and also give strong maximum principles (see Theorems 8.1

and 8.4 below). However, our strong maximum principle does not completely cover

Stampacchia’s (see Remark 8.5). We also give the complete extension of Stampac-

chia’s (also Chen and Wu’s) weak maximum principle for the subsolution u ∈ H1(G)

of Lu = 0 under the same conditions as above, but without assuming the finiteness of

the volume of G (see Theorem 8.2 and Remark 8.4). Our conditions for coefficients

b, b̂, c are related to the classical Hardy inequality, cf. [12, 14].

Let us state our framework and main theorems. Let X be a separable metric

space and m a σ-finite Borel measure on X. We consider a quasi-regular local semi-

Dirichlet form (E,F) with a lower bound −γ on L2(X; m) (γ ≥ 0). Under the

quasi-regularity of (E,F), we may assume that X is a Lusin topological space (see

Remark 4.3 below). Here (E,F) is said to be a semi-Dirichlet form with a lower bound

−γ on L2(X; m) if (Eγ ,F) is a non-negative definite coercive closed bilinear form

on L2(X; m) and for u ∈ F, u+ ∧ 1 ∈ F and E(u+ ∧ 1, u − u+ ∧ 1) ≥ 0, where

Eγ(u, v) := E(u, v) + γ(u, v)m, u, v ∈ F. In this definition, (Eγ ,F) on L2(X; m) is

also a semi-Dirichlet form in the usual sense as in [32]. See the definitions of semi-

Dirichlet form and its quasi-regularity in Section 3 below. We fix a non-empty open

set G with non-empty boundary and consider the part space (EG,FG) on L2(G; m)

(see Definition 3.1 below), which is again a local quasi-regular semi-Dirichlet form

with a lower bound −γ on L2(G; m). Let ˙(FG)loc be the family of functions locally in

FG (Definition 3.2) and u ∈ ˙(FG)loc is said to be EG-subharmonic on G if there exists

an exhaustion {Gi} of E-quasi-open sets with u|Gi
∈ FG|Gi

and
⋃∞

i=1 Gi = G EG-q.e.

such that E(u, v) ≤ 0 for v ∈
⋃∞

i=1 F+
Gi

. If X is locally compact and m is a Radon

measure on X with full support, then for u ∈ (FG)loc, a function locally in FG in the

ordinary sense (see the argument before Proposition 3.2), u is EG-subharmonic on
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G if and only if E(u, v) ≤ 0 for all v ∈ FG ∩ C+
0 (G). We further need the following

assumption.

Assumption 1.1 (i) There exists an m-Hunt diffusion process M = (Ω,Xt , Px)

associated with (E,F).

(ii) M satisfies Px(τG <∞) = 1 m-a.e. x ∈ X, where τG := inf{t > 0 | Xt /∈ G} is

the first exit time from G.

See Definition 4.2 for the definition of an m-Hunt diffusion process. We expose

several criteria for Assumption 1.1(ii).

Proposition 1.1 Take a finely open (nearly) Borel set O. Under Assumption 1.1(i),

the following are sufficient conditions for Px(τO <∞) = 1 m-a.e. x ∈ X.

(i) M is a transient doubly Feller process and O is relatively compact open.

(ii) X \ O is non E-polar, (E,F) is irreducible and M is recurrent, that is, R f = 0 or

= ∞ for any nonegative Borel function f on X.

(iii) M is transient, m(O) < ∞ and the dual form (Ê,F) of (E,F) is also a semi-

Dirichlet form with the same lower bound −γ on L2(X; m).

(iv) (E,F) is a symmetric Dirichlet form with a lower bound 0 on L2(X; m), m(O) <

∞, and assume one of the following:

(a) (EO,FO) is transient;

(b) M admits a symmetric heat kernel pt (x, y) satisfying the Nash-type esti-

mate supx,y∈X pt (x, y) ≤ Ct−ν/2 for some ν > 0, C > 0.

Remark 1.1 Assumption 1.1(i) is satisfied if X is a locally compact separable metric

space, m is a positive Radon measure with full topological support and (E,F) is a

local regular semi-Dirichlet form with a lower bound −γ on L2(X; m). This was

noted by Carrillo–Menendez [6]. It should be true that Assumption 1.1(i) holds if

(E,F) is a strictly quasi-regular local semi-Dirichlet form (E,F) with a lower bound

−γ on L2(X; m). This was shown by Albeverio, Ma, and Röckner [2] for γ = 0. For

general γ ≥ 0, the proof should be described.

Under Assumption 1.1, we have the following.

Theorem 1.1 (Weak maximum principle I) Suppose that Assumption 1.1 holds. Let

u ∈ ˙(FG)loc ∩C(G) be an upper bounded EG-subharmonic function on G.

(i) We have supG u ≤ sup∂G u+; in particular, supG u = sup∂G u if u ≥ 0 on ∂G.

(ii) If 1 is EG-harmonic on G, then supG u = sup∂G u.

Theorem 1.2 (Comparison principle, Harnack’s first theorem) Suppose Assump-

tion 1.1 holds. Then the following assertions hold.

(i) Let u ∈ ˙(FG)loc be an upper bounded EG-subharmonic function on G which has

a continuous extension u on G. Then u ≤ 0 on ∂G implies u ≤ 0 on G.
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(ii) Suppose that 1 is EG-harmonic on G and γ = 0. Let {un}n∈N ⊂ ˙(FG)loc ∩
Cb(G) be a family of bounded EG-harmonic functions on G possessing continuous

extensions on G. Assume that un converges uniformly on ∂G. Assume that G is

either relatively compact or un ∈ F|G. Then there exists an EG-harmonic function

u ∈ ˙(FG)loc ∩Cb(G) such that un converges to u uniformly on G.

The next corollary is a slightly extended version of the above theorem.

Corollary 1.1 (Weak maximum principle II) Let G be an E-quasi-open set with a

non E-polar E-quasi-boundary E-∂G. Suppose that Assumption 1.1 holds. Let u ∈
˙(FG)loc be an EG-subharmonic function on G which has a strictly E-quasi-continuous

extension ũ on X such that ũ is E-upper bounded on G
E

. Then

(i) We have E- sup
G

E ũ ≤ E- sup
E-∂G ũ+. In particular, E- sup

G
E ũ = E- sup

E-∂G ũ

if ũ ≥ 0 E-q.e. on ∂G.

(ii) If 1 is EG-harmonic on G, then E- sup
G

E ũ = E- sup
E-∂G ũ.

Here E-supA means the E-quasi-essentially supremum on A defined by

E- sup
A

f := inf{k ∈ R | { f > k} ∩ A is E-polar};

f is said to be E-upper bounded on A if E- supA f < ∞; and f is called strictly E-

quasi-continuous on X if there exists a strictly E-nest {Fn} of closed sets such that

f |Fn∪{∆} is continuous on Fn ∪ {∆}. Note that if f is E-quasi-continuous on an

E-quasi-open set A, then E-supA f coincides with the m-essentially supremum on

A (see the definitions of (strictly) E-nest and E-quasi-continuity, and E-quasi-open

sets in Section 3 below).

Now we state our strong maximum principle.

Consider a quasi-regular local semi-Dirichlet form (E,F) with a lower bound −γ
on L2(X; m) again. We assume that there exists a Borel right process Mγ associated

with the semi-Dirichlet form (Eγ ,F) in the usual sense. Denote by C f (X) the family

of Borel finely continuous functions with respect to Mγ (see the definitions of fine

continuity, m-tightness and m-special standardness in Definition 4.2). We say that

Mγ satisfies the absolute continuity condition with respect to m if the transition kernel

p
γ
t (x, dy) of Mγ is absolutely continuous with respect to m(dy) for any t > 0 and

x ∈ X. And (Eγ ,F) is called irreducible if any Borel set B with the property that

IBu ∈ F for u ∈ F always satisfies m(B) = 0 or m(Bc) = 0. We have the following.

Theorem 1.3 (Strong maximum principle I) Suppose that Mγ satisfies the absolute

continuity condition with respect to m and (Eγ ,F) is irreducible. Let u ∈ Ḟloc ∩C f (X)

be an E-subharmonic Borel function on X.

(i) If u attains its maximum at some x0 ∈ X, then we have u+ ≡ u+(x0).

(ii) Suppose that 1 is E-harmonic on X. If u attains its maximum at some x0 ∈ X,

then we have u ≡ u(x0).
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The next corollary is an easy consequence of the above theorem.

Corollary 1.2 Under the same conditions as in the above theorem, we have the fol-

lowing. Let u ∈ Ḟloc ∩C f (X) be an E-subharmonic function on X. Assume that u is not

constant on X.

(i) If u attains its maximum at x0 ∈ X, then u(x0) < 0, namely, u has no non-

negative maximum in X.

(ii) Suppose that 1 is E-harmonic on X. Then u does not attain its maximum in X.

Theorem 1.4 (Strong maximum principle II) Suppose that Mγ satisfies the absolute

continuity condition with respect to m and (Eγ ,F) is irreducible. Let u ∈ Ḟloc be an

E-subharmonic finely upper semi continuous Borel function on X with respect to Mγ

and G a nonempty finely open set.

(i) If u attains its maximum at any x0 ∈ G, then we have u+ ≡ u+(x0).

(ii) Suppose that 1 is E-harmonic on X. If u attains its maximum at any x0 ∈ G,

then we have u ≡ u(x0).

The constitution of this paper is as follows: in Section 2, we summarize the basic

facts on coercive closed forms which are needed to analyze positivity preserving or

semi-Dirichlet forms later. In Section 3, we build up several useful tools and prop-

erties of quasi-regular local positivity preserving forms and also quasi-regular local

semi-Dirichlet forms. In Section 4, we analyze the (Borel) right processes on Radon

spaces associated with quasi-regular semi-Dirichlet forms with lower bounds. In Sec-

tion 5, we give an irreducibility criterion for quasi-regular semi-Dirichlet forms with

lower bounds and a criterion for connectedness of the fine topology of corresponding

right process, which are utilized in the proof of our strong maximum principle. In

Section 6, we investigate the structure of E-subharmonic functions for quasi-regular

local positivity preserving/semi-Dirichlet forms with lower bounds. In Section 7, we

give the proofs of Theorem 1.1, Corollary 1.1, and Theorem 1.2, and finally we prove

Theorems 1.3 and 1.4. In Section 8, we first apply our maximum principles to the

framework of the second order elliptic equation with Hardy class coefficients as noted

above and extend Stampacchia’s weak maximum principles. Secondly, we show that

a regular strongly local symmetric Dirichlet form associated with a doubly Feller dif-

fusion admitting a continuous heat kernel satisfies the strong maximum principle in

our sense.

2 Coercive Closed Forms

Throughout this paper, we basically assume that X is a separable metric space and m

is a σ-finite Borel measure on X. Denote by B(X) the topological σ-field or Borel

functions on X and by Bb(X) the bounded Borel functions. We take another point

∆ and endow X∆ := X ∪ {∆} with a topology of one point compactification if

X is locally compact; otherwise ∆ is added as an isolated point. Let B(X∆) be the
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topological σ-field on X∆. The measure m can be extended on (X∆,B(X∆)) by set-

ting m({∆}) = 0. Let L0(X; m) be the totality of m-measurable real functions on

X, Lp(X; m) the totality of p-th power m-integrable functions on X for p > 0, and

L∞(X; m) the totality of bounded m-measurable functions on X. We let

K(X) := {ϕ ∈ L1(X; m) | 0 < ϕ ≤ 1 m-a.e. on X}.

Every positive Borel measure µ on X admits the support of µ defined by supp[µ] :=

{x ∈ X | µ(G) > 0 for any open neighborhood G of x}. For u ∈ L0(X; m), we set

supp[u] := supp[|u|m]. For functions u, v on X, we write u ∨ v := max{u, v},

u ∧ v := min{u, v}, u+ := u ∨ 0, u− := (−u) ∨ 0. For a subfamily A of L0(X; m),

we denote Ab := A∩ L∞(X; m), Acpt := {u ∈ A | supp[u] is compact}, A+ (or A+)

:= {u ∈ A | u ≥ 0 m-a.e.}, A−(or A−) := {u ∈ A | u ≤ 0 m-a.e.}. For subfamilies

A1,A2 of L0(X; m), we set A1 ∧ A2 := {u ∧ v | u ∈ A1, v ∈ A2} and A1 ∨ A2 :=

{u∨v | u ∈ A1, v ∈ A2}. Note that A∨{0} 6= A+ in our notation. Let E be a bilinear

form with domain F on the real Hilbert space L2(X; m) with inner product ( · , · )m

and norm ‖ · ‖2. We set Eα(u, v) := E(u, v) + α(u, v)m, α ≥ 0, Ê(u, v) := E(v, u),

E◦(u, v) := (1/2){E(u, v) + Ê(u, v)} and Ě(u, v) := (1/2){E(u, v) − Ê(u, v)} for

u, v ∈ F. We call E◦, Ě the symmetric, anti-symmetric part of E, respectively. We

simply write E(u) := E(u, u),Eα(u) := Eα(u, u) for u ∈ F, α > 0. Fix γ ≥ 0. A

bilinear form (E,F) with dense domain F in L2(X; m) is called a coercive closed form

with a lower bound −γ on L2(X; m) if the following conditions hold:

• (E◦
γ ,F) is non-negative definite and closed on L2(X; m).

• (Weak sector condition) for each α > γ, there exists a constant Kα > 0 such that

|Eα(u, v)| ≤ KαEα(u, u)1/2Eα(v, v)1/2 for any u, v ∈ F.

When γ = 0, we may omit the phrase “with a lower bound 0”. If (E,F) is a coercive

closed form with a lower bound −γ on L2(X; m), then clearly (Eγ ,F) is a coercive

closed form on L2(X; m).

The following projection theorem is due to Stampacchia.

Theorem 2.1 ([33, Ch. I. Theorem 2.6]) Let (E,F) be a coercive closed form with a

lower bound −γ on L2(X; m) and Γ a non-empty closed convex subset of F. Let J be a

continuous linear functional on F and α > γ. Then there exists a unique v ∈ Γ such

that Eα(v,w) ≥ J(w) for all w ∈ Γ− v. Here Γ− v := {w− v | w ∈ Γ}. In particular,

if Γ is a closed subspace of F, then Eα(v,w) = J(w) for all w ∈ Γ.

Corollary 2.1 (α-projection) Let (E,F) be a coercive closed form with a lower bound

−γ on L2(X; m) and Γ a non-empty closed convex subset of F. For any u ∈ F and

α > γ, there exists a unique v ∈ Γ such that Eα(u − v,w) ≤ 0 for all w ∈ Γ − v. In

particular, if Γ is a closed subspace of F, then Eα(u − v,w) = 0 for all w ∈ Γ.

Proof It suffices to set J(v) := Eα(u, v) in the previous theorem. This completes the

proof.
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For any coercive closed form (E,F) (resp. the dual form (Ê,F)) with a lower

bound −γ on L2(X; m) and α > γ we say that v specified in the above corollary

with respect to (E,F) (resp. (Ê,F)) is the α-projection (resp. α-coprojection) of u on

Γ denoted by Π
α
Γ

(u) (resp. Π̂α
Γ

(u)).

Let (E,F) be a coercive closed form with a lower bound −γ on L2(X; m). Ap-

plying Theorem 2.1 to (E,F) for J(w) := ( f ,w)m, f ∈ L2(X; m), and Γ := F, we

get a family (Gα)α>γ (resp. (Ĝα)α>γ) of strongly continuous resolvents (resp. coresol-

vents) on L2(X; m), a family (Tt )t>0 (resp. (T̂t )t>0) of strongly continuous semigroups

(resp. cosemigroups) on L2(X; m) and a closed operator L (resp. L̂) on L2(X; m) such

that for α > γ

• Eα(Gα f , v) = Eα(v, Ĝα f ) = ( f , v)m for f ∈ L2(X; m), v ∈ F,
• Gα f =

∫ ∞
0

e−αsTs f ds, Ĝα f =
∫ ∞

0
e−αsT̂s f ds for f ∈ L2(X; m),

• L (resp. L̂) is the generator of Tt (resp. T̂t ): Tt = etL, t > 0 (resp. T̂t = etbL, t > 0)

with the property that (α−γ)Gα (resp. (α−γ)Ĝα) and e−γt Tt (resp. e−γt T̂t ) are con-

tractive operators on L2(X; m). It is known that there is a one-to-one correspondence

among (E,F), (Gα)α>γ , (Tt )t>0 and L (resp. (Ê,F), (Ĝα)α>γ , (T̂t )t>0 and L̂).

Proposition 2.1 Let (E,F) be a coercive closed form with a lower bound −γ on

L2(X; m) and Γ a closed subspace of F. For any u, v ∈ F and α > γ, we have

Eα(Πα
Γ(u), v) = Eα(Πα

Γ(u), Π̂α
Γ(v)) = Eα(u, Π̂α

Γ(v)).

In particular, (Πα
Γ

(Gα f ), g) = ( f , Π̂α
Γ

(Ĝαg)) for any f , g ∈ L2(X; m).

A coercive closed form (E,F) with a lower bound −γ on L2(X; m) is called a pos-

itivity preserving form if in addition

• (Positivity preserving property) for every u ∈ F, u+ ∈ F and E(u+, u−) ≤ 0.

The next proposition is shown in [34].

Proposition 2.2 ([34]) Suppose that (E,F) is a coercive closed form with a lower

bound −γ on L2(X; m). Let (Gα)α>γ (resp. (Tt )t>0) be the associated resolvent

(resp. semigroup) on L2(X; m). Then the following are equivalent.

(i) For all u ∈ F, u+, u− ∈ F and E(u+, u−) ≤ 0.

(ii) For all u ∈ F, u− ∈ F and E(u, u−) ≤ γ‖u−‖2
2.

(iii) For all u ∈ F, u+ ∈ F and E(u, u+) ≥ −γ‖u+‖2
2.

(iv) For α > γ and f ∈ L2(X; m), 0 ≤ f implies 0 ≤ αGα f .

(v) For t > 0 and f ∈ L2(X; m), 0 ≤ f implies 0 ≤ Tt f .

Hence, a coercive closed form (E,F) with a lower bound −γ on L2(X; m) is posi-

tivity preserving if and only if for α > γ (resp. t > 0), Gα f ≥ 0 m-a.e. (resp. Tt f ≥
0 m-a.e.) if f ≥ 0 m-a.e.

For any positivity preserving form (E,F) with a lower bound −γ on L2(X; m),

(Ê,F) and (E◦,F) are also positivity preserving forms with a lower bound −γ on
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L2(X; m) (see [34, Remark 1.4(i)]). In particular, for any positivity preserving form

(E,F) with a lower bound −γ on L2(X; m), F is a vector lattice, namely,

(2.1) u, v ∈ F =⇒ u ∧ v ∈ F, E(u ∧ v) ≤ E(u) + E(v).

A coercive closed form (E,F) with a lower bound −γ on L2(X; m) is called a semi-

Dirichlet form if it satisfies

• (Semi-Dirichlet property) for every u ∈ F,

u+ ∧ 1 ∈ F and E(u+ ∧ 1, u − u+ ∧ 1) ≥ 0.

The next proposition is due to Kunita [24] which is a generalization of [33, Ch. I,

Proposition 4.3, Theorem 4.4]. We will give a proof for the reader’s convenience.

Proposition 2.3 ([24]) Suppose that (E,F) is a coercive closed form with a lower

bound −γ on L2(X; m). Let (Gα)α>γ (resp. (Tt )t>0) be the associated resolvent (resp.

semigroup) on L2(X; m). Then the following are equivalent.

(i) For all u ∈ F and α ≥ 0, u ∧ α ∈ F and E(u ∧ α, u − u ∧ α) ≥ 0.

(ii) For all u ∈ F, u+ ∧ 1 ∈ F and E(u+ ∧ 1, u − u+ ∧ 1) ≥ 0.

(iii) For all u ∈ F, u+ ∧ 1 ∈ F and E(u + u+ ∧ 1, u − u+ ∧ 1) ≥ −γ‖u − u+ ∧ 1‖2
2.

(iv) For α > γ and f ∈ L2(X; m), 0 ≤ f ≤ 1 implies 0 ≤ αGα f ≤ 1.

(v) For t > 0 and f ∈ L2(X; m), 0 ≤ f ≤ 1 implies 0 ≤ Tt f ≤ 1.

Proof Except (iii) ⇒ (iv) the proof is the same as in [33, Ch I. Proposition 4.3, The-

orem 4.4]. We only prove (iii) ⇒ (iv). Let f ∈ L2(X; m) with 0 ≤ f ≤ 1 and set

u := αGα f for α > γ. Then (u+ ∧ 1 − f , u − u+ ∧ 1)m ≥ 0 as proved in [33, Ch. I.

