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ABSTRACT. This paper reports a comparative analysis performed on a fraction-image time series of the
Antarctic Peninsula from the period 1999–2009 generated by multiresolution remote-sensing images
(SSM/I and SSMI/S with 25 km and QuikSCAT with 2.225 km spatial resolutions) for snow-melt detec-
tion. Our method is based on the (a) preprocessing of multitemporal remote-sensing data, (b) subpixel
mixture analysis of SSMI and QuikSCAT image time series, and (c) evaluation of subpixel analysis, includ-
ing an assessment of fraction images of wet snow using an independent ASAR dataset and sensitivity ana-
lysis on the melt metrics measured by these images. The temporal dynamics of the melt indices derived
from the wet-snow fraction images presented a more realistic pattern than the traditional melt metrics
measured by Boolean snow-melt detection approaches. Because the snow melt actually occurs at the
pixel fractions, the multiscale analysis that was performed suggests an overestimation of the melt
metrics calculated using Boolean approaches (which assume that the entire area of the detected pixel
shows snow melt). The melt metrics measurements show an overestimation according to the decrease
in spatial resolution related to the multiplicative effect of a larger pixel area.
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INTRODUCTION
Time series of remote-sensing images from passive microwave
scatterometer sensors are used in snow-melt detection and
measurement in the Antarctic continent (Liu and others,
2006; Tedesco, 2009; Trusel and others, 2012; Barrand and
others, 2013) and other cryosphere areas (Fettweis and
others, 2011), and for mapping the Antarctic surface mass
balance (Magand and others, 2008) and several studies
involving remote sensing of the cryosphere. Traditional
snow-melt detection applications (Liu and others, 2006;
Tedesco, 2009; Fettweis and others, 2011; Trusel and
others, 2012; Barrand and others, 2013) are based on
Boolean approaches and detect snow melt in the image
pixels using wavelet analysis methods that allow spatial ana-
lysis of snow-melt patterns and trends in the Antarctic contin-
ent. A different approach based on the subpixel analysis for
estimation of snow melt at the Antarctic Peninsula using
microwave passive time-series images was proposed by
Mendes-Júnior (2010) based on spectral linear mixing
models (SLMM) for generation of fraction images of three end-
members, namely, wet snow, dry snow and rock outcrops.
This subpixel analysis approach applied for snow-melt detec-
tion is based on the methodology developed by Haertel and
Shimabukuro (2005), which adopts higher spatial resolution
images for calculation of the endmember spectral signatures.

This paper reports a comparative analysis on fraction-
image time series of the Antarctic Peninsula for the period
1999–2009, as generated by multiresolution remote-
sensing images (SSM/I and SSMI/S with 25 km and

QuikSCAT with 2.225 km of spatial resolution) for snow-
melt detection. The comparative analysis is based on: (a) per-
formance evaluation of the wet-snow fraction images using
classified images from higher spatial resolution data (ASAR
with a 75m of spatial resolution) for 11 dates and (b) com-
parative analysis of melt metrics (melt area extent and melt
index) derived from a subpixel analysis based on data from
the literature (Trusel and others, 2012).

STUDY AREA AND DATA

Study area
The Antarctic Peninsula (Fig. 1) is one of the areas most
affected by climate change in the Antarctic region. This
area covers 522 000 km2 with an average elevation of
1500m (Bindschadler, 2006) from 62.5° to 73°S. The focus
of this study is land and permanent ice shelves located in
the continental area of the Antarctic Peninsula, i.e. sea-ice
and temporary ice shelves were not accounted in this study.

Advanced Synthetic Aperture Radar (ASAR)
The ASAR instrument onboard the ENVISAT satellite and oper-
ating on the C-band (5.6 cm) ensures continuity of the ERS-1/2
AMI data and features enhanced capabilities in terms of cover-
age, range of incidence angles, polarization, and imaging
modes. In this study, we used ASAR WS (Wideswath mode)
from 2006 to 2008 with a spatial resolution of∼ 56m
(resampled to 75m) and varying temporal resolution
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according to the imaging mode. The ASAR images were used
in this study as a baseline for high-spatial-resolution data for
estimation of the spectral signatures (endmembers) of the
SLMM and validation of the wet-snow fraction images.

SSMI
Microwave time-series images that measure the brightness
temperature (Tb) of SSMR, SSM/I, and SSMI/S sensors from
1978 to the present are available for Antarctic ice cover.
We used F11 and F13 SSM/I and F17 SSMI/S EASE-Grid
data from the 19H, 19 V, 37H, and 37 V channels from
1999 to 2009 with a spatial resolution of ∼25 km and a
daily temporal resolution. These data are available to the
general public for download at the National Snow and
Ice Data Center NSIDC (http://nsidc.org/data/NSIDC-0032).
Despite the low spatial resolution, the SSMI data are import-
ant for melt detection globally due to the daily temporal
resolution and historical imaging.

QuikSCAT
QuikSCAT scatterometer backscattering (σ0) image data
generated by the BYU Center for Remote Sensing (CERS)
are available for download (http://www.scp.byu.edu) with
daily resolution for the Antarctic continent in the 1999–
2009 period. QuikSCAT images are generated from the
SeaWinds on QuikSCAT egg backscatter measurements
and from the slice measurements with nominal spatial resolu-
tions of 4.45 and 2.25 km, respectively. In this study, we used
slice images reconstructed from mid-day orbit passes at the
horizontal (qnsh) and vertical (qnsv) polarizations by apply-
ing the Scatterometer Image Reconstruction with Filtering
(SIRF) algorithm (Early and Long, 2001).

