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1. Abstract

The theorem of Trevor Evans [1] that every countable semigroup can
be embedded in a two-generator semigroup becomes obvious in automata
theory as the statement that every countable automaton can be embedded
in one with binary inputs. Standard techniques of automata theory [1], [3]
yield a proof of the Evans Theorem using wreath products, as in Neumann
[4J.

2.

An automaton M (without output) is a triple (Q, X, d) where Q is the
set of states, X is the input set, and 6 : QxX ->• Q. The semigroup S(M)
is the subsemigroup of QQ generated by the maps d(-, x) : Q -»• Q. M is
called countable [finite] if Q is countable [finite].

Given a countable semigroup S with generators G(S), we may represent
it as the semigroup of the machine Ms = (S1, G(S), ds) where ds is multi-
plication in the semigroup S, and S1 is 5 with a unit adjoined only if 5 is
not a monoid.

We then replace Ms by a machine which has input set {0, 1} and
which reads in strings until a code (i.e., a monomorphism of ^GCS)' the
free semigroup generated by G(S), into ^iOti\) for an element of G(S) has
been read, and then acts accordingly.

We now give two examples of codes and the corresponding construc-
tions.

One which works whether or not G(S) = {s1( s2, • • •} is finite is to code
Sj as F'O, i.e. a string of / ones followed by a zero. Then

M1 = (NxS1, {0, 1}, d2) (taking N = {1, 2, 3, • • •})
with

d1((n,s),0) = ( O . s - s J

d^in, s), 1) = (n+l,s)

and the map s3->l30 yields an embedding of 5 in the twc-generator
568
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semigroup S(M1). If G(S) = {sx, • • •, sd} is finite, we can replace N by
{1, • • •, d), addition then being modulo d to handle sequences not coding
words of S, so that S(M1) is finite if S is finite.

If G(S) = {slt • • •, sa} is finite and 1m~x < d fg 2m we may give a
'faster' construction, encoding each s;. as a distinct string tt of m O's and l's.
Then if A is the set of strings of at most m— 1 O's and l's (including the
empty string A) we may set

with
M2 = (AxS\ (0,

- ' -uk,s],u) =
uku, if OgK»-l

if k = n—\ and tf =
else

and the map s, -> -̂ yields an embedding of S in the two-generator semigroup
S(M2).

It should be clear how this construction can be extended to arbitrary
codes.

We now show how our result yields Neumann's wreath-product
approach. The cascade A2x}A1 of any two automata As = (Qj.X^hj)
with connecting map Z : Q1 x X -> X2 and encoder rj : X is the
automaton with Xl([qz, ft], x) = [A2(ft., Z^ .a ; ) ) , Ax(ft, j?(a;))] and (as was
first pointed out by Krohn and Rhodes [3], see also [1]) the semigroup of
A2xlAx can be embedded in the wreath product of S(A2) and

( Q 2 X Q 1 '

Now it is clear from the definitions of 6t and S2 that both Mx and M2

are cascades of some machine Ax with Msi. In the case of the first con-
struction, the semigroup To of Ax is 2V°[{1, • • •, d}° if G(S) is finite] — that is,
the integers under addition [modulo d] with a multiplicative zero adjoined.
In either case, we see that S can be embedded in a two-generator semigroup
which can in turn be embedded in the wreath product of S ^ ) and S1.
The first construction yields what is essentially Neumann's proof. However,
where Neumann [4] took the order m of his cyclic group T to be at least 3d
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in the finite case, we only need take m = d, though we must adjoin our 0
to T whereas he adjoins his zero to 5. It then becomes a simple exercise
to obtain the results of Neumann's Section 5 with improved bounds. We
hope this note will encourage further applications of automata theory to
the algebraic theory of semigroups.
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