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A Generalization of Integrality

Jim Coykendall and Tridib Dutta

Abstract. In this paper, we explore a generalization of the notion of integrality. In particular, we study

a near-integrality condition that is intermediate between the concepts of integral and almost integral.

This property (referred to as the Ω-almost integral property) is a representative independent special-

ization of the standard notion of almost integrality. Some of the properties of this generalization are

explored in this paper, and these properties are compared with the notion of pseudo-integrality in-

troduced by Anderson, Houston, and Zafrullah. Additionally, it is shown that the Ω-almost integral

property serves to characterize the survival/lying over pairs of Dobbs and Coykendall.

1 Introduction and Background

The study of various notions of integrality has proven central in the attempt to un-

derstand the structure and overring behavior of a commutative ring with identity. In

particular, domains with “nice” properties often (but not always) have nice proper-

ties with respect to their integral and almost integral closures. A standard result along

these lines is the fact that a unique factorization domain (UFD) is (completely) inte-

grally closed. Although the results for other types of “factorization domains” are not

quite as strong (for example, half-factorial domains need not be integrally closed), it

is the case that many of the stronger results are obtained in tandem with some type

of integrality assumption. For example, it was shown in [3] that for R[x] to be a half-

factorial domain, it is necessary for the domain R to be integrally closed (as well as

having the half-factorial property).

One of the more interesting and useful results in commutative algebra is the fact

that Krull dimension is preserved in integral extensions (that is, dim(R) = dim(T) if

R ⊆ T is an integral extension). Almost integral extensions, however, do not have to

possess this property. We will see in this paper that Ω-almost integral extensions do

not have to preserve dimension either, but the failure is tamer.

Also central to the focus of this paper is the notion of survival/lying over pairs. We

review briefly here to say that an extension R ⊆ T is a lying over extension if given

any prime ideal P ⊆ R, then there is a prime ideal of T lying over P (that is, there is

a prime ideal Q ⊆ T such that Q ∩ R = P). The “pair” notion generalizes the more

specific “extension” notion in the following sense. We say that R ⊆ T is an X-pair

(with X denoting some property of extensions) if given intermediate extensions A

and B such that

R ⊆ A ⊆ B ⊆ T,

then A ⊆ B is an X-extension.
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In this paper, we introduce the notion of Ω-almost integral elements and Ω-al-

most integral extensions. The inspiration for looking at this property has its roots in

the theory of factorization. We recall that an almost integral element over the domain

R (with quotient field K) is an element ω ∈ K such that there is a nonzero r ∈ R such

that rωn ∈ R, for all n ≥ 1.

We also recall that the standard proof that an integral element ξ (of the quotient

field) is almost integral involves writing ξ as a fraction ξ =
a
b
, with a, b ∈ R. One

then uses the equation of integrality

( a

b

) n

+ rn−1

( a

b

) n−1

+ · · · + r1

( a

b

)

+ r0 = 0,

to show that bn−1 can function as the “r” in the definition of almost integrality.

With this in mind, we set out to define a “denominator independent” version of

the almost integral property. As it turns out, a denominator independent version

is precisely the key needed to classify the “near-integral” properties in survival/lying

over pairs. What is more, the notion of near-integrality that we will highlight in this

paper is precisely what is needed for near-integrality in Prüfer domains.

2 Pseudo-Integrality and Almost Integrality

We begin this section by recalling the pseudo-integral property introduced in [1].

Definition 2.1 Let R be a domain with quotient field K. We say that λ ∈ K is

pseudo-integral over R if λI−1 ⊆ I−1 for some nonzero finitely generated ideal I ⊆ R.

An alternative definition of integrality can be stated as follows: if R is an integral

domain with quotient field K, an element ω ∈ K is integral if there is a nonzero

finitely generated ideal I ⊆ R such that ωI ⊆ I. In [1], it was shown that the set

of elements pseudo-integral over R forms a subring of K (called the pseudo-integral

closure of R).

We now introduce new notions of integrality, which, we shall see, behave quite

well in certain overring pair situations.

Definition 2.2 Let R be an integral domain with quotient field K. The element

ω ∈ K is said to be Ω-almost integral if for all nonzero b ∈ R such that bω ∈ R, then

there is a nonnegative integer mb such that bmbωn ∈ R for all n ≥ 1.

We now refine the definition for the case that mb is independent of the choice of b.

Definition 2.3 Let R be an integral domain with quotient field K and m a nonneg-

ative integer. We say that ω ∈ K is m-almost integral if for all nonzero b ∈ R such

that bω ∈ R, then bmωn ∈ R for all n ≥ 1.

Definition 2.4 Let R ⊆ T be an extension of domains having the same quotient

field. We say that T is Ω-almost integral over R if every element of T is Ω-almost

integral over R. Additionally, we say that R is Ω-almost integrally closed in T if all
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elements of T that are Ω-almost integral over R are contained in R. In a similar

fashion, we say that T is m-almost integral over R if every element of T is m-almost

integral over R, and we say that R is m-almost integrally closed in T if all elements of

T that are m-almost integral over R are contained in R.

