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Abstract

Perturbations to the gut microbiome are implicated in altered neurodevelopmental trajectories that may shape life span risk for emotion
dysregulation and affective disorders. However, the sensitive periods during which the microbiome may influence neurodevelopment
remain understudied. We investigated relationships between gut microbiome composition across infancy and temperament at 12 months
of age. In 67 infants, we examined if gut microbiome composition assessed at 1–3 weeks, 2, 6, and 12 months of age was associated with
temperament at age 12 months. Stool samples were sequenced using the 16S Illumina MiSeq platform. Temperament was assessed using the
Infant Behavior Questionnaire-Revised (IBQ-R). Beta diversity at age 1–3 weeks was associated with surgency/extraversion at age 12
months. Bifidobacterium and Lachnospiraceae abundance at 1–3 weeks of age was positively associated with surgency/extraversion at age
12 months. Klebsiella abundance at 1–3 weeks was negatively associated with surgency/extraversion at 12 months. Concurrent composition
was associated with negative affectivity at 12 months, including a positive association with Ruminococcus-1 and a negative association with
Lactobacillus. Our findings support a relationship between gut microbiome composition and infant temperament. While exploratory due to
the small sample size, these results point to early and late infancy as sensitive periods during which the gut microbiome may exert effects on
neurodevelopment.
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Background

The human gastrointestinal tract is home to trillions of microbial
cells that make up an ecosystem that is increasingly recognized as
a central component of human physiology, health, and wellbeing
(Bordenstein & Theis, 2015; Human Microbiome Project
Consortium, 2012; Peterson et al., 2009). The early postnatal
phase of the human life span is a period of remarkable plasticity,
characterized by dynamic interplay between extrinsic and intrin-
sic ecology and systems. The first year of life is characterized by
sensitive periods of development for both the brain and gut
(Borre et al., 2014; Jašarević, Morrison, & Bale, 2016; Stilling,
Dinan, & Cryan, 2014), and brain maturation coincides with pio-
neer microbial colonization of the gastrointestinal tract. The early
life window of sensitivity of these biological systems is followed by
long-term stable phenotypes, thus rendering the first year of life a

period during which critical developmental progress occurs
(Charbonneau et al., 2016; Hensch, 2004). Overlapping sensitive
periods of these biologically interconnected systems suggests
that maturation of the gut microbiome may have lifelong conse-
quences for neuropsychological function. Preclinical studies sup-
port this hypothesis and indicate that dysbiosis in the gut during
sensitive periods of early life development may detrimentally
impact neurodevelopment in ways that shape emotion regulation
and affective disorder risk across the life course (Rogers et al.,
2016; Sampson & Mazmanian, 2015). However, few studies
have investigated associations between the microbiome and neu-
rodevelopment of humans.

Overlapping sensitive periods of gut and brain development

The first year of life is a sensitive window for development, involv-
ing extraordinary plasticity for both the gut and the brain.
Developmental plasticity describes the ability of an individual to
produce a range of phenotypes depending on the conditions
and exposures encountered during development (Gluckman,
Cutfield, Hofman, & Hanson, 2005). Humans are sensitive to a
variety of environmental cues that may shape the trajectory of
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phenotypic specification (Gluckman, Hanson, Spencer, &
Bateson, 2005). Plasticity is not unlimited and individuals tend
to exhibit less plasticity with age due to irreversible canalization
(Bateson, 2001). Infancy is a period of heightened neuroplasticity
as it is characterized by rapid brain growth (Knickmeyer et al.,
2008; Tau & Peterson, 2010), massive outgrowth of dendrites
and axons, and synaptogenesis alongside synaptic pruning
(Huttenlocher & Dabholkar, 1997; Petanjek, Judas, Kostović, &
Uylings, 2008). Glial cells proliferate in the subventricular zone
of the forebrain, migrate across brain regions, and differentiate
into oligodendrocytes and astrocytes (Menn et al., 2006; Sharon,
Sampson, Geschwind, & Mazmanian, 2016), which facilitates syn-
aptic pruning by complement activation and phagocytosis (Hong
& Stevens, 2016).

Coincident with neurodevelopmental progress, human infants
exhibit acquisition of cognitive abilities and emotion regulation
capabilities during the first year. The development of tempera-
ment is a critical aspect of self-regulation that emerges in this
period, and infant temperament development is a plastic process
influenced by several biological factors (Fox, Henderson,
Pérez-Edgar, & White, 2008). However, the specific biological fac-
tors that shape inter-individual differences remain unclear. While
modest changes in temperament may reflect maturational changes
across development (Montroy, Bowles, Skibbe, McClelland, &
Morrison, 2016), it is considered relatively stable after childhood
and features of early temperament have been shown to predict
personality and adverse mental health outcomes later in life
(Laceulle, Ormel, Vollebergh, van Aken, & Nederhof, 2014;
Rothbart & Posner, 2015; Sayal, Heron, Maughan, Rowe, &
Ramchandani, 2014). Negative affectivity and emotional reactiv-
ity, especially, are associated with risk of behavioral and emotional
problems in childhood (Abulizi, Pryor, Michel, Melchior, & van
der Waerden, 2017), as well as later depressive and anxiety symp-
toms (Compas, Connor-Smith, & Jaser, 2004; De Pauw &
Mervielde, 2010), attention-deficit/hyperactivity disorder
(Sullivan et al., 2015), and autism (Clifford, Hudry, Elsabbagh,
Charman, & Johnson, 2013).

