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Abstract

A group G is locally graded if every finitely generated nontrivial subgroup of G has a nontrivial finite
image. Let N (2, k)* denote the class of groups in which every infinite subset contains a pair of elements
that generate a nilpotent subgroup of class at most k. We show that if G is a finitely generated locally
graded N (2, k)*-group, then there is a positive integer ¢ depending only on k such that G/Z.(G) is finite.
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Let k be a fixed positive integer. We denote by N (2, k) the class of groups in which
every 2-generator subgroup is nilpotent of class at most &, and by N (2, k)* the class
of groups in which every infinite subset contains a pair of elements that generate
a nilpotent subgroup of class at most k. The main result of [3] states that a finitely
generated residually finite group G belongs to N (2, 2)* if and only if G/ Z,(G) is finite.
In [1] it was proved that if G is finitely generated and soluble, then G € N (2, k)* if and
only if G € FN (2, k), where § denotes the class of finite groups. It is remarkedin [1]
that if G/Z,(G) is finite, then G € FN (2, k) but that the converse is false for k > 3,
even if G is finitely generated and soluble of derived length three. The examples
cited, which are due to Newman [8], are torsion-free nilpotent and hence residually
finite. For k = 2 there is the result from [2] that a finitely generated soluble group
G belongs to N(2, 2)* if and only if G/Z,(G) is finite. Using some deep results of
Zel’manov and Lubotzky and Mann, we are able to establish a theorem that provides
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what is essentially a generalization of each of the results mentioned above. First we
recall that a group G is locally graded if every finitely generated nontrivial subgroup
of G has a nontrivial finite image.

THEOREM 1. Let G be a finitely generated locally graded group and suppose that
G € N(2,k)*. Then there is a positive integer ¢ depending only on k such that
G/ Z.(G) is finite.

Let us consider for the moment the special case where the group G is finite-by-
nilpotent and satisfies the hypotheses of the theorem. Then G has a finite normal
subgroup N with G/N torsion-free nilpotent and, by [1, Lemma 2], G/N € N(2, k).
A result of Zel’manov [11] now tells us that the class ¢ of G/N is bounded in terms
of k only, and it follows that y,.,(G) is finite and hence that G/Z,(G) is finite [5].
Thus in order to establish the theorem we need to show that the group in question is
finite-by-nilpotent. In fact, it is the residually finite case that we need to deal with,
and we shall see that the result follows quite easily once we have proved the following
(where M denotes the class of nilpotent groups).

PROPOSITION 1. Let G be a finitely generated residually finite group in the class
NQ2,k)*. Then G € §M.

In order to establish Proposition 1 we require a number of preliminary results. But
let us note at this point that there is a gap at the beginning of the proof of Theorem 1
in [3], in that the deduction that G ‘is hypercentre-by-finite relies on the assumption
that G is residually finite modulo its hypercentre, a fact that is not at all clear. It is
possible to salvage the argument by means of techniques similar to those adopted in
{3} (where Zel’manov’s results are certainly not required), but we omit the details and
proceed directly to the matter in hand.

In what follows 91, denotes the class of nilpotent groups of class at most k.

LEMMA 1. Let G € N (2,k)* andletx,y € G. Then {x)" is finitely generated.

PROOF. If y is of finite order, then the result is clear, so assume y has infinite
order and consider the set {x, xy, xy?,...}. For some i, j with0 < i < j we have
(xy’, xy’) € M, and hence (xy‘, y™) € My, wherem = j —i,sothat 1 = [xy’, ,y"] =
[x,:y™]. For g € G and r € N, an easy induction shows that ([x, gl;0 <i <r) =
(x8;0 < i <), (read [x, og] = x), and it follows easily that (x)*’ < (x";|i| < km),
thus giving the result. a

With the notation of [6], a group in the class N (2, k)* is therefore restrained, and
repeated use of Corollary 4 of that paper gives the following (where G denotes the
i-th term of the derived series of G).
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COROLLARY 1. Let G € N(2, k)" and suppose that G is finitely generated. Then
G is finitely generated for each positive integer i.

Next, suppose that G is a finitely generated group in N(2, k)* and let K be an
arbitrary soluble image of G. Then K is finite-by-nilpotent by [7, Theorem A], and
hence finite-by-(nilpotent of k-bounded class), as we saw earlier. Thus the Hirsch
length of K is bounded by some integer that depends only on k& and the number of
generators of G, and it follows that there is a positive integer s = s(G) such that
GY/GUY*Y is finite for all j > s.