We remark that if R is a domain with quotient field K and ω ∈ K, then we have

the implications: ω is integral ⇒ ω is Ω-almost integral ⇒ ω is almost integral. The

analogous chain of implications holds globally (for domains as opposed to elements).

Our first result shows that unit behavior for Ω-almost integrality is analogous to

the situation for integral extensions (as opposed to general almost integral exten-

sions).

Proposition 2.5 Let R be a domain and suppose that r ∈ R is an element with the

property that r−1 is Ω-almost integral over some integral extension of R. Then r ∈ U (R).

In particular, if R ⊆ T is an Ω-almost integral extension, then U (T) ∩ R = U (R).

Proof Let A be our integral extension of R and note that rr−1
= 1 ∈ R ⊆ A. Since

r−1 is Ω-almost integral over A, there is a nonnegative integer k such that for all

n ≥ 1, rkr−n ∈ A. In particular, r−1 ∈ A and so is integral over R. Hence it follows

that [8, Theorem 15] r ∈ U (R). The second statement follows easily.

Example 2.6 Consider the extension of domains Z + 2xZ[x] ⊆ Z[x]. It is straight-

forward to check that this extension is, in fact, a 1-almost integral extension that is

not an integral extension. This should be contrasted with the case of valuation do-

mains of dimension greater than 1. Indeed, if Vk is a k-dimensional valuation domain

with k ≥ 2 and maximal ideal M, we select x ∈ M \ P, where P is the prime ideal

in Vk of coheight one. We also select a nonzero element p that is contained in a non-

maximal prime ideal of Vk. We note that px−n ∈ Vk for all n ≥ 1, and hence x−1 is

almost integral. However, x is a unit in any proper overring of Vk, and hence Vk has

no proper Ω-almost integral extension.

We now provide an example that establishes the existence of m-almost integral

elements for all m.

Example 2.7 Let F be a field. We consider the subring of F(x, y) given by

R := F

[

y,
y

x
,

ym

x
,

ym

x2
,

ym

x3
,

ym

x4
, . . .

]

.

Note that 1
x

is an element of the quotient field of R, and it is easy to see that, in

fact, 1
x

is m-almost integral (indeed, by construction, if r ∈ R is such that r 1
x

is in R,

then r is an element of (y, y
x
, ym

x
, ym

x2 , . . . ), and hence rm(1/x)n ∈ R for all n ≥ 1). If

we consider the element y, it is easy to see that ym(1/x)n for all n ≥ 1, and no smaller

power of y will suffice.

Proposition 2.8 If R ⊆ T is an Ω-almost (resp. m-almost) integral extension and

S ⊆ R a multiplicative set, then RS ⊆ TS is Ω-almost (resp. m-almost) integral.
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Proof We prove the result for the “m-almost” statement; the “Ω-almost” statement

is identical.

Let r1

s1

t
s

=
r2

s2
∈ RS (with s, s1, s2 ∈ S, r1, r2 ∈ R, and t ∈ T). Clearing denomina-

tors, we obtain s2r1t = r2s1s ∈ R. Since t is m-almost integral over R, we have that

(s2r1)mtn
= yn ∈ R for all n ≥ 1. Dividing the above equation by sm

2 sm
1 sn, we obtain

( r1

s1

)m( t

s

) n

=
yn

sm
2 sm

1 sn
∈ RS

for all n ≥ 1. This concludes the proof.

Our next example will show that, as opposed to the classical notions of integrality,

Ω-almost integrality does not always behave well with respect to the intermediate

extensions.

Example 2.9 Consider a 2-dimensional discrete valuation domain, V , with

char(V ) = 2, residue field the field of 2 elements (F2), and with the spectrum of

V given by 0 ⊆ P ⊆ M. We denote the quotient field of V by K, and we consider

the D + M construction R := F2 + P. It is straightforward to see that if x ∈ M \ P is

a generator of M, then both x and x−1 are Ω-almost integral over R. Unfortunately,

R[x] is a valuation domain (isomorphic to V ). The upshot of this is that although

x−1 is Ω-almost integral over R, it is not Ω-almost integral over the extension R[x].

With this example in mind, we make the following definition.

Definition 2.10 We say that the extension R ⊆ T is strongly Ω-almost integral

(resp. strongly m-almost integral) if every element t ∈ T is Ω-almost integral (resp.

m-almost integral) over every intermediate extension A that is integrally closed in T.

Note that from definition it is clear that strong Ω-almost integrality implies

Ω-almost integrality. The fact that t is only required to be Ω-almost integral over

the intermediate extensions that are integrally closed in T is motivated by the fact

due to Gilmer and Heinzer [7] that an element may not be almost integral over a

domain even if it is almost integral over the integral closure of the domain.

As it turns out, strongly Ω-almost integral extensions localize. We record the result

below.

Proposition 2.11 If R ⊆ T is strongly Ω-almost integral and S ⊆ R is a multiplicative

set, then RS ⊆ TS is strongly Ω-almost integral.