The first year is also a sensitive window for gut microbiome
development. From birth to age 1 year, the gut microbiome
undergoes significant changes, resulting in a community structure
that is much more stable after 1 year of age and virtually matured
to adult status by 3 years of age (Yatsunenko et al., 2012). The first
few days of life set the developmental trajectory of the gut micro-
biome as pioneer species of Escherichia, Staphylococcus, and
Streptococcus typically dominate and produce anaerobic environ-
ments (Pantoja-Feliciano et al., 2013), inviting subsequent growth
of anaerobic genera such as Bifidobacterium and Bacteroides
(Cong, Henderson, Graf, & McGrath, 2015). During the first
few weeks of life, the gut typically comes to be dominated by
Bacteroides, Bifidobacterium, Parabacteroides, Escherichia, and
Shigella (Bäckhed et al., 2015). Specifically, newborn gut microbial
colonization begins with microbial communities from the moth-
er’s birth canal ingested during parturition (Dominguez-Bello,
Blaser, Ley, & Knight, 2011; Jašarević et al., 2016; Jašarević,
Rodgers, & Bale, 2015; Mueller, Bakacs, Combellick, Grigoryan,
& Dominguez-Bello, 2015; Pantoja-Feliciano et al., 2013; Song,
Dominguez-Bello, & Knight, 2013), followed by breast milk (Le
Doare, Holder, Bassett, & Pannaraj, 2018), and subsequent expo-
sure to extrinsic environmental exposures (Biasucci et al., 2010;
Dominguez-Bello et al., 2010; Palmer, Bik, DiGiulio, Relman, &
Brown, 2007). Within population-level trends, there is individual-
level variation in timing and community structure (Bäckhed et al.,

2015; Sharon et al., 2016; Yassour et al., 2016). The colonization
of the gut microbiome also exhibits phenotypic variability as
human infants present different microbial composition across
environmental and cultural contexts (Sprockett et al., 2020).

Gut microbiota and neurodevelopment

Many of the phenotypes that affect health are connected to the
gastrointestinal system (the gut controls energy availability and
coordinates metabolic processes that fuel central and somatic
functions) and the central nervous system. Furthermore, the gut
and brain are physiologically connected in a bidirectional com-
munication and control system. Multiple pathways link the gut
microbiome and brain, including vagal nerve innervation, micro-
bial production of neuromodulatory metabolites, and alterations
to innate immunity (Jašarević et al., 2015). The vagus nerve is a
two-way neural connection between the gut and brain, with a sen-
sitive period of development of enteric axon terminals occurring
early in postnatal life (Ratcliffe, Farrar, & Fox, 2011) – a process
that could plausibly be influenced by gut microbiota (Sommer &
Bäckhed, 2013). In this way, the “microbiome–gut–brain axis” is
fundamentally implicated in biological regulation of health.

While it has been speculated that dysbiosis in the gut during
sensitive periods of early life development may detrimentally
impact neurodevelopment (Diaz Heijtz, 2016; O’Mahony,
Clarke, Dinan, & Cryan, 2017), few studies have examined the
change in gut microbiome across infancy in humans. One pro-
spective longitudinal study that included multiple assessments
of microbiome across infancy found that alpha diversity at 12
months of age was negatively associated with neurodevelopment
(cognitive and language scores) at age 2 years (Carlson et al.,
2018). A longitudinal study of 201 children with fecal microbiome
composition data at 1, 6, and 12 months of age found that an
abundance of Prevotella was inversely associated with increased
internalizing symptoms at age 2 years (Loughman, Ponsonby,
et al., 2020).

To our knowledge, only two studies have investigated associa-
tions between composition of the gut microbiome and tempera-
ment in human infants, and one study in toddlers. Wang et al.
(2020) found that an abundance of the genus Bifidobacterium
was positively associated with soothability and a relative abun-
dance of Hungatella was negatively associated with cuddliness
in 12-month-old infants. In a subcohort from the FinnBrain
Birth Cohort Study, Aatsinki et al. (2019) found that higher abun-
dances of Bifidobacterium and Streptococcus and a lower abun-
dance of Atopobium at age 2.5 months were associated with
greater surgency/extraversion scores, measured using the Infant
Behavior Questionnaire-Revised (IBQ-R), in 6-month-old infants.
These results were sex-specific, with only boys showing associa-
tions between Bifidobacterium and surgency. The third study
investigated associations between the gut microbiome and tem-
perament in toddlers aged 18–27 months (Christian et al.,
2015). It found that gut microbial phylogenetic diversity was pos-
itively associated with surgency/extraversion.