Theorem 4.4]. We have

0 ≥ −E(u + u+ ∧ 1, u − u+ ∧ 1) − E2γ(u − u+ ∧ 1, u − u+ ∧ 1)

= −2E(u, u − u+ ∧ 1) − 2γ‖u − u+ ∧ 1‖2
2

= 2(α− γ)‖u − u+ ∧ 1‖2
2 + 2α(u+ ∧ 1 − f , u − u+ ∧ 1)m

≥ 2(α− γ)‖u − u+ ∧ 1‖2
2 ≥ 0,

which implies ‖u − u+ ∧ 1‖2 = 0, hence 0 ≤ u ≤ 1.

Hence, a coercive closed form (E,F) with a lower bound −γ on L2(X; m) is a

semi-Dirichlet form if and only if for α > γ (resp. t > 0), 0 ≤ αGα f ≤ 1 m-a.e.

(resp. 0 ≤ Tt f ≤ 1 m-a.e.) if 0 ≤ f ≤ 1 m-a.e. [33, Ch. I. Proposition 4.3].

A coercive closed form (E,F) with a lower bound −γ on L2(X; m) is called a

Dirichlet form (with a lower bound −γ) if both (E,F) and (Ê,F) are semi-Dirichlet

forms (with a lower bound −γ on L2(X; m)).
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For any semi-Dirichlet form (E,F) with a lower bound −γ on L2(X; m), (E,F),

(Ê,F) and (E◦,F) are positivity preserving forms with the same lower bound [34,

Remark 1.4(iii)]. So F is a vector lattice.

A coercive closed form (E,F) on L2(X; m) with lower bound −γ is said to be local

(resp. left-strongly local) if and only if E(u, v) = 0 if supp[u] ∩ supp[v] = ∅ (resp. u

is a constant m-a.e. on a neighborhood of supp[v]) for any u, v ∈ F with compact

supports.

Definition 2.1 (Excessive functions in L2) Let (E,F) be a coercive closed form

with a lower bound −γ on L2(X; m) and (Tt )t>0 the associated strongly continuous

semigroup on L2(X; m). Fix α ≥ 0. A function u ∈ L2(X; m) is said to be α-excessive

with respect to (E,F) if u ≥ 0 m-a.e. and e−αt Tt u ≤ u m-a.e. on X for all t > 0.

We simply say excessive instead of 0-excessive. Remark that for u ∈ L2(X; m) with

e−αt Tt u ≤ u m-a.e. on X for all t > 0, u ≥ 0 m-a.e. on X automatically holds if

α > γ.

The next lemma is shown in [34] under the positivity preserving property of

forms. We give another proof, somewhat irrelevant, to this property.

Lemma 2.1 Fix an α > γ. Let (E,F) be a coercive closed form with a lower bound

−γ on L2(X; m) and u ∈ L2(X; m) satisfies that e−αt Tt u ≤ u m-a.e. for all t > 0. If

v ∈ F and u ≤ v m-a.e., then u ∈ F. Further assume the positivity preserving property

of (E,F). Then the same conclusion holds for anyα-excessive function u andα ∈ [0, γ].

Proof First we take α > γ. It suffices to show that supβ>0 E(β,α)(u, u) < ∞ in

view of [33, Ch. I, Theorem 2.13(i)], where E(β,α)( f , g) := β( f − βGα+β f , g)m for

f , g ∈ L2(X; m) is the approximating form for (Eα,F). We can see that E(β,α)( f , g) =

Eα(βGβ+α f , g) and Eα(βGβ+α f , βGβ+α f ) ≤ E(β,α)( f , f ) for f ∈ L2(X; m), g ∈ F.

Hence |E(β,α)( f , g)| ≤ KαEα(g, g)1/2E(β,α)( f , f )1/2. Thus

E
(β,α)(u, u) ≤ E

(β,α)(u, v) ≤ KαEα(v, v)1/2
E

(β,α)(u, u)1/2.

We obtain supβ>0 E(β,α)(u, u) ≤ K2
αEα(v, v) < ∞. Next we prove the conclusion

for an α-excessive u satisfying u ≤ v with v ∈ F and α ∈ [0, γ]. In this case,

u is automatically β-excessive for any β > γ, because of the positivity preserving

property of (Tt )t>0. So the assertion follows from the first argument. This completes

the proof.

The next lemma is a generalization of [18, Theorem 2.2.1] and [34, Remark 3.4].

Lemma 2.2 Let (E,F) be a positivity preserving form with a lower bound −γ on

L2(X; m). For u ∈ F and α ≥ 0, the following are equivalent to each other.

(i) u ≤ e−αt Tt u m-a.e. for any t > 0.

(ii) u ≤ βGα+βu m-a.e. for any β > γ − α.
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(iii) Eα(u, v) ≤ 0 for v ∈ F+.

Proof The case for α > γ is shown in [34, Remark 3.4]. The implication (i) ⇒
(ii) is clear. Noting Eα(u, Ĝα+βv) = (u − βGα+βu, v)m with the positivity preserving

property of the dual form, we see the equivalence (ii) ⇔ (iii), where we use the fact

that (p − γ)Ĝpv → v in E
1/2
γ+1-norm as p → ∞. Next we prove (iii) ⇒ (i). Suppose

v ∈ L2
+(X; m). Setting T(α)

t := e−αt Tt and T̂(α)
t := e−αt T̂t , we have

(u − e−αt Tt u, v)m = −
∫ t

0

d

ds
(T(α)

s u, v)m ds =

∫ t

0

((α− L)T(α)
s u, v)m ds

=

∫ t

0

Eα(T(α)
s u, v) ds =

∫ t

0

Eα(u, T̂(α)
s v) ds ≤ 0.

This completes the proof.

Let H(X) be a family of m-measurable real functions on X as follows:

H(X) := {h ∈ L0(X; m) | h > 0 m-a.e. on X

and h2m is a σ-finite Borel measure on X}.

Definition 2.2 (h-transform) Let (E,F) be a coercive closed form on L2(X; m). For

h ∈ H(X), we define

F
h := {u ∈ L2(X; h2m) | uh ∈ F}, E

h(u, v) := E(uh, vh) for u, v ∈ F
h.

Then (Eh,Fh) is a coercive closed form on L2(X; h2m), and (Eh,Fh) is called the

h-transform of (E,F). Note that (E,F) is positivity preserving if and only if (Eh,Fh)

is also, and (E,F) is local if and only if (Eh,Fh) is local.

Let (E,F) be a positivity preserving form on L2(X; m) and (Gα)α>0 the associated

resolvent on L2(X; m). It is essentially shown in [34] that for 1-excessive h ∈ H(X) ∩
L2(X; m) with respect to (E,F), (Eh

1,F
h) is a semi-Dirichlet form on L2(X; h2m). In

particular, if h := G1ϕ with ϕ ∈ K(X), then h ∈ H(X) [34, Lemma 3.6]. Hence

(Eh
1,F

h) is a semi-Dirichlet form on L2(X; h2m). Let (E◦,F) be the symmetric part of

a positivity preserving form (E,F) and (G◦
α)α>0 the associated resolvent on L2(X; m).

Take an h◦ := G◦
1ϕ with ϕ ∈ K(X). Then ((E◦)h◦

1 ,F
h◦

) is a symmetric Dirichlet

form on L2(X; (h◦)2m).

3 Potential Theories on Positivity Preserving and Semi-Dirichlet

Forms

Throughout this section we treat the case γ = 0. The case γ > 0 can be reduced to

this case if we replace E with Eγ . Let (E,F) be a coercive closed form on L2(X; m). For
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a closed subset F of X, we set FF := {u ∈ F | u = 0 m-a.e. on X \ F}. An increasing

sequence {Fn}n∈N of closed subsets of X is said to be an E-nest or generalized nest if⋃∞
n=1 FFn

is E
1/2
1 -dense in F. A subset N of X is said to be E-polar or E-exceptional if

there exists an E-nest {Fn}n∈N such that N ⊂ ⋂∞
n=1(X \ Fn). A statement P = P(x)

depending on x ∈ X is said to be “PE-q.e.” if there exists an E-polar set N such that

P(x) holds for x ∈ X \ N . A function u is said to be E-quasi-continuous if there exists

an E-nest {Fn}n∈N such that u|Fn
is continuous on Fn for each n ∈ N. A subset E of

X is said to be E-quasi-open if there exists an E-nest {Fn}n∈N such that E∩ Fn is open

with respect to the relative topology on Fn for each n ∈ N. E-quasi-closedness can be

similarly defined. For two subsets A, B of X, we write A ⊂ B E-q.e. if IA ≤ IB E-q.e.

and A = B E-q.e. if IA = IB E-q.e. If a function u has an E-quasi-continuous m-ver-

sion, we denote it by ũ. We shall recall the notion of quasi-regularity of a positivity

preserving form (E,F) on L2(X; m) as follows [34, Definition 4.9]:

(QR1) There exists an E-nest of compact sets.

(QR2) There exists an E
1/2
1 -dense subset of F whose elements have E-quasi-contin-

uous m-versions.

(QR3) There exist an E-polar set N ⊂ X and un ∈ F, n ∈ N having E-quasi-

continuous m-versions ũn, n ∈ N such that {ũn}n∈N separates the points of

X \ N .

(QR4) There exists an E-q.e. strictly positive E-quasi-continuous m-version h of an

α-excessive function in F for some α ∈ ]0,∞[.

Under the conditions (QR1), (QR2) and (QR3), the last condition (QR4) is equiv-

alent to the following (QR4 ′) and (QR4 ′ ′) (see [34, Proposition 4.11; Lemma 4.12]):

(QR4 ′) There exists an m-a.e. strictly positive m-version of an α-excessive function

h in F for some α ∈ ]0,∞[ and an E-quasi-continuous function g such

that h ≤ g m-a.e. on X.

(QR4 ′ ′) One can choose {un}n∈N and N ⊂ X in (QR3) with the property that

X \ N ⊂ ⋃∞
n=1{ũn 6= 0}.

We also remark that (QR2), and (QR4 ′) or (QR4) together imply that every u ∈ F

has an E-quasi-continuous m-version [34, Lemma 4.12(i)].

Lemma 3.1 Let (E,F) be a positivity preserving form on L2(X; m). Then (E,F) is

quasi-regular if and only if so is the symmetric part (E◦,F) of (E,F). In particular,

(E,F) is quasi-regular if and only if so is the dual form.

Proof Note that for an increasing sequence {Fn} of closed sets, {Fn} is an E-nest if

and only if it is an E
◦-nest. Suppose that (E,F) is quasi-regular. Then (QR1)–(QR3)

and (QR4 ′ ′) hold for (E◦,F). We set h◦ := G◦
1ϕ with ϕ ∈ K(X). Then h◦ ∈ F is

1-excessive with respect to (E◦,F) and h◦ > 0 m-a.e. on X (see [34, Lemma 3.6]).

Owing to the quasi-regularity of (E,F), h◦ has an E◦-quasi-continuous m-version.

Hence (QR4 ′) holds for (E◦,F). The converse is similar. This completes the proof.
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Proposition 3.1 ([34, Theorems 3.5, 4.14]) Let (E,F) be a positivity preserving form

on L2(X; m) and (Gα)α>0 be the resolvent associated with (E,F). Let h be an m-a.e.

strictly positive α-excessive function in F for some α ∈ ]0,∞[. Then (E,F) is quasi-

regular if and only if so is (Eh,Fh), equivalently (Eh
α,F

h) is a quasi-regular semi-Dirich-

let form on L2(X; h2m).

Corollary 3.1 Let (E◦,F) be the symmetric part of a positivity preserving form (E,F)

on L2(X; m) and (G◦
α)α>0 be the resolvent associated with (E◦,F). We set h◦ := G◦

1ϕ

with ϕ ∈ K(X). Then (E,F) is quasi-regular if and only if ((E◦)h◦

1 ,F
h◦

) is a quasi-

regular symmetric Dirichlet form on L2(X; (h◦)2m).

Proof It is easy to see the assertion by Lemma 3.1 and Proposition 3.1. This com-

pletes the proof.

The following lemma is essentially shown in [34]. (See [34, Corollary 4.5] and

[26, Lemmas 3.1, 3.2].) We omit the details.

Lemma 3.2 Let (E,F) be a positivity preserving form on L2(X; m).

(i) Let u be an E-quasi-continuous function and E an E-quasi-open set. If u ≥ 0

m-a.e. on E, then u ≥ 0 E-q.e. on E.

(ii) Any m-negligible E-quasi-open sets are E-polar.

(iii) Let {{Fk
n}n∈N}k∈N be a countable family of E-nests. Then there exists a sub-

sequence {n(l, k)}l∈N of {n} depending on k ∈ N with n(l, k) ≥ l such that Fl :=⋂∞
k=1 Fk

n(l,k) makes an E-nest. In particular, for a countable family { f j} (resp. {A j})

of E-quasi-continuous functions (resp. E-quasi-closed sets), we can take common E-nest

{Fn} such that f j |Fn
is continuous on Fn (resp. A j ∩Fn is closed) for all j, n ∈ N. Hence a

countable intersection (resp. union) of E-quasi-closed (resp. -open) sets is E-quasi-closed

(resp. -open).

If (E,F) is a semi-Dirichlet form on L2(X; m) which satisfies (QR1)–(QR3), then

(QR4) is automatically satisfied (see Remarks at pp. 834 and 4.10 in [34]). If a coer-

cive closed form (E,F) on L2(X; m) is a quasi-regular semi-Dirichlet form, namely,

the conditions (QR1)–(QR3) hold for (E,F), then there exists an m-equivalence class

M/∼ of m-tight special standard processes E-properly associated with (E,F) (see

Definition 4.2(viii), (ix), (x) for the notions of m-equivalence, m-tight, (m-)special

standardness below). Conversely if a Borel right m-tight m-special standard process

M is associated with a semi-Dirichlet form (E,F) on L2(X; m), then (E,F) is quasi-

regular and the right process is E-properly associated with (E,F). More generally,

by Fitzsimmons [13], for any right process on a co-Souslin space associated with a

semi-Dirichlet form (E,F) on L2(X; m), (E,F) is quasi-regular and the right process

is E-properly associated with (E,F). The E-proper association with (E,F) of a spe-

cial standard process M = (Ω,F∞,Ft ,Xt , ζ, Px) means that x 7→
∫

Ω
f (Xt (ω))Px(dω)

is an E-quasi-continuous m-version of Tt f for f ∈ B+(X) ∩ L2(X; m).
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Lemma 3.3 Let (E,F) be a quasi-regular positivity preserving form on L2(X; m). The

following are equivalent.

(i) (E,F) is local.

(ii) E(u, v) = 0 if u, v ∈ F have disjoint supports.

(iii) E(u, v) = 0 if u, v ∈ F satisfy uv = 0 m-a.e.

Proof The implication (ii) ⇒ (i) is trivial. The equivalence (ii) ⇔ (iii) is due to

Schmuland [39]. The proof of the implication (i) ⇒ (ii) is the same as in the proof

of (i) ⇒ (ii) of [33, Ch. V. Proposition 1.2]. This completes the proof.

Definition 3.1 (Part space) Let (E,F) be a coercive closed form on L2(X; m) which

satisfies the condition that every u ∈ F has an E-quasi-continuous m-version ũ. Let

E be a subset of X. We define

FE := {u ∈ F | ũ = 0 E-q.e. on X \ E}, EE(u, v) := E(u, v) for u, v ∈ FE.

If E is a closed set, then FE is a closed subspace of F. Under the condition that

FE is a closed subspace of F, we can consider the resolvent (GE
α)α>0 on L2(X; m)

associated with (EE,FE) by way of Theorem 2.1, that is, for each f ∈ L2(X; m) there

exists GE
α f ∈ FE such that Eα(GE

α f , v) = ( f , v)m for any v ∈ FE. Then we see that

Π
α
FE

(Gα f ) = GE
α f for f ∈ L2(X; m) under the closedness of FE in F. If E is E-quasi-

open, (EE,FE) is called the part space of (E,F) on E.

The following lemma is easy to check.

Lemma 3.4 Let (E,F) be a coercive closed form on L2(X; m). Let {Fn} be an increas-

ing sequence of closed subsets of X and take an h ∈ H(X).

(i) {Fn}n∈N is an E-nest if and only if it is an Eh-nest/Eh
1-nest. In particular, E-

polarity (resp. E-quasi-upper-semi-continuity) is equivalent to E
h-polarity/Eh

1-polarity

(resp. Eh-quasi-upper-semi-continuity/Eh
1-quasi-upper-semi-continuity).

(ii) Suppose that every u ∈ F has an E-quasi-continuous m-version. Let E be an E-

quasi-open set. Assume that h is an E-q.e. strictly positive E-quasi-continuous function

on X. Then (FE)h
= (Fh)E and (Eh

1)E(u, v) = (EE,1)h(u, v) for u, v ∈ (FE)h
= (Fh)E.

Proof (i) is trivial. We show (ii). It is easy to see

(FE)h := {u ∈ L2(X; h2m) | uh ∈ FE}

= {u ∈ L2(X; h2m) | uh ∈ F and ũh = 0 E-q.e. on Ec}

= {u ∈ F
h | ũ = 0 E

h-q.e. on Ec} =: (Fh)E

and for u, v ∈ (Fh)E,

(Eh
1)E(u, v) := E

h
1(u, v) = E(uh, vh) + (uh, vh)m = (EE,1)h(u, v).

This completes the proof.
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Proposition 3.2 (Quasi-regularity of part spaces) Let (E,F) be a positivity preserv-

ing form on L2(X; m) and E an E-quasi-open set. Then the following assertions hold.

(i) If (E,F) is quasi-regular, then (EE,FE) is a quasi-regular positivity preserving

form on L2(E; m).

(ii) Suppose that (E,F) is quasi-regular. For N ⊂ E, N is EE-polar if and only if N

is E-polar, and G ⊂ E, G is EE-quasi-open if and only if G is E-quasi-open.

Proof First we show (i). Let (E,F) be a quasi-regular positivity preserving form

on L2(X; m). By (QR4), there exists an E-q.e. strictly positive E-quasi-continuous

m-version h of an α-excessive function in F. Then (Eh
α,F

h) is a quasi-regular semi-

Dirichlet form on L2(X; h2m). By [26, Lemma 3.4(ii)] and Lemma 3.4,

((Eh
α)E, (F

h)E) = ((EE)h
α, (FE)h)

is a quasi-regular semi-Dirichlet form on L2(E; h2m). In particular, (Fh)E is dense

in L2(E; h2m) and (Eh
α)

1/2
E -complete, hence FE is dense in L2(E; m) and (EE)

1/2
α -com-

plete. Then (EE,FE) is a coercive closed form on L2(E; m). The positivity preserving

property of (EE,FE) is clear. Applying Lemma 3.4(i) to (EE,FE) with h|E ∈ H(E),

for any increasing sequence {Fn}n∈N of closed subsets of E, {Fn} is an (EE)h
α-nest if

and only if it is an EE-nest. Hence (QR1) holds for (EE,FE) and every v ∈ (FE)h
=

(Fh)E has an EE-quasi-continuous m-version. Applying [26, Lemma 3.4] to (Eh
α,F

h),

we can conclude that every E-polar subset of E is (EE)h
α-polar, hence EE-polar and

for every E-quasi-continuous function u on X, u|E is (EE)h
α-quasi-continuous on E,

hence EE-quasi-continuous on E. Since h is Eh
α-quasi-continuous and Eh

α-q.e. strictly

positive on X, h|E is (EE)h
α-quasi-continuous and (EE)h

α-q.e. strictly positive on E by

[26, Lemma 3.4(ii)]. Consequently h|E is EE-quasi-continuous and EE-q.e. strictly

positive on E. Note that for u ∈ FE, u/h ∈ (FE)h has an EE-quasi-continuous

m-version. Therefore we can conclude that every u ∈ FE has an EE-quasi-continuous

m-version, namely, (QR2) holds for (EE,FE). In particular, hE := GE
αϕ with ϕ ∈

K(E) satisfies that hE ∈ FE, hE > 0 m-a.e. on E and hE has an EE-quasi-continuous

m-version. Hence (QR4) ′ holds for (EE,FE). Note that (QR3) and (QR4) ′ ′ hold

for ((EE)h
α, (FE)h). There exist an (EE)h

α-polar set N(⊂ E) and un ∈ (FE)h, n ∈ N

having (EE)h
α-quasi-continuous m-versions ũn such that {ũn}n∈N separates the points

in E \ N and E \ N ⊂
⋃∞

n=1{ũn 6= 0}. Set N̂ := N ∪ {x ∈ E | h = 0}. Then N̂

is EE-polar and ũnh ∈ FE, n ∈ N are EE-quasi-continuous functions satisfying that

{ũnh}n∈N separates the points in E \ N̂ and E \ N̂ ⊂ ⋃∞
n=1{ũnh 6= 0}. Therefore

(QR3) and (QR4) ′ ′ hold for (EE,FE).

