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p-adic and Motivic Measure on Artin
n-stacks

Chetan Balwe

Abstract. We define a notion of p-adic measure on Artin n-stacks that are of strongly finite type over
the ring of p-adic integers. p-adic measure on schemes can be evaluated by counting points on the re-
duction of the scheme modulo pn. We show that an analogous construction works in the case of Artin
stacks as well if we count the points using the counting measure defined by Toën. As a consequence, we
obtain the result that the Poincaré and Serre series of such stacks are rational functions, thus extending
Denef ’s result for varieties. Finally, using motivic integration we show that as p varies, the rationality
of the Serre series of an Artin stack defined over the integers is uniform with respect to p.

1 Introduction

Let X be a scheme of finite type and of pure dimension d over Zp. One can define
a measure on the space X(Zp), called the p-adic measure, which we denote by µd.
Roughly speaking, this is defined by choosing bi-analytic isometries of open subsets
of the smooth part of X(Zp) with balls in Zd

p and pulling back the normalized Haar
measure on Zd

p (see [19]). However, there is another way to define this measure. For
each n, let τn : X(Zp) → X(Z/pnZ) be the “reduction modulo pn” map. Let A be a
sub-analytic or definable (in the language of valued fields) subset of X(Zp). Then it
can be proved (see [17]) that

(1.1) µd(A) = lim
n→∞

p−nd|τn(A)|,

where | · | denotes the cardinality of a set. In other words, the p-adic measure on
X(Zp) can be obtained from the counting measure on X(Z/pnZ) by a limiting pro-
cess. As an application of p-adic measure, it can be proved that the power series

PX(T) :=
∞∑

n=0
|τn(X(Zp))|Tn, P̃X(T) :=

∞∑
n=0
|X(Z/pnZ)|Tn

(the Serre series and the Poincaré series) are rational functions of T (see [8]).
If X is a scheme of finite type and of pure dimension d over Z, one can consider

the schemes Xp := X ×Spec(Z) Spec(Zp) for various primes p. Then motivic integra-
tion allows us to compare the p-adic measures on Xp as p varies. Roughly speaking,
if we consider a formula φ in the language of valued fields and interpret it on the
various Xp, we obtain a family of subsets Ap ⊂ X(Zp) for almost all p. The motivic
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measure µ(φ) of the formula φ lies in a certain localization of the Grothendieck ring
of formulas in the language of rings with coefficients in Z. Then, for almost all p,
the measure µd(Ap) can be obtained from µ(φ) by a process of specialization that
amounts to “counting the Fp-valued points satisfying µ(φ)” (see [6, Section 9] for a
precise discussion). As a result, for almost all p, evaluating the p-adic measure of a
definable subset for any fixed p boils down to counting the Fp-valued points satis-
fying a set of formulas that is independent of p. Thus, one is able to strengthen the
above-mentioned result regarding the rationality of the power series PXp and P̃Xp . In-
deed, one is able to obtain rational functions PX(T) and P̃X(T) in T, with coefficients
in the above-mentioned localization of the Grothendieck ring, which specialize to
the power series PXp (T) and P̃Xp (T) respectively for almost all p.

We would like to generalize these results to Artin stacks that are strongly of finite
type over Z. First we would like to define a p-adic measure on an Artin stack X that
is strongly of finite type over Zp. We do this by first defining a counting measure for
the (Z/pnZ)-valued points of X. Then we use this counting measure in the analogue
of equation (1.1) and show that the limit on the right-hand side of equation exists in
the case of stacks as well, thus obtaining a notion of p-adic measure (see Theorem
4.5). As a consequence of the proof, we will see in Theorem 4.6 that the power series
PX(T) and P̃X(T) are rational functions of T. Finally, when X is an Artin stack that is
strongly of finite type over Z, we vary p and use motivic integration to show that the
rationality of the power series PXp is uniform with respect to p (see Theorem 6.2).

Convention 1.1 We will use the following conventions and notation.

(i) For any scheme T, Aff /T will denote the (big) étale site of affine schemes
over T.

(ii) For any scheme T, (Aff /T)∼ will denote the model category of simplicial pre-
sheaves on T with the local projective model structure (see [21]). The homotopy
category Ho((Aff /T)∼) will be referred to as the category of stacks over T and
denoted by St(T). We will depend on the works of Toën ([20–22]) for all the
terminology and basic results regarding this category.

(iii) We will usually be concerned with Artin stacks that are strongly of finite type
over the base scheme. For the sake of brevity, we will say that X is an sft-Artin
stack over S if X is an Artin stack, strongly of finite type over S (see [22] for an
explanation of this notion).

(iv) When we speak of sft-Artin stacks over a discrete valuation ring A, we will al-
ways intend it to be flat over A.

2 Counting Points on Artin Stacks

In this section, we consider the problem of defining a meaningful way to count the
(Z/pnZ)-valued points of a sft-Artin stack over Zp. In other words, for such a stack
X, we wish to define a counting measure on the set π0(X(Z/pnZ)).
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If X is an sft-Artin stack over a finite field Fq, there is already a notion of counting
for the Fq-valued points on X that was proposed by Toën in [20]. One defines

(2.1) #X(Fq) :=
∑

x∈π0(X(Fq))

∏
i>0
|πi(X(Fq), x)|(−1)i

.

It was proved in [20, Proposition 3.5] that the sets π0(X(Fq)) and πi(X(Fq), x) are
finite. (We will obtain a different proof for this in the following section; see Remark
3.6.) The product is finite, because the groups πi(X(Fq), x) are trivial for sufficiently
large i. Thus the right-hand side is well defined. This definition is justified by the fact
that this counting measure factors through the Grothendieck ring of sft-Artin stacks
over Fq.

The above formula suggests that if one has an sft-Artin stack X over Zp, one may
wish to simply define

(2.2) #X(Z/pnZ) :=
∑

x∈π0(X(Z/pnZ))

∏
i>0
|πi(X(Z/pn,Z), x)|(−1)i

though we would have to verify that the right-hand side of this equation is finite.
This is not merely an ad hoc definition. One can functorially construct an Artin
stack Grn(X) of strongly finite type over Fp such that we have a weak equivalence
X(Z/pnZ) ' Grn(X)(Fp). Thus, applying formula (2.1) to Grn(X) yields formula
(2.2) and also proves that the right-hand side is finite.

More generally, let R be a complete discrete valuation ring with residue field k. Let
ω be a uniformizing parameter of R and let Rn := R/〈ωn+1〉 for n ≥ 0. Then, given
a sft-Artin stack X over R, we will construct sft-Artin stacks Grn(X) over k such that
X(R) ' Grn(X)(k).

We begin by recalling some material from [11]. Suppose S is an Artin local ring
with residue field K such that there exists a bijection of the elements of S with the
set Kn for some n and such that the addition and multiplication maps are given by
polynomials with coefficients in K. Then there exists a ring variety S over K such
that the underlying scheme of S is isomorphic to An

K and such that S(K) = S. We
can use the ring variety S to define a functor Aff / Spec(K)→ Aff / Spec(S) given by
U 7→ Spec(S(A)).

Convention 2.1 For any ring scheme A over a base scheme T, we denote by

Ã : Aff /T → Aff / Spec(A(T)) the functor U 7→ Spec(A(U )).

It is proved in [11], that if X is a scheme of finite type over S, then the presheaf
on Aff / Spec(K) defined given by U 7→ X(S̃(U )) is represented by a scheme of finite
type over K. In the case when S is of the form S = Rn for some n ≥ 0, we wish to
extend this result to sft-Artin stacks over Rn.

Convention 2.2 Let C and D be Grothendieck sites and let σ : C → D be a functor.
Then we use (σ!, σ∗) to denote the adjunction C∼ � D∼, where σ∗(F) is defined by
σ∗(F)(c) = F(σ(c)). (Of course, this is not always a Quillen adjunction.)
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Now for each n ≥ 0, let Rn denote the ring variety over k that is constructed from
Rn in the manner described above. We wish to examine the functors (R̃n)∗ for each
n ≥ 0. We will prove that the adjunction ((R̃n)!, (R̃n)∗) is a Quillen adjunction and

that the right derived functor of (R̃n)∗ (which will be the desired functor Grn) takes
sft-Artin stacks over Rn to sft-Artin stacks over k.

The behaviour of the functor R̃n depends on the characteristics of R and k. We
will only need the case in which char(R) 6= char(k). The case char(R) = char(k)
is only mentioned in this section for the sake of completeness. Also, this case is
much easier to handle, since we know that R is isomorphic to the power series ring
k[[t]]. It is then easily verified that for U = Spec(A) in Aff / Spec(k), we have

R̃n(U ) = U ×Spec(k) Spec(Rn). Thus, (R̃n)∗ is simply Weil restriction with respect
to the morphism Spec(Rn) → Spec(k) and we can define Grn(X) to be the stack
Hom(Spec(Rn),X) where Hom denotes the internal Hom in St(k) (see [21, Section
3.6]). However, we do not have this option when char(R) 6= char(k) and thus, for
the sake of a unified presentation, we simply follow the argument described in the

preceding paragraph for both cases and prove that ((R̃n)!, (R̃n)∗) is a Quillen ad-
junction. For the equal characteristic case, this is easy to see (and this was presented
explicitly in [1]). However, in the unequal characteristic case, a little more work is
required as we will see in Propositions 2.3 and 2.6.