While these limited studies support associations between gut
microbiome composition and neurodevelopment in infancy,
more longitudinal studies are needed to examine the role of the
microbiome in the development of infant temperament. It is
also necessary to examine prospective effects at earlier ages than
previously have been considered, given the dramatic changes
that occur in gut microbial composition across the first 2 months
of life.
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This study

The aim of this exploratory study was to investigate associations
between gut microbiome composition across the first year of life
and infant temperament. We took a longitudinal approach and quan-
tified associations between gut microbiome composition (diversity
and genera) at ages 1–3 weeks, 2, 6, and 12 months and temperament
at 12 months of age. This is the first study, to our knowledge, to inves-
tigate associations between composition of the gut microbiome as
early as 1–3 weeks of age (or any timepoint earlier than 2.5 months
of age) and temperament later in infancy. We conducted exploratory
analyses with three validated dimensions of temperament. When a
dimension exhibited a significant relationship with microbiome com-
position, we conducted a follow-up exploration of how each compo-
nent subscale for that domain related to microbiome composition in
order to check whether a particular subcomponent was driving the
trend. Following the extant literature, we hypothesized that micro-
biome composition would be associated with variation in tempera-
ment in the dimensions of surgency/extraversion and negative
affectivity. This study sheds light on the biological mechanisms that
influence inter-individual differences in temperament.

Method

Cohort

This project utilized data from a larger, prospective, longitudinal
cohort study of mother–child dyads in Southern California, the
Pregnancy Experiences and Infant Development Study (PEIDS)
(P50/MH096889). Women were offered voluntary participation in
PEIDS, recruited through their clinicians’ offices, email, and print
announcements.Written informed consent was obtained frommoth-
ers for their own and their infants’ participation after full study proce-
dures were described. PEIDS and our microbiome substudy were
approved by the institutional review boards of participating institu-
tions. Our study adhered to the tenets of the Declaration of Helsinki.
We capitalized on PEIDS data collection in which visits occurred
every few weeks and involvedmother–child psychological, behavioral,
cognitive, and biomedical assessments. This study included a subset of
the cohort and involved four sessions: a home visit 1–3 weeks after
birth and sessions at a clinical research site when the child was aged
2, 6, and 12 months. This subset comprised infants who produced
stool during these sessions. Therefore, participants were not prese-
lected or actively selected for the substudy because it was based on
the random occurrence of when the infant produced stool.

Sample collection and processing

Visit protocols involved ∼2.5 hr of assessments, both related and
unrelated to the current project. When the infant produced stool,
the diaper was collected by study staff, who covered the stool with
film to seal the sample during transport. For home visits, the
entire diaper was then sealed in a plastic bag and transported in
a hard-sided cooler to the laboratory (maximum 45 min). Visits
at age 2, 6, and 12 months occurred at a clinical site with a labo-
ratory. The study staff transferred stool into OMNIgene gut col-
lection kits (OMR-200, DNA Genotek), aliquoted the mixture
into cryovials, and stored them at −80°C.

Infant temperament

To assess infant temperament, mothers completed the IBQ-R when
the infant was 12 months old (Gartstein & Rothbart, 2003). The

IBQ-R includes 191 questions addressing concrete behaviors; for
example, “During a peek-a-boo game, how often did the baby
smile” and “How often during the last week did the baby startle
to a sudden or loud noise.” The IBQ-R was developed to reduce
the possibility of maternal reporting bias by asking about specific
behaviors in defined situations, rather than asking for judgments
about child temperament or behaviors. Responses on these scales
range from 1 = never to 7 = always. The IBQ-R measures three
broad dimensions of temperament: negative affectivity, surgency/
extraversion, and orienting/regulation. The negative affectivity
dimension is created by averaging scores across four subscales assess-
ing sadness, fear, falling reactivity, anddistress to limitations. The sur-
gency/extraversion dimension consists of six subscales assessing
approach, vocal reactivity, high-intensity pleasure, smiling/laughter,
activity level, and perceptual sensitivity. The orienting/regulation
dimension comprises the subscales cuddliness/affiliation, low-
intensitypleasure,durationoforienting, and soothability.Thiswidely
used parental-report instrument exhibits good internal reliability and
validity (Goldsmith & Campos, 1990; Worobey & Blajda, 1989), and
correlates well with infant behavioral observations (Worobey &
Blajda, 1989). In our cohort, IBQ-R dimensions had Cronbach’s
alphas as follows: negative affectivity, α = .77; surgency/extraversion,
α = .95; orienting/regulation, α = .89; subscales mean α = .80, stan-
dard deviation (SD) = .04.