Proof Suppose that D is a domain such that RS ⊆ D ⊆ TS and suppose that D is

integrally closed in TS. We must show that TS is Ω-almost integral over D. We first

consider D∩T ⊆ T. Since D∩T is integrally closed in T, we have that T is Ω-almost

integral over D ∩ T. Since (D ∩ T)S = D, we apply Proposition 2.8 to obtain that TS

is Ω-almost integral over D.

We now consider the going-up (GU) property. Generally, almost integral exten-

sions need not be going-up (or even lying over), but we will see that strongly Ω-al-

most extensions have this nice property. We begin with a technical lemma.

https://doi.org/10.4153/CMB-2010-082-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-082-9


A Generalization of Integrality 643

Lemma 2.12 Let R ⊆ T be a strongly Ω-almost integral extension and let α ∈ T. If

P ⊆ R is a prime ideal and S is the set complement of P in R, then PR[α] ∩ S = ∅.

Proof Suppose that s ∈ PR[α] ∩ S. We write

s = p0 + p1α + p2α
2 + · · · + pnα

n

with pi ∈ P for 0 ≤ i ≤ n. Multiplying this equation by α−n and transposing, we

obtain

(s − p0)(α−1)n − p1(α−1)n−1 − · · · − pn = 0.

As the element s− p0 /∈ P, we see that α−1 is integral over the localization RP = RS;

equivalently, α−1 ∈ RS[α] ⊆ TS. We have that RS[α−1] ⊆ RS[α].

Since the extension R ⊆ T is strongly Ω-almost integral, we have that RS ⊆ TS is

strongly Ω-almost integral. Hence α is Ω-almost integral over A, the integral closure

of RS[α−1] in TS.

Since α is Ω-almost integral over A and α−1 ∈ A, we must have that α ∈ U (A)(by

Proposition 2.5). Additionally, A is integral over RS[α−1] and α−1 ∈ U (A). Hence,

we see α−1 is a unit in RS[α−1] and so α ∈ RS[α−1]. This gives the needed contain-

ment, and we have RS[α] = RS[α−1].

Since RS ⊆ RS[α−1] = RS[α] is an integral extension, it is immediate that

S ∩ PRS[α] = ∅.

Hence S ∩ PR[α] ⊆ S ∩ PRS[α] = ∅. Thus we get a contradiction and the lemma

follows.

Theorem 2.13 Let R ⊆ T be a strongly Ω-almost integral extension. The R ⊆ T

satisfies going-up.

Proof We use the characterization from [8, Theorem 41]: if P is a prime ideal of R

and S is the complement of P in R and Q is a prime ideal of T maximal with respect

to the exclusion of S := R \ P, then Q ∩ R = P.

With the notation as above, it is immediate that Q∩R ⊆ P, so the other contain-

ment will suffice. We proceed by assuming that the containment is strict and derive

a contradiction.

Suppose that z ∈ P \ (Q ∩ R). Since Q (as an ideal of T) is maximal with respect

to the exclusion of S = R \ P, the ideal (Q, z) intersects S nontrivially. We write

zt + q = s for some t ∈ T, q ∈ Q, and s ∈ S.

First note that if q ∈ R, then q ∈ P and hence zt = s − q ∈ S ∩ PR[t], which

contradicts the previous lemma. So we will suppose that q /∈ R.

In this case, we consider the intermediate extension A := R[q]. Our first claim is

that the ideal (z, q)A “misses” S (that is, (z, q) ∩ S = ∅). If not, we can write

z f (q) + qh(q) = s

for some s ∈ S, f , h ∈ R[x].
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Rewriting the above equation gives that zr0 + qF(q) = s, where r0 = f (0) and

F(x) = h(x) + z
f (x)−r0

x
∈ R[x]. Transposing, we obtain that qF(q) = s − zr0.

Since zr0 ∈ P, we have that s − zr0 ∈ S. But qF(q) is an element of Q ⊆ T, and

this is a contradiction. We conclude that (z, q)A ∩ S = ∅.

With this in hand, we expand (z, q) to a prime ideal P0 ⊆ A that is maximal with

respect to the exclusion of S. Let S0 := A \ P0. Note that S ⊆ S0, and hence the

equation zt + q = s implies that zt ∈ S0.

Now consider AT , the integral closure of A in T. Since the extension A ⊆ AT is

integral, it is also going-up.

But, since A ⊂ T is again strongly Ω-almost integral, we have from the previous

lemma that P0A[t] ∩ S0 = ∅. This is our desired contradiction, and the proof is

complete.

The following corollary records the Krull dimension behavior of strongly Ω-al-

most integral extensions.

Corollary 2.14 If R ⊆ T is a strongly Ω-almost integral extension, then dim(R) ≤
dim(T).

Proof Since R ⊆ T is going-up, any chain of prime ideals of R

P0 ( P1 ( · · · ( Pn ( R

gives rise to a chain of primes in T

Q0 ( Q1 ( · · · ( Qn ( T

with Qi ∩ R = Pi for all 0 ≤ i ≤ n. In particular, dim(R) ≤ dim(T).

It is natural to ask if incomparability holds (which would be a sufficient condition

for equality of Krull dimension) in our strongly Ω-almost integral extension. Below,

we produce two examples to demonstrate that neither incomparability nor equality

of Krull dimension necessarily holds. But first, we define the notion of “survival

extension” and “survival pair”.