Before we prove Proposition 2.3, we will need to understand the structure of the
ring varieties Rn in the case char(R) = 0, char(k) = p 6= 0. In this case, R is obtained
as a totally ramified extension of the ring W (k) of Witt vectors with coefficients in k.
Let us recall some basic facts about Witt vectors (see [13] or [18]). For any Fp-algebra
A, W (A) is actually the set of A-rational points of the ring scheme of Witt vectors,
denoted by W . The underlying scheme of W is AN = Spec Fp[Z1,Z2, . . . ]. (Strictly
speaking, this is only the fibre of the Witt scheme at the prime p. However, since
we are only going to be working with Fp-algebras, this will suffice for our purposes.)
The addition and multiplication are given by polynomials with coefficients in Fp. As
it turns out, these polynomials, when restricted to the first n coordinates, define a
ring scheme structure on An that is denoted by Wn and called the scheme of Witt
vectors of length n. For n > m, the projection on the first m coordinates defines a
“truncation” morphism Wn →Wm that is a ring scheme homomorphism. Similarly,
we have morphisms W →Wn and W is the projective limit of the system defined by
the Wn for n ≥ 0 along with the truncation morphisms.

The scheme W has two well-known automorphisms: the Verschiebung or “shift-
ing” operator V and the Frobenius operator F. Via the isomorphism W ∼= AN, for
any k-algebra A these automorphisms are given on W (A) by the formulas

V ((a0, a1, . . . )) = (0, a0, a1, . . . )

and

F((a0, a1, . . . )) = (ap
0 , a

p
1 , . . . )

where ai ∈ A, for all i. In other words, F is just induced by the Frobenius opera-
tor on A (which we will denote by the same symbol F). (Note that this description
of the Frobenius operator only applies when we are working with algebras over Fp.
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For more general rings, the description is via the “ghost components” of the Witt
vectors.)

We will require the following easily verifiable facts about these operators.

(a) For any a, b ∈W (A), we have aV (b) = V (F(a)b).
(b) Iterations of V induce a filtration of W that is consistent with the ring structure.

In other words V nW (A) · V mW (A) ⊂ V n+mW (A). Note that V nW (A) is the
kernel of the truncation map W (A)→Wn(A).

Note that we have similar operators V and F on Wn(A) for any n and that these maps
commute with the truncation map. (It is also an easily verifiable fact that V F and FV
are equal to multiplication by p.)

Let grV W (A) denote the graded ring of W (A) with respect to the filtration in-
duced by V . Then it follows from statement (a) that grn

V W (A) is isomorphic to the
A-module Fn

∗A obtained by considering A as an A-module by scalar restriction via
the homomorphism Fn : A→ A.

Now let us consider the rings R and Rn for n ≥ 0. We know that R is obtained from
W (k) by attaching the root of an Eisenstein polynomial of degree e and coefficients in
W (k), where e is the absolute ramification index of R over W (R0) (i.e., ordR(p) = e).
Thus, R is a free module with e generators over the ring W (R0). From this, it is easy
to see that there exists a ring scheme R that is a module scheme over W of the form
W e and such that R = R(k). The rings Rn are Artin local rings, and so by the above
discussion we see that there exists ring schemes Rn of finite type over k such that
such that Rn(k) = Rn.1 We also have ring homomorphisms Rn → Rm for n > m
obtained from the surjections Rn → Rm, and R is the limit of this projective system
of schemes.

We wish to prove that the functor Rn preserves étale morphisms of schemes. This
has been proved for the case R = W (k) in [13]. We prove this result in the general
case using the same method with some modifications.

For any integer m ≥ 1, let Rm (resp. Rm
n ) denote the kernel of the morphism

R→ Rm−1 (resp. Rn → Rm−1). Let R0 (resp. R0
n) be the scheme R (resp. Rn). Then

{Rm}m≥0 (resp. {Rm
n }m≥0 ) is a decreasing filtration of closed ideal subschemes on

R (resp. Rn).
The ideals Rm and Rm

n can be easily described if we choose good presentations of R
and Rn as W -modules. We know that R = W (R0)[ω] (see [18, Chapter 1, Prop. 18]).
Thus we can choose 1, ω, . . . , ωe−1 as generators for R and Rn as W (k)-modules. A
typical element of R is of the form

x =
e−1∑
i=0

(a0i , a1i , . . . ) · ωi

where (a0i , a1i , . . . ) ∈W (k). Clearly,

ordR((a0i , a1i , . . . ) · ωi) = i + ke,

where k is the least integer such that aki 6= 0. Thus

ordR(x) = min
i
{ordR(a0i , a1i , . . . ) · ωi)}.

1It is claimed in [2] that Rn(A) = Rn ⊗W (k) W (A) where A is any algebra over k. However, in reality,
this will not hold unless A is perfect.

https://doi.org/10.4153/CJM-2014-021-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-021-7


1224 C. Balwe

Suppose that m + 1 = q · e + r for 0 ≤ r ≤ e− 1. Then it is easy to see from the above
calculation of ordR(x) that Rm = V m0W ⊕ · · · ⊕V m(e−1)W , where mi = q + εi where
εi = 1 if 0 ≤ i < r and = 0 otherwise. (The description of Rm

n is similar.) From this
description, it is easy to see that the filtration is consistent with the ring structure and
that the ideals R1

n are nilpotent for all n.
Let grR(A) (resp. grRn(A)) denote the graded ring of R(A) (resp. Rn(A)) with

respect to this filtration. It follows that for m < n,

grm R(A) = grm Rn(A) =

{
Fq
∗A if r 6= 0,

Fq+1
∗ A if r = 0,

where q and r are as in the preceding paragraph.
Now we prove that the functor R̃n takes étale maps into étale maps. (In the special

case R = W , this has been proved in [13]. An extension of the result in this special
case, involving general Witt vectors, was proved in [3]). Our argument for general
R is an adaptation of the proof in [13], but we present it in detail for the sake of
completeness.

Proposition 2.3 Let X → Y be an étale morphism of schemes over k. Then R̃n(X)→
R̃n(Y ) is étale, and the diagram

X //

��

R̃n(X)

��
Y // R̃n(Y )

is cartesian.

Proof In the case char(R) = char(k), the statement is obvious. Thus we now focus
on the case char(R) = 0, char(k) = p 6= 0. Without any loss of generality, we can
assume that X = Spec(B), Y = Spec(A) and that the morphism X → Y is given by a
k-algebra homomorphism A→ B. First we show that Rn(A)→ Rn(B) is flat. For this
we use a modification of the flatness criterion for filtered modules in [4, Chap. III,
§ 5, Thm. 1]. This criterion is stated there for I-adic filtrations but the arguments are
easily adapted to this case as follows.

Lemma 2.4 Let A be a ring with a given decreasing filtration {Ai}∞i=0. Let M be an
A-module with a filtration {Mi}∞i=0 that is compatible with the filtration of A. Suppose
the following conditions hold:

(i) there exists an integer k such that Ai = 0 and Mi = 0 for all i > k;
(ii) M/M1 is a flat A/A1-module;
(iii) grn A⊗gr0 A gr0 M → grn M is an isomorphism.

Then M is a flat A-module.
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Proof First we prove that An ⊗A M → Mn is a surjection for all n. Indeed, this is
trivially true for n > k. For general n, we consider the diagram

An+1M //

��

AnM //

��

AnM/An+1M //

��

0

0 // Mn+1
// Mn

// grn M // 0.

It is clear from the diagram that it will suffice to prove that the right vertical map
is surjective (since we can then apply decreasing induction on n). The image of
AnM/An+1M in grn M is the same as the image of

An/An+1 ⊗A M → grn M.

But An/An+1 is annihilated by A1, so

An/An+1 ⊗A M ∼= An/An+1 ⊗A/A1
M/(A1M).

Since A1M ⊂ M1, we have a surjection

An/An+1 ⊗A/A1
M/(A1M)→ An/An+1 ⊗A/A1

M/M1.

But An/An+1 ⊗A/A1
M/M1 → grn M is an isomorphism by hypothesis. Thus, we see

that An ⊗A M → Mn is a surjection. In other words, AnM = Mn for all n.
Now we claim that An ⊗A M → Mn is an injection as well. Indeed, consider the

diagram

An+1 ⊗A M //

��

An ⊗A M //

��

(An/An+1)⊗A M //

��

0

0 // Mn+1
// Mn

// grn M // 0.

Again, using decreasing induction on n, we see that it is enough to show that the right
vertical map is an isomorphism. For this, we observe that

(An/An+1)⊗A M ∼= (An/An+1)⊗A/A1
M/A1M ∼= (An/An+1)⊗A/A1

M/M1.

Thus the right vertical map is an isomorphism by hypothesis. Thus, An⊗A M → Mn

is an isomorphism for all n.
Now we can forget about the given filtrations on A and M and apply [4, Chap. III,

§5, Thm. 1] for the A1-adic filtrations. In other words, the facts that M/M1 =
M/A1M is a flat A/A1 module and A1 ⊗ M → A1M is a bijection imply that M
is a flat A-module.

We continue the proof of Proposition 2.3. By [7, XIV, §1, Prop. 2], the relative
Frobenius map FSpec(B)/ Spec(A) is surjective and radicial. Since it is also étale, it is an
isomorphism. Thus F∗B ∼= B ⊗A F∗A, and by iteration Fq

∗B ∼= B ⊗A Fq
∗A for any

positive integer q. Thus, by our earlier arguments, grn Rn(B) ∼= B ⊗A grn Rn(A). By
Lemma 2.4, we see that Rn(B) is flat over Rn(A). Also, from the proof of the previous
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lemma, we see that R1
n(B) is generated by the image of R1

n(A). Thus

X //

��

R̃n(X)

��
Y // R̃n(Y )

is cartesian and the vertical arrows are flat morphisms. Now the result follows from
Lemma 2.5

Lemma 2.5 Suppose A → B is a flat ring homomorphism. Let I be a nilpotent ideal
in A and suppose that A/I → B/IB is étale. Then A→ B is étale.