16S ribosomal RNA gene sequencing

Stool samples were submitted to DNA Genotek for DNA extrac-
tion and sequencing of the V3–V4 region of the 16S ribosomal
RNA gene by Illumina MiSeq v3 according to a published proto-
col (Klindworth et al., 2013). DADA2 was used to perform quality
filtering, merge paired end reads, remove chimeras, and cluster
sequences into exact amplicon sequence variants (Callahan
et al., 2016). Forward reads were truncated to 280 base pairs
and reverse reads to 220 base pairs. Reads were removed if the
expected error rate exceeded two base pairs or if a single nucleo-
tide had a Phred score of two or less. After these processing steps,
the sequence depth ranged from 6,958 to 72,100 with a mean of
30,398. Taxonomy was assigned for amplicon sequence variants
based on the SILVA database down to the level of family,
genus, or species, depending on the depth of reliable classifier
assignments (Quast et al., 2013).

Bioinformatics and statistical methods

Significance in differential mean relative abundances of each phy-
lum, family, and genus across timepoints was determined using
Kruskal–Wallis test. Microbial alpha diversity was assessed on
data sets rarefied to equal sequencing depth (6,958) using the
Chao1 index (richness) and Shannon index (evenness and rich-
ness). Significance for differences in alpha diversity measures by
age was determined using one-way analysis of variance
(ANOVA) adjusting for subject to control for effects of repeated
sampling from the same individual. Beta diversity of the unrare-
fied genus-level data set after removing genera that were present
in less than 10% of the samples was calculated using robust
Aitchison distances implemented with the DEICODE plugin in
QIIME 2, then visualized with principal coordinates analysis
(Martino et al., 2019). The significance of differences in beta
diversity was assessed using permutational multivariate analysis
of variance (PERMANOVA). Significance testing for changes in
relative abundance at phylum level by age was performed by one-
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way ANOVA, adjusting for subject. The differential abundance of
microbial genera present in at least 10% of the samples was deter-
mined using multivariate negative binomial mixed models in
DESeq2 (Love, Huber, & Anders, 2014). The unrarefied genus
counts were normalized by the size factor (median value of all
ratios for a given sample). Results of differential abundance test-
ing were adjusted for multiple hypotheses testing with a signifi-
cance threshold of false discovery rate <0.1.

For the multivariate models, a two-step process was imple-
mented to decide which covariates to include. First, a list of poten-
tial covariates was identified based on previous literature indicating
the possibility of relationships with both infant temperament and
microbiome composition, or otherwise justified by previous litera-
ture. To this end, infant sex (Gartstein & Rothbart, 2003; Martin
et al., 2000), breastfeeding duration (Ho et al., 2018; Rogers &
Blissett, 2019; Wasser et al., 2011), and antibiotic use (Kim,
Sitarik, Woodcroft, Johnson, & Zoratti, 2019) were selected as
covariates based on previous studies. Breastfeeding duration
included both exclusive and mixed feeding, as long as breastmilk
was being given. The mode of delivery was also included because
all three previous studies of the relationship between early life tem-
perament and gut microbiome utilized this control variable
(Aatsinki et al., 2019; Carlson et al., 2018; Loughman, Ponsonby,
et al., 2020). It should also be noted that mode of delivery appears
to influence brain (Castillo-Ruiz, Mosley, Jacobs, Hoffiz, & Forger,
2018), gut microbial composition, and social behavior (Morais
et al., 2020) in animal models.

Second, each variable was tested in a univariable model predict-
ing beta diversity outcomes using the age-based subsets or the entire
data set after adjusting for age (Supplementary Material Table S1).
Selection criteria for covariates included at least one significant
( p < .05) association with microbial beta diversity in any subgroup.
We did not adjust for variables that had no statistical relationship
with microbiome composition at any timepoint. Consequently, we
adjusted the multivariate models for infant sex and breastfeeding
duration, and not mode of delivery or antibiotic use.

Our statistical methods involved the following analyses. (a) We
assessed alpha diversity differences by age as measured by the
Chao1 index (species richness) and the Shannon index (evenness
and richness) by ANOVA, adjusting for subject. (b) We assessed
beta diversity differences by age using PERMANOVA, adjusting
for subject, and visualized the effect using principal coordinates anal-
ysis plots of the microbial beta diversity measured by DEICODE dis-
tances. (c) We compared the mean relative abundances in each age
group of bacterial clades at phylum, family, and genus levels. (d) We
assessed the association between alpha diversity at each timepoint
and IBQ-R scores at 12 months of age using multivariate linear
regression models, adjusting for infant sex and breastfeeding dura-
tion. (e) We assessed the association between beta diversity at each
timepoint and IBQ-R scores at 12 months of age using
PERMANOVA, adjusting for infant sex and breastfeeding duration.
(f) For significant associations encountered in step (e), we conducted
differential abundance testing to identify specific genera associated
with the corresponding IBQ-R scores at 12 months of age.