Definition 2.15 Let R ⊆ T be an extension of rings. Let I be an ideal of R such

that IT 6= T. Then I is said to “survive” in T.

If every ideal of R survives in T, then the extension is known as a “survival exten-

sion”.

Suppose that for all intermediate rings A, B with R ⊆ A ⊆ B ⊆ T, the extension

A ⊆ B is a survival extension. Then the pair (R, T) is called a “survival pair”.

Example 2.16 We record a couple of examples here that demonstrate the failure of

incomparability.

(i) We revisit the ring extension Z + 2xZ[x] ⊆ Z[x]. This extension is, in fact,

a survival pair, and hence strongly 1-almost integral by the theorem below. Yet the

ideals 2Z[x] and (2, x)Z[x] of Z[x] are comparable primes both lying over the prime

2xZ[x] ⊆ Z + 2xZ[x].
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(ii) We revisit another example. Consider our 2-dimensional discrete valuation

domain, V , from Example 2.9. The extension R = F2 + P ⊆ V is a strongly Ω-

almost integral extension. To see this, note that if α ∈ M \ P then it is easy to see

that α is 1-almost integral over R. Now observe that if T is any proper intermediate

extension R ( T ⊆ V, then TV , the integral closure of T in V , coincides with V , and

hence the extension is strongly Ω-almost integral. But note that in this case, the ideals

P and M of V both lie over P ⊆ R. And in this case, 1 = dim(R) < dim(V ) = 2.

Theorem 2.17 Let R ⊆ T be an extension of domains sharing the same quotient field

with R integrally closed in T. Then R ⊆ T is a survival pair if and only if R ⊆ T is

strongly 1-almost integral.

We note that the assumption that R is integrally closed in T is necessary. Indeed,

even in the case where R ⊆ T is an integral extension, the extension may not even be

m-almost integral if there are integral elements that are roots of irreducible polyno-

mials of arbitrarily large degree.

Proof For the first direction, we assume that R ⊆ T is a survival pair. Let x ∈ T and

let r ∈ R such that rx ∈ R. If rxn ∈ R for all n ≥ 1, then we are done; so we assume

that rxk /∈ R for some k ≥ 1.

We now make a couple of observations. Since R ⊆ T is a survival pair, and hence

a lying over pair ( [4, Theorem 2.2]), RM ⊆ TS (where M ⊆ R is a maximal ideal and

S = R \ M) is a survival pair, since lying over pairs localize ( [5, Lemma 2.11(c)]).

Also, since R is integrally closed in T, RM is integrally closed in TS.

Now since R ⊆ T is a survival pair, the ideal generated by α := 1 + rxk and r

must blow up in R[α] (since this ideal certainly blows up in T). Hence one can find

polynomials p(x) and q(x) in R[x] such that

αp(α) + rq(α) = 1.

With notation as above, we now note that if r is in the maximal ideal M, then

α−1 is integral over RM and hence must be in RM. Since the extension RM ⊆ TS is

survival and TS contains the element α, it is also the case that α ∈ RM. This implies

that rxk ∈ RM.

On the other hand, if r /∈ M, then the fact that rx ∈ R ⊆ RM shows that x ∈ RM,

and hence rxk ∈ RM.

We conclude that

rxk ∈
⋂

M:maximal

RM = R,

and this is the desired contradiction.

For the other direction, we assume that R ⊆ T is strongly 1-almost integral. It

has been established that if R ⊆ T is any Ω-almost integral extension, then R ⊆ T

is going-up. Since R ⊆ T is strongly 1-almost integral, we have that if R1 is any

intermediate extension, then A ⊆ T is going-up, where A is the integral closure of

R1 in T. Hence A ⊆ T is lying over, so R1 ⊆ T is lying over (hence survival). This

completes the proof.
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Theorem 2.18 Let R ⊆ T be domains with quotient fields K ⊆ F, where F is algebraic

over K. The integral closure of R in T is denoted by RT . Then R ⊆ T is a survival pair if

and only if the extension RT ⊆ T is strongly 1-almost integral.

Proof Suppose that R ⊆ T is a survival pair with respective quotient fields K ⊆ F.

Since F is algebraic over K, it is well-known that the quotient field of the integral

closure of R in T (RT) coincides with F. We apply the previous result to obtain that

the ring extension RT ⊆ T is strongly 1-almost integral.

On the other hand, assume that R ⊆ T is an extension of domains such that

RT ⊆ T is strongly 1-almost integral. To show that R ⊆ T is a survival pair, we

merely need to show that if A is any intermediate domain (R ⊆ A ⊆ T) and I ⊆ A is

an ideal, then I survives in T. Consider the extensions

R ⊆ A ⊆ AT ⊆ T,

where AT is the integral closure of A in T. Note that since the extension A ⊆ AT is

integral, I survives in AT . Also, since RT ⊆ T is strongly 1-almost integral and AT

is an intermediate extension, we have that IAT survives in T by Theorem 2.17. This

concludes the proof.

The following corollary is immediate, but worth noting.