Proof Since I is a nilpotent ideal, one can easily prove that the fact that A/I → B/IB
is of finite type implies that A → B is of finite type. Indeed if the homomor-
phism p : A/I[X1, . . . ,Xr] → B/IB is a surjection, we define a homomorphism
q : A[X1, . . . ,Xr] → B to be an arbitrary lift of this surjection. Then for any el-
ement b, there exists f (X) ∈ A[X1, . . . ,Xr] such that q( f (X)) − b ∈ IB. Thus
q( f (X) − b = i1b1 + · · · + isbs. Now choose fi(X) ∈ A[X1, . . . ,Xr] for 1 ≤ i ≤ s
such that q( fi(X)) − bi ∈ IB. Then if g(X) = f (X) −

∑
i fi(X), we see that

q(g(X)) − b ∈ I2B. Continuing in this manner and using the fact that I is nilpo-
tent, we see that q is surjective.

Thus now we merely need to prove that A→ B is unramified. But this is immedi-
ate, since A/I → B/IB is unramified. (A morphism of schemes is unramified if and
only if its geometric fibres are unramified).

Proposition 2.6 The functor R̃n : Aff / Spec(k)→ Aff / Spec(Rn) satisfies

R̃n(X ×Z Y ) ∼= R̃n(X)×
R̃n(Z) R̃nY

if X → Z is étale.

Proof In the diagram

X ×Z Y //

��

X //

��

R̃n(X)

��
Y // Z // R̃n(Z),

the left and right squares are cartesian, and so the outer square is cartesian. In the
diagram

X ×Z Y //

��

R̃n(X)×
R̃n(Z) R̃n(Y ) //

��

R̃n(X)

��
Y // R̃n(Y ) // R̃n(Z),
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the right and outer squares are cartesian. Thus the left square is cartesian. But since

Y is a closed subscheme of R̃n(Y ) defined by a nilpotent ideal, there is a unique étale

morphism T → R̃n(Y ) such that T ×
R̃n(Y ) Y ∼= X ×Z Y . Since both

R̃n(X ×Z Y ) −→ R̃n(Y ) and R̃n(X)×
R̃n(Z) R̃n(Y ) −→ R̃n(Y )

satisfy this property, they must be equal.

Proposition 2.7 ((R̃n)!, (R̃n)∗) is a Quillen adjunction.

Proof By [10, Cor. 8.3] it suffices to check that R̃n preserves étale covers and that
it commutes with limits of finite diagrams of étale maps. This follows from Proposi-
tions 2.3 and 2.6.

Definition 2.8 For any n ≥ 0, the n-th Greenberg functor for R is defined
to be the right-derived functor R(R̃n)∗ : St(Spec(Rn)) → St(Spec(R0)) and is de-
noted by Grn. If X is a stack over R, we abuse notation and write Grn(X) instead of
GrR

n (X ×Spec(R) Spec(Rn)).

Convention 2.9 Actually, it would be appropriate to include a reference to R in the
notation for the n-th Greenberg functor. However, we will avoid this to prevent the
notation from becoming too cumbersome. This will not lead to any confusion.

Proposition 2.10 Let n ≥ 0 be an integer. The functor Grn has the following proper-
ties:

(i) Grn preserves homotopy fibre products;
(ii) Grn takes schemes of finite type over Rn to schemes of finite type over k;
(iii) Grn takes smooth (étale, unramified) morphisms between schemes of finite type

over Rn to smooth (resp. étale, unramified) morphisms between schemes of finite
type over k;

(iv) Grn preserves epimorphisms of stacks;
(v) Grn takes sft-Artin stacks over Rn to sft-Artin stacks over k.

Proof (i) is obvious, since (R̃n)∗ is a right Quillen functor. (ii) is proved in [11].
(iii) is stated in [2] without a proof. A proof is included here for the sake of

completeness. Suppose char(R) = 0 and char(k) = p 6= 0.
For any positive integer m, let x = (x0, . . . , xm−1) and y = (y0, . . . , ym−1) denote

generic elements of Wm. We claim that all the monomials appearing in the polyno-
mials defining the product xy involve both the xi and yi to non-zero degree. Indeed,
suppose xy = (p0, . . . , pm−1), where for every i, pi is a polynomial in x and y. Sup-
pose that for some j a monomial of the form the monomial xαj , α ∈ N, appears in
one of the polynomials p0, p1, . . . , pm−1. Then we see that if x = (0, . . . , 1, . . . 0)
(i.e., 1 in the j-th place and 0 elsewhere) and y = (0, . . . , 0) (0 in all places), then
xy 6= 0, which is a contradiction. This proves our claim.

Thus we see that for any ring A, if a = (a0, . . . , an−1) and (b0, . . . , bn−1) are
elements of Wn(A) such that the ai are in an ideal I and the bi are in an ideal J, then
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the coordinates of ab are in the ideal I J. By examining the multiplication rule on
Rn, we see that this argument continues to hold with Rn in place of Wn. Also note
that the set of elements having all coordinates in an ideal I is precisely the kernel of
Rn(A) → Rn(A/I). Thus we see that if I is a nilpotent ideal in A, then the kernel
of R(A) → Rn(A/I) is a nilpotent ideal in R(A). This proves that Grn preserves
the property of being formally smooth, étale, or unramified. This proves (iii) in the
unequal characteristic case. The argument in the case char(R) = char(k) is similar
but simpler, and so we omit it.

To prove (iv), it suffices to see that for any affine scheme U over k, any étale cover
of R̃n(U ) can be refined by a cover of the form {R̃n(Ui) → Rn(U}i . But this is
obvious since U is a closed subscheme of R(U ) defined by a nilpotent ideal.

(v) now follows immediately, since the notion of an Artin stack is defined in terms
of affine schemes, smoothness, and homotopy fibre products.

Let m ≥ n be non-negative integers and let U be an affine scheme over k. The
ring-scheme homomorphism Rm → Rn induces a morphism em

n : R̃n(U )→ R̃m(U ).
These morphisms induce the “truncation morphisms” as follows.

Definition 2.11 Let X be a stack over R. The truncation morphism
τm

n,X : Grm(X)→ Grn(X) is the one that maps

xm ∈ Grm(X)(U ) : R̃m(U ) −→ X

to

xn ∈ Grn(X)(U ) : R̃n(U )
em

n

−→ R̃m(U )
xm

−→ X

for any affine scheme U over k.
Also, for every n and for any affine scheme U let τn,X(U ) denote the function

π0

(
X(R(U ))

)
→ π0

(
X(Rn(U ))

)
≡ π0

(
Grn(X)(U )

)
.

If there is no risk of confusion, we will write τm
n instead of τm

n,X . We will also write τn

instead of τn,X(U ) (i.e., we will omit the reference to both U and X).

3 Lifting R-valued Points to an Atlas

Let X be an Artin stack and let p : U → X be a smooth atlas, with U being an
affine scheme. Then if K is a field and x : Spec(K) → X is a morphism, we may
not always be able to find a lift u : Spec(K)→ X. However, given x, p can be chosen
appropriately so that a lift does exist, as we will prove in Lemma 3.1. If X is an sft-
Artin stack over a noetherian base scheme, then p can be chosen to be independent
of x.

Lemma 3.1 is proved in [14, Thm. II.6.4] for algebraic spaces, and the argument
is generalized in [15, Chapter 6] for Artin 1-stacks. The proof for Artin n-stacks is
obtained by a further extension of this argument.

Let X → Y be a morphism of stacks. Then (X/Y )d denotes the d-fold fibre prod-
uct

X ×h
Y X ×h

Y × · · · ×h
Y X︸ ︷︷ ︸

d times

.
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Let Sd denote the symmetric group on d letters. Then Sd acts on (X/Y )d by per-
muting the factors and the quotient stack is denoted by Σd(X/Y ). We observe that
this construction is well behaved with respect to base changes of the form Y ′ → Y .

Lemma 3.1 Let S be an arbitrary base scheme and let X be an Artin stack over S. Let
K be a field and suppose we have a morphism x : Spec(K) → X. Then there exists a
diagram

V

φ

��
Spec(K)

v

;;

x
// X

that commutes up to homotopy, where V is an affine scheme and φ is smooth.

Proof Choose a smooth morphism U → X, where U is an affine scheme such
that the stack Ux := U×h

X,x Spec(K) is non-empty. Since Ux is non-empty, there
exists a K-morphism x′ : Spec(K′) → Ux, where K′ is a separable finite field ex-
tension of K. Let d = [K′ :K]. Let L be a Galois extension of K containing K′,
so that Spec(K′) ×Spec(K) Spec(L) =

∐
J Spec(L) where J is a set of representa-

tives for the cosets of Gal(L/K′) in Gal(L/K). Note that the action of Gal(L/K) on
Spec(K′)×Spec(K) Spec(L) merely permutes the components of

∐
J Spec(L).

Clearly, x′ induces a morphism Spec(L) × {1, . . . , d} → Ux ×h
Spec(K) Spec(L), or

equivalently, a morphism Spec(L) → (Ux/ Spec(K))d ×h
Spec(K) Spec(L). On com-

posing with the projection, we get a morphism Spec(L) → (Ux/ Spec(K))d. On
composing with the quotient map for the Sd action, we get a morphism Spec(L)→
Σd(Ux/ Spec(K)). As we noted above, the action of Gal(L/K) permutes the compo-
nents of Spec(K′)×Spec(K) Spec(L) =

∐
J Spec(L), and thus we see that the L-valued

point Spec(L) → Σd(T1/T) that we have obtained is invariant under the action of
Gal(L/F), i.e., it is an F-valued point. This gives us an F-valued point of Σd(U/X).