LEMMA 2. Let G be a finitely generated group in the class N (2, k)* and let H be
an arbitrary subgroup of finite index in G, where s = s(G). Then H/H' is finite.

PROOF. By Corollary 1 we know that G is finitely generated, and it follows that
G“ is finite modulo the core C of H in G. If C/C is finite, then so is H/H’, so
we may assume that H is normal in G. Suppose for a contradiction that H/H' is
infinite, and let K/H’ denote its torsion subgroup. Choose h € H\K, x € G“ and
consider the set {x,xh, xh?, ...}. By hypothesis there are distinct integers i, j such
that (xh', xh/) € M, and then [ %, ,x] = 1, so that x has nontrivial centralizer
C,/K in H/K. If this is not of finite index in H /K then we may repeat the argument
to obtain a series K < C; < G, < H, where [C,,x] < C;. Since G¥/H is finite
there is a positive integer n such that x" € H, and H/K is of course abelian. Thus
modulo K we have 1 = [(,, x"] = [(,, x]"; but H/K is torsion-free and we have the
contradiction [C,, x] < K. We deduce that H/ C, is finite and hence that H = C;, that
is, [H,x] < K. Since x was arbitrary we now have [H, G¥] < K and hence G*)/K
centre-by-finite, and it follows that G“*V K /K is finite. But G/ G¢*Y is also finite,
giving the contradiction that H/K is finite. The lemma is therefore proved. a

COROLLARY 2. Let G and s be as in Lemma 2 and suppose that G is residually
finite. If H € N (2, k) for some H of finite index in G* then G € IN.

PROOF. As before, H is finitely generated. It is also residually finite and, by
hypothesis, k-Engel. By [10, Theorem 2], therefore, H is nilpotent. But H/H' is
finite, by Lemma 2, and we deduce that H is finite and hence that G is finite-by-soluble
and therefore finite-by-nilpotent [7]. O

Our next result, in conjunction with those above, will allow us to restrict our
attention to groups G that have a very special structure.

LEMMA 3. Let L be a finitely generated residually finite group belonging to N (2, k)*
and suppose that H ¢ N (2, k) for every subgroup H of finite index in L. Then there
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exists a normal subgroup G of finite index in L such that G = N (t) for some normal
subgroup N of G and element t satisfying {at, bt) € N, foralla,b € N.

PROOF. Assume for a contradiction that L has no such subgroup G. Then there
exist elements x,, yo of L such that {x,, yo} ¢ T, and we may choose a normal
subgroup G, of finite index in L such that (xo, yo) G,/ G, ¢ M. Put wy = y,.

If (wox, wey) € My for all x, y € G,, then we may take N = G, and wy = ¢ for
a contradiction. Thus (wox, wey) ¢ N, for some x,, y; € Gy, and there is a normal
subgroup G, of finite index in L and contained in G, such that (wex;, woy,) G2/ G, ¢
M. Put w; = wyy, and repeat the argument with G, replaced by G, and w, by w;.

Continuing, we obtain a sequence of elements z; = w;_,x;, where w; = w;_,y, for
all i > 1, and a chain of subgroups L > G, > G, ... with {z;, w;)Gi;1/Giy1 € N,
for each i > 1. Suppose j > i > 1. It is straightforward to show that Z = w;
mod G, and thus we have (z;, 2;)Giy1/ Gis1 € M. It follows that (z;, z;) ¢ M,
for all distinct i, j, contradicting the fact that G € N (2, k)* and thus establishing the
lemma. O

In view of Lemma 2, Corollary 2 and Lemma 3, we may assume for the proof of
Proposition 1 that G has the following properties, say (*):

G is finitely generated and residually finite, G = N (¢} for some normal subgroup
N and element ¢ such that (at, bt) € N, foralla, b € N, and H/H' is finite for every
subgroup H of finite index in G.

LEMMA 4. If G satisfies (x), then every finite image of G is nilpotent.

PROOF. For this we may assume that G is itself finite. Letx,y € N be of order p’,
q° respectively, where p, g are distinct primes. We show that [x, y] = 1.