METHODS
The methodology used in this work (Fig. 2) applies the
following steps: (a) preprocessing of multitemporal remote-

sensing data, (b) subpixel mixture analysis of SSMI and
QuikSCAT time-series images from the years 1999–2009,
and (c) evaluation of subpixel analysis-based wet-snow frac-
tion-image time series, including assessment of fraction
images by independent ASAR dataset and sensitivity analysis
of the melt metrics measured with wet-snow fraction images.

Preprocessing of remote-sensing data
Initially, we performed selected pre-processing on the ASAR
(radiometric and geometric calibration and multitemporal
classification) and SSMI (calibration and space–time filtering)
images.

Calibration and multitemporal classification of ASAR
images
The multitemporal classification of ASAR images (the dataset
with the highest spatial resolution in this study) was based on
a decision tree approach and was performed on 16 images
(from 2006 to 2008) used to estimate the SLMM spectral sig-
natures and on an independent dataset (12 images from 2006
to 2008) used to validate the SLMMwet-snow fraction-image
results. The classes defined in this study were wet snow, dry
snow, and rock outcrops.

The original 1P level ASAR WS images were subjected to
antenna-related radiometric calibration before performing (a)
radiometric calibration for calculation of the backscattering
coefficients based on the algorithm developed by Laur and
others (2002), (b) speckle filtering by adopting a median
5 × 5 moving window, and (c) orthorectification using the
Landsat TM mosaic as geospatial reference data and the
RAMP DEM as the topographic information.

The decision trees rules for ASAR image classification
(Arigony-Neto and others, 2007, 2009) were built based on
backscattering thresholds determined by Rau and others
(2000), information found in the literature for the altitudinal
distribution of glacier facies on the Antarctic Peninsula
(Simões and others, 1999; Braun and others, 2000; Rau
and others, 2000; Skvarca and others, 2004), and the

Fig. 1. Localization map of the Antarctic Peninsula.
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image ratio of summer and winter σ0 images for discriminat-
ing between wet and dry-snow zones. Using a snow back-
scatter model in the C-band, Rau and others (2000)
validated the empirically derived thresholds for backscatter-
ing used in classification of radar glacier zones in the
Antarctic Peninsula. The difference in areas with the occur-
rence of the dry-snow zone in the northern (1200m) and
the southern (800m) portions of the peninsula (Rau and
Braun, 2002) determined using the RAMP DEM was used
as a threshold to mask sectors where we did not expect to
find pixels classified as wet-snow. The rock outcrops were
classified using a mask based on the SCAR Antarctic
Digital Database (ADD) data. Finally, the classification
results were post-processed using a focal majority analysis
with a 5 × 5 moving window.

Calibration and space–time filtering of SSM/I and SSMI/
S images
For time-series analysis, the Tb from these sensors should
be recalibrated. Using the F8 SSM/I data as a baseline, we
can convert the SMMR, F11 SSM/I, and F13 SSM/I data into
F8 SSM/I equivalent responses using the regression
coefficients derived by Jezek and others (1993) and
Abdalati and others (1995). For radiometric calibration of
SSMI/S images, we applied the linear regression coeffi-
cients proposed by Abdalati and others (1995) for the
four channels 19H (intercept=−1.17 and coefficient=
1.008), 19 V (intercept=−0.932, and coefficient=1.002),

37H (intercept=−3.59 and coefficient=1.019), and 37 V
(intercept=−2.23 and coefficient=1.008).

For calibration of the F17 SSMI/S data, we estimated the
linear regression coefficients by models with R2 >0.98
using F13 SSM/I pre-calibrated data as reference. The
model parameters for the intercept and regression coefficient
were, respectively, −0.394 and 1.015 (19H), −1.269 and
1.016 (19 V), 3.446 and 0.979 (37H), and 1.185 and 0.989
(37 V). All of the model coefficients were statistically signifi-
cant (p-value <0.0001).

For suppression of bad data pixels due to noisy signals or
missing SSMI data, the days without images were completely
interpolated using the mean of the previous and subsequent
imaged days. The bad data pixels were interpolated using the
average from the 2 to 6 nearest dates with valid Tb measures
according to an iterative algorithm: (a) first, the interpolation
of the bad pixels with the nearest 2 days, (b) second, the inter-
polation of the remaining bad pixels with the nearest 3 days,
(c) third, the interpolation of the remaining bad pixels with
the nearest 4 days and so on until 6 days at the maximum.

Subpixel mixture analysis
For estimation of the snow melting according to the wet-
snow fraction images, we applied a SLMM, including the
three endmembers: wet-snow, dry-snow, and rock outcrops.
In this SLMM, the signal (Tb in SSM/IS and SSM/I, σ0 in
QuikSCAT) of each pixel in a given sensor channel is the
result of a linear combination of each endmember in the

Fig. 2. Methodological approach adopted in this work.
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sensor IFOV (instantaneous field of view). The contribution of
each endmember is weighted by the fraction area of this
component at each pixel, and if the endmember signal
response is known, Eqn (1) can be used to estimate the
fraction of each endmember:

Ri;k ¼
Xm

j¼1

fi;jr j;k þ ei;k; ð1Þ

where Ri,k is the average signal response of a pixel i at
channel k, fi,j is the fraction of pixel i covered by endmember
j, rj,k is the signal response of endmember j at channel k, ei,k
error of a pixel i at channel k, j is the number of endmembers
(1, 2,…, m) and k is the number of channels (1, 2,…, p). The
fraction fj estimates are subjected to the following restric-
tions:

Xm

j¼1

f j ¼ 1;

f j � 0

ð2Þ

to solve the linear equations system by applying the least-
squares fitting to the estimation of fi,j and minimizing the
square sum of residuals ei,k, subjected to the above restric-
tions and the number of pixels n>m and m≤ p + 1
(Shimabukuro and Smith, 1991).