Finally we show (ii). The assertion is proved in the case that (E,F) is a quasi-

regular semi-Dirichlet form on L2(X; m) (see [26, Lemma 3.5]). Combining Propo-

sition 3.1 with Lemma 3.4, we can confirm (ii). This completes the proof.

Definition 3.2 (The space of functions locally in F) Let (E,F) be a quasi-regular

positivity preserving form on L2(X; m). We define a family of sequences of E-quasi-
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open sets denoted by Ξ as follows:

Ξ := {{Gn}n∈N | Gn is E-quasi-open for all n ∈ N,

Gn ⊂ Gn+1 E-q.e. and X =

∞⋃
n=1

Gn E-q.e.},

Ξcpt := {{Gn}n∈N ∈ Ξ | Gn is relatively compact for all n ∈ N}.

Then we let

Ḟloc := {u ∈ L0(X; m) | ∃{En}n∈N ∈ Ξ and ∃un ∈ F

such that u = un m-a.e. on En}.

The space Ḟloc is called the space of functions locally in F in the broad sense.

For u ∈ Ḟloc, there exists a {Gi} ∈ Ξ and {ui} ⊂ F such that u = ui m-a.e. on Gi .

Then we say that such {Gi} is attached to u ∈ Ḟloc. For u ∈ Ḟloc, we set

Ξ(u) := {{Gn}n∈N ∈ Ξ | {Gn} is attached to u},

Ξcpt(u) := Ξ(u) ∩ Ξcpt.

Let E be an E-quasi-open set. We can similarly define ΞE, ΞE,cpt for (EE,FE), and

ΞE(u), ΞE,cpt (u) for u ∈ ˙(FE)loc. Recall that the EE-quasi-open subset of E is E-quasi-

open. Further we define

ḞE,loc :=
{

u ∈ L0(E; m) | ∃{Ei}i∈N ∈ ΞE and ∃ui ∈ F

such that u = ui m-a.e. on Ei

}
.

Remark 3.1 If (E,F) is a quasi-regular semi-Dirichlet form on L2(X; m), 1 ∈ Ḟloc

(see [26, Theorem 4.1]). This property cannot be expected in the general framework

of quasi-regular positivity preserving forms.

Lemma 3.5 Let (E,F) be a quasi-regular positivity preserving form on L2(X; m).

(i) For an E-quasi-open set E, each u ∈ ḞE,loc admits an (EE-q.e. finite) EE-quasi-

continuous m-version ũ on E and ḞE,loc = ˙(FE)loc. In particular, F|E ⊂ ˙(FE)loc.

(ii) For u ∈ Ḟloc, there exists a {Gi} ∈ Ξ(u) such that u is bounded on each Gi .

Proof (i) Owing to the quasi-regularity of (EE,FE) on L2(E; m), hE := GE
αϕ with

ϕ ∈ K(E) has an EE-quasi-continuous m-version h̃E which is EE-q.e. strictly positive

on E by [34, Proposition 4.13]. Then the same proof as in [26, Lemma 4.1; Theorem

4.2] works in the present context.
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(ii) Since u ∈ Ḟloc admits an E-quasi-continuous m-version, we may assume the

E-quasi-continuity of u. By assumption, there is an {Ei} ∈ Ξ(u). Then

Gi := {x ∈ Ei

∣∣ |u(x)| < i}

satisfies the desired assertion. This completes the proof.

The following is proved similarly to [33, Ch. III, Proposition 1.5(i),(ii)].

Proposition 3.3 Let (E,F) be a quasi-regular positivity preserving form on L2(X; m)

and h a function on X having an E-quasi-continuous m-version h̃. For each subset B of

X, we set Lh,B := {w ∈ F | w̃ ≥ h̃ E-q.e. on B}. Suppose that Lh,B 6= ∅ is a closed

convex subset of F. Then there exists hαB , ĥ
α
B ∈ Lh,B such that Eα(hαB ,w) ≥ Eα(hαB , h

α
B)

and Eα(w, ĥαB) ≥ Eα(ĥαB , ĥ
α
B) for all w ∈ Lh,B. Further if h ∈ F and FBc is a closed

subspace of F, then hαB = h − Π
α
FBc

h and ĥαB = h − Π̂
α
FBc

h, in particular,

(Gα f )αB = Gα f − GBc

α f and
̂
(Ĝα f )

α

B = Ĝα f − ĜBc

α f

for f ∈ L2(X; m).

Definition 3.3 (Weighted capacity, [2, 33, 34]) Let (E,F) be a quasi-regular pos-

itivity preserving form on L2(X; m). Let h (resp. g) be a 1-excessive (resp. 1-co-

excessive) function in F. For each open subset O of X, Lh,O and Lg,O are closed

in F, hence one can consider h1
O and ĝ1

O constructed in the above proposition and

set Caph,g(O) := E1(h1
O, ĝ

1
O). Take h := G1ϕ and g := Ĝ1ϕ with ϕ ∈ K(X). Then

Caph,g(O) = (h1
O, ϕ)m = (ĝ1

O, ϕ)m. So we set Caph(O) := (h1
O, ϕ)m. For any subset B

of X Caph(B) := inf{Caph(O) | B ⊂ O, O is open}.

Further we set for g := Ĝ1ϕ with ϕ ∈ K(X)

Cap1,g(O) := sup{Capu,g(O) | u ∈ F is 1-excessive and u ≤ 1}.

For any subset B of X, Cap1,g(B) := inf{Cap1,g(O) | B ⊂ O, O is open}.

Then both Caph and Cap1,g are Choquet capacities and for an increasing sequence

of closed sets {Fn}, it is an E-nest if and only if limn→∞ Caph(X \ Fn) = 0 (see

[34, Theorem 4.4]). By [34, Proposition 4.8], FBc and Lh,B is closed in F. Combining

[34, Proposition 4.13] and [32, proof of Theorem 2.10], we can confirm Caph(B) =

(h1
B, ϕ)m for any subset B of X.

Definition 3.4 (s.E-quasi-notions, [2, 33]) We say that an increasing sequence of

closed sets {Fn} is said to be strictly E-nest (write s.E-nest) if

lim
n→∞

Cap1,g(X \ Fn) = 0.
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A subset N is said to be strictly E-polar (write s.E-polar) if there exists an s.E-nest

{Fn} such that N ⊂ ⋂∞
n=1 Fc

n and a function u on X∆ is said to be strictly E-quasi-

continuous (write s.E-quasi-continuous) if there exists an s.E-nest {Fn} such that

u|Fn∪{∆} is continuous on Fn ∪ {∆}.

Lemma 3.6 Let (E,F) be a quasi-regular positivity preserving form on L2(X; m),

{En} an E-q.e. increasing sequence of E-quasi-open sets and E an E-quasi-open set.

Then the following are equivalent.

(i) {En} ∈ ΞE.

(ii)
⋃∞

n=1 FEn
is E

1/2
1 -dense in FE.

(iii)
⋃∞

n=1 F
+
En

is E
1/2
1 -dense in F

+
E .

(iv) limn→∞ E1(GE
1 f − GEn

1 f ) = 0 for f ∈ L2(X; m).

Proof In view of Proposition 3.2(i), we may assume X = E. In order to prove the

equivalence (i) ⇔ (ii), it suffices to show the case that (E,F) is a quasi-regular sym-

metric Dirichlet form on L2(X; m) by Corollary 3.1. We set h := G1ϕwithϕ ∈ K(X).

Then for any increasing sequence {Fn} of closed set, {Fn} is an E-nest if and only if

Caph(X \ Fn) = 0, hence for N ⊂ X, N is E-polar if and only if Caph(N) = 0

[33, Ch. III, Theorem 2.11]. By Proposition 3.3, we can see that (ii) is equivalent to

limn→∞ Caph(X \ En) = 0 in the same way as [33, Ch. III, proof of Theorem 2.11].

On the other hand, (QR1) implies that every E-quasi-closed set is quasi-compact

with respect to Caph (see [15]). Then [15, Theorem 2.10] tells us that (i) is equiva-

lent to limn→∞ Caph(X \ En) = 0.

Next we show (ii) ⇔ (iii). The implication (ii) ⇒ (ii) is trivial. Suppose (ii). Ow-

ing to the weak sector condition and the positivity preserving property, there exists

K1 > 0 such that for all u ∈ F,

(3.1) E1(u+) ≤ K2
1E1(u).

Take a u ∈ F+. Then there exists a sequence {ui} ⊂
⋃∞

n=1 FEn
which E

1/2
1 -converges

to u as i → ∞. By (3.1), {u+
i } is E

1/2
1 -bounded, so the Banach–Saks theorem implies

(iii).

Finally we show (ii) ⇔ (iv). The implication (iv) ⇒ (ii) is easy. We only prove (ii)

⇒ (iv). We may assume f ∈ L2
+(X; m). Let h = G1 f and recall h1

Ec
n

= G1 f − GEn

1 f .

Since {En} is E-q.e. increasing, {h1
Ec

n
} is m-a.e. decreasing in view of a version of [33,

Ch. III, Proposition 1.5(iv)]. Then there exists h∞ := limn→∞ h1
Ec

n
in L2(X; m), h∞ ∈

F and h1
Ec

n
→ h∞ in E1-weakly as n → ∞ (see the proof of [33, Theorem 2.11]).

Suppose (ii). Then we have h∞ = 0 similarly to [33, Ch. III. Theorem 2.11 (2.5)].

Therefore E1(h1
Ec

n
, h1

Ec
n
) ≤ E1(h1

Ec
n
,G1 f ) → 0 as n → ∞. This completes the proof.

Let (E,F) be a quasi-regular positivity preserving form on L2(X; m) and set

h◦ := G◦
1ϕ, ϕ ∈ K(X) as before. Then ((E◦)h◦

1 ,F
h◦

) is a quasi-regular symmetric

Dirichlet form on L2(X; (h◦)2m). By Lemma 3.4(i), for an increasing sequence {Fn}
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of closed sets, {Fn} is an E-nest if and only if it is an (E◦)h◦

1 -nest. Hence the E-polarity

and E-quasi-upper-semi-continuity can be reduced to the cases with respect to

((E◦)h◦

1 ,F
h◦

). So we can consider E-quasi-closure, E-quasi-interior and E-quasi-

support of a measure charging no E-polar sets by way of the weighted capacity with

respect to ((E◦)h◦

1 ,F
h◦

) on L2(X; (h◦)2m) (see Fuglede [15]). For a set A, denote by

A
E

(resp. AE-int) the E-quasi-closure (resp. E-quasi-interior) of A.

Lemma 3.7 Let (E,F) be a quasi-regular positivity preserving form on L2(X; m) and

E an E-quasi-open set. For an increasing sequence {Fn} of closed sets contained in E, the

following are equivalent.

(i) {Fn} is an EE-nest of (EE,FE).

(ii) {FE-int
n } ∈ ΞE.

Proof The assertion is shown in the case that (E,F) is a quasi-regular semi-Dirichlet

form (see [26, Lemma 3.3]). The present assertion is an easy consequence from this

fact and the above observation. This completes the proof.

Lemma 3.8 Let (E,F) be a quasi-regular positivity preserving form on L2(X; m) and

E an E-quasi-open set. For any {Gi} ∈ ΞE, there exists an {Ei} ∈ ΞE such that

E
E

i ⊂ Ei+1 E-q.e. and Ei ⊂ Gi E-q.e. for each i ∈ N.

Proof We may assume X = E. It suffices to set Ei := {x ∈ X | h̃Gi > 1/i}. Here

hGi := GGi

1 ϕ, ϕ ∈ K(X) and GGi

1 is the 1-resolvent with respect to (EGi
,FGi

) on

L2(Gi ; m). By h̃Gi = 0 E-q.e. on X \ Gi , we have Ei ⊂ Gi E-q.e. Since hGi = h − h1
Gc

i

with h := G1ϕ, {h̃Gi} is an E-q.e. increasing sequence and converges to h in F as

i → ∞ by Lemma 3.6(iv). By using the Banach–Saks theorem, we can conclude that

h̃Gi converges to h̃ as i → ∞ E-q.e. Thus

E
E

i ⊂ {x ∈ X | h̃Gi ≥ 1/i} ⊂ {x ∈ X | h̃Gi+1 ≥ 1/i} ⊂ Ei+1 E-q.e.

and X =
⋃∞

i=1 Ei E-q.e. because h̃ > 0 E-q.e.

Let X be a locally compact separable metric space and m a Radon measure with full

topological support. A semi-Dirichlet form (E,F) on L2(X; m) is said to be regular if

F ∩C0(X) is E
1/2
1 -dense in F and uniformly dense in C0(X). In this context, we also

consider another localized space Floc, which is called the space of functions locally in

F in the ordinary sense:

Floc :=
{

u ∈ L0(X; m) | for any relatively compact open set G

there exists uG ∈ F such that u = uG m-a.e. on G
}
.

Clearly Floc ⊂ Ḟloc.
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Proposition 3.4 (Regularity of part spaces) Suppose that X is a locally compact

separable metric space and m is a Radon measure with full topological support. Let

(E,F) be a regular semi-Dirichlet form on L2(X; m) and G a nonempty open set. Then

(EG,FG) is a regular semi-Dirichlet form on L2(G; m).

Proof By the same proof of [18, Lemma 1.4.2], we can confirm that for any u ∈
C0(X), there exists a un ∈ F ∩ C0(X) such that supp[un] ⊂ {x ∈ X | u(x) 6= 0},

n ∈ N and un is uniformly convergent to u as n → ∞. Hence FG∩C0(G) is uniformly

dense in C0(G). Next we show that FG ∩ C0(G) is (EG)
1/2
1 -dense in FG. Consider an

increasing sequence {Oi} of relatively compact open sets with Oi ⊂ Oi+1 ⊂ G for

all i ∈ N and G =
⋃∞

i=1 Oi . By using Lemma 3.6, it suffices to prove that every

u ∈ (FOi
)b is E

1/2
1 -approximated by an element of FG ∩ C0(G) for a fixed i ∈ N.

Owing to the first argument, we can take ψi ∈ F ∩ C0(X) with ψi = 1 on Oi and

ψi = 0 on Oc
i+1. Let ûk ∈ F ∩C0(X) be an E

1/2
1 -approximating sequence to u and set

uk := (−‖u‖∞ψi) ∨ ûk ∧ ‖u‖∞ψi . Then uk ∈ FG ∩ C0(G) is E
1/2
1 -bounded by use

of (2.1), and is L2-convergent to u. The Banach–Saks theorem tells us the assertion.

This completes the proof.

Finally, we present the case for γ > 0.

Definition 3.5 Let (E,F) be a positivity preserving or a semi-Dirichlet form with

a lower bound −γ on L2(X; m).

• An increasing sequence of closed sets {Fn} is said to be an E-nest (resp. s.E-nest)

if it is an Eγ-nest (resp. s.Eγ-nest). Hence every Eγ-quasi notion (resp. s.Eγ-quasi

notion) concerning (Eγ ,F) is said to be E-quasi notion (resp. s.Eγ-quasi notion)

respectively.
• (E,F) is said to be quasi-regular if (Eγ ,F) is so.
• For a set A, E-quasi-interior (resp. E-quasi-closure) of A is defined to be an

Eγ-quasi-interior (resp. Eγ-quasi-closure) of A.
• (E,F) is said to be local if (Eγ ,F) is so.
• Suppose X is a locally compact separable metric space and m is a positive Radon

measure with full support. Then we call (E,F) a regular semi-Dirichlet form

with a lower bound −γ on L2(X; m) if (Eγ ,F) is a regular semi-Dirichlet form

on L2(X; m).

4 Analysis on Right Processes Associated with Semi-Dirichlet Forms

To analyze right processes, we prepare the following spaces.

Definition 4.1 A topological space X is said to be a Radon (resp. Lusin) space if

X is homeomorphic to a universally (resp. Borel) measurable subset of a compact

metric space. A topological space X is said to be a Souslin (resp. co-Souslin) space

if X is homeomorphic to (resp. a complement of ) an analytic subset of a compact
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metric space. The following inclusions hold: {Polish space} ⊂ {Lusin space} ⊂
{Souslin space} ∪ {co-Souslin space} ⊂ {Radon space}.

Throughout this section, we assume in addition that X is a Radon space and

M = (Ω,F∞,Ft ,Xt , ζ, {Px}x∈X) is a right process on X in the sense of Getoor [19] or

Sharpe [40]. That is, M is a normal strong Markov process possessing right continu-

ous sample paths Xt Px-almost surely for all x ∈ X, and h(Xt ) is also right continuous

Px-almost surely for all x ∈ X and any α-excessive function h(α ≥ 0). It should be

noted that M does not necessarily have the Borel measurability of

x 7→ pt f (x) :=

∫

Ω

f (Xt ) dPx, t > 0,

nor of

x 7→ Rα f (x) :=

∫ ∞

0

e−αt pt f (x) dt, α > 0,

for any non-negative/bounded Borel measurable function f on X. Let B∗(X) be

the universal completion of B(X). Then pt preserves the class of B∗(X)-measurable

bounded functions. M is called a Borel right process if pt preserves the Borel mea-

surability for all t > 0. The notion of right process treated in [33] is actually a

Borel right process over a Hausdorff space X with B(X) = σ(C(X)). Recall that a

B∗(X)-measurable function h is said to be α-excessive if for any x ∈ X, e−αt pt h(x) ≤
h(x) for all t > 0 and limt↓0 e−αt pt h(x) = h(x). Let Be(X) be the σ-field gener-

ated by {h | h is α-excessive for some α > 0}. Then B(X) ⊂ B
e(X) ⊂ B

∗(X),

σ{h | h is 0-excessive} ⊂ Be(X) and pt preserves the class of Be(X)-measurable

bounded functions.

We say that a right process M satisfies the absolute continuity condition with respect

to a measure m if Px(Xt ∈ dy) ≪ m(dy) for any t > 0 and x ∈ X.

Definition 4.2 Let M be a right process on X.

(i) A set B(⊂ X∆) is called nearly Borel if there exist Borel subsets B1,B2 of X∆

such that B1 ⊂ B ⊂ B2 and Pµ(Xt ∈ B2 \ B1, ∃t ∈ [0,∞[) = 0 for all µ ∈ P(X∆).

Denote by Bn(X∆) (resp. Bn(X)) the family of nearly Borel subsets of X∆ (resp. X).

(ii) For B ∈ Bn(X), we set

σB(ω) := inf{t > 0 | Xt (ω) ∈ B},

σ̇B(ω) := inf{t ≥ 0 | Xt (ω) ∈ B},

τB(ω) := inf{t > 0 | Xt (ω) /∈ B}.

Then σB (resp. σ̇B) is called the first hitting time (resp. first entry time) to B and τB

is called the first exit time from B. It well known for B ∈ Bn(X), σB and σ̇B are Ft -

stopping times and τB = σBc ∧ ζ Px-a.s. for x ∈ X. We further define Hα
B f (x) :=
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Ex[e−ασB f (XσB
)] =

∫
X

f (y)Hα
B (x, dy) for α ≥ 0 and with f a nearly Borel non-

negative/bounded function on X. We see

Hα
B f (x) = Ex[e−ατBc f (XτBc )] = Ex[e−ασB f (XσB

) : σB <∞]

= Ex[e−ασB f (XσB
) : σB < ζ],

because f (∆) := 0. We call Hα
B (x, dy) α-hitting distribution to B. Note that

Hα
B Rα f (x) = Ex

[∫ ∞

σB

e−αt f (Xt ) dt
]
.

(iii) A set A is called finely open if for each x ∈ A, there exists a B ∈ Bn(X) such

that X \A ⊂ B and Px(σB > 0) = 1. The family of finely open sets defines a topology

on X which is called the fine topology of M.

(iv) A set A is called thin if there exists a B ∈ Bn(X) with A ⊂ B such that

Px(σB = 0) = 0 for all x ∈ B, and A is said to be semi-polar if A ⊂ ⋃∞
n=1 An for some

thin sets An.

(v) A set B ∈ Bn(X) is called m-polar if Pm(σA < ∞) = 0. A set N is said to

be exceptional if there is an m-polar set B ∈ Bn(X) satisfying N ⊂ B. A statement

P = P(x) depending x ∈ X is said to be “P holds q.e.” if there exists an exceptional

set N such that P(x) holds for x ∈ X \ N .

(vi) A set A is called finely open q.e. if there exists a finely open set B ∈ Bn(X) such

that A \ B and B \ A are exceptional. A function u defined q.e. on X is called finely

upper-semi-continuous q.e. if there exists an exceptional set N ∈ Bn(X) such that

X \ N is finely open and u is B
n(X)-measurable and finely upper-semi-continuous

on X \ N . A function u defined q.e. on X is called finely continuous q.e. if both u and

−u are finely upper-semi-continuous q.e.