Since U → X is smooth, so is (U/X)d → X. The quotient morphism (U/X)d →
Σd(U/X) is obviously a smooth covering map, and thus Σd(U/X) → X is smooth.
If X is an n-stack, it is clear that (U/X)d is an (n − 1)-stack. Let s : Z → (U/X)d be
a geometric point (i.e., Z is the spectrum of a separably closed field) of (U/X)d and
let t be its image in Σd(U/X). Then we have the long exact sequence of homotopy
groups

· · · → πi

(
Ft (Z), s

)
→ πi

(
(U/X)d(Z), s

)
→ πi

(
Σd(U/X))(Z), t

)
→ πi−1

(
Ft (Z), s

)
→ · · · ,

where Ft is the fibre of (U/X)d → Σd(U/X) at t . Since Ft is isomorphic to Z ×Sd,
we see immediately that πi((U/X)d(Z), s) ∼= πi(Σd(U/X)(Z), t) for i > 1. Thus
if X is an n-stack for n ≥ 2, then Σd(U/X) is an (n − 1)-stack. Now replace X by
Σd(U/X) and repeat the procedure until we come to the case n = 1. If X is an Artin
1-stack, then (U/X)d is an algebraic space, and thus Σd(U/X) is the quotient of an
algebraic space under the action of a finite group.
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Now the required result follows immediately from [15, Thm. 6.1]; we briefly re-
produce the argument. Choose the usual embedding of Sd into the group scheme
GLn,S. Let V ′ be the quotient of the action of Sd on (U/X)d ×S GLn,S. Then it can
be checked that V ′ is an algebraic space and that V ′ is a GLn,S-torsor over Σd(U/X).
Thus for any morphism T → Σd(U/X) from a semi-local scheme into Σd(U/X),
there exists a lift T → V ′. In particular, there exists a morphism v′ : Spec(K) → V ′

lifting x.
Finally, now we apply [14, Thm. II.6.4] to construct an étale map V → V ′ such

that V is an affine scheme and such that there exists a v : Spec(K)→ V lifting v′.

We note that in the above lemma, the morphism V → X is specifically chosen for
the given morphism x : Spec(K)→ X. However, for sft-Artin stacks over a noether-
ian base, we are able to strengthen this result.

Definition 3.2 Let p : X → Y be a morphism of Artin stacks.
(i) We say that p is of f-class n if for any field K and any morphism y : Spec(K)→

Y , there exists a finite field extension L of K with [L :K] ≤ n such that there exists a
morphism x : Spec(L)→ X such that the square

Spec(L)
x //

��

X

f

��
Spec(K)

y // Y

commutes up to homotopy.
(ii) We say that p is f-surjective if it is of f-class 0. In other words, for any field K,

the morphism π0(X(K))→ π0(Y (K)) is surjective.

Lemma 3.3 Let p : X → Y be a morphism of sft-Artin stacks over a noetherian base
scheme S. Then there exists a integer n such that p is of f-class n.

Proof We break the proof down into three cases.

Case 1. X and Y are affine schemes: Suppose Y = Spec(R) for some ring R and
X = Spec(R[X1, . . . ,Xr]/I), where I = 〈h1, . . . , hs〉 is some finitely generated ideal
of the noetherian ring R[X1, . . . ,Xr]. Now if y is a point of Y given by a ring homo-
morphism R → K for some field K, then the fibre X ×Y,y Spec(K)of p over Y is a
scheme of finite type over K whose underlying set is the set of solutions of the im-
ages of the polynomials hi in the ring K[X1, . . . ,Xr]. Clearly, there exists a number
n depending only on the degrees of the polynomials hi such that there exists a field
L with [L :K] and a K-morphism Spec(L) → X ×Y,y Spec(K). This proves the result
when X and Y are affine schemes.

Case 2. Y is an affine scheme and p is arbitrary: Note that if we have morphisms
F → G → H of Artin stacks over S and if the statement of the lemma is true for the
morphisms F → H then it is also true for the morphism G → H. Now let U → X
be a smooth atlas of X with U being an affine scheme of finite type over k. The result
follows from Case 1.
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Case 3. The general case: Let k ≥ −1 be an integer such that Y is k-geometric and p is
k-representable (see [20] for this terminology). We prove the result by induction on
k. The case k = −1 is covered in Case 1. Suppose the result is true for k ≤ m− 1.

Now suppose Y is m-geometric and Y is m-representable. Let V → Y be a smooth
atlas where V is an affine scheme. By the observation in Case 2, it is enough to prove
the result for the composition of the morphisms V ×Y X → X → Y . But this is also
the composition of the morphisms V×Y X → V → Y . The statement of the lemmma
holds for V ×Y X → V by Case 2. The morphism V → Y is (m− 1)-representable,
and thus the statement of the lemma holds for this morphism by the induction hy-
pothesis. This completes the proof.

Lemma 3.4 Let X be an sft-Artin stack over a noetherian base scheme S. Then there
exists an affine scheme V and a smooth covering map V → X which is f-surjective.

Proof The proof is based on the arguments in the proof of Lemma 3.1. Thus we
will refer to that proof for the details.

Suppose X is an n-stack. Choose any smooth covering map U → X. By Lemma
3.3, there exists an m such that U → X is of f-class m. Then by the argument in
the proof of Lemma 3.1, the map Σm!(U/X) is f-surjective. Then Σm!(U/X) is an
(n − 1)-stack. Proceeding as in the proof of Lemma 3.1, we get a smooth covering
map X′ → X that is f -surjective and X′ is an algebraic space. Thus it remains to
construct an f-surjective smooth covering map V → X′, where V is an affine scheme.

Let x be any point of X′ and let K be the residue field of X′ at x. Let {x} denote
the closure of x in X′ and let Z ⊂ {x} be an open dense subscheme of {x}. Using
Lemma 3.1 (or, more honestly, [14, Thm. II.6.4]), there exists a smooth (or even
étale) morphism Vx → X′ such that x : Spec(K) → X can be lifted to Vx. Then
it follows that there is a dense open subscheme Ux ⊂ Z such that the immersion
Ux → X′ has a lift Ux → Vx. In particular, Vx ×X′ Ux → Ux is f-surjective.

Now, we apply this construction to all the generic points of the top-dimensional
components of X′. This gives us a dense open subscheme U0 ⊂ X′ and a smooth
map V0 → X′, the image of which contains U0 and such that V0 ×X′ U0 → U0

is f-surjective. Then we apply this argument to all the generic points of the top-
dimensional components of X′\U0. Proceeding in this manner and using the fact
that X′ is a noetherian space, we get the required result.

Corollary 3.5 Let X be an sft-Artin stack over a complete discrete valuation ring A.
Let α be a uniformizing parameter in A. Then X has an atlas U → X, where U
is an affine scheme of finite type over A such that the maps U (A) → π0(X(A)) and
U (A/αn+1)→ π0(X(A/αn+1)) are surjective for all n ≥ 0.

Proof Let K denote the residue field of A. Using Lemma 3.4, there exists an f-
surjective smooth atlas U → X such that U is an affine scheme.

We prove that U (A) → π0(X(A)) is surjective. Indeed, pick any morphism
t : Spec(A) → X. It suffices to show that the smooth stack Ut : U ×h

X,t Spec(A)
has an A-valued point. By construction, Ut has a K-valued point u. We construct an
atlas Vt → Ut such that Vt is a (smooth) affine scheme over A and such that u lifts
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to Vt . Now we already know by Hensel’s lemma that this lift can be extended to an
A-valued point of Vt that gives an R-valued point of Ut . Thus U (A) → π0(X(A)) is
surjective. The proof for the maps U (A/αn+1)→ π0(X(A/αn+1)) is similar.

Remark 3.6 If, in Lemma 3.5, K is a finite field, the result follows from Lemma 3.1
itself, since then π0(X(K)) is known to be a finite set by [20, Prop. 3.5]. On the other
hand, once we have Lemma 3.4, we get an alternative proof of the fact that π0(X(K))
is finite. Indeed, choose a smooth atlas U → X, where U is an affine scheme. Then
by Lemma 3.3, it follows that there exists a finite algebraic extension L of K such that
any K-valued point of X lifts to an L-valued point of U . But the number of L-valued
points of U is known to be finite.

4 p-adic Measure on Artin Stacks

We recall the notation from Section 1 that R is a complete discrete valuation ring with
a finite residue field k of cardinality q = pr, ω is a uniformizing parameter in R and
Rn := R/〈ωn+1〉 for each n ≥ 0. In this section, we examine the numbers #X(Rn)
for n ≥ 0. We also define a p-adic measure on π0(X(R)). For this, we view π0(X(R))
as a locally compact topological space by the quotient topology given by the map
U (R) → X(R), where U → X is an f-surjective smooth atlas with U being an affine
scheme. It is easily seen that this topology is independent of the choice of the atlas
U → R, since any two such atlases U1 → X and U2 → X have a common refinement
(for example, choose a f-surjective smooth covering map U3 → U1 ×h

X U2). The
p-adic measure will be a Borel measure on this space.

For an stf-Artin stack X over k, we note that the counting formula (2.1) defines a
measure π0(X(k)). For any subset A ⊂ π0(X(k)), we denote this measure by #A. To
be precise, we write

(4.1) #A :=
∑
x∈A

∏
i>0
|πi(X(k), x)|(−1)i

.