Fraction images obtained from sensors with high spatial
resolution can be used to estimate the spectral signatures of
pure pixels from low spatial resolution sensors (Haertel and
Shimabukuro, 2005). Because the pixel average spectral
response of the channels in the low spatial resolution
image is known, the fraction images (fi,j) generated by this
process can be applied to estimate the multispectral response
of the pure pixels of each endmember (rj,k). In matrix nota-
tion, the least square fitting with restrictions for determination
of the unknown spectral response (Haertel and Shimabukuro,
2005) can be expressed using Eqn (3):

rk ¼ ðFTFÞ�1FTRk; ð3Þ

where rk is the m-dimensional vector of the endmember
spectral response at channel k, F is the fractions n ×m
matrix, FT is the fractions n ×m transpose matrix and Rk is
the n-dimensional vector of the pixel spectral response at
channel k.

We estimated the spectral signatures (endmembers of wet
snow, dry snow, and rock outcrops of the SLMM) from the
ASAR images (75 m) classified using these 3 classes via a
down-scaling approach using zonal statistics with F13
SSM/I (25 km) and QuikSCAT (2.25 km) images from the
same acquisition period (16 days from 2006 to 2008). This
approach allowed us to apply the Eqn (1) with the fi,j mea-
sured from the ASAR fraction images, representing the pro-
portion between the sum of pixels in the ASAR classified
image for each endmember and the total number of pixels
of the ASAR image composed of 1 pixel of SSM/I and the
QuikSCAT images for each band.

Evaluation of subpixel analysis based on wet-snow
fraction-image time series
We evaluated the wet-snow fraction-image time series of the
SSMI/S and QuikSCAT data using two methods applied twice
to these two different data sources: (a) comparison of the

fraction images with an independent ASAR classified image
dataset of 11 mosaic days from the years 2006, 2007, and
2008, and (b) analysis of the melt detection metrics estimated
from the fraction-image time series of SSMI/S and QuikSCAT
with respect to other estimates for the 1999–2009 period in
the Antarctic Peninsula.

For the assessment of the fraction image and estimation of
the melt metric with SSMI and QuikSCAT data, we consid-
ered only the continental pixels of the Antarctic Peninsula
by applying a mask based on the high-resolution coastline
from the SCAR ADD (version 7) (available at http://www.
add.scar.org). In the QuikSCAT data, we observed the spatio-
temporal persistence (over all the specified years and
seasons) of medium-to-high wet-snow fractions (>0.1) in
regions with low potential for snow melt (i.e. continental
and high elevation areas, above 1000–1200m on average
in the Antarctic Peninsula Plateau, where there is no occur-
rence of melting according to Rau and Braun (2002);
Arigony-Neto and others (2009)). To minimize this
problem, which causes overestimation of the melt metrics,
we applied a multitemporal backscatter band ratio-based
mask using σ0 H and V images from the maximum
(December 31, 2003) and minimum (1 April 2003) snow-
melt days of the austral summer year (2003) with the
highest snow melt. According to the comparative analysis,
we achieved more consistent mask results with lower noise
using only the H polarization band for the ratio between
the summer and winter σ0 images. The lower noise of H
polarization mask is related to higher σ0 than V polarized
channel due to the lower incidence angle of the H polariza-
tion of QuikSCAT (Howell and others, 2009). For the defin-
ition of no-change σ0 areas over the summer and winter
(i.e. areas without snow melt), we defined a threshold
(<2.5) for the multitemporal σ0 band ratio. Because we
assumed that this issue is a nonstationary process (i.e. it
can be found at every date), we also used the annual wet
snow anomaly (pixels with wet-snow fractions >0.1 for at
least 300 days a−1) in conjunction with the H polarization
band ratio using a Boolean exclusive (AND) combination
to generate a mask that minimizes such topographic-related
problems.

To evaluate the SSM/I and QuikSCAT fraction-image
results, we compared the estimated wet-snow fraction
images with the ASAR classified wet-snow fractions esti-
mated according to the resolutions of the SSMI (1 SSMI
pixel containing 109 892 ASAR pixels) and the QuikSCAT
(1 QuikSCAT pixel containing 900 ASAR pixels) data. By
constructing an independent dataset, which was not used
in the SLMM endmember estimation, the ASAR images
with higher resolution (75 m) were available in twelve
mosaics of consecutive days from the 2007/08 and 2008/
09 austral summers. Once again, we applied a downscaling
approach using zonal statistics, as in the SLMM endmember
measurements, to calculate the wet-snow fraction of the
ASAR classified data in one pixel of the SSM/I and
QuikSCAT images. We statistically compared the independ-
ent and high-resolution assessment wet-snow fractions of the
ASAR classified images with the resulting SLMM wet-snow
fraction images of SSM/I, SSMI/S, and QuikSCAT using cor-
relation analysis (Pearson’s r coefficient) and error measures
such as RMSE and Kappa statistics (by classifying the wet-
snow fractions in five classes at equal intervals of 0.2).