(vii) A set B ∈ B
n(X) is said to be M-invariant if there exists ΩX\B ∈ F∞ such

that

ΩX\B ⊃ {Xt
0 ∩ (X \ B) 6= ∅ for some 0 ≤ t < ζ}

and Px(ΩX\B) = 0 for all x ∈ B. Here Xt
0 stands for the closure of {Xs(ω) | s ∈ [0, t]}

in X. A set N ∈ Bn(X) is said to be (m-)properly exceptional if m(N) = 0 and X \ N

is M-invariant.

(viii) Two right processes M1 and M2 are said to be m-equivalent if there exists

a common m-properly exceptional set N outside of which their transition functions

coincide.

(ix) Let µ be a positive measure on (X∆,B(X∆)). A right process M is called

µ-tight if there exists an increasing sequence {Kn} of compact sets in X such that

Pµ(limn→∞ σX\Kn
< ζ) = 0.

(x) Let µ be a positive measure on (X∆,B(X∆)). A right process M is called

µ-special standard if one (and hence all) probability measure ν on (X∆,B(X∆)),

which is equivalent to µ having the following properties:
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(a) (Left limits up to ζ) Xt− := lims↑t,s<t Xs exists in X for all t ∈ ]0, ζ[ Pν-a.s.

(b) (Quasi-left-continuity up to ζ) Let τ , τn, n ∈ N be Fν
t -stopping times such

that τn ↑ τ as n → ∞. Then Pν(limn→∞ Xτn
6= Xτ , τ < ζ) = 0.

(c) (Special) Let τn, τ be as above. Then Xτ is σ{⋃∞
n=1 Fν

τn
}-measurable.

Here Fν
t is the completion of Ft with respect to Pν :=

∫
X∆

Pxν(dx).

(xi) A right process is called a special standard if it is µ-special standard for all

probability measure µ on (X∆,B(X∆)).

(xii) A right process is called a µ-Hunt process if (a) and (b) hold with ζ replaced

by ∞ and X by X∆ for µ ∈ P(X∆), and it is called an m-Hunt process if it is a µ-Hunt

process for some µ ∈ P(X∆) equivalent to m. A right process is called a Hunt process

if it is a µ-Hunt process for all µ ∈ P(X∆)

Remark 4.1 (i) Our definition of the M-invariance is due to [33] and seems to

be slightly weaker than the definition of M-invariance treated in [18]. However, for

a (Borel right) Hunt process M, these notions are equivalent to each other. Note that

the existence of the left limit up to the life time is not formulated for general (Borel)

right process. If M is a (Borel right) standard process, then a set B ∈ Bn(X) is M-

invariant if and only if Px(Xt ∈ B for ∀t ∈ [0, ζ[, Xt− ∈ B for ∀t ∈ ]0, ζ[) = 1 for all

x ∈ B. If further M is a (Borel right) Hunt process, then a set B ∈ Bn(X) is M-invar-

iant if and only if Px(Xt ∈ B∆ for ∀t ∈ [0,∞[, Xt− ∈ B∆ for ∀t ∈ ]0,∞[) = 1 for

all x ∈ B.

(ii) If M is a Borel right process, then every α-excessive(α ≥ 0) function is nearly

Borel measurable (see [19, (9.4)]), in particular, B
e(X) ⊂ B

n(X).

(iii) If M satisfies the absolute continuity condition with respect to a measure m,

then Be(X) = B(X), in particular, M is a Borel right process (see [40, (10.25)]).

Definition 4.3 Let (E,F) be a semi-Dirichlet form with a lower bound −γ on

L2(X; m). A right process M with state space X or its transition semigroup (pt )t>0

is called associated with (E,F) if pt f is an m-version of Tt f for all t > 0 and f ∈
B(X) ∩ L2(X; m), and M is called (E-)properly associated if in addition, pt f is an

E-quasi-continuous for all t > 0 and f ∈ B(X) ∩ L2(X; m).

Remark 4.2 It is essentially shown in [33, Ch. IV, Exercise 2.7] that M is associated

with (E,F) if and only if Rα f is an m-version of Gα f for all α > γ and f ∈ B(X) ∩
L2(X; m). In [33], Borel measurability of pt f is assumed for each t > 0 and f ∈
Bb(X), but the above association holds without this Borel measurability.

The following is essentially due to Fitzsimmons [13, Theorem 3.22].

Theorem 4.1 Let M be a right process on X. Suppose that X is co-Souslinean. If M is

associated with a semi-Dirichlet form (E,F) with a lower bound −γ on L2(X; m), then

(E,F) is quasi-regular and M is E-properly associated with (E,F).

Proof Let Mγ be the subprocess of M by the multiplicative functional e−γt . Then
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Mγ is associated with a semi-Dirichlet form (Eγ ,F) on L2(X; m). So by [13, Theo-

rem 3.22], Mγ is m-tight m-special standard. Therefore, (Eγ ,F) is quasi-regular and

Mγ is Eγ-properly associated with (Eγ ,F). That is, (E,F) is quasi-regular and M is

E-properly associated with (E,F). This completes the proof.

Remark 4.3 It should be noted that if (E,F) is a quasi-regular semi-Dirichlet form

on L2(X; m) (with lower bound 0), the associated Borel right m-tight special standard

process is not defined on the co-Souslin space as a whole space. However, in this case,

replacing the underlying space X with a countable union of compact sets derived

from (QR1), we may assume that X is Lusinian, hence co-Souslinean (see [33, Ch.

IV. 3.2(iii)]).

From now on to the end of this section, we fix a quasi-regular semi-Dirichlet form

(E,F) on L2(X; m) with a lower bound −γ and a Borel right process M.

Lemma 4.1 Suppose that M is associated with (E,F). Fix α ≥ 0 and a (nearly)

Borel function f ∈ L2(X; m). Suppose that Rα f ∈ L2(X; m). Then Rα f ∈ F and

Eα(Rα f , v) = ( f , v)m for all v ∈ F.

Proof Note that for β > γ, Gβg = Rβg ∈ F and Eβ(Rβg, v) = (g, v)m for all g ∈
L2(X; m) and v ∈ F. By resolvent equation, we see Rα f = Rβ( f + (β − α)Rα f ) ∈ F

and

Eα(Rα f , v) = Eβ(Rα f , v) + (α− β)(Rα f , v)m

= Eβ(Rβ( f + (β − α)Rα f ), v) + (α− β)(Rα f , v)m

= ( f + (β − α)Rα f , v)m + (α− β)(Rα f , v)m

= ( f , v)m.

This completes the proof.

Lemma 4.2 Suppose that M is associated with (E,F). Let G be an open subset of

X. Then for u := Rα f with f ∈ B(X) ∩ L2
+(X; m), α > γ, Hα

Gũ is an m-version of

uαG := u − Π
α
FGc

(u).

Proof Fix α > γ. Recall that uαG is characterized as a unique element satisfying

uαG = u m-a.e. on G, Eα(uαG,w) = 0 for all w ∈ FGc .

Since M is associated with (E,F), we have Hα
Gũ is α-excessive and Hα

Gũ ≤ ũ m-a.e.,

hence Hα
Gũ ∈ F by Lemma 2.1. Note that uαG is also an α-reduced function of u on

G, which implies uαG is α-excessive in F. Hence v := Hα
Gũ ∧ uαG is α-excessive in

F. In particular, Eα(v, uαG − v) ≥ 0. On the other hand, v − uαG ∈ FGc leads us to

Eα(uαG, v − uαG) = 0. Therefore Eα(v − uαG, v − uαG) = 0, hence uαG ≤ Hα
Gũ m-a.e.
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Next we show the converse inequality. Let ūαG be a Borel m-version of uαG such

that ūαG = ũ on G. Then {e−αt ūαG(Xt )} is an (Ft , Pφm)-supermartingale for φ ∈
K(X) with

∫
X
φdm = 1. We obtain the converse inequality as in the proof of [18,

Lemma 4.2.1]. This completes the proof.

In the following lemma, without assuming the existence of dual processes, we have

the same assertion as in [18, Lemma 4.1.7] and [21, Proposition 6.9].

Lemma 4.3 Let α ≥ 0 and let {un} be a decreasing sequence of α-excessive functions

of M with limit u and suppose that u = 0 m-a.e. Then u = 0 q.e.

Proof The proof of [18, Lemma 4.1.7] or [21, Proposition 6.9] depends on the as-

sumption that X is Lusinian. We shall remark that the proof remains valid without

this assumption. Note that u is finely upper-semi-continuous and Bn(X)-measur-

able, hence finely upper-semi-continuous q.e. We see that An := {u ≥ 1/n} is finely

closed and Bn(X)-measurable. As in the proof of [18, Lemma 4.1.7], An is m-polar,

hence A := {u > 0} is m-polar by infn∈N σAn
= σA. This completes the proof.

Lemma 4.4 Fix α ≥ 0. For any α-excessive function h of M, h < ∞ m-a.e. on X if

and only if h <∞ q.e. on X.

Proof Set B := {x ∈ X | h(x) = ∞}. Then hn := h
n
∧ 1 is an α-excessive function

decreasing to IB as n → ∞ and IB = 0 m-a.e. By Lemma 4.3, we have IB = 0 q.e.

Lemma 4.5 Suppose that M is associated with (E,F). Take ϕ ∈ K(X) and set h :=

Gγ+1ϕ. Let Caph be the h-weighted capacity with respect to (Eγ ,F).

(i) Let {Gn} be a decreasing sequence of open sets. Then limn→∞ Caph(Gn) = 0 if

and only if limn→∞ H
γ+1
Gn

Rγ+1ϕ = 0 q.e.

(ii) For any set N, N is exceptional if and only if N is E-polar. In particular, the

notion E-q.e. coincides with the notion q.e.

Proof (i) Suppose limn→∞ Caph(Gn) = 0. Since

Caph(Gn) = (h
γ+1
Gn
, ϕ)m = (H

γ+1
Gn

Rγ+1ϕ,ϕ)m

by Lemma 4.2, we have limn→∞ H
γ+1
Gn

Rγ+1ϕ = 0 q.e. from Lemma 4.3. Conversely,

by Lemma 4.2, limn→∞ H
γ+1
Gn

Rγ+1ϕ = 0 q.e. gives Caph(Gn) = (H
γ+1
Gn

Rγ+1ϕ,ϕ)m →
0 as n → ∞.

Next we show (ii). First we show the only if part. Let K be a compact m-polar

set and {Gn} a decreasing sequence of open sets with Gn+1 ⊂ Gn for all n ∈ N and

K =
⋂∞

n=1 Gn. The quasi-left-continuity up to ζ and the right continuity of sample

path for M imply that Px( lim
n→∞

σGn
6= σK , limn→∞ σGn

< ζ) = 0 for any x ∈ X.
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Hence

lim
n→∞

Hγ+1
Gn

Rγ+1ϕ(x) = Ex

[∫ ∞

lim
n→∞

σGn

e−(γ+1)sϕ(Xs) ds
]

= Ex

[∫ ∞

lim
n→∞

σGn

e−(γ+1)sϕ(Xs) ds : lim
n→∞

σGn
< ζ

]

≤ Ex

[∫ ∞

σK

e−(γ+1)sϕ(Xs) ds
]

= 0

for m-a.e. x ∈ X by Pm(σK < ∞) = 0, which implies limn→∞ Caph(Gn) = 0 from

(i) and Lemma 4.3. Thus we have the E-polarity of K. Let N be a Borel m-polar

set. Since (E,F) is quasi-regular, there exists an E-nest {Kn} of compact sets. Then

X̂ :=
⋃∞

n=1 Kn is a Lusin space with respect to the relative topology on X̂. Then the

trace of Caph on X̂ is a Choquet capacity, hence Choquet’s capacitability theorem

tells us Caph(N) = Caph(N ∩ X̂) = supK⊂N∩bX Caph(K) = 0. Next we prove the

if part. Suppose that N is an E-polar set. Then there exists a decreasing sequence

{Gn} of open sets with N ⊂ Gn and Caph(Gn) = (H
γ+1
Gn

Rγ+1ϕ,ϕ)m → 0 as n → ∞.

We set B :=
⋂∞

n=1 Gn. We have Hγ+1
B Rγ+1ϕ = 0 m-a.e. on X, by Hγ+1

Gn
Rγ+1ϕ → 0,

n → ∞ m-a.e. on X. Since ϕ > 0 m-a.e., Pm(σB < ∞) = Pm(σB < ζ) = 0,

which implies the m-polarity of B, hence the exceptionality of N . This completes the

proof.

Lemma 4.6 Suppose that M is associated with (E,F). Then the following properties

hold.

(i) Let A be an m-null Bn(X)-measurable finely open set. Then A is m-polar.

(ii) Let u be a finely upper-semi-continuous q.e. function with respect to M. If u ≥
0 m-a.e. on a finely open set E ∈ B

n(X), then u ≥ 0 q.e. on E.

(iii) For any exceptional set N, there exists a properly Borel exceptional set B contain-

ing N.

Proof We first prove (ii) in the case that u is a finely upper-semi-continuous

Bn(X)-measurable function and E = X. We set A := {u < 0} and An := {u ≤
−1/n}. Then A is an m-negligible finely open Bn(X)-measurable set and An is a

finely closed Bn(X)-measurable set. Let Gn be an open set containing An. We have

for f , g ∈ L2
+(X; m) and α > γ,

(Hα
An

Rα f , g)m ≤ (Hα
Gn

Rα f , g)m

= (Gα f − Π
α
FGc

n
(Gα f ), g)m

= ( f , Ĝαg − Π̂
α
FGc

n
(Ĝαg))m.

If we put f = IA, we have Hα
An

RβIA(x) = 0 m-a.e. x ∈ X for β > α. Since

limβ→∞ βRβIA(y) = 1 for any y ∈ An, we get Pm(σAn
< ∞) = 0, which im-

plies Pm(σA < ∞) = 0 by
⋃∞

n=1 An = A. Next we prove (i). Let A ∈ Bn(X) be an
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m-negligible finely open set. Then −IA is a finely upper-semi-continuous Bn(X)-

measurable function such that −IA ≥ 0 m-a.e. By the first argument, we have

−IA ≥ 0 q.e. which implies the m-polarity of A. (ii) and (iii) can be obtained from

(i) as in the proofs of [18, Lemma 4.1.5; Theorem 4.1.1] by using Lemma 4.5 (i).

Theorem 4.2 ([13, Theorem 4.3]) Suppose that M is associated with (E,F). Then

any semi-polar sets of M are exceptional.

Proof The assertion follows [13, Theorem 4.3] by noting that semi-polarity (resp.

exceptionality) with respect to M is equivalent to the semi-polarity (resp. exception-

ality) of Mγ , because for any B ∈ B
n(X), we have Pγx (σB = 0) = Px(σB = 0) and

Pγx (σB < ζ) = Px(σB < ζ) in view of the construction of the subprocess Mγ by e−γt

(see [4, Ch. III. 3]).

Lemma 4.7 ([18, Theorem 4.2.2, Lemma 4.2.2(i)]) Suppose that M is associated

with (E,F). Then the following hold.

(i) If u is E-quasi-continuous, then u is finely continuous q.e. More specifically, there

exists a Borel properly exceptional set N such that u is Bn(X)-measurable on X\N

and for any x ∈ X \ N, Px(u(Xt ) is right continuous at t ∈ [0, ζ[) = 1.

(ii) If u ∈ F is finely continuous q.e., then u is E-quasi-continuous.

Proof In view of Lemma 4.5, (i) (resp. (ii)) is similarly proved as in Theorem 4.2.2

(resp. Lemma 4.2.2) in [18]. This completes the proof.

Proposition 4.1 ([18, Lemma 4.3.1, Theorems 4.4.1, 4.6.1]) Suppose that M is as-

sociated with (E,F). Then the following hold.

(i) For any set B ∈ B
n(X), f ∈ B(X) ∩ L2(X; m) and α > γ, Hα

B Rα f is an

E-quasi-continuous m-version of Gα f − Π
α
FBc

(Gα f ); in particular, RBc

α f is an

E-quasi-continuous m-version of GBc

α f := Π
α
FBc

(Gα f ).

(ii) E is E-quasi-open if and only if E is finely open q.e.

(iii) u is E-quasi-continuous if and only if u is finely continuous q.e.

Proof The proof of (i) is standard as in the proof of [18, Lemma 4.3.1]. Combining

(i) and Theorem 4.2, (ii) and (iii) can be obtained in the same way as the proof of

[18, Theorem 4.6.1]. This completes the proof.

By Proposition 4.1, we recognize an E-quasi-open (resp. E-quasi-closed) set as a

finely open, (resp. finely closed) nearly Borel, set. In particular, for an E-quasi-open

(resp. -closed) set E we define σE := σeE, where Ẽ is a finely open (resp. closed) nearly

Borel E-q.e. version of E.

For a nearly Borel set E, ME := (Ω,XE
t , Px)x∈E∆

, defined by XE
t := Xt if t < σX\E

and XE
t := ∆ if t ≥ σX\E, is called the part process on E. For an E-quasi-open set E,

we use the same notation ME for MeE. The transition function (pE
t )t>0 of ME is given

by pE
t f (x) = Ex[ f (Xt ) : t < σX\E] (see [18, A.2]).
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Theorem 4.3 ([18, Theorems 4.4.2, 4.4.3] and [13, Theorem 5.10]) Suppose that

M is associated with (E,F). Let E be an E-quasi-open set. Then (EE,FE) is associated

with ME in the sense that (TE
t )t>0 on L2(E; m) corresponding to (EE,FE) is determined

by the transition function (pE
t )t>0 of ME. Moreover, pE

t f is an EE-quasi-continuous

m-version of TE
t f for any f ∈ B(E) ∩ L2(E; m).

Proof By Proposition 4.1, RE
α f is an E-quasi-continuous m-version of GE

α f for α >

γ and f ∈ B(X) ∩ L2(X; m). The first assertion follows from [33, Ch. IV. Exer-

cise 2.7]. The second assertion can be deduced by way of [33, Ch. IV. Proposition 2.8;

Exercise 2.9]. Note that B(E) = σ(C(E)). Though the proof of [33, Ch. IV. Proposi-

tion 2.8] requires the existence of the dual process (see [33, Ch. IV. Lemma 2.1]), it is

possible to modify the proof in order to obtain the conclusion. In fact, if we change

D(M) specified in [33, Chapter IV. 2] to be a subfamily of Bb(E) ∩ L2(E; m), then

the function ρ satisfying [33, Ch. IV. (2.1)] can be constructed without dual process

(actually ρ := Rγ+1ϕ with ϕ ∈ Bb(E)∩ L2(E; m), ϕ > 0 on E does the job). Then the

proof of (ii)⇒(i) [33, Ch. IV, Proposition 2.8] remains valid.

Theorem 4.4 ([18, Theorem 4.3.1]) Suppose that M is associated with (E,F). Let B

be a nearly Borel subset of X. For each u ∈ F and α > γ, Hα
B ũ is an E-quasi-continuous

m-version of u − Π
α
FBc

u. In particular, for any β > γ and u ∈ F, we have H
β
B ũ ∈ F

and Eβ(H
β
B ũ, v) = 0 for any v ∈ FBc . If we further assume that u ∈ F is bounded and

m(Bc) <∞, then the same assertion holds for β ∈ [0, γ].

Proof The proof forα > γ is similar with the proof of [18, Theorem 4.3.1]. We omit

it. Next suppose β ∈ [0, γ], u ∈ Fb and m(Bc) < ∞. Note that RBc

α f is an m-ver-

sion of GBc

α f for f ∈ L2(X; m) and α > γ. Applying Lemma 4.1 to (EBc ,FBc ), we

have RBc

β f ∈ FBc for any f ∈ L∞(Bc ; m). The latter assertion is an easy consequence

through Hα
B ũ − H

β
B ũ + (α− β)RBc

α H
β
B ũ = 0. This completes the proof.

Theorem 4.5 Suppose that M is associated with (E,F). Then the following are equiv-

alent.

(i) (E,F) possesses the local property.

(ii) For any open set G and α ≥ 0, the α-hitting distribution Hα
Gc (x, dy) to Gc is

concentrated on the boundary ∂G for E-q.e. x ∈ G.

(iii) For any open set G and α ≥ 0, the α-hitting distribution Hα
Gc (x, dy) to Gc is

concentrated on the E-quasi-boundary E-∂G for E-q.e. x ∈ G.

(iv) For any open set G, Px(XσGc /∈ ∂G, σGc <∞) = 0 for E-q.e. x ∈ G.

(v) For any open set G, Px(XσGc /∈ E-∂G, σGc <∞) = 0 for E-q.e. x ∈ G.

(vi) Px(Xt is continuous at any t ∈ [0, ζ[) = 1 for E-q.e. x ∈ X.

Proof The implications (ii) ⇔ (iv), (iii) ⇔ (v) and (iii) ⇒ (ii) are trivial. For the

proof of (i) ⇔ (vi), see [32, Remark 3.10] and [33, Ch. V. 1], or [18, Theorem 4.5.1].