Corollary 2.19 The pair R ⊆ T is a survival (equivalently, lying over) pair if and only

if the pair RT ⊆ T is a survival (equivalently, lying over) pair.

3 Valuation and Prüfer Domains

In this section we outline a major strength of the Ω-almost integral property. Unlike

general almost integrality, both valuation and Prüfer domains are Ω-almost integrally

closed. By way of contrast, we point out the well-known fact that valuation domains

are “rarely” completely integrally closed in the sense that valuation domains are com-

pletely integrally closed if and only if they have Krull dimension not exceeding 1.

Proposition 3.1 Any valuation domain is Ω-almost integrally closed.

Proof Let V be a valuation domain with quotient field K. Suppose that α ∈ K is

Ω-almost integral over V . If α ∈ V , then we are done, and so we will assume that

α /∈ V . Since V is a valuation domain and α /∈ V , α−1 is necessarily an element of V .

Since α−1α ∈ V and α is Ω-almost integral, it must be the case that (α−1)mαn ∈ V

for all n ≥ 1. Hence for sufficiently large N, αN ∈ V . Since α is integral over V and

V is a valuation domain (and hence integrally closed), this implies that α ∈ V , and

we have our desired contradiction.

The next result is of independent interest and will also allow us to globalize the

previous result to the case of Prüfer domains.

Theorem 3.2 A domain D is Ω-almost integrally closed if DP is Ω-almost integrally

closed for all prime ideals P ⊆ D.
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Proof Assume that DP is Ω-almost integrally closed for all P ∈ Spec(D) and denote

the quotient field of D by K. Let α ∈ K be an element that is Ω-almost integral

over D. Since α is Ω-almost integral over D, we have that if dα ∈ D, then there is a

nonnegative integer m such that dmαn ∈ D for all n ≥ 1. We first take care to note

that α is Ω-almost integral over DP. Indeed, if r
s

(with r ∈ D and s ∈ D \ P) is such

that
r

s
α =

r1

s1
∈ DP,

then we can clear the denominator to obtain rs1α = r1s. Since α is assumed to be

Ω-almost integral over D and rs1α ∈ D, we have that there is a nonnegative integer

m1 such that (rs1)m1αn
= d ∈ D for all n ≥ 1. Dividing both sides of the above

equation by (ss1)m1 , we obtain

( r

s

)m1

(α)n
=

d

(ss1)m1
∈ DP,

as desired.

Now, since α is Ω-almost integral over D, it is Ω-almost integral over DP for all

P ∈ Spec(D) by the above argument. Since each DP is Ω-almost integrally closed by

hypothesis, we have that

α ∈
⋂

P∈Spec(D)

DP = D,

and this concludes the proof.

We remark that at this point the status of the converse to the previous theorem

is unknown. It is probably worthwhile to note that localizations do not preserve

“ordinary” completely integrally closed domains. A standard example can be found

as a localization of the ring of entire functions on the complex plane. The interested

reader is referred to [6] or [2, p. 356, Problem 12].

Corollary 3.3 If D is Prüfer domain, then D is Ω-almost integrally closed.

Proof Since D is Prüfer, DP is a valuation domain for all P ∈ Spec(D). Apply the

previous two results.

4 Polynomial and Power Series Extensions

In this section, we record the behavior of the preservation of Ω-almost integrality

in polynomial and power series extensions. We find that the behavior of Ω-almost

integrality is akin to the behavior of almost integrality (that is, polynomial behavior

is tame, whereas power series behavior is not).

We begin with a useful lemma.

Lemma 4.1 Let R be a domain, r ∈ R, and ω an element that is Ω-almost integral

over R. Then r + ω and rω are Ω-almost integral over R.
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Proof For the first statement, suppose that a ∈ R is such that a(r + ω) ∈ R. Then,

clearly aω ∈ R, and hence, we can find a nonnegative integer m such that amωn ∈ R

for all n ≥ 1. Therefore, am(r + ω)n ∈ R for all n ≥ 1. The second statement is

very straightforward: suppose that b ∈ R is such that b(rω) ∈ R, that is, (br)ω ∈ R.

Then for some m ≥ 1, (br)mωn ∈ R for all n ≥ 1, and therefore bm(rω)n ∈ R for all

n ≥ 1.

It is worth noting that the above proof shows that, in fact, if ω is m-almost integral,

then so are r + ω and rω.

We now show that the property of being Ω-almost integrally closed is preserved

in polynomial extensions.

Theorem 4.2 Let R be a domain. Then R[x] is Ω-almost integrally closed if and only

if R is Ω-almost integrally closed.

Proof (⇒) Suppose that R[x] is Ω-almost integrally closed and that ω is an element

of the quotient field of R. If rω ∈ R ⊆ R[x], then since r may be viewed as an element

of R[x] and R[x] is Ω-almost integrally closed, there is a positive integer t such that

rtωn ∈ R[x] for all n ≥ 1. But since r and ω are elements of the quotient field of

R (say K), we have that rtωn ∈ K ∩ R[x] = R for all n ≥ 1, and this direction is

established.