For analysis of the interannual snow-melt area over the
Antarctic Peninsula, we estimated two temporal melting
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dynamics metrics for 10 austral summer melt seasons (July
1999–November 2009) when the QuikSCAT sensor failed.
Following the work of Trusel and others (2012), the melt
years are defined as day 201 of the first year to day 200 of
the second year (e.g. melt year 1999/2000 is referred as
2000). The first and simpler temporal melting dynamics
metric is total areal melt extent (in km2), calculated by multi-
plying the sum of pixels in which melting occurred in at least
1 day of the melt year by the pixel area (625 km2 for SSM/I
and SSMI/S, 4.95 km2 for QuikSCAT). The melt extent is
used by several studies as Trusel and others (2012);
Tedesco (2009); Tedesco and Monaghan (2009), being a
more commonly used metric that could therefore be easily
compared with other sources in the literature. The second
metric is known as the melt index (in km2 days) according
to Zwally and Fiegles (1994) and is also referred to as the
cumulative melting surface. This measure incorporates both
spatial and temporal perspectives of the melt dynamics
(Trusel and others, 2012) and is calculated by multiplying
the snow-melt pixel area by the total annual melt duration
during the year at each pixel.

These melt metrics are directly measured in the studies
based on a Boolean approach (presence–absence of snow
melt) (Trusel and others, 2012), because they have pixel
values of 0 or 1, whereas the subpixel mixture analysis
results are fraction images with values ranging from 0 to
1. Therefore, to measure these melt metrics with wet-snow
fraction images, we must establish an interval ranging from
a lower threshold to 1 (e.g. ranging from 0.8 to 1) in such a
manner that the pixels are considered as the presence of
snow melt. For selection of the most realistic ranges, we con-
ducted a sensitivity analysis by testing different ranges and
validating the results using correlation analysis and error
measures according to the melt metrics of the same period
in the Antarctic Peninsula as measured by Trusel and
others (2012) using a Boolean melt detection approach
with QuikSCAT data in egg-mode (pixel size of 4.45 km
and pixel area of 19.80 km2).

RESULTS AND DISCUSSION
In this section, we present and discuss the results of (a) a wet-
snow fraction-image time series based on subpixel mixture
analysis of SSMI and QuikSCAT data and (b) evaluation of
these fraction-images relative to the higher-resolution ASAR
classified data and by a comparative analysis of temporal
melt dynamics metrics estimated with the time series sub-
pixel data to boolean estimates found in literature.

SSMI and QuikSCAT wet-snow fraction image time
series
The pure pixel endmembers (spectral signatures of brightness
temperature in SSMI and backscattering in QuikSCAT) used
in estimating the fraction-images are shown in Table 1. The
SSMI endmember models for the 19H, 19 V, 37H and 37 V
channels showed better performance (R2 >0.98) than those
of the QuikSCAT models for H and V polarizations (R2 of
0.8 and 0.84, respectively). The higher performance of the
SSMI endmember models can be explained by the expected
difficulties due to the greater amount of samples in the
QuikSCAT data, which have enhanced spatial resolution.

Observing the annual synthetic results of the subpixel
mixture analysis on SSMI (Fig. 3) and QuikSCAT (Fig. 4)
time-series data (1999–2009), we note similar trends in the
snow melt in the Antarctic Peninsula. As expected, both
sets of data show higher snow melt in summer months,
>0.5 on the ice shelves (Larsen C, King George VI, and
Wilkins). The snow melt in the Antarctic Peninsula displayed
a clustered spatiotemporal pattern with hot spots on the ice
shelves and on the areas nearer to the coast (especially in
the Bellingshausen Sea coast of the Antarctic Peninsula).
The summer of 2003 had the highest snow melt (both in
the wet-snow fraction average values and spatial extent
with high snow melt in all ice shelves), whereas the
summer of 2004 had the lowest snow melt due to the effect-
ive absence of melted snow on the Larsen C ice shelf during
the 90 days of our survey.

Relative to the total extent of the daily wet-snow fraction
(sum of all pixel fractions multiplied by the pixel area for
each day) measured by the subpixel analysis on SSMI and
QuikSCAT, the results show similar spatiotemporal patterns,
as shown in Figure 5. The two summer years (2003 and 2004)
show a concentration of snow melt during the summer
months (especially during the 90 days from December to
February, with the highest values in January) beginning in
November and finishing approximately by the end of April,
especially during the 90 days from December to February,
with the highest values in January. The SSMI wet-snow frac-
tion extent was lower than that of QuikSCAT during the
winter months and higher in the summer months, as
expressed by the expected higher sensitivity for snow-melt
detection of data with a higher spatial resolution. Subpixel
analysis of the wet-snow fraction-image time series showed
results similar to those of another analysis in the Antarctic
Peninsula conducted in the same period of the year using
Boolean detection approaches (Liu and others, 2006;
Tedesco, 2009; Trusel and others, 2012; Barrand and
others, 2013). Spatially, the superficial snow melt in the

Table 1. Pure pixel endmembers of wet snow, dry snow, and rock outcrops of SSMI and QuikSCAT channels used to estimate the fraction
images

Sensor
Endmember

SSMI QuikSCAT

19H 19 V 37H 37 V 13.4H 13.4 V

Wet snow 256.122 269.679 239.865 251.192 −17.616 −19.044
Dry snow 200.256 227.464 204.568 224.161 −9.643 −11.372
Rock outcrops 261.514 287.697 215.217 227.824 −9.449 −11.177
R2 0.99 0.98 0.98 0.98 0.80 0.84

All models were significant (p-value< 0.0001).
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Antarctic Peninsula was concentrated in the Larsen C, King
George VI, and Wilkins ice shelves and is temporally con-
centrated during the summer months.