We only prove (i) ⇒ (iii) and (ii) ⇒ (i). Remark that [33, Ch. V. Lemma 1.8] cannot

be directly applied to show (i) ⇔ (iii). Suppose (i). In the same way as the proof of
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Lemma 4.5.1(i) ⇔ (ii) in [18] with the help of Lemma 3.3 and Theorem 4.4, we have

Hα
Gc ũ(x) = 0 E-q.e. x ∈ G for any u ∈ F

+
b with E- supp[u] ⊂ X \ G

E
and α > γ.

Here we use the fact that uv = 0 for any v ∈ FG and such u as above. Take a Borel

function f with 0 < f ≤ 1 on X and set u(x) := Ex[
∫ σG

0
e−αt f (Xt ) dt]. Then u ∈ Fb

is E-quasi-continuous with 0 ≤ u ≤ I
X\G

E and u > 0 E-q.e. on X \ GE, because

GE
= Gr E-q.e., where Gr := {x ∈ X | Px(σG = 0) = 1} is the set of regular points

for G. Then E- supp[u] ⊂ X \ G
E

. Hence we have Hα
Gc IX\G

E (x) = 0 E-q.e. x ∈ G,

consequently (ii) holds by Px(XσGc /∈ Gc, σGc < ∞) = 0 for x ∈ G. The proof of (ii)

⇒ (i) is similar as in Lemma 4.5.1(ii) ⇒ (i) in [18]. This completes the proof.

Lemma 4.8 (Fine full support) If M satisfies the absolute continuity condition with

respect to m, then m has hull topological support with respect to the fine topology of M.

Proof Suppose that E ∈ Bn(X) is a finely open set with m(E) = 0. It suffices to show

E = ∅. Since E is finely open, we have that IE(Xt ) is lower-semi-right-continuous at

0 Px-a.s. for x ∈ X, that is, Px(IE(X0) ≤ limt↓0 IE(Xt )) = 1 for any x ∈ X. Let {tk} be

any decreasing sequence which converges to 0. Then

IE(X0) ≤ lim
t→0

IE(Xt ) := sup
δ>0

inf
0≤s<δ

IE(Xs)

= sup
k≥1

inf
0≤s<tk

IE(Xs) ≤ sup
k≥1

inf
ℓ≥k

IE(Xtℓ)

≤ lim
k→∞

IE(Xtk
).

Hence IE(x) = Ex[IE(X0)] ≤ limk→0 Ex[IE(Xtk
)] = limk→0 Px(Xtk

∈ E) = 0 for all

x ∈ X, which implies E = ∅.

Corollary 4.1 Suppose that M is associated with (E,F). We assume that M satisfies

the absolute continuity condition with respect to m. Then the following are equivalent.

(i) (E,F) possesses the local property.

(ii) For any open set G and α ≥ 0, the α-hitting distribution Hα
Gc (x, dy) to Gc is

concentrated on the boundary ∂G for any x ∈ G.

(iii) For any open set G and α ≥ 0, the α-hitting distribution Hα
Gc (x, dy) to Gc is

concentrated on the E-quasi-boundary E-∂G for any x ∈ G.

(iv) For any open set G, Px(XσGc /∈ ∂G, σGc <∞) = 0 for any x ∈ G.

(v) For any open set G, Px(XσGc /∈ E-∂G, σGc <∞) = 0 for any x ∈ G.

(vi) Px(Xt is continuous at any t ∈ [0, ζ[ ) = 1 for any x ∈ X.

Proof Since M satisfies the absolute continuity condition with respect to m, for any

open set G, the part process MG also has the same property. Let f be a non-negative

Borel function f . Then Hα
Gc f is α-excessive, hence finely continuous with respect

to MG. Consequently, Hα
Gc f = 0 E-q.e. on G implies Hα

Gc f = 0 on G by applying

Lemma 4.8. So the proof of Theorem 4.5 remains valid. This completes the proof.

https://doi.org/10.4153/CJM-2008-036-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-036-8


850 K. Kuwae

Theorem 4.6 Suppose that M is associated with (E,F). Let E be a finely open (nearly)

Borel set and {En} a family of finely open (nearly) Borel sets. Then the following are

equivalent.

(i) {En} ∈ ΞE.

(ii) Px(limn→∞ τEn
= τE) = 1 for m-a.e. x ∈ X.

(iii) Px(limn→∞ τEn
= τE) = 1 for E-q.e. x ∈ X.

Further assume that En ⊂ En+1 for n ∈ N and E =
⋃∞

n=1 En and M satisfies the absolute

continuity condition with respect to m. Then (i)–(iii) are equivalent to

(iv) Px(limn→∞ τEn
= τE) = 1 for all x ∈ X.

Proof We may assume γ = 0 and E = X. In this case τE is changed to be ζ . Recall

that h1
Ec

n
= G1ϕ− GEn

1 ϕ for h = G1ϕ, ϕ ∈ L2
+(X; m). For such a ϕ, R1ϕ− REn

1 ϕ is an

E-quasi-continuous m-version of h1
Ec

n
. Then h1

Ec
n

m-a.e. decreases to a function h∞ ∈
F as n → ∞. Moreover, it converges in L2(X; m) and E1-weakly converges. Sup-

pose (i). Then h1
Ec

n
converges in E

1/2
1 -norm to h∞ = 0 by Lemma 3.6. Hence h̃1

Ec
n

E-quasi-uniformly converges to 0, which implies (iii). The implication (iii) → (ii)

is clear. Conversely suppose (ii). Then h∞ = 0, hence we have E1(h1
Ec

n
, h1

Ec
n
) ≤

E1(h1
Ec

n
,G1ϕ) → E1(h∞,G1ϕ) = 0 as n → ∞. Thus we obtain (i) by Lemma 3.6.

Next we prove the latter assertion. The implication (iv) ⇒ (iii) is trivial. We shall

show (i) ⇒ (iv). Set τ := limn→∞ τEn
. Then we see τ ≤ ζ . We should prove Px(τ =

ζ) = 1 for all x ∈ X. It suffices to prove that Rτ1ϕ(x) := Ex[
∫ τ

0
e−tϕ(Xt ) dt] = R1ϕ(x)

for all x ∈ X and ϕ ∈ Bb(X) ∩ L2
+(X; m) with 0 < ϕ ≤ 1. Fix such a ϕ. We already

see that it holds for m-a.e. x ∈ X. By construction, for each n ∈ N, both Rτ1ϕ and

R1ϕ are excessive with respect to MEn
, consequently finely continuous on En. Thus,

Rτ1ϕ(x) = R1ϕ(x) for all x ∈ En for each n ∈ N in view of Lemma 4.8. Therefore,

Rτ1ϕ(x) = R1ϕ(x) for all x ∈ X, which implies (iv).

5 Fine Connectedness of Right Processes Associated with

Irreducible Semi-Dirichlet Forms

We first treat a coercive closed form (E,F) with a lower bound −γ on L2(X; m). Let

(Tt )t>0 be a strongly continuous semigroup on L2(X; m) associated with (E,F).

Definition 5.1 (Invariant set) Let (E,F) be a coercive closed form with a lower

bound −γ on L2(X; m). A subset B of X is said to be invariant with respect to (E,F)

or (Tt )t>0 if and only if Tt (IB f ) = IBTt f for all t > 0 and f ∈ L2(X; m).

Obviously B is invariant if and only if Bc is invariant, and B is invariant with re-

spect to the dual form (Ê,F) or the dual semigroup (T̂t )t>0.

The following theorem is due to Y. Oshima [37, Theorem 1.4.1].

Theorem 5.1 Let (E,F) be a coercive closed form with a lower bound−γ on L2(X; m).

Then B is an invariant set with respect to (E,F) if and only if for all u ∈ F, IBu ∈ F
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and E(u, v) = E(IBu, IBv) + E(IBc u, IBc v) for u, v ∈ F.

The next theorem is essentially due to Fukushima in the framework of regular

symmetric Dirichlet forms [16, Theorem 2] and [18, Corollaries 4.6.2, 4.6.3].

Theorem 5.2 Let (E,F) be a quasi-regular semi-Dirichlet form with a lower bound

−γ on L2(X; m). Suppose that there exists an m-tight special standard process M asso-

ciated with (E,F). Fix an m-measurable set B.

(i) Suppose that B is simultaneously E-quasi-open and E-quasi-closed. Further as-

sume that one of the following two conditions is satisfied:

(a) B is invariant with respect to (E,F).

(b) (E,F) is local, that is, M is a diffusion.

Then there exists a properly exceptional set N such that both B\N and Bc \N are M-in-

variant. Further assume that M satisfies the absolute continuity condition with respect

to m and B is finely open and finely closed Then B and Bc are M-invariant. In particular,

N can be taken to be empty.

(ii) The following condition is equivalent to (a).

(c) X can be decomposed as X = B1 +B2 +N where B1(resp. B2) is an M-invariant

nearly Borel m-version of B(resp. Bc) and m(N) = 0.

Further assume that M satisfies the absolute continuity condition with respect to m. Then

the following condition is equivalent to (a).

(c ′) X can be decomposed as X = B1 + B2 where B1(resp. B2) is an M-invariant

nearly Borel m-version of B(resp. Bc).

Moreover, condition (c ′) yields that both B1 and B2 specified in (c ′) are finely open and

finely closed (resp. open and closed) under the absolute continuity condition with respect

to m (resp. strong Feller property).

(iii) If we assume (b), then one (hence all) of the following conditions is equivalent

to (a) (or (c)).

(d) u ∈ F implies IBu ∈ F.

(e) IB ∈ Ḟloc.

(f) B has an E-quasi-open and E-quasi-closed m-version B̃ of B.

Proof By use of the results in the previous section, the proof of the first part of (i)

(resp. (ii)) is similar to the proof of Lemma 4.6.3 (resp. Corollary 4.6.2) in [18]. The

proof of (a) ⇔ (f) is similar to the proof of [18, Corollary 4.6.3]. The proof of (e)

⇒ (f) is clear. The proof of (a) ⇒ (f) follows from Theorem 5.1. d We first prove

(d) ⇒ (e). Set h := Gγ+1ϕ with ϕ ∈ K(X). Then h̃ > 0 E-q.e. on X. Hence

IB = IB(nh ∧ 1) m-a.e. on {x ∈ X | h̃ > 1/n}. Since IB(nh ∧ 1) ∈ F by nh ∧ 1 ∈ F,

we have IB ∈ Ḟloc. Next we show the second part of (i). Suppose (a) or (b) and

the absolute continuity condition for M with respect to m, and assume that B and Bc

are finely open and finely closed. Then we have that for any α > 0, RαIB = IBRα1

and RαIBc = IBc Rα1 m-a.e. on X. Both sides are finely continuous, which implies the

https://doi.org/10.4153/CJM-2008-036-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-036-8


852 K. Kuwae

M-invariance of B and Bc. Finally we show the second part of (ii). The implication

(a) ⇒ (c ′) is essentially proved above by taking a finely open and finely closed nearly

Borel m-version of the invariant set B. Conversely suppose (c ′). Then we see that

RαIB1
u = IB1

Rαu and RαIB2
u = IB2

Rαu for any α > 0 and u ∈ L2(X; m). Hence B1

and B2 are finely open and finely closed, and B is invariant. If M is a strong Feller

process, B1 and B2 are open and closed.

Definition 5.2 (Irreducibility) A coercive closed form (E,F) with a lower bound

−γ on L2(X; m) is called irreducible if for any invariant set B of (E,F), m(B) = 0 or

m(Bc) = 0.

Corollary 5.1 (Inheritance of irreducibility) Let (E(1),F) on L2(X; m(1)) and

(E(2),F) on L2(X; m(2)) be two quasi-regular semi-Dirichlet forms with the same lower

bound −γ having a common domain F ⊂ L2(X; m(1)) ∩ L2(X; m(2)) and suppose that

(E(1),F) has the local property and there exists an m-tight special standard diffusion

process M(1) associated with (E(1),F). Here m(1) and m(2) are σ-finite Borel measures

on X. Suppose that E
(2)(u, u) ≥ E

(1)(u, u) holds for u ∈ F and m(2) ≥ m(1). Then the

irreducibility of E(1) implies the same property of E(2).

Proof It is easy to see that every E
(2)-nest is an E

(1)-nest. Hence E
(2)-polarity (resp.

E(2)-quasi-upper-semi-continuity) implies the E(1)-polarity (resp. E(1)-quasi-upper-

semi-continuity). Suppose that B is invariant with respect to (E(2),F). Then condi-

tion (f) of Theorem 5.2 holds for (E(2),F). Therefore it holds for (E(1),F). By apply-

ing Theorem 5.2(iii) again, we have the invariance of B with respect to (E(1),F). This

completes the proof.

Theorem 5.3 (Fine connectedness) Let (E,F) be a quasi-regular semi-Dirichlet

form with a lower bound −γ on L2(X; m). Suppose that there exists an m-tight special

standard process M associated with (E,F). Further assume that M satisfies the abso-

lute continuity condition with respect to m and (E,F) is irreducible. Then M is finely

connected; namely, if G is finely open and finely closed Borel set of M, G = ∅ or G = X.

Proof Suppose that G is a finely open and finely closed Borel set of M. Then G is

E-quasi-open and E-quasi-closed by Proposition 4.1(ii). We have that G is invariant

by Theorem 5.2. According to the irreducibility of (E,F), m(G) = 0 or m(Gc) = 0,

hence G = ∅ or Gc
= ∅ by Lemma 4.8. This completes the proof.

6 E-Subharmonic Functions

Throughout this section, we fix γ ∈ [0,∞[.

Definition 6.1 Let (E,F) be a quasi-regular local positivity preserving form with

a lower bound −γ on L2(X; m). For u ∈ Ḟloc and {Gi} ∈ Ξ(u) and v ∈ FGi
, we

set E(u, v) := E(ui , v). Here ui ∈ F is the function specified in the definition of
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u ∈ Ḟloc. Owing to the local property of (E,F), E(u, v) is well defined for u ∈ Ḟloc

and v ∈ ⋃∞
i=1 FGi

with {Gi} ∈ Ξ(u). Similarly we can define Eα(u, v) for such u, v

and α > 0.

Definition 6.2 (Eα-subharmonicity) Let (E,F) be a quasi-regular local positivity

preserving form with a lower bound −γ on L2(X; m). Fix an α ≥ 0. A function

u ∈ Ḟloc is said to be Eα-subharmonic relative to {Gi} ∈ Ξ(u) if Eα(u, v) ≤ 0 for

all v ∈ ⋃∞
i=1 F+

Gi
and u ∈ Ḟloc is called Eα-subharmonic or a (local) subsolution of

“(L − α)w = 0” if u is Eα-subharmonic relative to any {Gi} ∈ Ξ(u). If −u is Eα-

subharmonic, u is said to be Eα-superharmonic or a (local) supersolution of “(L −
α)w = 0”. If both u and −u are Eα-subharmonic, u is said to be Eα-harmonic or a

(local) solution of “(L − α)w = 0”.

Lemma 6.1 Let (E,F) be a quasi-regular local positivity preserving form with a lower

bound −γ on L2(X; m). For u ∈ Ḟloc and α ≥ 0, the following conditions are equiva-

lent.

(i) u is Eα-subharmonic.

(ii) u is Eα-subharmonic relative to any {Gi} ∈ Ξcpt(u).

(iii) u is Eα-subharmonic relative to some {Gi} ∈ Ξcpt(u).

(iv) u is Eα-subharmonic relative to some {Gi} ∈ Ξ(u).

Proof The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are trivial. We shall prove (iv) ⇒ (i).

Suppose that u is Eα-subharmonic relative to some {E j} ∈ Ξ(u). Take {Gi} ∈ Ξ(u)

and v ∈ ⋃∞
i=1 F+

Gi
. Then v ∈ F+

Gi
for some i ∈ N. Noting {E j ∩ Gi}∞j=1 ∈ ΞGi

, there

exists {vn} ⊂
⋃∞

j=1 F
+
E j∩Gi

such that vn → v in (EGi
)

1/2
γ+1-norm by Lemma 3.6. Hence

Eα(u, v) = Eα(ui , v) = limn→∞ Eα(ui , vn) = limn→∞ Eα(u, vn) ≤ 0. Here ui ∈ F

with u = ui m-a.e. on Gi . This completes the proof.

The next proposition ensures that the present definition of E-subharmonicity is an

extension of the E-subharmonicity in the framework of regular local semi-Dirichlet

forms.

Proposition 6.1 Suppose that X is a locally compact separable metric space and m is

a positive Radon measure on X with full topological support. Fix α ≥ 0. Assume that

(E,F) is a regular local semi-Dirichlet form with a lower bound −γ on L2(X; m). Recall

that Floc is the family of functions locally in F in the ordinary sense. For u ∈ Floc, the

following conditions are equivalent.

(i) u is Eα-subharmonic.

(ii) Eα(u, v) ≤ 0 for v ∈ F
+
cpt.

(iii) Eα(u, v) ≤ 0 for v ∈ F+ ∩C0(X).

Proof Take an increasing sequence {On} of relatively compact open sets with On ⊂
On+1 for each n ∈ N. Then {On} ∈ Ξ(u) and Fcpt =

⋃∞
n=1 FOn

. So the equivalence

(i) ⇔ (ii) is clear from the previous lemma. To show the equivalence (ii) ⇔ (iii), it
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suffices to show that FG ∩ C0(G) is E
1/2
γ+1-dense in FG for any open set G, which is

proved in Proposition 3.4. This completes the proof.

Lemma 6.2 Let (E,F) be a quasi-regular local positivity preserving form with a lower

bound −γ on L2(X; m). For eachα ≥ 0 and u ∈ L0(X; m), the following are equivalent.

(i) u ∈ Ḟloc and it is Eα-subharmonic.

(ii) There exists a {Gi} ∈ Ξ such that u|Gi
∈ F|Gi

and it is (EGi
)α-subharmonic for

all i ∈ N.

(iii) There exists an {Ei} ∈ Ξ such that u|Ei
∈ ˙(FEi

)loc and it is (EEi
)α-subharmonic

for all i ∈ N.

Proof The implication (ii) ⇒ (iii) is trivial. First we prove (i) ⇒ (ii). It suffices to

show that for an E-quasi-open set G with u|G ∈ F|G, u|G is (EG)α-subharmonic. Take

such G and {Gi} ∈ Ξ(u). Then {G ∩ Gi} ∈ ΞG(u) by Lemma 3.5(i). Since FG∩Gi
⊂

FGi
, Eα(u,w) ≤ 0 for w ∈ ⋃∞

i=1 F+
G∩Gi

, which implies the (EG)α-subharmonicity of

u by Lemma 6.1.

Next we show (iii) ⇒ (i). Take an {Oi
j} ∈ ΞEi

(u). Let {Fn} be a common Eγ-nest

of compact sets such that Ei
E ∩ Fn is compact and Oi

j ∩ Fn is open in Fn for all

i, j, n ∈ N. In view of the observation before Lemma 3.7, such an Eγ-nest can

be constructed as in the case of quasi-regular semi-Dirichlet form. We may assume

Ei
E ⊂ Ei+1, Oi

j ⊂ Oi
j+1 and Ei =

⋃∞
j=1 Oi

j for all i, j ∈ N by deleting adequate

E-polar sets. Then there exists a j = j(n, i) such that Ei
E∩Fn ⊂ Oi+1

j ∩Fn. Therefore

there exists a ui, j ∈ FEi+1
such that u = ui, jm-a.e. on Ei ∩ FE-int

n . Putting Gi :=

Ei ∩ FE-int
i , we have {Gi} ∈ Ξ(u), which implies u ∈ Ḟloc. By assumption, for

each i ∈ N, Eα(u,w) ≤ 0 for all w ∈
⋃∞

j=1 F+
Oi

j
. Take w ∈

⋃∞
i=1 F+

Gi
⊂

⋃∞
i=1 F+

Ei
.

Then there is an i ∈ N with w ∈ F+
Ei

and wn ∈ ⋃∞
j=1 F+

Oi
j

such that {wn} is E
1/2
γ+1-

convergent to w. Hence Eα(u,w) = limn→∞ Eα(u,wn) ≤ 0. Applying Lemma 6.1

again, u ∈ Ḟloc and u is Eα-subharmonic. This completes the proof.

Corollary 6.1 Suppose X is a locally compact separable metric space and m is a posi-

tive Radon measure on X with full support. Let (E,F) be a regular local semi-Dirichlet

form with a lower bound −γ on L2(X; m). For each α ≥ 0 and u ∈ L∞
loc(X; m), the

following are equivalent.

(i) u ∈ Floc and it is Eα-subharmonic.

(ii) For any relatively compact open set G, u|G ∈ F|G and it is (EG)α-subharmonic.

(iii) For any relatively compact open set E, u|E ∈ (FE)loc and it is (EE)α-subharmonic.

Proof The proof is the same as in the above lemma. The local boundedness of u

is only used in the proof of u|E ∈ (FE)loc in (ii) ⇒ (iii). We omit the details. This

completes the proof.