In the following discussion, | · | will continue to denote the cardinality of a set, even
if it is a subset of π0(X(k)).

Lemma 4.1 Let p : F → G be a morphism of sft-Artin stacks over k. Let y ∈
π0(G(k)). Let Fy = F ×h

G Spec(k). Then

#p−1(y) =
(

#Fy(k)
)
·
(

#{y}
)

where p−1(y) = {x ∈ π0(F(k))|p(x) = y}.

Proof Let i y : Fy → F be projection morphism. Let x ∈ p−1(y). Let x′ ∈ F(k) such
that i y ◦x′ ∼= x. Then by the long exact sequence of homotopy groups corresponding
to the fibration sequence Fy(k)→ F(k)→ G(k), we have

|i−1
y (x)| ·

∞∏
i=1

( |πi(Fy(k), x′)| · |πi(G(k), y)|
|πi(F(k), x)|

) (−1)i

= 1.
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Thus (#{x′}) · (#{y}) = |i−1
y (x)|−1 · (#{x}). Summing up over all x′ ∈ i−1

y (x), we
get (

#i−1
y (x)

)
·
(

#{y}
)

= #{x}.

Summing up over all x ∈ p−1(y), we get(
#Fy(k)

)
·
(

#{y}
)

= #p−1(y).

Proposition 4.2 Let X be a smooth sft-Artin stack over R with dim(X/R) = d. Let
n ≥ 0 be an integer and let x ∈ π0(Grn(X)(k)). Then #(τ n+1

n )−1(x) = qd · #{x}.

Proof Suppose X be an sft-Artin stack that is m-geometric. We prove the result by
induction on m. When m = −1, i.e., when X is an affine scheme, the result is well
known.

Suppose the result has been proved for stacks that are m′-geometric for m′ ≤ m.
Let f : U → X be a f-surjective smooth atlas such that U is an affine scheme with
dim(U/R) = e. Let x′ ∈ (τ n+1

n )−1(x) and let x̃ be an element of (τn+1)−1(x′) (it is
easy to see that x̃ exists because X is smooth). Let F = U ×h

X,x̃ Spec(R). Then F is a
smooth sft-Artin stack over R that is (m− 1)-geometric.

We have

#Grn( f )−1(x) =
(

#π0(Grn(F)(k))
)
·
(

#{x}
)

and, similarly,

#Grn+1( f )−1(x′) =
(

#π0(Grn+1(F)(k))
)
·
(

#{x′}
)
.

Then by the induction hypothesis, we have

#π0(Grn+1(F)(k)) = q(e−d) · #π0(Grn(F)(k)).

Thus we have

#Grn+1( f )−1(x′) = q(e−d) · #Grn(p)−1(x)
#{x′}
#{x}

.

Letting x′ vary over the set (τ n+1
n )−1(x) and summing up, we get

#Grn+1( f )−1
(

(τ n+1
n )−1(x)

)
| = q(e−d) · #Grn( f )−1(x)

#(τ n+1
n )−1(x)

#{x}
,

but

Grn+1( f )−1
(

(τ n+1
n )−1(x)

)
=
(
τ n+1

n )−1(Grn( f )−1(x)
)
.

Thus, since we know the result to be true for m = −1, we have∣∣Grn+1( f )−1((τ n+1
n )−1(x))

∣∣ = qe ·
∣∣Grn( f )−1(x)

∣∣
which completes the proof.

Now let X be an arbitrary sft-Artin stack over R with dim(X/R) = d. Let f : U →
X be an f-surjective smooth atlas where U is an affine scheme with dim(U/R) = e.
For any s ∈ π0(X(k)), let U s := U ×h

X,s Spec(k) and let ms := #Us(k). Note that
ms 6= 0 for all s.
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Let A be any subset of π0(Grn(X)(k)). Let As denote the set A ∩ (τ n
0 )−1(s) so that

A =
∐

s∈π0(X(k)) As. By Lemma 4.1 and Proposition 4.2, we have

|Grn( f )−1(As)| = qn(e−d) ·ms · #As.

Thus,

q−nd · #A = q−nd ·
( ∑

s∈π0(X(k))

#As

)
= q−nd ·

( ∑
s∈π0(X(k))

|Grn( f )−1(As)|
ms · q−n(e−d)

)
=

∑
s∈π0(X(k))

( 1

ms

)
·
( |Grn( f )−1(As)|

q−ne

)
.

Similarly, if B ⊂ π0(X(R)), we define Bs := B ∩ τ−1
0 (s) for every s ∈ π0(X(k)). Then

it is clear that τn(Bs) = τn(B)s. Thus, we get

(4.2) q−nd · #(τn(B)) =
∑

s∈π0(X(k))

( 1

ms

)
·
( |Grn( f )−1(τn(Bs))|

q−ne

)
.

This leads us to define p-adic measure as follows.

Definition 4.3 With the above notation, note that a set B ⊂ π0(X(R)) is a Borel
subset if and only if f−1(B) ⊂ U (R) is a Borel subset. We define the p-adic measure
of such a set by

µ
f
d (B) :=

∑
s inS

( 1

ms

)
· µe

(
f−1(Bs)

)
.

Lemma 4.4 With the above notation, µ f
d is independent of the choice of f .

Proof This almost follows from the definition. Indeed, the limit of the left-hand
side of equation (4.2) as n → ∞, if it exists, clearly does not depend on f . This
limit exists if the limit of the right-hand side of equation (4.2) exists as n→∞. This
is clearly so if B is an open subset (for the topology described at the beginning of
this section). Indeed, in this case, for any s, the set Bs is a sub-analytic set. Thus, by
equation (1.1), the right-hand side converges.This shows that the result is true when
B is open.

If B is a Borel subset, so is f−1(B). Since Borel subsets are outer regular for the
p-adic measure on U (R), we see that µ f

d is independent of f on an arbitrary Borel
subset of π0(X(R)).

The arguments above have given us the following result, which we restate explic-
itly.

Theorem 4.5 Let X be an sft-Artin stack over R with dim(X/R) = d. Then the
sequences

{q−nd#π0(X(Rn))}∞n=0 and {q−nd#τn(π0(X(R)))}∞n=0
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both converge to µd(π0(X(R))).

Finally, we look at the power series P̃X(T) and PX(T).

Theorem 4.6 Let X be an sft-Artin stack over R. Then the power series PX(T) and
P̃X(T) are rational functions of T.

Proof With the notation as above, writing An := π0(X(Rn)) = π0(Grn(X)(k)), we
have the equalities

P̃X(T) =
∑

s∈π0(X(k))

∞∑
n=0

#(An)sT
n

=
∑

s∈π0(X(k))

1

ms · pn(e−d)

∞∑
n=0
|Grn( f )−1((An)s)|Tn.

Now it follows from [8, Thm. 4.1] that P̃X(T) is a rational function of T. The proof
for PX(T) is similar.

Remark 4.7 It has been proved in [12] that zeta functions arising from definable
equivalence relations are rational. François Loeser had posed the question of whether
a notion p-adic measure on stacks may lead to an alternative method for proving such
results. (This question was also raised by the referee.) The construction in this paper
is probably not suitable for exploring such a connection. Indeed, if X is an Artin
stack and U → X is an atlas, we do obtain an equivalence relation on the points of U ,
but not every definable equivalence relation occurs in this manner. It may be worth
exploring whether the ideas in this paper can be adapted to define a notion of p-adic
measure on more general stack-like objects that may be more suitable for addressing
these issues.

While the above argument is adequate to establish the rationality of PX(T), in
order to prove a “uniform rationality” theorem, it is useful to view the power series
PX(T) a little differently. We recall the definition of the singular locus of a stack.

Definition 4.8 Let X be an sft-Artin stack over an affine scheme S. Then the
singular locus Xsing is a closed substack of X defined as follows:

(i) If X is an affine scheme of dimension d over S, then Xsing is the closed subscheme
of X defined by the d-th Fitting ideal of ΩX/S (the module of relative differentials
of X over S.

(ii) In general, let f : U → X be a smooth atlas with U being an affine scheme of
finite type over S. Then Xsing is the closed substack of X which is the image of
Using → X.

In (ii) above, it is easy to check that the image stack of Using → X is a closed
substack of X and that the definition of Xsing does not depend on the choice of the
atlas f .
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Definition 4.9 Let X be an sft-Artin stack over R and let Xsing denote its singular
locus over R. Then the power series QX(T) is defined as

QX(T) := PX(T)− PXsing (T).

The reason that the power series QX(T) is useful is that the problem of proving the
rationality of PX(T) is equivalent to that of proving the rationality of QX(T). Indeed,
suppose we know that the power series QX(T) is a rational function for any sft-Artin
stack over R. Then we can prove the rationality of PX(T) by noetherian induction
on the closed substacks of X. Indeed, if PXsing (T) and QX(T) are both known to be
rational functions, it follows that PX(T) is a rational function. The advantage here is
that the coefficients of QX(T) have a simple description in terms of p-adic measure.

Lemma 4.10 Let X be an sft-Artin stack over R with dim(X/R) = d. Then QX(T) =∑∞
n=0 qndµd(Mn)Tn, where Mn is the subset of π0(X(R)) given by

Mn = π0

(
X(R)

)
\τ−1

n,X

(
Xsing(Rn)

)
.