Results

Gut microbial diversity and composition change across infant
age groups

In total, 91 samples were collected at different ages (1–3 weeks, 2,
6, and 12 months) from 67 infant donors (Table 1). Similar

to findings from other infant microbiome studies (Hill et al.,
2017; Niu et al., 2020), we found a significant increase in alpha
diversity with age according to the Chao1 ( p < .001) and
Shannon (p = .027) indices (Figures 1a and 1b). Beta diversity
analysis demonstrated significant microbial community alter-
ations by age after adjusting for participant to account for inter-
individual differences (Figure 1c; p < .001). At the phylum level,
the mean relative abundance of Firmicutes increased (p = .005)
with age and the mean relative abundance of Proteobacteria
decreased (p = .004) with age after adjusting for the participant
(Figure 1d; Supplementary Material Figure S1). Changes in
Firmicutes were largely driven by increases in genera Blautia
and Faecalibacterium with age, which belong to families
Lachnospiraceae and Ruminococcaceae, respectively. Changes in
Proteobacteria were driven by decreases in genera Klebsiella,
Escherichia/Shigella, and Serratia, all of which belong to the fam-
ily Enterobacteriaceae. Genera Bacteroides (13%–22%) and
Bifidobacterium (15%–32%), belonging to phyla Bacteroidetes
and Actinobacteria, respectively, were present in abundance
throughout the first year of life (Figures 1d–1f).

Gut microbiota composition associations with temperament

We investigated the relationship between gut microbiota at each
age group and IBQ-R scores at 12-months of age (Table 1 and
Supplementary Material Table S2) by alpha diversity
(Supplementary Material Table S3) and beta diversity measures
(Table 2). We found a trend toward the Shannon index of fecal
microbiota at age 2 months being negatively associated with neg-
ative affectivity score at 12 months of age, though this was not
statistically significant (β =−0.57, p = .06). No other IBQ-R
domain or subscale at age 12 months demonstrated a significant
association with the microbial alpha diversity measures at differ-
ent ages. We found that gut microbial beta diversity at age 1–3
weeks was associated with surgency/extraversion (R2 = 0.276,
p = .012) as well as its subscales, including approach (R2 = 0.285,
p = .010), high-intensity pleasure (R2 = 0.275, p = .013), and smil-
ing/laughter (R2 = 0.273, p = .013) (Figures 2a–2d). In addition,
we found a trend toward an association between concurrent
gut microbial beta diversity with negative affectivity (R2 = 0.101,
p = .094), although it did not reach statistical significance, and
an association with its sadness subscale (R2 = 0.126, p = .047) at
12 months of age (Figures 3a and 3b).

Individual taxa associated with temperament

Based on the relationships between microbiota beta diversity at
age 1–3 weeks and IBQ-R scores at age 12 months, we then per-
formed differential abundance testing to identify specific genera
from the infant gut microbiota that are associated with the corre-
sponding IBQ-R scores at age 12 months. Of note, genus
Bifidobacterium, an unclassified Lachnospiraceae, and genus
Collinsella were positively associated with the surgency/extraver-
sion scale as well as two or more of its subscales (activity level,
approach, smiling/laughter, or perceptual sensitivity) at age 12
months (Figure 2e). In addition, there was a negative association
between genus Klebsiella in the microbiota at age 1–3 weeks and
the surgency/extraversion scores at age 12 months (Figure 2e).
Although there was a significant association between beta diver-
sity at age 1–3 weeks and high-intensity pleasure scores at 12
months (Figure 2c; p = .013), no individual taxa were associated
with this IBQ-R subscale.
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Next, we investigated whether any individual taxa in the
concurrent microbiome were associated with the negative
affectivity domain score and its subscales at age 12 months.
This analysis revealed genera Megamonas, Acidaminococcus and
Ruminococcus-1 to be positively associated with negative affectiv-
ity and two or more of its subscales (sadness, distress to limita-
tions, falling reactivity, and fear) at age 12 months (Figure 3c).
In addition, negative affectivity and its subscales sadness and dis-
tress to limitations showed significant negative associations with
genus Lactobacillus (Figure 3c).

Discussion

We found that intestinal microbial composition and diversity of
infants at 1–3 weeks, 2 months, and 12 months of age were asso-
ciated with two temperament domains – surgency/extraversion
and negative affectivity – at age 12 months. This study adds to
the growing literature demonstrating associations between gut
microbiome composition and temperament in infancy. While
exploratory, our results also suggest the potential existence of sen-
sitive periods during which the coinciding maturation of the gut
microbiome and brain may have an influence on infant neurode-
velopmental outcomes.

Gut microbiome diversity and temperament

Previous studies have shown that the composition of the gut
microbiome in early infancy is associated with individual

differences in temperament in late infancy and early childhood
that are predictive of risk for affective disorders in childhood
and adulthood. We found that alpha diversity and beta diversity
in early infancy were associated with IBQ-R scores at age 12
months. Alpha diversity at age 2 months was inversely associated
with negative affectivity scores at age 12 months, although it did
not reach the standard criteria for statistical significance (p = .06).
This is consistent with another study that reported negative asso-
ciations between gut microbiome alpha diversity at age 2.5
months and negative affectivity scores at age 6 months
(Aatsinki et al., 2019). The significant association between beta
diversity and surgency/extraversion observed in this study is
also consistent with previous work. A study of gut microbiome
composition and temperament of toddlers similarly detected a
positive relationship between phylogenetic diversity (another
alpha diversity measure) and surgency/extraversion (Christian
et al., 2015).