Let T be a bounded linear operator on L2(X; m) admitting m-a.e. defined bounded

kernel t , namely, there exists a kernel t : X × B(X) → [0,∞] with t(x,X) < ∞ for
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any x ∈ X such that T f (x) =
∫

X
f̂ (y)t(x, dy) m-a.e. x ∈ X for any Borel m-ver-

sion f̂ of f ∈ L2
+(X; m). Take u ∈ L0

+(X; m). We define Tu in the following way:

Tu(x) :=
∫

X
û(y)t(x, dy) for some non-negative Borel m-version û of u. Then Tu is

m-a.e. well defined and satisfies 0 ≤ Tu ≤ ∞ m-a.e. Note that (Gα)α>γ and (Tt )t>0

associated with a quasi-regular semi-Dirichlet form (E,F) with a lower bound −γ on

L2(X; m) are families of bounded linear operators on L2(X; m) admitting m-a.e. de-

fined bounded kernels if there exists a Borel right process M associated with (E,F).

Definition 6.3 (Excessive function in L0(X; m)) Let (E,F) be a quasi-regular local

semi-Dirichlet form with a lower bound −γ on L2(X; m) and (Tt )t>0 semigroup as-

sociated with (E,F). Fix α ≥ 0. A function u ∈ L0(X; m) is said to be α-excessive

with respect to (E,F) if u ≥ 0 m-a.e. and e−αt Tt u ≤ u m-a.e. for all t ≥ 0.

Lemma 6.3 Let (E,F) be a quasi-regular local semi-Dirichlet form with a lower

bound −γ on L2(X; m) and G an E-quasi-open set. Assume that there exists a Borel

right process M associated with (E,F). Take α > γ and u ∈ F+|G. Suppose that u

is (EG)α-superharmonic on G. Then u is α-excessive with respect to (EG,FG). If we

further assume u ∈ F+
b |G and m(G) <∞, then the same assertion holds for α ∈ [0, γ].

Proof First suppose α > γ and u ∈ F+|G. Take v ∈ F+ with u = v m-a.e. on

G. Suppose that u is (EG)α-superharmonic on G. We have that v − Hα
Gc ṽ ∈ FG is

(EG)α-superharmonic by Theorem 4.4. According to Lemma 2.2, v − Hα
Gc ṽ satisfies

e−αt pG
t (v − Hα

Gc ṽ) ≤ v − Hα
Gc ṽ m-a.e. on G for all t > 0. Noting that e−αt pG

t Hα
Gc ṽ ≤

Hα
Gc ṽ m-a.e. on G for all t > 0, we have e−αt pG

t v ≤ v m-a.e. on G for all t > 0. Next

suppose α ∈ [0, γ], u ∈ F
+
b |G and m(G) < ∞. Then the same proof works as above

by way of Theorem 4.4. This completes the proof.

The following theorem extends [44, Lemma 3(a),(b)] and Lemma 2.2.

Theorem 6.1 Let (E,F) be a quasi-regular local semi-Dirichlet form with a lower

bound −γ on L2(X; m). Furthermore, we assume that there exists a Borel right process

M associated with (E,F). For u ∈ Ḟ+
loc and α ≥ 0, the following are equivalent to each

other.

(i) e−αt Tt u ≤ u for any t > 0.

(ii) βGα+βu ≤ u for any β > γ − α.

(iii) u is Eα-superharmonic.

Proof The implication (i) ⇒ (ii) is clear. We show the implication (ii) ⇒ (iii). We

may assume α > 0, because the case for α = 0 can be obtained from this. First we

assume α > γ. We set Gi := {x ∈ X | h̃ > 1/i, ũ(x) < i}, where h := Gγ+1ϕ

with ϕ ∈ L2(X; m), 0 < ϕ ≤ 1 m-a.e. Then {Gi} ∈ Ξ with m(Gi) < ∞ for each

i ∈ N. Further we set Ei := {x ∈ X | h̃Gi > 1/i}, where hGi := GGi

γ+1ϕ. Then

{Ei} ∈ Ξ and Ei ⊂ Gi by the proof of Lemma 3.8. Set L
Gi

1,Ei
:= {u ∈ FGi

| ũ ≥
1 E-q.e. on Ei}. Then ihGi ∧ 1 ∈ L

Gi

1,Ei
6= ∅. By Stampacchia’s projection theorem,
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there exists a unique eαEi
∈ L

Gi

1,Ei
such that ẽαEi

= 1 E-q.e. on Ei and Eα(eαEi
,w) ≥ 0

for w ∈ F+
Gi

. In particular, eαEi
is (EGi

)α-superharmonic. We may take {Gi}, {Ei}
as finely open Borel sets. Further, E·[e−ασEi :σEi

< τGi
] is an E-quasi-continuous

m-version of eαEi
. For general α > 0, we set eαEi

:= Ex[e−ασEi :σEi
< τGi

]. Then by

eαEi
− e

β
Ei

+ (α − β)R
Gi\Ei

β eαEi
= 0, eαEi

is an α-excessive function in FGi
with respect

to (EGi
,FGi

) for all α > 0 by way of Lemma 2.2. Here we apply Lemma 4.1 to

R
Gi\Ei

β eαEi
∈ L2(Gi ; m), because m(Gi \ Ei) ≤ m(Gi) < ∞. From (ii), ui := u ∧ ieαEi

satisfies βGGi

β+αui ≤ ui for all β > α − γ, hence ui ∈ FGi
and {Ei} ∈ Ξ(u) by

Lemma 2.1. Therefore ui is (EGi
)α-superharmonic by Lemma 2.2. Take v ∈

⋃∞
i=1 F

+
Ei

.

Then Eα(u, v) = Eα(ui , v) ≥ 0 for v ∈ F+
Ei

and some i ∈ N.

Next we show the implication (iii) ⇒ (i). We may assume α > 0 and the E-quasi-

continuity of u. Set Gi := {x ∈ X | h̃ > 1/i, ũ(x) < i} as in (ii) ⇒ (iii). We can

retake Gi so that {Gi} ∈ Ξ(u) and for each i ∈ N there exists ui ∈ Fb with u = ui m-

a.e. on Gi . We may take {Gi} as finely open Borel sets. Since u is Eα-superharmonic,

Eα(u, v) ≥ 0 for all v ∈ ⋃∞
i=1 F+

Gi
. In particular, ui on Gi is (EGi

)α-superharmonic.

Then by Lemma 6.3, we have e−αt pGi
t u ≤ u m-a.e. on X. Letting i → ∞, we obtain

the assertion. This completes the proof.

Corollary 6.2 Let (E,F) be a quasi-regular local semi-Dirichlet form with a lower

bound −γ on L2(X; m). Furthermore, we assume that there exists a Borel right process

M associated with (E,F). Then 1 is E-superhamonic.

Proof It suffices to show 1 ∈ Ḟloc. Fix ϕ ∈ L2(X; m) with 0 < ϕ ≤ 1 and set

h := Gαϕ for α > γ. Then nh ∧ 1 is an α-excessive function in F by Lemma 2.1. We

let En := {h̃ > 1/n}. We see {En} ∈ Ξ and 1 = nh ∧ 1 m-a.e. on En.

Theorem 6.2 Suppose that (E,F) is a regular local semi-Dirichlet form with a lower

bound −γ on L2(X; m) in the framework of locally compact separable metric space X

having a positive Radon measure m with full support. Furthermore, we assume that

there exists a Borel right process M associated with (E,F). Fix α ≥ 0. Let u be an

α-excessive function with respect to (E,F). Suppose u ∈ L∞
loc(X; m), or that there exists

a v ∈ Floc such that u ≤ v m-a.e. on X. Then u is an Eα-superharmonic function in

F+
loc.

Proof In view of the previous theorem, it suffices to show u ∈ Floc under the present

condition. First we assume that u ∈ L∞
loc(X; m). Let {Ai} be an increasing sequence

of relatively compact open sets with Ai ⊂ Ai+1, i ∈ N and
⋃∞

i=1 Ai = X. We set

L
Ai+1

1,Ai
:= {u ∈ FAi+1

| u ≥ 1m-a.e. on Ai}. Owing to the regularity of (EAi+1
,FAi+1

)

on L2(Ai+1; m), L
Ai+1

1,Ai
6= ∅ for each i ∈ N. By assumption, u is β-excessive for any

β > γ, hence, we may assumeα > γ. Then there exists a unique eαAi
∈ L

Ai+1

1,Ai
such that

Eα(eαAi
,w) ≥ Eα(eαAi

, eαAi
) for all w ∈ L

Ai+1

1,Ai
. We see Eα(eαAi

,w) ≥ 0 for w ∈ F+
Ai+1

and

eαAi
= 1 m-a.e. on Ai . In particular, eαAi

is an α-excessive function in FAi+1
with respect

to (EAi+1
,FAi+1

) (see [33, Ch. III. Proposition 1.5]). We set ui := u ∧ ‖u‖L∞(Ai ;m)e
α
Ai

.
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By the same reason as in the proof of (ii) ⇒ (iii) in Theorem 6.1, ui is an α-excessive

function in FAi+1
. Since u = uim-a.e. on Ai , we can conclude u ∈ Floc. Next we treat

the latter case. Suppose that there exists v ∈ Floc such that u ≤ v. Let {Ai} as above.

We see Lu,Ai
:= {w ∈ F | w ≥ um-a.e. on Ai} 6= ∅. Then there exists a unique

uαAi
∈ F such that Eα(uαAi

,w) ≥ Eα(uαAi
, uαAi

) for all w ∈ Lu,Ai
. We see Eα(uαAi

,w) ≥ 0

for w ∈ F+. In particular, uαAi
is an α-excessive function in F with respect to (E,F).

We then have uαAi
= u m-a.e. on Ai , because u ∧ uαAi

is an α-excessive function in F

by Lemma 2.1. This implies u ∈ Floc. This completes the proof.

Theorem 6.3 (Weierstrass Type Theorem) Let (E,F) be a quasi-regular local semi-

Dirichlet form with a lower bound −γ on L2(X; m). Assume that there exists a Borel

right process M associated with (E,F). Further assume that 1 ∈ Ḟloc is E-harmonic.

Take {vn} ⊂ Ḟloc. Then we have the following:

(i) Suppose that there exist common {Gi} ∈ ⋂∞
n=1 Ξ(vn) and v ∈ L0(X; m) such

that vn is uniformly bounded on Gi and it converges to v uniformly on Gi as n → ∞ for

each i ∈ N. If vn is E-superharmonic for all n ∈ N, then v ∈ Ḟloc and it is E-super-

harmonic.

(ii) Suppose that vn ∈ L∞(X; m) is uniformly convergent to some v ∈ L∞(X; m). If

vn is E-superharmonic for all n ∈ N, then v ∈ Ḟloc and it is E-superharmonic.

(iii) Assume that (E,F) is a regular local semi-Dirichlet form with a lower bound

−γ on L2(X; m), where X is a locally compact separable metric space and m is an ev-

erywhere dense positive Radon measure m on X. Suppose that vn ∈ Floc ∩ L∞
loc(X; m) is

L∞
loc(X; m)-convergent to some v ∈ L∞

loc(X; m). If vn is E-superharmonic for all n ∈ N,

then v ∈ Floc and it is E-superharmonic.

Proof (ii) and (iii) are clear from (i) except the assertion v ∈ Floc in (iii). First we

show (i). By assumption, there exists a constant Mi > 0 such that

wn := vn + Mi ≥ 0, w := v + Mi ≥ 0

m-a.e. on each Gi . We get TGi
t wn ≤ wn m-a.e. on Gi by Theorem 6.1, hence TGi

t w ≤
w m-a.e. on Gi , which implies that v|Gi

∈ ˙(FGi
)loc and its EGi

-superharmonicity by

using the E-harmonicity of 1 again. Owing to Lemma 6.2, we have the assertion.

Finally we show v ∈ Floc in (iii). Let G be a relatively compact open set. We easily see

that v|G ∈ (FG)loc and its EG-superharmonicity in the same way as above. Hence we

have the assertion by Corollary 6.1. This completes the proof.

Lemma 6.4 Let (E,F) be a quasi-regular local semi-Dirichlet form with a lower

bound −γ on L2(X; m). Assume that there exists a Borel right process M associated

with (E,F). Fix an E-quasi-open set O. Take α > γ and v ∈ F. Then the following are

equivalent.

(i) v is (EO)α-subharmonic.

(ii) v − Hα
Oc ṽ ≤ e−αt pO

t (v − Hα
Oc ṽ), m-a.e. on O for all t > 0.
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(iii) v ≤ e−αt pO
t v + E·[e−ασOc ṽ(XσOc ) :σOc ≤ t], m-a.e. on O for all t > 0.

In particular, if v is (EO)α-subharmonic (resp. (EO)α-superharmonic) for α > γ, then

v ≤ Hα
Oc ṽ (resp. v ≥ Hα

Oc ṽ) m-a.e. on O.

Moreover, if v ∈ Fb and m(O) < ∞, then the equivalence above holds for the case

α ∈ [0, γ]. In particular, if v ∈ Fb, m(O) < ∞ and Px(τO < ∞) = 1 m-a.e.

x ∈ O, then (EO)α-subharmonicity (resp. (EO)α-superharmonicity) of v implies v ≤
Hα

Oc ṽ (resp. v ≥ Hα
Oc ṽ) m-a.e. on O for α ∈ [0, γ].

Proof The equivalence (ii) ⇔ (iii) is an easy calculation. Take α ≥ 0. If α ∈ [0, γ],

we assume v ∈ Fb and m(O) < ∞. As in the proof of Lemma 6.3, we have that

(EO)α-subharmonicity of v is equivalent to the (EO)α-subharmonicity of v−Hα
Oc ṽ ∈

FO, because of the (EO)α-harmonicity of Hα
Oc ṽ, which is equivalent to (ii) by Lem-

ma 2.2, so we show the latter assertion. Let v ∈ F be an (EO)α-subharmonic function.

Suppose α > γ. Since v and Hα
Oc ṽ are in L2(X; m), we see that e−γt pO

t (v − Hα
Oc ṽ) is

bounded in L2(O; m) with respect to t > 0, which implies the L2(O; m)-convergence

of e−αt pO
t (v − Hα

Oc ṽ) to 0 as t → ∞. Taking a subsequence of t , we have the desired

assertion. Next suppose α ∈ [0, γ], v ∈ Fb, m(O) < ∞ and Px(τO < ∞) = 1

m-a.e. Then, by way of the proof of Lemma 6.3 again, we have (ii). By assumption,

e−αt pO
t (v − Hα

Oc ṽ) is estimated above by 2‖v‖∞Px(t < τO) for each x ∈ O. Letting

t → ∞, we obtain the result. Finally we note that the boundedness of v is also used

to apply Theorem 4.4 to Hα
Oc ṽ for α ∈ [0, γ]. This completes the proof.

Theorem 6.4 Let (E,F) be a quasi-regular local semi-Dirichlet form with a lower

bound −γ on L2(X; m). Assume that there exists a Borel right process M associated with

(E,F). Take α ≥ 0.

(i) Let η be a convex function satisfying η(0) ≤ 0. Suppose that η ◦ f − η(0) ∈ F

for any f ∈ F. Then for every E-harmonic function u, the function η ◦ u is

E-subharmonic.

(ii) Take p ≥ 1. Suppose that | f |p ∈ F for any f ∈ Fb. Then for every Eα-harmonic

function u and p ≥ 1 the function |u|p is Eα-subharmonic.

(iii) Let u, v ∈ Ḟloc be Eα-subharmonic functions. Then u∨v is also Eα-subharmonic.

Proof We first show (i). Take an E-harmonic function u. Let {Gi} ∈ Ξ(u) and

ui , vi ∈ F such that u = ui m-a.e. on Gi . We may assume that for each i ∈ N, ui is

bounded on X and m(Gi) < ∞. By assumption, we see wi := η ◦ ui − η(0) ∈ F. By

Lemma 6.4, EGi
-harmonicity of ui is equivalent to

ui = pGi
t ui + E·[ũi(XσGc

i
) :σGc

i
≤ t]

m-a.e. on Gi . Let K i
t (x, ·) be a kernel defined by

K i
t (x,A) := pGi

t (x,A) + Ex[IA(XσGc
i
) :σGc

i
≤ t].
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Then K i
t (x, ·) is a Markov kernel. Indeed, σGc

i
≤ t implies σGc

i
< ζ , hence we see

K i
t (x,X) = 1. Applying Jensen’s inequality to η, we have

η(ui(x)) = η(K i
t ui(x)) ≤ K i

t (η ◦ ui)(x),

which implies wi ≤ pGi
t wi + E·[w̃i(XσGc

i
) :σGc

i
≤ t] m-a.e. on Gi . Hence we obtain the

EGi
-subharmonicity of wi ∈ F by Lemma 6.4. Therefore η ◦ u is E-subharmonic by

Lemma 6.2, η(0) ≤ 0 and Corollary 6.2.

Next we show (ii). The proof is quite similar to (i) by replacing K i
t (x, ·) with

K
i,α
t (x, ·) defined by K

i,α
t (x,A) := e−αt pGi

t (x,A) + Ex[e
−ασGc

i IA(XσGc
i
) :σGc

i
≤ t]. Note

that K
i,α
t (x, ·) is not necessarily a Markov kernel, but a sub-Markov kernel. Let u

be an Eα-harmonic function and ui the (EGi
)α-harmonic function as discussed. By

Hölder’s inequality, we have

|ui(x)|p
= |K i,α

t ui(x)|p ≤ (K
i,α
t 1(x))p−1K

i,α
t |ui |p(x)

≤ K
i,α
t |ui |p(x),

which imlpies |ui |p ≤ e−αt pGi
t |ui|p + E·[e

−ασGc
i |ũi |p(XσGc

i
) :σGc

i
≤ t] m-a.e. on Gi .

Hence we obtain the (EGi
)α-subharmonicity of |ui |p. Therefore |u|p is Eα-subhar-

monic.

Finally we show (iii). Let {Gi} ∈ Ξ(u) ∩ Ξ(v) and ui, vi ∈ F such that u = ui ,

v = vi m-a.e. on Gi . We may assume that for each i ∈ N, ui and vi are bounded on X

and m(Gi) < ∞. By Lemma 6.4, (EGi
)α-subharmonicity of ui is equivalent to ui ≤

pGi
t ui + E·[ũi(XσGc

i
) :σGc

i
≤ t] m-a.e. on Gi . Thus we have the (EGi

)α-subharmonicity

of ui ∨ vi . Consequently, u ∨ v is Eα-subharmonic. This completes the proof.

Remark 6.1 If the dual form (Ê,F) is also a semi-Dirichlet form on L2(X; m) with

the same lower bound −γ, then any Lipschitz continuous function η satisfies that

η ◦ f − η(0) ∈ F for any f ∈ F. Consequently | f |p ∈ F for any f ∈ Fb, p ≥ 1.

7 Proofs of Maximum Principles

We fix an open set G with non-empty boundary ∂G and a quasi-regular local semi-

Dirichlet form (E,F) with a lower bound −γ on L2(X; m).

Proof of Proposition 1.1 (i) For any relatively compact open neighborhood U of O,

MU is also transient. Under the doubly Feller property of M, MU is a strong Feller

process. Then we see

Ex[τO] = Ex

[∫ τO

0

IO(Xt ) dt
]
≤ RU IO(x) <∞

in view of [20, Corollary 2.3]. Hence we have the assertion.
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(ii) Owing to the irreducibility of (E,F), M is either transient or recurrent in

view of the ergodic decomposition of M (see [28]). If X \ O is non E-polar, then

the irreducibility of (E,F) implies Px(σX\O < ∞) > 0 m-a.e. x ∈ X. Then the

recurrence of M implies the assertion.

(iii) Since the dual form (Ê,F) has Markov property, X̂d the corresponding dissi-

pative part m-a.e. coincides with Xd (see [28]). Here X̂d := {x ∈ X | Ĝ f (x) < ∞}
for some f ∈ L1

+(X; m) and X̂d is m-a.e. invariant under the choice of such f . Un-

der the transience of M, we have X̂d = Xd = X m-a.e. by [28, Theorem 1.3]. So

IO ∈ L1(X; m) yields RIO <∞ m-a.e., which implies the assertion.

(iv) We set u(x) := Px(τO = ∞) for x ∈ X. Then u satisfies u = pO
t u m-a.e.

on X. By m(O) < ∞, u = pO
t u ∈ L2(O; m), hence u ∈ FO. Owing to Lemma 2.2,

u is a non-negative EO-subharmonic function on O. In particular, E(u, u) = 0,

which implies u = 0 m-a.e. on O in view of the transience of (EO,FO). Suppose that

the Nash-type estimate holds. Then the following Nash inequality holds (see [5] or

[38, Theorem 4.3]): there exists C > 0 such that

‖ f ‖2(1+2/ν)
2 ≤ CE( f , f )|| f ||4/ν1 , ∀ f ∈ F.