(⇐) Now we suppose that R is Ω-almost integrally closed. For this direction, we

will suppose that there is an f (x) that is Ω-almost integral whose coefficients are not

Ω-almost integral. We will write

f (x) = t0 + t1xa1 + · · · + tmxam

with 1 ≤ a1 < a2 < · · · < am. We choose this notation because we can then assume

that each ti ∈ K \ R by the previous lemma. We will additionally assume that f (x) is

of minimal degree (with respect to the property that it is Ω-almost integral, yet none

of its coefficients are in R).

By this minimality assumption on the degree of f (x), we have that if rt0 ∈ R,

then rt j ∈ R for all 0 ≤ j ≤ m. To see this, observe that if rt0 ∈ R, then r f (x) −
rt0 = rt1xa1 + · · · + rtmxam , and hence rt1xa1−1 + · · · + rtmxam−1 is Ω-almost integral

(it is easy to see that if xg(x) is Ω-almost integral, then g(x) is Ω-almost integral).

By minimality of the degree of f (x), we must have that all the coefficients, rt j , are

elements of R.

Suppose that rt0 ∈ R for some nonzero r ∈ R. By the above observation, it must

be the case that r f (x) ∈ R[x]. Since f (x) is Ω-almost integral, we have that there is a

nonnegative integer k such that rk f (x)n ∈ R[x] for all n ≥ 1. In particular, rktn
0 ∈ R

for all n ≥ 1, and hence t0 is Ω-almost integral, which is a contradiction. Hence all

of the coefficients of f (x) are in R, and the theorem is established.

To settle the question of the stability of the Ω-almost integrally closed property

for power series, we give an example of an Ω-almost integrally closed domain R such

that R[[x]] is not Ω-almost integrally closed. The ease and the fundamental nature

of the counterexample shows that, in a certain sense, power series extensions do not

behave well with respect to Ω-almost integrality (as is the case for integrality).
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Example 4.3 Let V be any valuation domain with dim(V ) > 1. It is well known

that V is integrally closed but not completely integrally closed. We have already estab-

lished that V is Ω-almost integrally closed. It is well known that if R is any integrally

closed domain that is not completely integrally closed, then R[[x]] is not integrally

closed [6, Proposition 13.11]. So we see that V [[x]] is not integrally closed and hence

not Ω-almost integrally closed despite the fact that V is Ω-almost integrally closed.

5 Some Ideal Theoretic Properties

In this section, we will look at a couple of ideal-theoretic properties that distinguish

the notion of Ω-almost integrality from “ordinary” almost integrality.

Before we begin, we are going to define a couple of notations we have used

throughout this section. Jα is used to denote the set of all the denominators of the

element α ∈ K, that is, Jα = {x ∈ R | xα ∈ R}, where K is the quotient field of R,

and M is used to denote the R-submodule generated by {αn}n≥1.

Lemma 5.1 Let R be a domain with quotient field K. Let α ∈ K be an element of the

quotient field. Then α is Ω-almost integral over R if and only if Jα ⊆
√

( Jα : M).

Proof Let us assume that α is Ω-almost integral over R, and consider an element

x of Jα. Since α is Ω-almost integral over R, there is a positive integer m such that

xmαn ∈ Jα for all n ≥ 1. Therefore, xmM ⊆ Jα; in other words, xm ∈ ( Jα : M),

which implies x ∈
√

( Jα : M).

For the other direction, let us assume that Jα ⊆
√

( Jα : M) and let x ∈ Jα. Since

x ∈
√

( Jα : M), then xm ∈ ( Jα : M) for some positive integer m, and therefore

xmM ⊆ Jα ⊆ R ⇒ xmαn ∈ R for all n ≥ 1. Hence α is Ω-almost integral over R.

In fact, in the above situation, it can be further shown that
√

( Jα : M) =
√

Jα. We

record this result in the next theorem, using the same notation as above.

Theorem 5.2 Let R be a domain with the quotient field K. Let α ∈ K be an element

of the quotient field. Then α is Ω-almost integral if and only if
√

( Jα : M) =
√

Jα.

Proof We begin by assuming that α is Ω-almost integral.

For the first containment, we suppose that t ∈
√

( Jα : M), which implies that

tm ∈ ( Jα : M) for some positive integer m. Hence tmM ⊆ Jα, and so tmαn ∈ Jα ⊆ R

for all n ≥ 1. We obtain that tm ∈ Jα, and so t ∈ √
Jα. Thus,

√
Jα : M ⊆ √

Jα.

For the other containment, assume that t ∈ √
Jα. So for some positive integer

m, tm ∈ Jα. Since α is Ω-almost integral by assumption, Lemma 5.1 gives that Jα ⊆√
( Jα : M). Hence t ∈

√√
( Jα : M), and so t ∈

√
( Jα : M). Thus

√
( Jα : M) =

√
Jα.

The other implication is straightforward since Jα ⊆ √
Jα =

√
( Jα : M). Indeed,

Lemma 5.1 shows that α is Ω-almost integral.

The following corollary is almost immediate.