Proof Let Sn := τn(π0(X(R)))\τn(π0(Xsing(R))) ⊂ π0(X(Rn)) such that the coeffi-
cient of Tn in QX(T) is #Sn. We wish to prove that µd(Mn) = #Sn/qnd. Note that
Mn = τ−1

n (Sn).
First suppose that X is an affine scheme. Then it is known that for any n, x ∈ Sn

implies that #[(τ n+1
n )−1(x) ∩ τn(π0(X(R)))] = qd (for example, see the argument in

[16, Lemma 9.1]).
The case of a general sft-Artin stack follows from equation (4.2) and our definition

of p-adic measure.

5 Motivic Measure on Stacks

In this section k will denote a field of characteristic zero. Let Fieldk denote the cate-
gory of field extensions of k. We will now associate a “motivic measure” to definable
subassignments on Artin stacks over k[[t]]. In doing so, we will assume familiarity
with the theory of motivic integration as presented in [5]. For the sake of complete-
ness, we recall some of the definitions and notation from that work. We are essentially
reproducing the summary from [6, Section 2] while incorporating the changes that
are necessary for our setting.

For any field extension K of k, we consider the power series ring K[[t]]. This is a
discrete valuation ring with valuation ord : K[[t]]\{0} → Z. Let ac : K[[t]] → K be
the “angular component” map, i.e.,

ac(x) =

{
xt− ord(x) mod t if x 6= 0

0 if x = 0.

In order to work with these power series rings, we use the language of Denef–Pas,
which we denote by LLD,P. This is a 3-sorted language

LLD,P := (LVal, LRes, LOrd, ord, ac)
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with three sorts, Val, Res, and Ord corresponding to the valuation ring, the
residue field and the order group. LVal and LRes are equal to the language of rings
{+,−, · , 0, 1}, while the language LOrd is the Presburger language

{+,−, 0, 1,≤} ∪ {≡n |m ∈ N, n > 1},

where≡n is interpreted as congruence modulo n.
If C is a category and F : C→ Sets is a functor, a subassignment h of F is a rule that

assigns a subset h(C) ⊂ F(C) for each object C of C. For subassignments, the usual
set-theoretic notions such as ∪, ∩, ⊂, etc., are defined objectwise. In particular the
subassignments of a fixed functor form a Boolean algebra.

We use this notion with C = Fieldk. Consider a triple (X,X, r), where X is an
Artin stack over k[[t]], X is an Artin stack over k, and r ≥ 0 is an integer. Consider
the functor

(X× X × Zr)(K) := π0

(
X(K[[t]])× π0(X(K)

)
× Zr.

When any of the elements in the triple (X,X, r) are trivial (i.e., X = Spec(k[[t]]),
X = Spec(k), or r = 0) we may abuse notation and simply omit to write them if
there is no risk of confusion. When X = An

k[[t]] and X = Am
k , the above functor is

denoted by h[m, n, r].

Remark 5.1 Note that we are considering K[[t]]-valued points when we define a
subassignment, while in [5, 6] one considers K((t))-valued points. However, when
one is working with a separated scheme X, X(K[[t]]) maps injectively into X(K((t)))
and thus we can apply the results regarding motivic measure on such schemes with-
out any problems. We will use these results only for affine schemes.

We will now define what it means for a subassignment of such a functor to be
definable in the language of Denef–Pas. Given such a triple (X,X, r), we choose
f-surjective smooth atlases U→ X and U → X such that U and U are affine schemes
over k[[t]] and k respectively. Then consider the triple (U,U , r). There is an obvious
morphism of functors f : U×U × Zr → X× X × Zr. We say that a subassignment
of X× X × Zr is definable if and only if its preimage in U×U × Zr is definable by a
formula in the language LLD,P with Val coefficients in k[[t]] and Res coefficients in k.
It is easy to see that this notion is independent of the choice of U→ X and U → X.

Suppose (X,X, r) and (Y,Y, s) are two triples with X and Y (resp. X and Y ) being
sft-Artin stacks over k[[t]] (resp. k). Suppose we are given morphisms of stacks X→
Y and X → Y along with a linear map Zr → Zs. Then this induces a morphism of the
functors X×X× Zr → Y×Y × Zs. We call such a morphism a geometric morphism.

Now, we consider the category D whose objects are pairs (S, (X,X, r)), where
(X,X, r) is a triple as above and S is a definable subassignment of X × X × r. A
morphism (S, (X,X, r)) → (T, (Y,Y, s)) is a geometric morphism X × X × Zr →
Y × Y × Zs that maps S into T. We say that morphism is an geometric equiva-
lence if it induces a weak equivalence S(K) → T(K) for every field extension K
of k and let us denote the class of geometric equivalences by W. (Here we view
S(K) ⊂ π0(X(K[[t]])× π0(X(K))× Zr not just as an ordinary set, but as a set whose
objects are homotopy types.) Now consider the category W−1D obtained from D by

https://doi.org/10.4153/CJM-2014-021-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-021-7


1238 C. Balwe

localizing with respect to W. It is easy to see that W is a left-multiplicative system of
morphisms, thus the localization makes sense. Indeed, any morphism S → T in the
localization is given by an equivalence W → S and a geometric morphism W → T.
We refer to the morphisms in W−1D as definable morphisms. (Note that unlike the
case of definable subassignments of varieties, we cannot simply say that a morphism
f : S → T is definable if its graph Γ f is a definable subassignment of S × T, since
Γ f → S× T is not a monomorphism in general.)

In the above construction, if we restrict ourselves to the full subcategory of objects
of the type (S, (An

k[[t]],Am
k , r)), where n,m ≥ 0, we denote the resulting category by

Defk. (This is exactly the category Defk defined in [5] except for the slight difference
explained in Remark 5.1.) More generally, for any subassignment S, we denote by
DefS the category of subassignments contained in S×An

k[[t]]×Am
k Zr, where n,m ≥ 0.

We denote by RDefS the subcategory of DefS consisting of subassignments of S× Am
k

for m ≥ 0. We denote by K0(RDefS) the corresponding Grothendieck ring (see [5,
Section 5]).

Let A denote the ring Z[L, L−1, {(1 − L−o)−1}i>0]. Let P(S) denote the ring of
functions from the set of points of S into A generated by constant functions, defin-
able functions from S into Z, and functions of the form Lβ with β : S → Z being
a definable morphism. We denote by P0(S) the subring of P(S) generated by the
characteristic functions of definable subassignments contained in S and the constant
function L. There is a natural ring homomorphism P0(S) → K0(RDefS) sending L
to the class of S × A1

k and sending the characteristic function 1T of a subassignment
T ⊂ S to the class of T itself (viewed as an element of RDefS). Then the ring of
constructible functions on S is defined by

C(S) := K0(RDe fS)⊗P0(S) P(S).

Let X be an sft-Artin stack over k[[t]] and let S be a definable subassignment con-
tained in X (viewed as a definable subassignment itself). Then the Zariski closure
W of S in X is the intersection of all closed substacks Y ⊂ X such that S ⊂ Y.
We set dim(S) = dim(Y/ Spec(k[[t]]). More generally, if S is a definable subassign-
ment of a functor of the type X × X × Zr where X and X are sft-Artin stacks over
k[[t]] and k-respectively, then we define the dimension of S to be the dimension of its
projection to X. For every integer d, we denote by C≤d(S) the ideal of C(S) gen-
erated by the characteristic functions of subassignments Z ⊂ S with dim(Z) ≤
d. This defines a filtration of C(S) and we denote the associated graded group by
C(S) :=

⊕
d Cd(S) (the group of constructible motivic Functions—note the capi-

tal ‘F’), where Cd(S) := C≤d(S)/C≤d−1(S). Note that d can be negative but the set of
d such that C≤d(S) 6= {0} is bounded below. For any φ ∈ C(S), its image in C(S) will
be denoted by [φ].

Now suppose S is in Defk and Z is in DefS. Then one can define a subgroup ISC(Z)
of C(Z) together with pushforward morphisms

f! : ISC(Z)→ C(Y )

for every morphism f : Z → Y in DefS (see [5, §10]). When S is simply the final
object of Defk, and f is the map Z → S, then we write f! as µ and call it the motivic
measure.
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More generally, if Λ is an object of Defk, the above construction can be performed
relative to Λ. Using relative dimension instead of dimension, we can obtain relative
analogues C(Z → Λ) for a definable morphism f : Z → Λ in DefΛ. In particular, we
obtain a morphism

µΛ : IΛC(Z → Λ)→ C(Λ) = IΛC(Λ→ Λ).

Note that f! and µΛ are usually distinct. However, when Λ is a subassignment of
Am

k , the groups IΛC(Z → Λ) and IC(Z) are identical and the morphisms µΛ and
f! from IC(Z) to C(Λ) = C(Λ) are the same. (See [5, Remark 14.2.3 and Theorem
10.1.1, Part (5)] for a clarification of this.) This will be made use of in the following
arguments, particularly in Lemma 5.2 and in the proof of Theorem 4.6 (particularly
where [5, Theorem 14.4.1] is applied).

This completes our review of the basic terminology and results. Now, in the fol-
lowing two lemmas, we will try to adapt the essence of equation (4.2) to motivic
integration. For an sft-Artin stack X over k[[t]], we will denote by X the Artin stack
X ×Spec(k[[t]]) Spec(k) over k. If p : X → Y is a morphism of sft-Artin stacks over
k[[t]], let p denote the pullback X → Y. Note that the morphism ρX : h[X] → X is
definable.

Lemma 5.2 Let f : U→ X be an f-surjective smooth covering map of affine schemes
over k[[t]]. Then [φ] ∈ IXC(X → X) if and only if [ f ∗(φ)] ∈ IUC(U → U). If these
conditions hold, then

µU

(
[ f ∗(φ)]

)
= f

∗(
µX([φ])

)
.