Evaluation of subpixel mixture analysis based on the
wet-snow fraction image timeseries

QuikSCAT multitemporal backscatter band ratio-based
masking
The QuikSCAT multitemporal backscatter band ratio of H
polarization images allowed masking of persistent-over-
time low responses of σ0 likely related to topographical sha-
dowing effects, probably related to the Peninsula Antarctic
Plateau relief (Fig. 6b). The topographical shadowing
effects are difficult to be evaluated since the SIRF algorithm
developed for generation of QuikSCAT slice-mode images
combines σ0 measurements from multiple azimuth angles
and multiple orbit passes collected over the imaging period
to generate the enhanced resolution images (Early and
Long, 2001). It is possible that problems related to topograph-
ical shadowing effects caused an overestimation of melt
metrics and wet-snow fraction images for more than 300
days in each year (Fig. 6a), especially in the Dyer and

Bruce Plateaus. The RAMP DEM geomorphometric data
(Liu and others, 2001) (Fig. 6b) and the DEM-derived
shaded relief image (Fig. 6c) support the hypothesis of topo-
graphical shadowing effects on the σ0 measurements of the
QuikSCAT slice mode images. We refer to this overesti-
mation effect as the wet-snow anomaly. The ratio between
the QuikSCAT H polarization images from the 2003 winter
(Fig. 6d) and summer (Fig. 6e) produced the multitemporal
backscatter band ratio mask (Fig. 6f) used to minimize such
imaging topography-related problems.

SSMI and QuikSCAT wet-snow fraction images
assessment
Assessment of SSMI and QuikSCAT wet-snow fraction
images based on 11 ASAR classified images shows similar
behavior for the subpixel analysis of both datasets, with a
slightly better performance by QuikSCAT (as expected due
to its higher spatial resolution). As shown in Table 2, the cor-
relation between SSMI and QuikSCAT wet-snow fraction
images and the ASAR wet-snow estimated fractions ranged
from notably low to high (Pearson’s r ranging from 0.01 to
0.86) with the same behavior of the Kappa statistics
(ranging from 0 to 0.81), and the RMSE was <0.088 in all

Fig. 3. Annual (1999–2009) median wet-snow fraction in the Antarctic Peninsula during the 3 summer months (December, January, and
February) from SSMI time-series images.
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Fig. 4. Annual (1999–2009) median wet-snow fraction in the Antarctic Peninsula during the 3 summer months (December, January, and
February) from QuikSCAT time-series images.

Fig. 5. Daily wet-snow fraction melt extent during the 2003 and 2004 summer years estimated from SSMI and QuikSCAT time-series images.
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images (except for one date with RMSE <0.26). The low cor-
relation for 4 dates is likely due to the use of mosaics of ASAR
classified images with different dates.

The SSMI wet-snow fraction images (n= 608) had low
correlations (r <0.13) for four dates (one in November, two
in February, and one in March), medium correlations
(r from 0.31 to 0.67) for three dates (one in December and
two in February) and high correlations (r from 0.78 to 0.86)
for four dates (one in December and three in January). The
kappa statistics revealed poor classification κ <0.07) for
five dates, regular classification results (κ from 0.32 to 0.66)
for five dates and good results (κ= 0.77) for one date. The

RMSE was <0.06 in all dates, except for one date with
0.29, pointing to low errors in general.

The QuikSCAT wet-snow fraction images (n= 90 856)
presented low correlations (r <0.08) for four dates (one in
November, one in December, and two in February),
medium correlations (r from 0.44 to 0.57) for three dates
(one in December, one in February, and one in March) and
high correlations (r from 0.73 to 0.82) for four dates (one in
December and three in January). The kappa statistics
revealed poor classification (κ <0.02) for four dates, regular
classification results (κ from 0.4 to 0.49) for three dates and
good classification results (κ from 0.7 to 0.81) for four

Fig. 6. (a) wet-snow anomaly of the year 2003 (number of days with wet-snow fraction higher than 0.1); (b) RAMP DEM of Antarctic Peninsula
(Liu and others, 2001); (c) shaded relief image (sun elevation 45° and azymuth 0°); (d) winter (April 1st, 2003) QuikSCAT H polarization
backscatter image; (e) summer (December 31, 2003) QuikSCAT H polarization backscatter image; (f) multitemporal backscatter H
polarization band ratio.

Table 2. Assessment results of the SSMI and QuikSCAT wet-snow fraction images

SSMI QuikSCAT
Assessment day Mosaic days Month Year r RMSE Kappa r RMSE Kappa

7 07-08-09 December 2007 0.32 0.0062 nan* 0.08 0.0325 0.03
12 11-12-13 January 2008 0.86 0.0168 0.33 0.82 0.0074 0.81
2 01-02-03 January 2008 0.83 0.1213 0.44 0.73 0.0810 0.70
21 21-22 January 2008 0.80 0.0197 0.67 0.81 0.0166 0.80
16 14-16 February 2008 0.67 0.0401 0.50 0.58 0.1266 0.40
22 22-23 November 2008 −0.03 0.0596 0.00 0.01 0.0757 0.01
24 22-24 December 2008 0.52 0.0520 0.46 0.51 0.0248 0.50
22 21-22-26 January 2009 0.79 0.0421 0.77 0.78 0.0380 0.76
7 07-08-13 February 2009 0.05 0.2923 nan* −0.01 0.2699 0.00
25 20-25-26 February 2009 0.13 0.0537 −0.02* −0.04 0.0876 −0.02
7 06-07-08 March 2009 0.08 0.0151 0.07 0.45 0.0232 0.40

*Not significant (p-value> 0.05).