Taken together, our results suggest that gut microbial diversity
in early infancy predicts temperament traits related to negative
affectivity and surgency/extraversion, which have been elsewhere
related to lifetime risk for developing affective disorders.
Negative affectivity during infancy is associated with risk for
developing depressive and anxiety symptoms later in life
(Abulizi et al., 2017; Compas et al., 2004; De Pauw &
Mervielde, 2010). Surgency/extraversion in infancy has shown
mixed associations with mental health outcomes later in life.
For example, it is associated with greater self-regulation in child-
hood and lower risk for depressive symptoms (Komsi et al., 2006;

Table 1. Characteristics of the study subjects

Measure
Total
(N = 67)

Child age

1–3 weeks
(N = 23)

2 months
(N = 25)

6 months
(N = 16)

12 months
(N = 27)

Female, N 32/67 (48%) 11/23 (48%) 11/25 (44%) 8/16 (50%) 17/27 (63%)

Cesarean sectiona, N 19/67 (28%) 5/23 (22%) 3/25 (12%) 9/16 (56%) 9/27 (33%)

Birthweight (kg): mean ± SD 3.3 ± 0.5
(one missing value)

3.3 ± 0.5 3.4 ± 0.3
(one missing value)

3.4 ± 0.6 3.1 ± 0.5

Birth length (cm): mean ± SD 50.0 ± 2.5
(six missing values)

50.3 ± 2.3
(one missing value)

50.1 ± 2.3
(five missing values)

50.7 ± 2.5
(one missing value)

49.3 ± 2.6

Breastfeeding duration (months): mean ± SD 5.9 ± 4.7 5.3 ± 4.6 6.3 ± 4.5 6.4 ± 4.6 6.4 ± 4.7

Antibiotic or antifungal use, N 26/67 (63%) 0/23 (0%) 3/25 (12%) 4/16 (25%) 10/27 (37%)

Mother’s race, N

Whiteb 21/67 (31%) 5/23 (22%) 7/25 (28%) 4/16 (25%) 9/27 (33%)

African Americanc 2/67 (3%) 0/23 (0%) 1/25 (5%) 1/16 (6%) 1/27 (4%)

Asian 8/67 (12%) 6/23 (26%) 3/25 (10%) 0/16 (0%) 4/27 (15%)

Multi-ethnic 6/67 (9%) 1/23 (4%) 3/25 (14%) 4/16 (25%) 2/27 (7%)

Hispanic or Latino 30/67 (45%) 11/23 (48%) 11/25 (43%) 7/16 (44%) 11/27 (41%)

Mother’s parityd: mean ± SD 0.8 ± 0.9 0.7 ± 0.8 0.7 ± 0.9 0.9 ± 0.6 1.0 ± 1.0

Surgency/extraversion factor: mean ± SD 5.3 ± 0.5 5.4 ± 0.5 5.1 ± 0.5 5.3 ± 0.6 5.3 ± 0.6

Negative affectivity factor: mean ± SD 3.6 ± 0.6 3.7 ± 0.6 3.3 ± 0.6 3.5 ± 0.6 3.8 ± 0.6

Orienting/regulation factor: mean ± SD 4.8 ± 0.5 5.0 ± 0.5 4.7 ± 0.5 4.8 ± 0.5 4.7 ± 0.5

aDelivery types for non-Cesarean section include normal spontaneous vaginal delivery, vaginal birth after cesarean, outlet or low forceps, outlet or low vacuum, mid forceps, and unknown.
bWhite, European, North African, Middle Eastern.
cAfrican American or Black.
dPregnancy history counts before current pregnancy.
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Rothbart & Posner, 2015). However, surgency/extraversion scores
in infancy have also been associated with adverse outcomes such
as negative peer behaviors and externalizing problems in child-
hood and adolescence (Berdan, Keane, & Calkins, 2008; Dollar
& Stifter, 2012; Honomichl & Donnellan, 2012). We are aware
of only one longitudinal study with multiple assessments of infant
gut microbiome composition and child outcomes, which reported
no associations between alpha or beta diversity at 1, 6, or 12
months of age with behavioral problems, measured using the
Childhood Behavioral Checklist at age 2 (Loughman, Ponsonby,
et al., 2020). This suggests that the association between gut micro-
bial alpha and beta diversity in early infancy and behavioral out-
comes may be attenuated by 2 years of age. More longitudinal
studies are needed in this area as questions about the role of
microbial diversity in shaping neurodevelopmental outcomes,
such as temperament, remain unanswered.