Proof As we recalled (from [5]) in the discussion above, [φ] ∈ IXC(X → X) if and
only if [φ] ∈ IC(X). Thus we simply wish to prove that [φ] ∈ IC(X) if and only if
f ∗([φ]) ∈ IC(U).

First we note a consequence of the f-surjectivity of f that we will use below. Since
f is f-surjective, so is f . In particular, every generic point ofX can be lifted toU. Thus
there is an open dense subscheme X0 ⊂ X and a X-morphism X0 → U. Repeating
the procedure for X − X0, we see that f has a definable (in the language of rings)
section s : X→ U.

We will now prove that [φ] ∈ IC(X) if and only if f ∗([φ]) ∈ IC(U). First we
observe that due to the [5, Theorem 10.1.1, Part (A3)] (the “projection formula”),
for α ∈ C(X) and β ∈ IC(U), α f!(β) ∈ IC(X) if and only if f ∗(α)β ∈ IC(U)
and that if these conditions are verified, then f!( f ∗(α)β) = α f!(β). We apply this
with β = [1U] and α = [φ]. Since f is a smooth morphism, it is easy to see
that f!([1U]) = ρ∗X( f !(1U)). Thus, f ∗([φ]) = f ∗([φ])1U ∈ IC(U) if and only if
ρ∗X( f !(1U))[φ] ∈ IC(X).

Suppose [φ] ∈ IC(X). Then we apply the projection formula mentioned above
to the morphism ρX. We see, as a result, that ρ∗X( f !(1U))[φ] ∈ IC(X) if and only if
f !(1U)(ρX)!([φ]) ∈ IC(X). But the latter condition is trivial since IC(X) = C(X).
Thus we see that ρ∗X( f !(1U))[φ] ∈ IC(X).

We now prove the converse; we assume that ρ∗X( f !(1U))[φ] ∈ IC(X) and show
that [φ] ∈ IC(X). To prove this, we can assume that φ ∈ C+(X), the semiring of
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positive constructible motivic functions on X (see [5, Section 5] for the definition).
Let γ = [U\s(X)] ∈ K0(RDe fX) so that f !(1U) = γ + [X]. Thus we have

ρ∗X
(

f !(1U)
)

[φ] = γ[φ] + [φ]

and γ[φ] ∈ C+(X), the semigroup positive constructible motivic Functions on X.
Now apply [5, Thm 12.2.1], to conclude that [φ] ∈ IC(X).

Finally, we prove the equality in the statement of the lemma. (For this part, it is
not necessary to assume that f is f-surjective.) It suffices to choose a suitable cover
{Ui}i of U by affine open subschemes Ui and prove the result after replacing X by
f (Ui) and U by Ui . By choosing the pieces of the cover to be sufficiently small, we
can assume that f factors as

U
f ′

−→ Adim(U/X)
X −→ X,

where f ′ is étale and the morphism Adim(U/X)
X → X is the projection. Thus it suffices

to prove the result for étale maps and maps of the form Adim(U/X)
X → X. The latter

case is trivial. Thus we now consider the case when f is étale. But in this case, it
is clear that g : U → U ×X X is a definable isomorphism with ordjac(g) = 0 (see
[5, Section 8 and Thm. 12.1.1] ).

This leads us to the following definition.

Definition 5.3 Let X be an sft-Artin stack over k[[t]] and let f : U → X be an
f-surjective smooth atlas with U being an affine scheme of finite type over k[[t]]. Then
we define

IC(X) = {[φ] ∈ C(X)|[ f ∗(φ)] ∈ IC(U)}.

It follows from the preceding lemma that IC(X) is independent of the choice of f .

Lemma 5.4 Let X be an sft-Artin stack over k[[t]], and let [α] ∈ IC(X). Let f : U→
X be a smooth covering map, where U is an affine scheme of finite type over k[[t]]. Let φ
be the constructible function µU([ f ∗(α)]) ∈ C(U). Let Z be any affine scheme of finite
type over k, let x : Z → X by any morphism, and let u : Z → U be such that p ◦ u ∼= x.
Then the element

u∗(φ) ∈ C+(Z)

depends only on x and α, i.e., it is independent of the choice of U and u.

Proof We can assume that Z is irreducible. Suppose f1 : U1 → X and f2 : U2 → X

are two choices for the atlas as mentioned in the statement of the lemma. Let φi :=
µU([ f ∗i (α)]) ∈ C(Ui). Let ui : Z → Ui be a lift of x to Ui for i = 1, 2. We wish to
prove that u∗i (φi) ∈ C+(Z) is the same element for i = 1, 2.

There exists a morphism v : Z → U1 ×X U2 that lifts u1 and u2. Let η denote the
generic point of Z. Choose a smooth atlas U3 → U1 ×h

X U2 such that U3 is an affine
scheme of finite type over k[[t]] and such that v|η can be lifted to U3. Then there is
an open subscheme Z0 ⊂ Z such that the morphisms ui |Z′ have a common lift to
U3. It will suffice to prove the result with Z0 in place of Z. Indeed, if we can do this,
we can repeat the procedure for Z1 = Z\Z0. Proceeding in this manner, we can get
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the required result, since Z is noetherian. Thus we can assume that the morphisms
ui : Z → Ui for i = 1, 2 have a common lift u3 : Z → U3.

Let gi : U3 → Ui for i = 1, 2 be the obvious maps and let f3 := f1 ◦ g1 = f2 ◦ g2.
Let φ3 := µU([ f ∗3 (α)]) ∈ C(U3). Then it is clearly enough to show that u∗1 (φ1) =
u∗3 (φ) = u∗2 (φ2). In other words, it is enough to prove the lemma assuming that X is
an affine scheme.

Now assume that X is an affine scheme and that f : U → X is a smooth covering
map of affine schemes. It will suffice to prove the result when Z = U. In other words,
we wish to prove that

φ = f
∗(
µX([α])

)
.

This is precisely the content of the previous lemma.

Thus, with the notation of the above lemma, we have a rule that, for every affine
scheme Z of finite type over k and a morphism x : Z → X, assigns a constructible
function φx ∈ C(Z) in a coherent manner. This leads us to the following definition.

Definition 5.5 Let X be a sft-Artin stack over k. A constructible pseudo-function
on X is a rule φ which for every affine scheme Z of finite type over k and morphism
x : Z → X assigns an element φx ∈ C(Z) such that if we have a commutative diagram
(up to homotopy)

Z2
α //

x2   

Z1

x1

��
X,

then α∗(φx1 ) = φx2 .
We abuse notation and write x∗(φ) instead of φx, even though φ is not a con-

structible function on X in the usual sense. The constructible functions on X clearly
from a ring, which we denote by C(X)ps.

Lemma 5.6 Suppose X is an sft-Artin stack over k and φ ∈ C(X)ps. Let f : U → X
be an f-surjective morphism (not necessarily smooth) with U being an affine scheme of
finite type over k. Then φ is completely determined by f ∗(φ).

Proof Indeed, suppose Z is an affine scheme of finite type over k and x → X is a
morphism. We wish to compute x∗(φ). We can assume that Z is irreducible. If η is its
generic point, then we can lift x|η to U . Thus there exists an open subscheme Z0 ⊂ Z
such that x|Z0 can be lifted to U . Then, as in the proof of Lemma 5.4, the fact that Z
is noetherian allows us to compute φx. It is easy to see that the calculation does not
depend on the choice of Z0.

Using Lemmas 5.4 and 5.6, we have the following definition.

Definition 5.7 Let X is a sft-Artin stack over k[[t]]. Let f : U → X be an
f-surjective atlas with U being an affine scheme of finite type over k[[t]]. We denote by
µX : IC(X)→ C(X)ps the group homomorphism that maps an element [α] ∈ IC(X)
to the element of C(X)ps determined by the element µU([ f ∗(α)]) ∈ C(U).

https://doi.org/10.4153/CJM-2014-021-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-021-7


1242 C. Balwe

At this point, we pause for some remarks to clarify some of the choices we have
made in this construction.

Remark 5.8 Obviously, the above definition is not quite satisfactory, since we ex-
pect µX to take values in the ring C(X). Indeed, if we were able to use C(X), then
we would be able to use the obvious pushforward from the ring C(X) into the ring
C(Spec(k[[t]] × Spec(k))st , which would give us motivic measure in the usual sense.
By using the ring C(X)ps instead, we find that our measure takes values in a ring that
depends on the stack. The reason for doing this is that we do not know if the obvious
ring homomorphism C(X) → C(X)ps, mapping φ ∈ C(X) to f ∗(φ) ∈ C(U), is an
isomorphism. We do know this to be the case when X is an algebraic space (in which
case the fact that this homomorphism is an isomorphism can be proved by choosing
a “definable section” for the morphism U→ X). But we do not know if this is true in
general and hence our usage of the ring C(X)ps is essentially a compromise. We note
that when X is an affine scheme, we are using the symbol µX to denote two maps,
one with domain C(X)ps and the other with domain C(X). However, these two maps
can be identified via C(X)

∼→ C(X)ps (which is known to be an isomorphism in this
case), and so this is a harmless abuse of notation.

However, this construction is good enough to allow us to obtain the uniformity
results relating p-adic integration for various primes p when we are working with an
sft-Artin stack defined over the ring of integers in a number field (see Theorems 6.2
and 4.6).

6 Specialization to p-adic Integration

We now return to the problem of applying the theory of motivic integration to p-
adic integration on sft-Artin stacks. We briefly recall the process of specialization to
p-adic integration using [6] as our reference.