23de Freitas and others: Subpixel analysis applied for melt detection

https://doi.org/10.1017/aog.2017.44 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2017.44


dates. The RMSE was<0.09 in all dates, except for two dates
(0.12 and 0.27, respectively), also revealing low errors in
general.

From a regional scale analysis (Fig. 7), the average residual
(difference between SSMI and QuikSCAT wet-snow fraction
images predicted by subpixel analysis and ASAR classified
wet-snow fractions on 11 dates) showed higher results in
the Larsen C, King George VI and Wilkins ice shelves. The
QuikSCAT residual average (Fig. 7a) ranged from −0.82 to
0.95, with a higher and positive average in King George VI
and Wilkins ice shelves, whereas the SSMI residual average
(Fig. 7b) ranged from −0.51 to 0.25, with a higher and posi-
tive average in King George VI and Wilkins ice shelves and
negative average in the Larsen C ice shelf. These snow-
melting patterns can be related to the interaction of factors
as: (a) ASAR images are more sensitive to slight alterations
of the snowpack than SSMI-S and QuikSCAT, which presents
an overestimation trend of snow-melting detection; (b) differ-
ent topographic conditions (lower average slope and rocks
presence) of Larsen C compared with King George VI and
Wilkins ice shelves (Ku channel is influenced by high slopes).

The average residual probability distributions were similar
for SSMI and QuikSCAT, mostly in the 0–0.2 interval

(QuikSCAT) and in the −0.2 to 0.2 interval, (SSMI) as
shown in the kernel probability density plot (Fig. 8).
Greater residuals have a notably low probability, and this
plot also shows an overestimation trend for the QuikSCAT
and SSMI wet-snow fraction estimates. This overestimation
was clearer in the QuikSCAT, whereas the SSMI had a
more widely distributed residual average trend with a
greater presence of underestimated wet-snow fractions.

SSMI and QuikSCAT melt metrics
The results of the sensitivity analysis on the melt metrics esti-
mated using wet-snow fraction images ranged from 0.1–1 to
0.65–1 for consideration of the presence of snow melt, thus
demonstrating a higher amplitude of the melt extent
(Table 3) and melt index (Table 4) from the SSMI wet-snow
fraction-image time series from a minimum in the summer
of 2004 (0.233 106 km2 for melt extent and 3.06 106 km2

days for melt index at the 0.65 lower threshold) to a
maximum melt extent in the summer of 2003 (0.54 106

km2 at the 0.1 lower threshold) and the maximum melt
index in the summer of 2005 (27.25106 km2 days at the
0.1 lower threshold). The QuikSCAT-based wet-snow

Fig. 8. Kernel probability density plot of the residuals between QuikSCAT and SSMI wet-snow fraction images and ASAR classified images.

Fig. 7. Residual average maps of the 11 assessment dates for wet-snow fraction images of QuikSCAT (a) and SSMI (b).

24 de Freitas and others: Subpixel analysis applied for melt detection

https://doi.org/10.1017/aog.2017.44 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2017.44


fraction-image time series generated a lower amplitude of
melt extent (Table 5) and melt index (Table 6) from the
minimum in the summer of 2004 (0.24106 km2 and
5.27106 km2 days, respectively, at the 0.65 lower threshold)
to the maximum melt extent and melt index in the summer of
2003 (0.375 106 km2 and 26.35106 km2 days, respectively,
at the 0.1 lower threshold).

In general, the melt dynamics metrics based on subpixel
mixture analysis presented medium to high and significant
correlations with the melt metrics estimated by adopting a
Boolean approach (Trusel and others, 2012) with the
QuikSCAT egg-mode data (spatial resolution of 4.45 km).
According to the different empirically tested ranges, the
melt extent from the SSMI subpixel data presented correl-
ation via Pearson’s r ranging from 0.69 to 0.83 (n= 10,
p≤ 0.03) and R2 from 0.47 to 0.69 (Table 3), whereas the
QuikSCAT-based melt extent presented a higher correlation
with r from 0.85 to 0.88 (n= 10, p≤ 0.002) and R2 ranging
from 0.73 to 0.77 (Table 5). The melt index based on SSMI
subpixel data presented correlation via Pearson’s r ranging
from 0.72 to 0.91 (n= 10, p≤ 0.02) and R2 from 0.52 to
0.83 (Table 4), whereas the QuikSCAT-based melt index
also presented a higher average correlation with r from
0.83 to 0.9 (n= 10, p≤ 0.003) and R2 from 0.7 to 0.8
(Table 6).