Microbial taxa and temperament

We replicated several associations between microbial composition
and temperament reported in previous studies. We found a pos-
itive association between Bifidobacterium at 1–3 weeks and sur-
gency/extraversion scores. Bifidobacterium is an essential group
of bacteria that digest human milk oligosaccharides that are oth-
erwise indigestible (Gnoth, Kunz, Kinne-Saffran, & Rudloff, 2000;
Sela & Mills, 2010). Human milk oligosaccharides are believed to

regulate development of the gut microbiome by promoting the
growth of beneficial bacteria and preventing pathogenic bacteria
from colonizing the infant gut (Liévin et al., 2000).
Bifidobacterium appears to be an important predictor of infant
temperament, as a similar study also detected a significant posi-
tive association between Bifidobacterium at age 2.5 months and
surgency/extraversion scores at age 6 months (Aatsinki et al.,
2019). Our results suggest that the presence of Bifidobacterium
may be important as early as 1–3 weeks after birth. Such results
point to the potential significance of this genus in the develop-
ment of extraversion, given the relationship between surgency/
extraversion scores in infancy and surgency later in childhood
(Komsi et al., 2006). A study in toddlers reported that surgency
scores were associated, for boys only, with different genera from
those observed in this study (Parabacteroides, Dialister, and
Rikenellaceae) (Christian et al., 2015).

We also found associations between several genera at age 1–3
weeks and 12 months with surgency/extraversion. We found a
positive association with an unclassified Lachnospiraceae and a
negative association with Klebsiella. The associations with
Lachnospiraceae are generally consistent with results from a lon-
gitudinal study that reported positive associations between this
bacteria at age 12 months and internalizing problems in 2-year-
old children (Loughman, Ponsonby, et al., 2020). The negative
associations between Klebsiella and surgency/extraversion may
not be surprising as Klebsiella is pathogenic and thought to be

Figure 1. Changes in infant fecal microbiota at different ages during the first year of life representing 91 samples collected from 67 infant donors. (a) and (b)
Notched boxplots of alpha diversity as measured by (a) Chao1 index (species richness) and (b) Shannon index (evenness and richness). P value for alpha diversity
differences by age was determined by one-way ANOVA (analysis of variance) after adjusting for subject. The 95% confidence interval around the median is displayed
by the notch. (c) Principal coordinates analysis plots of microbial beta diversity measured by DEICODE distances. Each symbol represents a sample that is colored
by age at the time of sample collection. P value for beta diversity differences by age was calculated using PERMANOVA (permutational multivariate analysis of
variance) after adjusting for subject. (d)–(f) Stacked bar charts showing mean relative abundance in each age group of bacterial (d) phyla, (e) families, and (f)
genera. Others indicate sum of taxa present at less than 2% in mean relative abundance averaged over different age groups.
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a gas-producing bacteria that may cause intestinal discomfort
(Savino et al., 2011). Klebsiella levels have been implicated in
infant colic and infants with colic have low emotional regulation
(Loughman, Quinn, et al., 2020; Savino et al., 2017; Stifter &
Spinrad, 2002).

We found associations between several concurrent microbial
taxa and negative affectivity scores at age 12 months. This
included a positive association with Ruminococcus-1, consistent
with previously observed associations of the Ruminococcaceae
family with depressive symptoms in adults (Valles-Colomer
et al., 2019). We also found a negative association between
Lactobacillus and negative affectivity, which is consistent with
the extant literature. Supplementation with probiotics containing
Lactobacillus strains has been shown to reduce crying behaviors of
infants with colic (Sung et al., 2018) and symptoms of anxiety and
depression in adults (Messaoudi et al., 2011).

The mechanisms by which specific microbial taxa may influ-
ence behavior remain unclear. However, mouse models offer
potential mechanisms: gut microbial composition was demon-
strated to influence neurological biomechanisms such as the
expression of neurotransmitters and their hormones, including
dopamine and serotonin (Clarke et al., 2013; Diaz Heijtz et al.,
2011; Neufeld, Kang, Bienenstock, & Foster, 2011). Another
potential mechanism is differences in neuronal survival and
neurogenesis in regions such as the striatum, amygdala, and hip-
pocampus (Diaz Heijtz et al., 2011; Ogbonnaya et al., 2015;
Stilling et al., 2015). The gut microbiome may also influence
brain function by regulating microglial activity (Erny et al.,
2015).