Write ¢t = 1,,, where each of ¢, and 4, is a power of ¢, #; is a p’-element and ¢, is
a g'-element. For arbitrary g € G we have (x%8,1) = (x81,¢) € M,. It follows that
[x8,4,] = 1 forall g € G and hence that x centralizes (#,)¢. Thus (x)*” = (x)®,
which is a p-group since (x, ty) = (tyx, ty) = (yxt, yt)'" € 9. Since (y, ) € M
we have similarly that [y, ,] = 1, so there is a ¢’-number ¢ such that (t,y)° = y°,
and it follows that y € (5,y) and hence that (x)* is a p-group. Similarly (y)* is a
g-group, and we have [x, y] = 1 as claimed.

It follows that N is nilpotent and so y,4;(N) = 1 for some integer s. Also (x, t) €
N, forallx € N, and so foreachi > 1 we get [y;(N), iG] < [¥i(N), « () lyi (V) <
¥i+1(N). Hence [N, ;,G] = 1 and the result follows. QO

If G satisfies (*), then of course G/ G is finite, and Lemma 4 then implies that G is
residually a finite 7 -group for some finite set w of primes. Thus [ pex Rp = 1, where
R, is the finite p-residual of G. Accordingly, it is only the case where G is residually
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finite-p that needs to be considered. Our final prerequisite requires the notion of a
powerful p-group (for definitions and essential properties the reader is referred to [4,
Chapter 2].

LEMMA 5. Let G be a finite p-group that satisfies (¥). Then there is an integer d
depending only on k and p, such that (N?Y is a powerful subgroup of N.

PROOF. Let A be a normal subgroup of G containedin N andleta € A,x € N and
write z = xt. Since (a,z) € My, (@)® = (a¥;0 < i < k — 1) (much as in the proof
of Lemma 1). Similarly (@) = (a";0 < i < k—1). Also, since {(z,t) € N there is
an integer ¢ = c(k) such that every element of (z, ¢} has the form r*1z" ... t%z%, for
integers u;, v;. Thus

(a(x)) < (a(z.x)) = (amz-q...,-czvc; u;,v; € Z)
= (@) "0 < w < kv, u, ... U, v, € Z)

141701\ 42202 .. ple ZVe | .
=((a Z) : Z705ulavl<k1u2’v2,°'-9uc9vcez)'

Inductively, we see that this is

41201 142 7920 pMe Ve
=(a 905u17v]7u2,v2y-'-vucavc<k)'

Define M to be APA’ if p is odd, A*A’ if p = 2. Then modulo M, (a)®* has
order bounded by some function of p and k. It follows that [a, x4] € M for some
d = d(p, k). But x and a were arbitrary, and we deduce that [A, N] < M.

With J = N¢ and J' = A we obtain y3(J) = [J', J] < (J')?y.(J) (respectively
(J)*y4(J)). Since J is nilpotent it follows that [J', J] < (J')? (respectively (J')*).
Thus J' is powerfully embedded in J and is therefore powerful and the lemma is
proved. O

PROOF OF PROPOSITION 1. As we have seen, we may assume that G satisfies (*)
and that G is residually a finite p-group for some prime p. Let d be as in Lemma 5,
so that (N?)’ is powerful in every finite quotient of G. Let J denote the intersection
of all subgroups N?K,, where K, is normal in N and N /K, is a finite p-group. By
(*), N has finite index in G and is therefore finitely generated. So N/J is a finitely
generated residually finite group of exponent at most 4 and hence finite, by [12] and
[13]. It follows that G/J’ is finite.

Write P, = J', and for each positive integer i let P,,, = (P;)?[P;,J']. By [4,
Theorem 2.9] the rank of J'/ P; is precisely d(J'), the minimum number of elements
required to generate J'. With the notation of [4, Definition 6.2], the system (P;)
therefore has finite rank, and [4, Theorem 6.3] then implies that G is a linear group.
Certainly G does not contain a non-abelian free group, since such groups do not belong
to N(2, k)*, and so G is soluble-by-finite [9]. Therefore G is soluble by Lemma 4,
and the result follows from [7, Theorem A]. O
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PROOF OF THEOREM 1. Let G be as stated and let R denote the finite residual of G.
By the Proposition there is a finite normal subgroup U/ R of G/R with G/ U nilpotent.
By Lemma 1 above and repeated application of [6, Lemma 3], U is finitely generated
and hence R is finitely generated. If R = 1 then of course we are done, so assume
R is nontrivial, so that R has a proper normal subgroup S of finite index. Indeed, we
may choose S to be normal in G, and then G/S is finite-by-nilpotent and therefore
residually finite, contradicting the definition of R. The result follows. 0
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