Let k be a number field with O being its ring of integers. Recall the terminology
from [6, Section 9] that the language LO is the language LLD,P with Val-type con-
stants added for the elements of O[[t]] and Res-type constants added for the elements
of O. Then we may consider definable subassignments and constructible functions
that are definable in the language LO. As before, for a subassignment S definable in
LO, we can define the rings K0(RDefS,LO) and C(S,LO).

Let K be a p-adic completion of k with valuation ring RK and residue field kK . Let
ωK be a uniformizing parameter in RK . Then one has a O-algebra homomorphism
λO,K : O[[t]]→ K defined by

λO,K

(∑
i≥0

ait
i
)

=
∑
i≥0

aiω
i .

Also, for every α in O, let α denote the image of α under the quotient map O→ kK .
In an LO formula φ, if we interpret every Val-type constant a ∈ O[[t]] as λO,K (a) ∈
K, and every Res-type constant α ∈ O as α ∈ kK , then φ defines a subset φK of
Rm

K × kn
K × Zr for some non-negative integers n,m, r. We recall ([6] or [9]) that if

two formulas φ and ψ define the same subassignment S of Am
k[[t]] × An

k × Zr, then the
subsets φK and ψK of Rm

K × kn
K × Zr are equal for almost all choices of K. One abuses

https://doi.org/10.4153/CJM-2014-021-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-021-7


p-adic and Motivic Measure on Artin n-stacks 1243

notation to denote this set by SK . Similarly, definable morphisms f : S → T give
functions fK : SK → TK for almost all K.

Similarly, a constructible function on S can be interpreted to give a function from
SK into Q for almost all K. For this we first interpret the elements of K0(RDefS,LO),
and then the elements of P(S), as functions on SK .

If φ ∈ K0(RDefS,LO) is such that it is represented by [π : W → S with W ∈
S × An

k . Then WK is in SK × kn
K , and we have the projection map πK : WK → SK .

We define the function φK on XK by φK (x) := |π−1
K (x)|. Then one extends this

construction by linearity to the whole of K0(RDefS,LO).
To interpret the elements of P(S) over K, we express such an element φ in terms

of L and definable functions α : S→ Z. Then we interpret L as qK = |kK | and α as a
function αK : SK → Q , which is well defined for almost all K. Now, we can interpret
the elements of C(S,LO) as functions on SK by tensoring.

Now let X be an sft-Artin stack over O. Let Xt := X×Spec(O) Spec(k[[t]]), which is a
sft-Artin stack over k[[t]]. We claim that a definable subassignment S on Xt defines a
subset SK of π0(X(RK )) for almost all K. Indeed, we choose a f-surjective smooth atlas
f : U → X with U being an affine scheme of finite type over O[[t]]. Let V → U ×h

X U
be an f-surjective smooth atlas, where V is an affine scheme of finite type over O.
Let g1, g2 : V → U be the maps obtained by composing V → U ×h

X U with the two
projections U ×h

X U → U . Then f−1(S) is a definable subassignment on Ut that
defines a subset given by a formula φ. Let ψi be the pullback of the formula φ via gi

for i = 1, 2. Clearly, ψ1 and ψ2 define the same subassignment on Vt . The formula
φ defines a subset φK of U (RK ). This is the preimage of a subset of π0(X(RK )) if
and only if the subsets (ψ1)K and (ψ2)K are equal. But we know that this is true for
almost all K. Thus we see that a definable subassignment on Xt defines a subset SK

of π0(X(RK )) for almost all K. By similar arguments, one can interpret constructible
functions φ on SK to give functions SK → Q for almost all K.

For any affine scheme T of finite type over O, we note that the set (Tt )K is simply
the set T(kK ) of kK valued points on T. Indeed, T can be defined as a closed sub-
scheme of An

O cut out by polynomials with coefficients in O. The same polynomials
can be used to define Tt as a closed subscheme of An

O[[t]] and Tt as a closed subscheme
of An

k . Interpreting the coefficients of those polynomials as elements in kK via the
map α 7→ α, we see that

(Tt )K =
(

T ×Spec(O Spec(kK )
)

(kK ) = T(kK ).

Let φ ∈ C(Xt ,LO)ps. Then with U as above, f ∗(φ) ∈ C(Ut ,LO). Then by the
above arguments we can define a function ( f ∗(φ))K on the set (Ut )K = U (kK ) for
almost all K.

Claim 6.1 The function ( f ∗(φ))K is constant on the fibres of the map U (kK ) →
π0(X(kK )).

Proof Using the notation we set up above, we look at the functions g∗1 ◦ f ∗(φ) and
g∗2 ◦ f ∗(φ) on Vt . By the definition of a constructible pseudo-function, these functions
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are equal. Thus,

(g1)∗K ( f ∗(φ))K = (g∗1 ◦ f ∗(φ)))K = (g∗2 ◦ f ∗(φ)))K = (g2)∗K ( f ∗(φ))K

for almost all K. If u1 and u2 are two points of U (kK ) that lie in the same fibre of
U (kK ) → π0(X(kK )), then they have a common lift v to V (kK ). This proves our
claim.

Given any φ ∈ C(Xt ,LO)ps, we now define its evaluation γK (φ) ∈ Q , which is
defined for almost all K. To do this, for each x ∈ π0(X(kK )) we choose an arbitrary
ux in the fibre of U (kK )→ π0(X(kK )) over x. Then we define

γK (φ) =
∑

x∈π0(X(kK ))

(
f ∗(φ)

)
K

(ux) · #{x},

where # is the counting measure we defined in Section 4.3, equation (4.1). By the
claim we proved above, this is independent of the choice of ux for almost all K.

Theorem 6.2 Let X be an sft-Artin stack over O with dim(X/O) = d. let φ ∈
ICd(Xt ,LO). Then for almost all K, φK is integrable over π0(X(RK )) and

γK

(
µXt

(φ)
)

=

∫
π0(X(RK ))

φK dµd.

Proof Let f : U → X be an f-surjective smooth atlas with U being an affine scheme
over O with dim(U/O) = e. Then we know that f ∗t (φ) is in ICe(Ut ). From [6,
Thm. 9.1.5], it follows that for any u ∈ U (kK ),(

µUt
( f ∗t (φ))

)
K

(u) =

∫
τ−1

0 (u)
φK dµd,

where τ0 is the truncation map as defined in Section 4. If x ∈ π0(X(kK )), Ux :=
U ×X,x Spec(kK ), and f−1(x) := {u ∈ U (kK )| f (u) = x}, we know from Lemma 4.1
that # f−1(x) = (#Ux(kK )) · (#{x}). Also, by the above claim, (µUt

( f ∗t (φ)))K (u) is
constant as u varies through f−1(x). Thus,

γK (µXt
(φ)) =

∑
x∈π0(X(kK ))

(µUt
( f ∗t (φ)))K (ux) · #{x}

=
∑

x∈π0(X(kK ))

( 1

#Ux(kK )

)
(µUt

( f ∗t (φ)))K (ux) · # f−1(x)

=
∑

u∈U (kK )

( 1

#Ux(kK )

)
µUt

( f ∗t (φ))K (u)

=
∑

u∈U (kK )

( 1

#Ux(kK )

) ∫
τ−1

0 (u)
φK dµd

=

∫
π0(X(RK ))

φK dµd,

as required. (The last equality is a consequence of Definition 4.3.)
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We define C(Xt ,LO)ps[[T]]rat to be the subring of C(Xt ,LO)ps[[T]] generated
by the polynomial ring C(Xt ,LO)ps[T] and the set (1 − LaTb)−1, where a ∈ Z
and b ∈ N\{0}. For any R(T) ∈ C(Xt ,LO)ps[T] we can define the element
γK (R(T)) ∈ Q[T] for almost all K by applying γK to the coefficients of R(T). We
also define γK ((1− LaTb)−1) := (1 − qa

K Tb)−1. Thus, we see that for any element
P ∈ C(Xt ,LO)ps[[T]]rat, we can obtain an element γK (P(T)) for almost all K by sim-
ply applying γK to its coefficients.

Theorem 6.3 Let X be an sft-Artin stack over O. Then there exists an element
PX(T) ∈ C(Xt ,LO)ps[[T]]rat such that γK (PX(T)) = PXK (T) for almost all K.

Proof By the comments preceding Lemma 4.10, it suffices to prove the theorem
with QX in place of PX . In other words, we wish to show that there exists an element
QX(T) ∈ C(Xt ,LO)ps[[T]]rat such that γK (QX(T)) = QXK (T) for almost all K (see
Definition 4.9 for the definition of the power series QXK (T)).

Let f : U → X be an f-surjective smooth atlas with U being an affine scheme over
O. Let MU

n be the definable subassignment on Ut defined by the condition u /∈ Using

mod (tn+1). Let MX
n be the image of MU

n in Xt . It is easy to see that MU
n = f−1

t (MX
n ).

We define φX
n (resp. φU

n ) to be the characteristic function of MX
n (resp. MU

n ). Then
it is easy to see from Lemma 4.10 and Theorem 6.2 that if we define QX(T) by the
formula

QX(T) :=
∞∑

n=0
LndµXt

(φX
n )Tn,

then γK (QX(T)) = QXK (T) for almost all K. Also, QX(T) ∈ C(Xt ,LO)ps[[T]] is
represented by

f ∗t (QU (T)) =
∞∑

n=0
LndµUt

(φU
n )Tn,

in C(Ut ,LO)[[T]]. By [5, Theorem 14.4.1], it is known that f ∗t (QU (T)) is contained
in C(Ut ,LO)[[T]]rat. This proves the result.
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