Corollary 5.3 Let α be Ω-almost integral over R. If the ideal ( Jα : M) is a radical

ideal, then α is 1-almost integral over R. Additionally, if R is root closed, then ( Jα : M)

is a radical ideal.
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Proof Assume first that ( Jα : M) is a radical ideal and suppose that tα ∈ R. Since α
is Ω-almost integral over R, there is a nonnegative integer m such that tmαn ∈ R for

all n ≥ 1. Hence tm ∈ ( Jα : M) =
√

( Jα : M). We obtain that t ∈ ( Jα : M), and

therefore tαn ∈ Jα ⊆ R for all n ≥ 1. So α is 1-almost integral.

For the second statement, assume that R is root closed, α is 1-almost integral, and

t ∈
√

( Jα : M). It suffices to show that t ∈ ( Jα : M).

Since t ∈
√

( Jα : M), there is a nonnegative integer m such that tm ∈ ( Jα : M).

Hence for all n ≥ 1, tmαn ∈ Jα ⊆ R. Choosing n = km, we get (tαk)m ∈ Jα ⊆ R (for

all k ≥ 1). Since R is root closed, we have that tαk ∈ R for all k ≥ 1, and hence, by

definition, t ∈ ( Jα : M). This concludes the proof.

We now give an example demonstrating the necessity of the Ω-almost integral

condition.

Example 5.4 Consider the domain R = F[x, y
x
, y

x2 , . . . ,
y

xn , . . . ]. We have already

mentioned that 1
x

is an almost integral element over R that is not Ω-almost integral.

Note that in this case

J1/x = (x),
√

( J1/x : M) =
(

{y, y
x
, . . . , y

xn , . . . }
)

, and (x) ⊃
(

{y, y
x
, . . . , y

xn , . . . }
)

.

Also note that (x) is a maximal ideal and thus prime. Hence, J1/x *
√

( J1/x : M).

For the sake of completeness, we point out that the R-module M is a fractional

ideal of R (because xM ⊆ Jα ⊂ R) and Jα ⊆ M−1.

6 Pathologies and a Connection with Pseudo-integrality

In this section, we explore the connection between Ω-almost integrality and the no-

tion of pseudo-integrality developed by Anderson, Houston, and Zafrullah [1]. We

also look at some “pathological” behavior of the notion of Ω-almost integrality. Al-

though we have found that Ω-almost integral extensions have some very nice behav-

ior (and give a useful characterization of survival/lying over pairs), the most disturb-

ing pathology of Ω-almost integral elements is that, in general, they do not form a

ring. In fact, it is not true in general that products or sums of Ω-almost integral ele-

ments are still Ω-almost integral (of course, they are almost integral). In general, the

set of elements that are Ω-almost integral over R may not even be an R-submodule

of the complete integral closure of R.

The first example that we produce shows that an element may be Ω-almost integral

over R and fail to be Ω-almost integral over the integral closure of R.

Example 6.1 Consider the ring R := Z[π] + xR[x]. The element 1/
√

π is Ω-

almost integral over R. To see this, note that if 1/
√

πp(π), with p(x) ∈ Z[x], is in

Z[π], the transcendence of π over Q gives that p(x) is the zero polynomial. Hence

if r1/
√

π ∈ R, then r ∈ xR[x]. It is easy to see that r(1/
√

π)n ∈ R for all n. But

note that
√

π is an element of the integral closure of R, but 1/
√

π is not. Hence by

Proposition 2.5, we have that although 1/
√

π is Ω-almost integral over R, it is not

Ω-almost integral over the integral closure of R.
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For the next example, we utilize the same domain to show that sums and products

of Ω-almost integral elements need not be Ω-almost integral.

Example 6.2 We once again consider the domain R := Z[π] + xR[x]. Let α ∈ R

be transcendental over Q(π). We note that α is Ω-almost integral over R. Indeed,

if αp(π), with p(x) ∈ Z[x], is in Z[π] then α is certainly in Q(π), we arrive at a

contradiction unless p(x) = 0. Hence p(x) = 0 and as in the previous example, we

see that α is Ω-almost integral. We also record the fact that since 1/π − α is also

transcendental over Q(π), then 1/π − α is also Ω-almost integral over R.

But as 1/π cannot be Ω-almost integral over R (since π ∈ R is a nonunit), we have

that

α +
(

1
π − α

)

=
1
π ,

in other words, the sum of two Ω-almost integral elements need not be Ω-almost

integral.

Repeating the above example replacing addition with multiplication and 1
π − α

with 1
πα shows that the product of Ω-almost integral elements need not be Ω-almost

integral.

We now show that, in general, intersections of Ω-almost integrally closed domains

need not be Ω-almost integrally closed.

Example 6.3 Let R be any domain that is integrally closed, but not Ω-almost in-

tegrally closed (e.g., Z + 2xZ[x]). Since R is integrally closed, we can write R as the

intersection of its valuation overrings: R = ∩V. But since we have shown that any

valuation domain is Ω-almost integrally closed, this gives an example of an intersec-

tion of Ω-almost integrally closed domains that is not Ω-almost integrally closed.

As it turns out, the concept of m-almost integrality that we have explored can be

collapsed to the concept of 1-almost integrality for the integrally closed case. In a

certain sense, if one considers an m-almost integral extension, the number m − 1

reflects the amount of “noise” generated by the integral elements in the extension.