Comparing the SSMI (pixel size = 25 km) and QuikSCAT
(pixel size = 2.25 km) wet-snow fraction images based on
melt metrics and considering the snow-melt presence, a
wet-snow fraction of pixels >0.2, and the melt metrics

reference (Trusel and others, 2012) based on the QuikSCAT
egg-mode data (pixel size = 4.45 km), a pattern related to
scale (spatial resolution) occurred in the melt extent esti-
mates, which grew by increasing the spatial resolution
(Fig. 9). This scale-related pattern highlighted the strong influ-
ence of pixel area on the calculation of melt extent with finer
resolution data detecting lower melt extent results.

The comparison presented by Trusel and others (2012) of
melt metrics generated by different Boolean approaches with
SSMI and QuikSCAT data for the Antarctic continent showed
an opposite pattern with higher resolution data producing
higher melt extent estimates. Such an opposite pattern
could be related to the different snow-melt detection
approaches (subpixel vs Boolean analysis) wherein the sub-
pixel analysis presented higher snow-melt sensitivity
reflected especially when using lower thresholds (e.g. 0.2)
for measurement of melt metrics designed for Boolean detec-
tion approaches (considering the presence or absence of
snowmelt at each pixel). In the case of SSMI melt extent mea-
sures, higher wet-snow fraction-image thresholds (>0.55)
produced estimates lower than the reference due to the
lower number of pixels considered as snow melt at these
thresholds.

The melt index estimates, which consider both the extent
and the frequency of snow melt, did not follow the same
clear scale-related pattern with SSMI and QuikSCAT wet-
snow fraction-image-based measures that were quite
similar (SSMI melt index slightly higher). In contrast, the ref-
erence QuikSCAT melt index (Trusel and others, 2012)

Table 3. Melt extent (106 km2) from SSMI wet-snow fraction images with different ranges with lower limits from 0.1 to 0.65

Year 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

2000 0.478 0.470 0.456 0.438 0.415 0.392 0.376 0.352 0.335 0.323 0.309 0.295
2001 0.491 0.480 0.466 0.448 0.429 0.398 0.369 0.359 0.351 0.335 0.325 0.309
2002 0.490 0.480 0.470 0.455 0.433 0.409 0.382 0.355 0.338 0.324 0.314 0.297
2003 0.541 0.529 0.518 0.502 0.474 0.457 0.430 0.415 0.408 0.399 0.388 0.375
2004 0.435 0.413 0.399 0.381 0.359 0.334 0.311 0.289 0.271 0.259 0.248 0.233
2005 0.488 0.473 0.456 0.441 0.426 0.404 0.372 0.350 0.332 0.321 0.309 0.298
2006 0.501 0.484 0.476 0.465 0.449 0.438 0.422 0.394 0.371 0.344 0.328 0.309
2007 0.494 0.480 0.468 0.456 0.441 0.429 0.408 0.385 0.360 0.335 0.315 0.303
2008 0.489 0.469 0.452 0.436 0.413 0.381 0.357 0.326 0.316 0.304 0.294 0.277
2009 0.474 0.460 0.446 0.426 0.406 0.385 0.358 0.331 0.311 0.291 0.279 0.263
r 0.811 0.778 0.756 0.763 0.787 0.754 0.689 0.761 0.798 0.815 0.813 0.830
p-value 0.004 0.008 0.011 0.010 0.007 0.012 0.028 0.011 0.006 0.004 0.004 0.003
R2 0.657 0.605 0.572 0.582 0.619 0.568 0.474 0.578 0.638 0.664 0.661 0.688

Table 4. Melt index (106 km2 days) from SSMI wet-snow fraction images with different ranges with lower limits from 0.1 to 0.65

Year 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

2000 22.80 19.15 16.10 13.64 11.86 10.50 9.39 8.45 7.66 6.95 6.29 5.69
2001 17.81 14.87 12.60 10.81 9.54 8.59 7.90 7.32 6.77 6.31 5.88 5.41
2002 24.71 21.49 18.66 16.06 13.96 12.14 10.75 9.61 8.59 7.67 6.90 6.16
2003 20.72 18.39 16.64 15.19 14.20 13.41 12.72 12.08 11.48 10.88 10.29 9.67
2004 14.86 11.89 9.66 7.98 6.69 5.78 5.10 4.57 4.10 3.74 3.38 3.06
2005 27.25 23.30 19.71 16.75 14.37 12.48 10.99 9.71 8.63 7.64 6.82 6.11
2006 25.32 21.55 18.39 15.66 13.42 11.64 10.39 9.37 8.53 7.83 7.18 6.51
2007 22.43 19.20 16.59 14.17 12.23 10.68 9.48 8.55 7.77 7.09 6.44 5.79
2008 17.02 14.60 12.46 10.87 9.77 8.92 8.22 7.60 7.02 6.48 5.99 5.49
2009 22.18 18.74 15.83 13.36 11.44 9.96 8.80 7.86 7.09 6.45 5.88 5.30
r 0.72 0.772 0.826 0.869 0.902 0.914 0.912 0.902 0.887 0.868 0.845 0.818
p-value 0.019 0.009 0.003 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.004
R2 0.52 0.597 0.683 0.756 0.813 0.835 0.832 0.813 0.786 0.753 0.714 0.669

25de Freitas and others: Subpixel analysis applied for melt detection

https://doi.org/10.1017/aog.2017.44 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2017.44


Table 6. Melt index (106 km2 days) from QuikSCAT wet-snow fraction images with different ranges with lower limits from 0.1 to 0.65