From this and ‖u‖1 ≤ m(O) < ∞, we have ‖u‖2 = 0, hence u vanishes m-a.e.

on X.

Proof of Theorem 1.1 First we prove (i). By Theorem 4.3, the part process MG =

(Ω,XG
t , Px) on G is associated with (EG,FG). Take a {Gn} ∈ ΞG(u) and un ∈ FG

such that u = un m-a.e. on Gn and E(u, φ) ≤ 0 for any φ ∈ ⋃∞
n=1 F+

Gn
. We may

assume that Gn is a finely open Borel set, m(Gn) < ∞ and u is bounded on Gn. In

particular, we may assume that un ∈ (FG)b is an EGn
-subharmonic function. Take

ℓ > sup∂G u+. Then uℓ := (u − ℓ)+ is also EG-subharmonic by Theorem 6.4, because

ℓ > 0 and the EG-superharmonicity of 1. Similarly (un−ℓ)+ is also EGn
-subharmonic.

By assumption, Px(τGn
<∞) = 1 m-a.e. x ∈ X for each n ∈ N. Then by Lemma 6.4,

we have (un − ℓ)+ ≤ HGc
n
(ũn − ℓ)+ m-a.e. on Gn. Thus uℓ ≤ HGc

n
uℓ m-a.e. on Gm for

all n > m by noting u = ũn q.e. x ∈ G
E

n . We extend uℓ ∈ C(G) to ûℓ ∈ C(X∆) with

ûℓ(∆) = 0 and ûℓ = uℓ on G. Note that Px(limn→∞ τGn
= τG) = 1 m-a.e. x ∈ X by

Theorem 4.6 and HGc
n
uℓ(x) = Ex[ûℓ(XτGn

)]. Owing to the quasi-left-continuity up to

∞, we have uℓ ≤ HGc uℓ m-a.e. on Gm, which implies (u − ℓ)+ ≤ HGc (u − ℓ)+ m-a.e.

on G. Then (u(x) − ℓ)+ ≤ Ex[(u(XσGc ) − ℓ)+ :σGc < ζ] = 0 m-a.e. x ∈ G. Hence

supG u ≤ ℓ. Letting ℓ→ sup∂G u+, we arrive at the result.

Next we prove (ii). Take an ℓ > sup∂G u. Since 1 is EG-harmonic, (u − ℓ)+ is

also EG-subharmonic by Theorem 6.4. In the same way as in the proof of (i), we can

conclude (u − ℓ)+ ≤ HGc (u − ℓ)+ m-a.e. on G. Therefore, we have the conclusion.

This completes the proof.

Proof of Corollary 1.1 The proof is similar to that of Theorem 1.1. We first show

(i). Take ℓ > E- sup
E-∂G ũ+ and {Gn} ∈ ΞG(u) as in the proof of Theorem 1.1 and
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set uℓ := (u − ℓ)+. Then we have uℓ ≤ HGc
n
ũℓ m-a.e. on Gm for all n > m in the same

way as in the proof of Theorem 1.1. Recall that there exists a s.E-nest {Fk} such that

ũ|Fk∪{∆} is continuous on Fk ∪ {∆}. Since

HGc
n
ũℓ(x) = Ex[ũℓ(XτGn

) :τG < σX\Fk
] + Ex[ũℓ(XτGn

) :τG ≥ σX\Fk
]

≤ Ex[ũℓ(XτGn
) :τG < σX\Fk

] + (E- sup
G

ũ)+Px(τG ≥ σX\Fk
),

letting n → ∞, we have

uℓ(x) ≤ Ex[ũℓ(XτG
) :τG < σX\Fk

] + (E- sup
G

ũ)+Px(τG ≥ σX\Fk
), m-a.e. x ∈ G

by the quasi-left-continuity up to ∞ and the continuity of ũ on Fk∪{∆}. Letting k →
∞ with [2, Lemma 3.4], we get uℓ(x) ≤ HGc ũℓ(x) = 0 m-a.e. x ∈ G, hence ũ(x) ≤
E- sup

E-∂G ũ+ E-q.e. x ∈ G. Consequently, we have E- sup
G

E ũ ≤ E- sup
E-∂G ũ+. The

proof of (ii) is similar to that of Theorem 1.1(ii). This completes the proof.

Proof of Theorem 1.2 (i) is an easy consequence of Theorem 1.1(i) and Corol-

lary 1.1(i). We shall show (ii). Note that |un − um| is EG-subharmonic by Theo-

rem 6.4(iii). Hence supG |un − um| ≤ sup∂G |un − um| → 0 as n,m → ∞. So there

exists a u ∈ Cb(G) such that supG |un − u| → 0 as n → ∞. Owing to Theorem 6.3,

we have u ∈ ˙(FG)loc and its EG-harmonicity. This completes the proof.

Proof of Theorem 1.3 The proof of (ii) is similar to the proof of (i). We only prove

(i). Since u+(x0) ≥ 0 and 1 is E-superharmonic, u+(x0) − u ∈ Ḟloc ∩C f (X) is a non-

negative E-superharmonic function, hence so is v := u+(x0) − u+
= (u+(x0) − u) ∧

u+(x0). We set Y := {x ∈ X | v(x) > 0}. Since v ∈ C f (X), v is also excessive with

respect to Mγ , so is IY (see [27]). In particular, IY is finely continuous with respect to

Mγ . By Theorem 5.3, we get Y = ∅ or Y c
= ∅. Since x0 ∈ Y c, we have Y = ∅. This

completes the proof.

Proof of Theorem 1.4 The proof of (ii) is similar to the proof of (i). We only prove

(i). Since u+(x0) ≥ 0 and 1 is E-superharmonic, u+(x0) − u ∈ Ḟloc is a non-negative

E-superharmonic finely lower-semi-continuous function, hence so is

v := u+(x0) − u+
= (u+(x0) − u) ∧ u+(x0).

Hence pt v ≤ v m-a.e. by Theorem 6.1. By absolute continuity of p
γ
t (x, dy), αRαv(x)

is increasing as α → ∞ for any x ∈ X. We put v̂(x) :=↑ limα→∞ αRαv(x). Then v̂

is excessive with respect to M. We see v̂ ≤ v m-a.e. and by using the fine lower-semi-

continuity of v, 0 ≤ v ≤ v̂ on X. On the other hand, we know v ≡ 0 on G. Hence

v̂ = 0 m-a.e. on G, consequently v̂ = 0 on G. As in the argument of the proof of

Theorem 1.3, we have v̂ ≡ 0 on X or v̂ > 0 on X. Theorefore v̂ ≡ 0, which implies

v ≡ 0. This completes the proof.
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8 Examples

Example 8.1 ([7, 42]) Let G be a nonempty open set of R
d(d ≥ 1) with the d-

dimensional Lebesgue measure m(dx) := dx. We set Lp(G → R
d) := Lp(G → R

d; m)

and Lp(G) := Lp(G → R) for p > 0. Let

H1(G) := {u ∈ L2(G) | ∇u ∈ L2(G → R
d)}

be the usual 1-order Sobolev space and H1
0 (G) the completion of C∞

0 (G) with re-

spect to the norm ‖ · ‖H1(G) defined by ‖u‖2
H1(G) := ‖u‖2

L2(G) + ‖∇u‖2
L2(G). Let G ∋

x 7→ a(x) := (ai, j(x))d
i, j=1 be a symmetric R

d ⊗ R
d-valued measurable function

and G ∋ x 7→ b(x), b̂(x) R
d-valued measurable functions with expressions b(x) =

(b1(x), b2(x), . . . , bd(x)), b̂(x) = (b̂1(x), b̂2(x), . . . , b̂d(x)), and G ∋ x 7→ c(x) a mea-

surable function on G. We assume a is uniformly elliptic on G: there exist constants

ΛG ≥ λG > 0 such that

λG|ξ|2 ≤ 〈a(x)ξ, ξ〉Rd ≤ ΛG|ξ|2 for all ξ ∈ R
d, x ∈ G.

Here 〈 · , · 〉Rd stands for the Euclidean inner product with |ξ| := 〈ξ, ξ〉1/2

Rd . We further

assume ν := c − div b̂ ≥ 0 on G in Schwartz distributional sense, hence ν is a Radon

measure on G. Then a, b, b̂, c, ν can be extended on R
d by putting

a := {(ΛG + λG)/2}(δi, j)
d
i, j=1,

b, b̂, c := 0 on R
d \ G and ν(A) := ν(A ∩ G) for A ∈ B(R

d). For u, v ∈ C∞
0 (R

d), we

define

E
a(u, v) :=

1

2

∫

Rd

〈a(x)∇u(x),∇v(x)〉Rd dx.

Then (Ea,C∞
0 (G)) is closable on L2(G) and its domain of the closure is H1

0 (G). We

denote by (Ea,H1
0(G)) the closure of (Ea,C∞

0 (G)) on L2(G). Let Ma
= (Ω,Xt , P

a
x) be

the diffusion process on R
d associated with (Ea,H1

0(G)).

Definition 8.1 (Hardy class function) A measurable function f on G is said to be

of Hardy class with respect to (Ea,H1
0(G)) (write f ∈ SH(G)) if there exist constants

δ(| f |) ∈ ]0,∞[ and γ(| f |) ∈ [0,∞[ such that

∫

G

u2| f |dm ≤ δ(| f |)Ea(u, u) + γ(| f |)‖u‖2
L2(G) for u ∈ H1

0 (G).

If G = R
d, we write SH instead of SH(R

d).

Clearly SH ⊂ SH(G) ⊂ L1
loc(G) for any open set G. By [14, Example 5.1] when

d ≥ 3, Ld/2(G) ⊂ SH(G) and for f ∈ Ld/2(G), δ(| f |) can be taken to be arbitrarily

small.

We prepare the following.
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Assumption 8.1 |b|2, |̂b|2, |c| ∈ SH and

δ0 :=
√

2δ(|b|2)/λG +

√
2δ(|̂b|2)/λG + δ(|c|) < 1.

For u, v ∈ C∞
0 (R

d), we set

E(u, v) := E
a(u, v) +

∫

Rd

〈b(x),∇u(x)〉Rd v(x) dx

+

∫

Rd

〈b̂(x),∇v(x)〉Rd u(x) dx +

∫

Rd

u(x)v(x)c(x) dx.

Then under Assumption 8.1, in the same way as [14], there exist positive constants

M1,M2, γ > γ0 := γ(|b|2)
√

2/λGδ(|b|2) + γ(|̂b|2)

√
2/λGδ(|̂b|2) + γ(|c|) ≥ 0 such

that for u, v ∈ C∞
0 (R

d)

|E(u, v)| ≤ M1‖u‖H1(Rd)‖v‖H1(Rd)

Eγ(u, u) ≥ (1 − δ0)Ea(u, u) + (γ − γ0)‖u‖2
L2(Rd) ≥ M2‖u‖H1(Rd).

Hence (E,C∞
0 (R

d)) is closable on L2(R
d), with closure denoted by (E,H1(R

d)).

For u, v ∈ H1(R
d), we set

E
b0 (u, v) := E

a(u, v) −
∫

Rd

〈b0(x),∇u(x)〉v(x) dx,

where b0 := b̂ − b. For u, v ∈ C∞
0 (G), we see

E(u, v) = E
b0 (u, v) +

∫

G

u(x)v(x)ν(dx).

and (E,H1
0(G)) (resp. (Eb0 ,H1

0(G))) is a regular local semi-Dirichlet form with a

lower bound −γ0 on L2(G) (resp. −γ0 + γ(|c|)) and (Eb0 ,H1
0(G)) is the part space

of (Eb0 ,H1(R
d)) on G. Let MG

= (Ω,Xt , ζG, P
G
x ) be the Hunt diffusion process on G

which is E-properly associated with (E,H1
0 (G)) (see [6, Théorème IV. 1.5]).

Remark 8.1 If b ∈ Lp(G → R
d), b̂ ∈ Lq(G → R

d) and c ∈ Lr(G) with p, q, 2r ≥
d ≥ 3, then our assumptions except m(G) <∞, ν := c−div b̂ ≥ 0 on G are satisfied

by using the Sobolev inequality (see [14, 41, 42]).

Subexample 8.1 Let R
d
+ := {x ∈ R

d | xd > 0} be the upper half plane in R
d

(d ≥ 2). Then the following Hardy inequality holds (see [35, §2.1.6], [10, Theo-

rem 6]):

∫

R
d
+

u(x)2

|xd|2
dx ≤ 4

∫

R
d
+

|∇u(x)|2 dx for all u ∈ H1
0(R

d
+).
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Fix ε,C > 0, λRd
+

= ΛRd
+

= 1 and let

b(x) := (
√

2(4 + ε)xd)−1e1, b̂(x) := (
√

2(4 + ε)xd)−1e2, c(x) := Cx−2
d ,

where e1 := (1, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0). Then our assumptions are satisfied

with δ(|b0|2) = 8/(4 + ε)2 < 1/2 and ν(dx) = c(x)dx. Note |b|, |̂b|, c /∈ Lp(R
d
+) for

any p > 0.

Definition 8.2 (Dynkin and Kato class functions) A measurable function f on G

is said to be of the Dynkin (resp. Kato) class on G with respect to (Ea,H1
0(G)) (write

f ∈ SD(G) (resp. f ∈ SK (G)) if cα := ‖Ra,G
α f ‖L∞(G) < ∞ for some/all α > 0

(resp. limα→∞ cα = 0). Here Ra,G
α f (x) :=

∫ ∞
0

e−αt p
a,G
t f (x) dt is the α-resolvent

of f with respect to Ma
G. A measurable function f on R

d is said to be of the local

Dynkin (resp. local Kato) class on G with respect to (Ea,H1(R
d)) (write f ∈ Sloc

D (G)

(resp. f ∈ Sloc
K (G)) if IK f ∈ SD(R

d) (resp. IK f ∈ SK (R
d)) for any compact set K in G.

When G = R
d, we write SD (resp. SK ) instead of SD(G) (resp. SK (G)) and also write

Sloc
D (resp. Sloc

K ) instead of Sloc
D (G) (resp. Sloc

K (G)).

Our stochastic definition of SK (G) is rather milder than that with the same no-

tation treated in [25]. However, Sloc
K (G) is consistent with [25]. It is known that

SK (G) ⊂ SD(G) ⊂ SH(G) ⊂ L1
loc(G) (see [14]), hence Sloc

K (G) ⊂ Sloc
D (G) ⊂ L1

loc(G).

Moreover, Lr(G) ⊂ SK (G), Lr
loc(G) ⊂ Sloc

K (G) for 2r > d ≥ 2, or r ≥ d = 1 (see

[1, Theorem 1.4(iii)]). In view of [1, Theorem 4.5] or [9, Theorem 3.6], for d ≥ 3,

f ∈ SD (resp. f ∈ SK ) if and only if

sup
x∈Rd

∫

|x−y|<ε

| f (y)|
|x − y|d−2

dy <∞ for some/all ε > 0 (resp. → 0 as ε→ 0).

Therefore, for f ∈ L1(R
d) (resp. f ∈ L1

loc(G)) with d ≥ 3, f ∈ SD (resp. f ∈ Sloc
D (G))

if and only if R| f | ∈ L∞(R
d) (resp. R(IK | f |) ∈ L∞(R

d) for any compact K ⊂ G).

Here

R f (x) :=

∫

Rd

∫ ∞

0

1

(2πt)d/2
e−

|x−y|2

2t f (y) dtdy = Ad

∫

Rd

f (y)

|x − y|d−2
dy

with Ad := Γ( d
2
− 1)/2πd/2.

Subexample 8.2 Suppose d ≥ 3. Fix an ε ∈ [0, 1] and set ϕε(t) := t2(− log t)1+ε.

Then ϕε is increasing on ]0, rε] and decreasing on [rε, 1[ for rε := e−(1+ε)/2, and

ϕε(0+) = 0. We take a radially symmetric non-negative function fε ∈ C0(R
d →

[0,∞])) as follows: fε(x) := 1/ϕε(|x|) if |x| < r2
ε and fε(x) := 0 if |x| ≥ rε. Then

fε ∈ Ld/2(R
d) ∩ L1(R

d). Moreover fε ∈ SK by [1, Proposition 4.10] if ε > 0, but

f0 /∈ Sloc
D if ε = 0. Indeed, if ε = 0,

RIB
r2
0

(0) f0(0) = Ad

∫

B
r2
0

(0)

dy

ϕ0(|y|)|y|d−2
= Ad

∫

B
r2
0

(0)

dy

|y|d(− log |y|) = ∞.
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Lemma 8.1 Suppose |̂b|2, |c| ∈ SH(G). Then there exists C1 > 0 such that for

any u ∈ C∞
0 (G)

∫
G

u(x)2ν(dx) ≤ C1E
a
1(u, u). In particular, H1

0 (G) is continuously

embedded in L2(G; ν) and for u ∈ H1
0 (G)

∫
G

ũ(x)2ν(dx) ≤ C1E
a
1(u, u).

Proof Take u ∈ C∞
0 (G). Then

∫

G

|c|u2 dm ≤ δ(|c|)Ea(u, u) + γ(|c|)‖u‖2
L2(G)

and

∫

G

|〈b̂,∇u2〉Rd | dm = 2

∫

G

|〈b̂,∇u〉Rd ||u| dm

≤ 2‖∇u‖L2(G)‖|̂b|u‖L2(G)

≤ 2‖∇u‖L2(Rd)

(
δ(|̂b|2)Ea(u, u) + γ(|̂b|2)‖u‖2

L2(G)

) 1/2

≤ 2

√
2δ(|̂b|2)/λG

(
E

a(u, u) +
γ(|̂b|2)

δ(|̂b|2)
‖u‖2

L2(G)

)
.

This completes the proof.

Corollary 8.1 Suppose |̂b|2, |c| ∈ SH(G). Then ν ∈ S(G), that is, ν is a smooth

measure on G with respect to (Ea,H1(R
d)).

Proof For any relatively compact open set O with O ⊂ G, it suffices to prove IOν ∈
S0(G). Take u ∈ C∞

0 (G). Then
∫

O
|u| dν ≤ ν(O)1/2

√
C1E

a
1(u, u). This completes the

proof.

We have the following weak maximum principle.

Theorem 8.1 Suppose Assumption 8.1 and m(G) < ∞. Let u ∈ H1
0(G)loc ∩ C(G)

be an upper bounded EG-subharmonic function on G. Then supG u ≤ sup∂G u+. In

particular, supG u = sup∂G u if u ≥ 0 on ∂G. If further ν = 0 on G, then supG u =

sup∂G u.

As corollaries we have the following.

Corollary 8.2 Suppose that |b|2, |̂b|2, c ∈ SK and m(G) < ∞. Let u ∈ H1
0 (G)loc ∩

C(G) be an upper bounded EG-subharmonic function on G. Then supG u ≤ sup∂G u+.

In particular, supG u = sup∂G u if u ≥ 0 on ∂G. If further ν = 0 on G, then supG u =

sup∂G u.

Corollary 8.3 Suppose |b| ∈ Lp(G), |̂b| ∈ Lq(G), c ∈ Lr/2(G) for p, q, r > d ≥ 2,

or p, q, r ≥ 2d = 2 and m(G) < ∞. Let u ∈ H1
0 (G)loc ∩ C(G) be an upper bounded

EG-subharmonic function on G. Then supG u ≤ sup∂G u+. In particular, supG u =

sup∂G u if u ≥ 0 on ∂G. Furthermore, if ν = 0 on G, then supG u = sup∂G u.
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Recall that MG
= (Ω,Xt , ζG, P

G
x ) is associated with (E,H1

0 (G)). To prove Theo-

rem 8.1, we need the following lemma.

Lemma 8.2 Suppose Assumption 8.1. Let u ∈ H1
0(G) be a non-negative E-subhar-

monic function on G. Then u vanishes on G. In particular, if m(G) <∞, then PG
x (ζG <

∞) = 1 m-a.e. x ∈ G. More generally, if an open subset O of G satisfies m(O) < ∞,

then PG
x (τO <∞) = 1 m-a.e. x ∈ G.

Proof We set M := ‖u‖L∞(G). It suffices to show M = 0. Take ε > 0. Set ϕ :=

u/(M + ε + u), w := log( M+ε
M+ε−u

) and uℓ := (u − ℓ)+ for ℓ > 0. Then we can confirm

ϕ,w, uℓ ∈ H1
0(G)+ in view of [33, Ch. I, Proposition 4.11]. Since u is E-subharmonic

on G,

0 ≥ E(u, uℓ) = E(uℓ, uℓ) + ℓ
(∫

G

〈b̂,∇uℓ〉 dm +

∫

G

cuℓ dm
)
.