We first record a result for the case of strongly Ω-almost integral extensions. This

result also serves to strengthen Theorem 2.17.

Theorem 6.4 Let R ⊆ T be an extension of domains with R integrally closed in T.

Then R ⊆ T is a strongly Ω-almost integral extension if and only if R ⊆ T is a strongly

1-almost integral extension.

Proof Since Ω-almost integrality implies 1-almost integrality, there is nothing to

prove for the first direction.

For the other direction, we have to show that if A is any intermediate extension

of domains with A integrally closed in T, then the extension A ⊆ T is 1-almost

integral. Since A ⊆ T is strongly Ω-almost integral, we have that A ⊆ T is going-up

by Theorem 2.13.

We now claim that A ⊆ T is a survival pair. To this end, it suffices to show

that if A ⊆ B ⊆ T and I ( B is a proper ideal, then I survives in T. Denote the

integral closure of B in T by BT and note that IBT ( BT , since the extension B ⊆ BT
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is integral. Additionally, since R ⊆ T is strongly Ω-almost integral, the extension

BT ⊆ T is strongly Ω-almost integral and hence, by Theorem 2.13, is going-up (and

hence lying over). Hence, BT ⊆ T is a survival extension, and so the proper ideal IBT

survives in T. We conclude that I survives in T and the claim is established.

Since A ⊆ T is a survival pair, we have from Theorem 2.17 that the extension

A ⊆ T is (strongly) 1-almost integral. So the extension R ⊆ T is strongly 1-almost

integral.

The next result further quantifies the remarks made above concerning the con-

nections between Ω-almost integrality and 1-almost integrality. Note the similarity

to Corollary 5.3; in fact, this result may be considered to be Corollary 5.3 from a

different point of view.

Proposition 6.5 If R is root closed (in particular, if R is integrally closed) and ω is

Ω-almost integral over R, then ω is 1-almost integral over R.

Proof Suppose that rω ∈ R. By assumption, there is a nonnegative integer m such

that rmωn ∈ R for all n ≥ 1. If k is a nonnegative integer, we choose n = km and note

that (rωk)m ∈ R. Since R is integrally closed, we obtain that rωk ∈ R for all k ≥ 1.

This concludes the proof.

We now give a couple of results to compare and contrast the notions of Ω-almost

integrality and pseudo-integrality. The first result shows that any element that is

1-almost integral over R is pseudo-integral, but then it is shown that, in general,

pseudo-integral elements are not necessarily Ω-almost integral.

For completeness, we repeat the following result from [1].

Theorem 6.6 Let V be a valuation domain of the form F + M, where F is a field and

M is the maximal ideal of V . Let D be a subring of F and R := D + M. We have the

following.

(i) The pseudo-integral closure of R is D ′ + M (where D ′ is the pseudo-integral closure

of D) if F is the quotient field of D.

(ii) The pseudo-integral closure of D is V if F properly contains the quotient field of D.

This result allows the following example that shows that pseudo-integral elements

may fail to be Ω-almost integral.

Example 6.7 Using the above notation, let

V = Q(i)[[x]], M = xQ(i)[[x]], F = Q(i), and D = Z.

As Q(i) properly contains Q , the above result gives that the pseudo-integral closure

of R = Z + xQ(i)[[x]] is V . Hence (in particular) the element 1
2

is pseudo-integral

over R, but Proposition 2.5 shows that 1
2

cannot be Ω-almost integral over R. Thus

pseudo-integrality does not imply Ω-almost integrality.

Theorem 6.8 Let R be a domain and ω an element of the quotient field K that is

1-almost integral over R. Then ω is pseudo-integral over R.
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Proof It suffices to find a nonzero finitely generated ideal I ⊆ R such that ωI−1 ⊆
I−1. Assume that rω ∈ R and consider the ideal I :=

(

r, rω
)

. Note that the inverse

of I is given by

I−1
=

{

t
r
| t, tω ∈ R

}

.

Observe that (ω t
r
)(r) = tω ∈ R and (ω t

r
)(rω) = tω2, which is also in R since ω is

1-almost integral. Hence ωI−1 ⊆ I−1, and so ω is pseudo-integral.

The next corollary shows that in the case of integrally closed domains, the notions

of pseudo-integrality and Ω-almost integrality are comparable.

Corollary 6.9 Let R be an integrally closed domain. If ω is Ω-almost integral over R,

then ω is pseudo-integral over R.

Proof By Proposition 6.5, since ω is Ω-almost integral over R, ω is 1-almost integral

over R. Hence by Theorem 6.8, ω is pseudo-integral over R.

We conclude by asking if it is the case that every Ω-almost integral element is

pseudo-integral. Certainly it is the case that one cannot expect the sum (or product)

of Ω-almost integral elements to be Ω-almost integral (see Example 6.2), but the

ring generated by all Ω-almost integral elements over R is certainly contained in the

complete integral closure of R. But at this time, it is not known whether or not the

ring generated by the Ω-almost integral elements is contained in the pseudo-integral

closure of R.
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