Sensitive periods in gut microbiome and neurodevelopment

The sensitive periods during which the gut microbiome may
influence neurodevelopment and behavior are unknown. A grow-
ing body of work suggests that infancy may be a sensitive period
in which the microbiome may have far-reaching influence on later
neuropsychological health and behavior (Borre et al., 2014;
Jašarević et al., 2016; Stilling et al., 2014), although some scholars
have argued that it may extend into the first 1,000 days of life or
even into adolescence (Cowan, Dinan, & Cryan, 2020; Robertson,
Manges, Finlay, & Prendergast, 2019). Early life may be a partic-
ularly important period due to founder species that may influence
the long-term composition of the gut microbiome (Litvak &
Bäumler, 2019). The first year of life is a dynamic period of
brain development involving the formation of functional net-
works (Gao, Lin, Grewen, & Gilmore, 2017; Knickmeyer et al.,
2008). Infants exhibit rapid social and emotional development,
including the emergence of temperament. The early postnatal
phase is one of heightened plasticity, and perturbations to the
gut and brain may have far-reaching consequences for mental
health risk over the life course. Our results, and those of previous
studies, provide preliminary evidence to support infancy as a sen-
sitive period during which gut microbiome composition may
impact neurodevelopmental outcomes (Aatsinki et al., 2019;
Carlson et al., 2018; Christian et al., 2015). The importance of
these overlapping windows of development are increasingly rec-
ognized as scholars have hypothesized that the microbiome may
be a mechanism in the developmental origins of health and dis-
ease (Stiemsma & Michels, 2018; Stinson, 2020). Mouse models
suggest that early life stages are sensitive periods in which the
microbiome influences neurodevelopment. The maternal gut
microbiome may regulate fetal brain development in utero
through the production of microbial metabolites that promote
axonogenesis (Vuong et al., 2020). Another pathway is through
transmission of dysbiosis from mothers to pups, which disrupts
social and behavioral developmental processes (Buffington et al.,
2016; Champagne-Jorgensen et al., 2020). Evidence suggests
that weaning and adolescence are transitions marked by microbial
instability and these are thus other likely sensitive periods for the
development of the microbiome–gut–brain axis (Cowan et al.,
2020). Additional studies are needed to elucidate the number
and duration of overlapping sensitive periods of gut microbiome
and neurodevelopment.

Limitations

The strengths of this study include a longitudinal design of stool
sampling at multiple timepoints across infancy, including two

Table 2. Beta diversity association with Infant Behavior Questionnaire-Revised
(IBQ-R) scores at 12 months of age using PERMANOVA (permutational
multivariate analysis of variance), adjusted for infant sex and breastfeeding
duration (for analyses of the 1–3 weeks subgroup, only infant sex was
adjusted due to lack of breastfeeding variability)

Infant age at
sample IBQ-R domain and subscales R2 p value

1–3 weeks

Negative affectivity 0.004 0.975

Surgency/extraversion 0.276 0.012*a

Activity level 0.038 0.667

Approach 0.285 0.010*

High-intensity pleasure 0.275 0.013*

Perceptual sensitivity 0.088 0.360

Smiling/laughter 0.273 0.013*

Vocal reactivity 0.029 0.739

Orienting/regulation 0.089 0.346

2 months

Negative affectivity 0.006 0.927

Surgency/extraversion 0.080 0.256

Orienting/regulation 0.017 0.782

6 months

Negative affectivity 0.012 0.897

Surgency/extraversion 0.060 0.461

Orienting/regulation 0.089 0.280

12 months

Negative affectivity 0.101 0.094

Sadness 0.126 0.047*

Distress to limitations 0.002 0.983

Fear 0.047 0.356

Falling reactivity/Rate of
recovery from distress

0.097 0.102

Surgency/extraversion 0.007 0.884

Orienting/regulation 0.007 0.870

a* indicates a p value ≤ 0.05.
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timepoints earlier than any previous study. However, the results
should be considered in the light of several limitations.

First, a relatively small sample size was used in this study.
While such sample sizes are common in human microbiome
research, they limit statistical power to detect associations with
small, but meaningful, effect sizes. Future studies should be con-
ducted with larger samples and consideration of more potential
covariates. Second, we assessed infant temperament by maternal
report. While parents are able to best observe infants across a
wide variety of environments (Gartstein & Rothbart, 2003),
parental reports do not always correlate strongly with observer
reports in standardized conditions (Mangelsdorf, Schoppe, &
Buur, 2000). Third, microbiome analysis was performed using
16S ribosomal RNA gene sequencing, which provides informa-
tion on microbial composition but not function (e.g., bacterial
gene content or metabolite levels). Fourth, we conducted a
large number of comparisons and, importantly, acknowledge
the possibility that this may have led to spurious findings.
However, some concern over the number of comparisons is
ameliorated by the fact that many of the associations we detected
are consistent with previous studies. Fifth, with the small sample
size we were not able to assess other variables that may influence
infant gut microbiome composition and we had to be discerning
in the selection of covariates in order to preserve statistical
power. Sixth, we were unable to prove the existence of sensitive
periods because we could not compare influences at various
timepoints on phenotypes later in life than 12 months of age.
Additional longitudinal studies are needed to identify specific
critical windows for contributions of the gut microbiome to

inter-individual differences in behavioral and mental health
outcomes.

Conclusions

Our study shows that composition of the gut microbiome at 1–3
weeks, 2 months, and 12 months of age is associated with infant
temperament at age 12 months. This suggests that early infancy
may be a sensitive period for gut microbiome and brain crosstalk.
Our results may inform early life interventions, such as probiotics
that target the gut microbiome to promote optimal infant devel-
opment. While this study supports the hypothesis that the gut
microbiome in early life has far-reaching consequences for neuro-
development, further studies are needed to understand the mech-
anisms involved in this process.

Supplementary Material. The Supplementary Material for this article can
be found at https://doi.org/10.1017/S0954579421000456
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