Year 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

2000 20.55 17.77 15.59 13.94 12.62 11.54 10.61 9.64 9.06 8.39 7.80 7.27
2001 19.97 17.38 15.40 13.94 12.78 11.80 10.93 9.98 9.40 8.71 8.09 7.51
2002 22.65 19.99 17.92 16.37 15.12 14.05 13.12 12.12 11.51 10.79 10.09 9.43
2003 26.35 23.75 21.67 20.03 18.68 17.53 16.53 15.43 14.74 13.93 13.15 12.41
2004 15.51 13.04 11.21 9.88 8.89 8.10 7.46 6.83 6.46 6.04 5.64 5.27
2005 21.47 18.81 16.75 15.17 13.87 12.75 11.78 10.76 10.15 9.45 8.82 8.23
2006 22.54 20.00 18.00 16.45 15.18 14.07 13.09 12.02 11.36 10.58 9.85 9.18
2007 23.80 21.15 19.00 17.27 15.81 14.52 13.36 12.11 11.33 10.42 9.57 8.76
2008 21.22 18.57 16.50 14.89 13.61 12.53 11.59 10.60 10.00 9.31 8.66 8.05
2009 21.49 18.93 16.93 15.37 14.10 13.01 12.05 11.04 10.42 9.65 8.98 8.33
r 0.896 0.893 0.888 0.884 0.879 0.873 0.866 0.857 0.850 0.843 0.834 0.826
p-value 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003
R2 0.803 0.797 0.789 0.782 0.772 0.762 0.750 0.735 0.723 0.710 0.696 0.682

Table 5. Melt extent (106 km2) from QuikSCAT wet-snow fraction images with different ranges with lower limits from 0.1 to 0.65

Year 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

2000 0.336 0.330 0.325 0.318 0.312 0.305 0.298 0.289 0.284 0.276 0.269 0.261
2001 0.361 0.358 0.354 0.351 0.346 0.343 0.339 0.334 0.330 0.323 0.317 0.309
2002 0.339 0.332 0.325 0.319 0.311 0.304 0.296 0.288 0.282 0.274 0.267 0.260
2003 0.375 0.374 0.372 0.370 0.368 0.366 0.364 0.360 0.357 0.352 0.346 0.340
2004 0.342 0.333 0.324 0.315 0.304 0.294 0.285 0.273 0.265 0.257 0.248 0.240
2005 0.358 0.354 0.349 0.345 0.340 0.335 0.329 0.322 0.317 0.309 0.300 0.291
2006 0.357 0.353 0.349 0.345 0.341 0.337 0.333 0.328 0.323 0.316 0.308 0.299
2007 0.345 0.339 0.333 0.327 0.321 0.315 0.308 0.299 0.292 0.284 0.275 0.267
2008 0.332 0.324 0.316 0.307 0.298 0.289 0.281 0.272 0.265 0.258 0.251 0.243
2009 0.339 0.333 0.327 0.320 0.314 0.308 0.301 0.293 0.288 0.281 0.275 0.268
r 0.854 0.863 0.868 0.871 0.876 0.877 0.875 0.873 0.866 0.863 0.858 0.853
p-value 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002
R2 0.730 0.745 0.753 0.758 0.768 0.770 0.766 0.762 0.750 0.744 0.736 0.727

Fig. 9. Melt metrics measured by the reference QuikSCAT (Trusel and others, 2012) and by the wet-snow fraction images of QuikSCAT and
SSMI (using a fraction threshold of 0.15 for snow-melt presence.
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presented higher estimates compared with the SLMM-based
estimates with low thresholds (e.g. 0.1). The melt index mea-
sures pattern from the SSMI and QuikSCAT wet-snow frac-
tion-image data can be explained by the higher number of
snow-melt days in the QuikSCAT interannual time series,
and thus, the higher area of the SSMI pixel is minimized by
the lower frequency of snow-melt detection. The higher esti-
mates of melt index from the reference (Trusel and others,
2012) could be related to several possible factors such as
measurement method differences (e.g. Boolean and subpixel
analysis approaches, use of the multitemporal noise mask)
and use of other QuikSCAT image modes (e.g. spatial reso-
lution, incidence angle, noise patterns, and reconstruction
algorithm).

CONCLUSIONS
In general, subpixel analysis demonstrated efficient perform-
ance for snow-melt detection with both SSMI and QuikSCAT
sensors, as shown by evaluation analysis of wet-snow frac-
tion images compared with higher-spatial-resolution ASAR
classified images as well as of the derived temporal dynamics
melt indices compared with the traditional melt metrics mea-
sured by Boolean snow-melt detection approaches in the lit-
erature reference (Trusel and others, 2012; Barrand and
others, 2013). Multitemporal band ratio-based maskings
were required for QuikSCAT data due to topographical-
related effects that produced low backscattering responses.
The assessment based on ASAR classified images presented
regular to good results according to correlation and error sta-
tistics analyses, except for certain days, probably due to the
use of multiple passing date image mosaics.

Because the snow melt actually occurs at pixel fractions,
the performed multiscale analysis suggests an overestimation
of melt metrics calculated according to Boolean approaches
that assume all of the areas of the pixels are detected as the
presence of snow melt. Because the traditional melt metrics
are based on Boolean snow-melt detection, sensitivity ana-
lysis is required to evaluate the melt metric results derived
from the subpixel analysis. The measured melt metrics
show an overestimation as the spatial resolution decreases,
an observation related to the multiplicative effect of a
larger pixel area. The proposed subpixel analysis is an
innovative and consistent approach that offers potential for
snow-melt detection and melt metrics measurement.
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