The last term is non-negative by c − div b̂ ≥ 0 on G. Then we have E(uℓ, uℓ) ≤ 0,

which implies λG

2
(1 − δ0)‖∇uℓ‖2

2 ≤ γ0‖uℓ‖2
2. From this and Nash inequality

‖ f ‖2(1+2/d)
2 ≤ C2

d‖∇ f ‖2
2‖ f ‖4/d

1 , ∀ f ∈ H1
0 (G),

we have

‖uℓ‖2 ≤ C
d/2
d

( 2γ0

λG(1 − δ0)

) d/4

‖uℓ‖1

≤ C
d/2
d

( 2γ0

λG(1 − δ0)

) d/4

A(ℓ)1/2‖uℓ‖2.

(8.1)

Then ‖uℓ‖2 > 0 implies A(ℓ) ≥ (λG(1−δ0)
2C2

d
γ0

)d/2, where A(ℓ) := m(u > ℓ) and Cd :=

(2 + d)1+2/d(m(B1(0))/4π)2/d. Meanwhile,

A(ℓ)
(

log
M + ε

M + ε− ℓ

) 2

≤ ‖w‖2
2.

Let ℓ(η) := (1−η)(M+ε) for η ∈ ]0, 1[. Then A(ℓ(η)) ≤ ‖w‖2
2(log 1

η )−2. Combining

this and the above argument, for sufficiently small η > 0, we have a contradiction.

Hence for small η > 0, ‖uℓ(η)‖2 = 0, that is, M ≤ (1 − η)(M + ε). Since ε > 0 is

arbitrary, we have M = 0.

Next we show the last assertion. We set u(x) := PG
x (ζG = ∞) for x ∈ G. It is easy

to show u(x) = pt u(x), where pt f (x) := EG
x [ f (Xt )]. Since m(G) < ∞, u ∈ L2(G),

consequently u = pt u ∈ H1
0 (G). Then u is E-subharmonic on G by Lemma 2.2. The

proof of the rest is quite similar, and we omit it.

Proof of Theorem 8.1 By Lemma 8.2, Assumption 1.1(ii) is satisfied. So we can ap-

ply Theorem 1.1. Though the framework of Theorem 1.1 is slightly different from

the present one (MG is not given as a part process on G), the method of the proof of

Theorem 1.1 remains valid. The quasi-left-continuity of MG up to ∞ plays the same

role as in the proof of Theorem 1.1.
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From now on, we give a complete extension of Stampacchia’s weak maximum

principle under Assumption 8.1. It is well known that C∞(G) ∩ H1(G) is dense in

H1(G) with respect to ‖ · ‖H1(G)-norm (see [11, Ch. V, Theorem 3.2]). By H1(G) ⊂
H1

0 (G)loc, each element of H1(G) has an E-quasi-continuous m-version on G. More

strongly, each u ∈ H1(G) admits an E-quasi-continuous function ũ on G which is

an m-version of u on G by the denseness of C∞(G) ∩ H1(G) in H1(G). We then

introduce a disorder � for u, v ∈ H1(G) and the maximum in the sense of H1(G):

Definition 8.3 ([11, Ch. VI, Definition 3.1]) Let A be a subset of G and u ∈ H1(G).

Fix a real number k ∈ R. We say that u is greater than (resp. less than) k on A in the

sense of H1(G), and denote u � k (resp. u � k) on A if there exists a sequence {u j} in

C∞(G) ∩ H1(G) such that u j → u in H1(G) and for each j ∈ N there exists an open

neighborhood U j of A in R
d in the following form such that u j > k (resp. u j < k)

on U j ∩ G:

U j = U (ε, δ) := {x ∈ R
d | d(x,A) < ε, |x| > δ}.

For u, v ∈ H1(G), u � v if and only if v − u � 0. For a subset A of G, we set

max
A

f := inf{k ∈ R | f � k on A}.

We define minA f similarly. For A ⊂ G and u, v ∈ H1(G), u � v on A if and only

if u ≤ v m-a.e. on A, then maxA coincides with the m-essentially supremum on A

(see [11, Theorem 3.2]).

Remark 8.2 Our disorder � is slightly different from what is defined in [42], be-

cause the 1-order Sobolev space in [42] is defined as the completion of C1(G) with

respect to ‖ · ‖H1(G)-norm. However, the strategy of the proof below remains valid

even if we adopt this definition.

Lemma 8.3 Fix ℓ ∈ R and take u ∈ H1(G). Suppose u � ℓ on ∂G. Then (u − ℓ)+ ∈
H1

0 (G).

Proof Since (u−ℓ)+ is a normal contraction of u ∈ H1(G), we have (u−ℓ)+ ∈ H1(G)

and

(8.2) ‖(u − ℓ)+‖H1(G) ≤ ‖u‖H1(G).

Suppose that u � ℓ on ∂G. Let u j ∈ C∞(G) ∩ H1(G) and U j be the functions and

neighborhood of ∂G such that u j < ℓ on U j ∩G. Then we see that (u j −ℓ)+ ∈ H1(G)

such that (u j − ℓ)+ vanishes on a neighborhood of ∂G in G. By (8.2), {(u j − ℓ)+} is

a bounded sequence in H1
0(G) and converges to (u − ℓ)+ in L2(G) as j → ∞. Hence

we have (u − ℓ)+ ∈ H1
0(G) in view of the Banach–Saks theorem.
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Then we have the following.

Theorem 8.2 Suppose Assumption 8.1. Let u ∈ H1(G) be an E-subharmonic function

on G. Then maxG u ≤ max∂G u+. In particular, maxG u = max∂G u if u � 0 on ∂G. If

further ν = 0 on G, then maxG u = max∂G u.

Remark 8.3 If E satisfies the coercivity, that is, there exists c > 0 such that

E( f , f ) ≥ c‖ f ‖2
H1(G) for all f ∈ H1(G), then the same result without assuming

m(G) < ∞ is proved by [11, Theorem 4.4]. But the argument of the reduction to

unbounded G in their proof seems to be unnecessary. Actually, in view of Lemma 8.3,

their proof remains valid without assuming m(G) <∞.

Proof of Theorem 8.2 Note H1(G) ⊂ H1
0(G)loc and every u ∈ H1(G) has an

E-quasi-continuous version. We first show that any E-subharmonic function u ∈
H1(G) is m-essentially upper bounded under the condition max∂G u+ < ∞. For any

ℓ > max∂G u+, we see uℓ := (u − ℓ)+ ∈ H1
0(G) by Lemma 8.3. We have that the same

calculation as in the proof of Lemma 8.2 holds for u ∈ H1(G). Then we can con-

clude A(ℓ) = 0 for sufficiently large ℓ by the argument after (8.1). The m-essentially

upper boundedness of u under max∂G u+ < ∞ is now proved. Take ℓ > max∂G u+

again. We can conclude the E-subharmonicity of (u − ℓ)+ ∈ H1
0(G) as in the proof

of Theorem 1.1. Then (u − ℓ)+
= 0 by Lemma 8.2, which implies u ≤ ℓ m-a.e. on G.

Thus we obtain the desired result. Next suppose the E-harmonicity of 1 on G. Taking

ℓ > max∂G u, we can conclude again the E-subharmonicity of (u− ℓ)+ ∈ H1
0(G) and

(u − ℓ)+
= 0 as noted above. Then u ≤ ℓ m-a.e. on G. Therefore we arrive at the

desired result.

Remark 8.4 In [42], the weak maximum principle for the subsolution u ∈ Ĥ1(G)

of Lu = 0 is only proved under the condition that b, b̂ ∈ Ld(G → R
d) and c ∈

Ld/2(G) for d ≥ 3, and ν(dx) ≥ c0dx on G for some constant c0 > 0 [42, Théo-

rème 3.8], or c0 = 0 with the coercivity of E on H1
0 (G), that is, E(u, u) ≥ c‖u‖2

H1
0 (G)

,

u ∈ H1
0 (G) for some constant c > 0 [42, Théorème 3.6]. Chen and Wu [7] get rid of

the conditions c0 > 0 and the coercivity of E in the weak maximum principle. But

they still assume that G is bounded and the sum of norms of b, b̂, c is bounded by

the half of upper bound of a, and they do not give the assertion for the case that ν

vanishes.

To establish the strong maximum principle in our context, we further need a

stochastic argument.

Let (Ta
t )t>0 be the L2(R

d)-semigroup associated with (Ea,H1(R
d)). Then Ta

t ad-

mits a symmetric jointly continuous heat kernel pa
t (x, y) on ]0,∞[ × R

d × R
d such

that Pa
t f (x) :=

∫
Rd pa

t (x, y) f (x) dy is an m-version of Ta
t f for f ∈ L2(R

d) and

pa
t (x, y) satisfies the Aronson’s estimates [43]: there exists an M := M(λG,ΛG, d) ∈
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[1,∞[ such that for all x, y ∈ R
d, t > 0

1

Mtd/2
e−M|x−y|2/t ≤ pa

t (x, y) ≤ M

td/2
e−|x−y|2/Mt .

It should be noted that the ball doubling condition and the strong Poincaré in-

equality hold for (Ea,H1(R
d)) and the pseudo-distance/intrinsic metric derived from

(Ea,H1(R
d)) is a complete metric compatible with the endowed topology. Hence the

parabolic Harnack inequality holds for the local solution of the parabolic equation

(La − ∂
∂t

)u = 0 [36, 45]). Here La is the L2(R
d)-generator of (Ea,H1(R

d)). In the

same way as [46], {Pa
t } is a strong Feller semigroup, that is, Pa

t f is bounded contin-

uous for bounded measurable f . Further {Pa
t } is a Feller semigroup in view of the

upper Gaussian estimate and the estimation [46, Corollary 7.3] of the local Hölder

continuity of the local solution of the above parabolic equation (see also [18, Exam-

ple 4.5.2]). Let Ma := (Ω,Xt , P
a
x)x∈Rd be the Hunt process constructed by the Feller

semigroup {Pa
t }. Then Ma is a doubly Feller diffusion process [8]. Note that Ma is

conservative [18, Example 5.7.1].

By the same argument in [9, Proposition 1.20, Theorem 2.4] and the strong Feller

property of Ma, the part process Ma
G on G admits a symmetric jointly continuous

kernel pa,G
t (x, y) on ]0,∞[ × G × G defined by

(8.3) p
a,G
t (x, y) := pa

t (x, y) − Ea
x[pa

t−τG
(XτG

, y)I{τG<t}].

We consider the Fukushima decomposition in the strict sense for coordinate func-

tions ei(x) := xi (i = 1, 2, . . . , d), x = (x1, x2, . . . , xd):

Xt − X0 = Mt + Nt , Pa
x-a.s. for all x ∈ R

d.

Here Mt := (M1
t ,M

2
t , . . . ,M

d
t ), Nt := (N1

t ,N
2
t , . . . ,N

d
t ), Mi

t is a local CAF in the

strict sense and an MAF locally of finite energy, and N i
t is a local CAF in the strict

sense and a CAF locally of zero energy [17, Theorem 2]. Under Ma, we consider the

following multiplicative functional Lt :

Lt (= Lt (b0)) := exp
[∫ t

0

(a−1b0)∗(Xs)dMs −
1

2

∫ t

0

(b0a−1b∗0 )(Xs)ds
]
.

Lt is a Pa
x-supermartingale and a local Pa

x-martingale for all x ∈ R
d \Nb0

, where Nb0
is

the exceptional set for the PCAF
∫ t

0
|b0|2(Xs) ds [18]. If |b0| ∈ Lr(R

d) with r > d ≥ 2

or r/2 ≥ d = 1, then Lt is an exponential Pa
x-martingale for all x ∈ R

d. More

generally, |b0|2 ∈ SK implies the Pa
x-martingale property of Lt for any x ∈ R

d.

Let S1(G) be the totality of smooth measures in the strict sense on G with respect

to (Ea,H1
0 (G)) (see the definition of S1 in [18]). Since Sloc

D (G) ⊂ L1
loc(G), f ∈ Sloc

D (G)

implies that IK | f |m ∈ S00(G) for any compact set K in G, consequently | f |m ∈ S1(G).

Hence we have the following.
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Proposition 8.1 Suppose that c ∈ Sloc
D (G) and the distributional derivative ∂i b̂

i of b̂i

is a measurable function in Sloc
D (G) for i = 1, 2, . . . , d. Then ν ∈ S1(G). In particular,

if c, ∂i b̂
i ∈ Lr

loc(G) with 2r > d ≥ 2 or r ≥ d = 1 for each i = 1, 2, . . . , d (especially, if

c ∈ C(G), b̂ ∈ C1(G → R
d)), then ν ∈ S1(G).

In what follows, we assume |b0|2m, ν ∈ S1(G). Further we set

pG
t f (x) := Ea

x

[
f (Xt )Lt e

−A
[ν],G
t : t < τG

]
, x ∈ G.

Here A
[ν],G
t is the PCAF with respect to Ma

G admitting no exceptional set correspond-

ing to ν under the Revuz’s characterization on G: for any t > 0 and non-negative

Borel functions f , h on G,

Ea
IGhm

[∫ t

0

f (Xs) dA[ν],G
s

]
=

∫ t

0

〈 f ν, pa,G
s h〉 ds.

We omit the detailed definition of the PCAF of Ma
G, but it should be defined on the

path space over Ma. The construction of A
[ν],G
t under Pa

x with x ∈ G is quite similar

to that of a PCAF admitting no exceptions over Ma.

The following theorem is a special case of the results in [14].

Theorem 8.3 The following hold.

(i) pG
t extends to a strongly continuous semigroup PG

t on L2(G).

(ii) (PG
t )t>0 coincides with (TG

t )t>0. Here TG
t is the L2(G)-semigroup corresponding

to (E,H1
0 (G)).

It should be noted that the multiplicative functional Lt I{t<τG} is defined without

exceptional set under the condition |b0|2m ∈ S1(G). The subprocess constructed

on G by e−γt pG
t is a right process satisfying the absolute continuity condition with

respect to m, because f = 0 m-a.e. and Pa
x(Lt I{t<τG} < ∞) = 1 for all x ∈ G

together imply

Ea
x

[
f (Xt )Lt e

−A
[ν],G
t : t < τG

]
= 0 for all x ∈ G.

On the other hand, if G is connected, then (E,H1
0(G)) is irreducible in view of Corol-

lary 5.1. Hence the strong maximum principle for E-subharmonic finely continuous

functions holds under (E,H1
0(G)) as follows.

Theorem 8.4 Assume that G is connected. Suppose |b0|2m, ν ∈ S1(G). Let u ∈
H1

0 (G)loc ∩ C(G) be an E-subharmonic function on G. If u attains its maximum at

some x0 ∈ G, then we have u+ ≡ u+(x0). If further ν = 0 on G, then u ≡ u(x0).

The following subexample due to K. Kurata (private communication) is not cov-

ered by Theorem 8.4.
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Subexample 8.3 (cf. [25, Remark 1.2]) Let fε be as in Subexample 8.2. We assume

ΛRd = λRd = 1, b = b̂ = 0 and c := (d − 2) fε + 2 f1 for d ≥ 3, hence c ∈
L

d/2
+ (R

d) ∩ L1
+(R

d). Then (E,H1(R
d)) (in particular, (E,H1

0 (G)) for any open set G)

enjoys the strong maximum principle by Theorem 8.4 if ε > 0, because fε ∈ SK in

this case. But ν := cm /∈ S1 if ε = 0. Indeed, in this case v(x) := −1/ log |x|, x 6= 0,

v(0) := 0 is harmonic on B1/
√

e(0) with respect to 1
2
∆ − c and v takes the minimum

0 at origin. Note that v 6≡ 0 on B1/
√

e(0). According to the stochastic proof of our

strong maximum principle, ν = cm ∈ S1 means v ≡ 0 on B1/
√

e(0). So our strong

maximum principle does not work for ε = 0. However, u := −v(≤ 0) satisfies the

strong maximum principle in the sense that u+ ≡ u+(0) = 0, which is not covered

by Theorem 8.4.

Remark 8.5 In [42], a strong maximum principle is shown in the case that b ∈
Ld(G → R

d), b̂ ∈ Lq(G → R
d), c ∈ Lq−d/2(G) with q > d ≥ 3, and c = div b̂ = 0

for E-harmonic functions by way of the local Hölder continuity of the E-harmonic

function and the elliptic Harnack inequality for it. Our strong maximum principle

does not cover the Stampacchia’s result, however, if b ∈ Lp(G → R
d), b̂ ∈ Lq(G →

R
d), c ∈ Lr(G) with p, q, 2r > d ≥ 2 or p/2, q/2, r ≥ d = 1, c ≥ 0, div b̂ = 0,

then we can confirm |b|2, |̂b|2, c ∈ SK ⊂ SH with small δ(|b0|2) < λG/2 by setting

b = b̂ ≡ 0, c ≡ 0 on R
d \ G and |b0|2m, ν = cm ∈ S1(G). This case is not included

in [42].

Example 8.2 (Doubly Feller symmetric diffusion process) Let (X, d) be a locally

compact separable metric space and m a positive Radon measure with full topo-

logical support. Consider a regular strongly local symmetric Dirichlet form (E,F)

on L2(X; m). Let G be an open subset of X. We assume that (E,F) is associated

with a doubly Feller m-symmetric diffusion process M admitting a jointly contin-

uous heat kernel pt (x, y) with respect to m. Then the part process MG on G is a

strong Feller diffusion by Chung [8] which admits a jointly continuous heat kernel

pG
t (x, y), x, y,∈ G defined in a similar way as in (8.3) [9, Theorem 2.4]. In this con-

text, if G is a connected open set, then the part space (EG,FG) of (E,F) on L2(G; m)

is an irreducible regular strongly local Dirichlet form by [47]. Therefore we have the

following strong maximum principle (see also [27]).

Theorem 8.5 Suppose that G is connected. Let u ∈ ˙(FG)loc ∩ C f (G) be an EG-sub-

harmonic function on G. If u attains its maximum at x0 ∈ G, then we have u ≡ u(x0).

Let us show some sufficient conditions for our assumptions. Let

Br(x) := {y ∈ X | d(x, y) < r}

be the open ball with radius r > 0 and center x ∈ X. We assume the existence of

heat kernel pt (x, y) associated with (E,F) satisfying the Li–Yau Gaussian type esti-
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mates (HK): there exist positive constants C1,C2,RHK such that for any t ∈ ]0,RHK[,

x, y ∈ X

C1

m(B√
t (x))

e−C1
d(x,y)2

t ≤ pt (x, y) ≤ C2

m(B√
t (x))

e−C2
d(x,y)2

t .

This condition is equivalent to the parabolic Harnack inequality (PHI): there exist

positive constants CPH ,RPH such that for all open balls Br(x) with r ∈ ]0,RPH[ and

for any positive (local) solution of “(∂t +L)w = 0” in the cylinder set ]s−r2, s]×Br(x),

we have supQ−
ũ ≤ CPH infQ+

ũ, where Q− := ]s − (3/4)r2, s − (1/2)r2[ × B2r(x)

and Q− := ]s − (1/4)r2, s[ × B2r(x). We omit the detailed definition of the (local)

solution of “(∂t + L)w = 0” (see [3, 30]). Though the statement on the equivalence

between (HK) and (PHI) in [3] is only restricted to the case RHK = RPH = ∞, it

holds in this generality. The local Hölder continuity estimate of the (local) solution

of “(∂t +L)w = 0” also holds in this generality (see [45, (3.5)] or [38, Theorems 5.4.7,

5.5.1]).

Then there exists a doubly Feller diffusion process M = (Ω,Xt , Px)x∈X such that

for Borel u ∈ L2(X; m), Pt u(x) :=
∫

X
pt (x, y)u(y)m(dy) is an m-version of Tt u and

Pt u(x) = Ex[u(Xt )] for all x ∈ X.

The strong Feller property, that is, Pt u ∈ Cb(X) for u ∈ L∞(X; m), t > 0 is essentially

proved in [46] by use of (PHI). The Feller property of Pt u follows from the upper

Gaussian estimate as above. At this stage, the above upper Gaussian estimate implies

Pt u ∈ C∞(X) for u ∈ C∞(X) and the Hölder continuity estimate of the (local)

solution of (∂t + L)w = 0 yields Pt u(x) → u(x) as t → 0 for u ∈ C∞(X) and

x ∈ X. We remark that our assumptions are satisfied in the case that X is a complete

smooth Riemannian manifold with lower Ricci curvature bound and m is the volume

element derived from the Riemannian metric, and (E,F) is a regular Dirichlet form

determined by the Laplace–Beltrami operator (see [38, Theorems 5.5.1, 5.5.3, 5.6.3–

5.6.6]).

Let X be an Alexandrov space of curvature bounded from below and of finite

Hausdorff dimension with Hausdorff measure m and (E,F) is the canonical Dirich-

let form on it [30, 31]. Then the corresponding diffusion process M on X can be

constructed as a strong Feller process in view of [46]. But it is unclear that M has

the Feller property. However, we can directly prove the strong Feller property of MG

[29]. Hence we have the same assertion as in Theorem 8.5 over Alexandrov spaces.
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