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Machine learning identifies ecological selectivity patterns across the
end-Permian mass extinction

William J. Foster* , Georgy Ayzel , Jannes Münchmeyer , Tabea Rettelbach ,
Niklas H. Kitzmann , Terry T. Isson, Maria Mutti, and Martin Aberhan

Abstract.—The end-Permian mass extinction occurred alongside a large swath of environmental changes
that are often invoked as extinction mechanisms, even when a direct link is lacking. One way to elucidate
the cause(s) of a mass extinction is to investigate extinction selectivity, as it can reveal critical information
on organismic traits as key determinants of extinction and survival. Here we show that machine learning
algorithms, specifically gradient boosted decision trees, can be used to identify determinants of extinction
as well as to predict extinction risk. To understand which factors led to the end-Permian mass extinction
during an extreme global warming event, we quantified the ecological selectivity of marine extinctions in
thewell-studied South China region.We find that extinction selectivity varies between different groups of
organisms and that a synergy of multiple environmental stressors best explains the overall end-Permian
extinction selectivity pattern. Extinction riskwas greater for genera that had a low species richness, narrow
bathymetric ranges limited to deep-water habitats, a stationary mode of life, a siliceous skeleton, or, less
critically, calcitic skeletons. These selective losses directly link the extinctions to the environmental effects
of rapid injections of carbon dioxide into the ocean–atmosphere system, specifically the combined effects
of expanded oxygen minimum zones, rapid warming, and potentially ocean acidification.
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Introduction

The end-Permian mass extinction event
occurred approximately 252 Ma during one of
the most extreme climate warming events of
the Phanerozoic (Burgess and Bowring 2015).
The timing of this extinction event overlaps

with the emplacement of the Siberian Traps
large igneous province into carbon-rich sedi-
mentary rocks and the associated injection of
large volumes of greenhouse gases into the
atmosphere (Svensen et al. 2009). Based on
our understanding of the impact of rapid and
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high-magnitude carbon dioxide emissions, as
well as both sedimentological and geochemical
proxies from the Permian/Triassic boundary, it
has been hypothesized that the causes of mar-
ine extinctions stem from ocean acidification
(e.g., Payne et al. 2007), thermal stress (e.g., Joa-
chimski et al. 2012), and deoxygenation (e.g.,
Wignall and Twitchett 1996). Even though there
is evidence that these environmental changes
rapidly developed over the same time interval
as the extinction event, it still must be shown
that the environmental changes directly contrib-
uted to the extinctions in the oceans.
One way to explore the cause(s) of a mass

extinction event is to investigate the ecological
extinction selectivity. Several biological and
ecological traits appear to have been selected
against during the end-Permianmass extinction.
Specifically, selectivity patterns of extinction
have been recognized among an organism’s
physiology (Knoll et al. 2007; Clapham and
Payne 2011; Payne et al. 2016), mineralogy
(Clapham and Payne 2011), motility (Clapham
2017), and tiering (Clapham and Payne 2011).
These selective patterns have led to suggestions
that decreasing pH, hypercapnia, and global
ocean warming played a major role in the extinc-
tions of marine organisms (Knoll et al. 2007;
Clapham and Payne 2011; Payne et al. 2016;
Clapham 2017). Furthermore, a biogeographic
selectivity pattern has been related to the meta-
bolic rate of marine organisms, suggesting that
thermal stress in the tropics and deoxygenation
toward the poles best explain the pattern of
extinction (Penn et al. 2019). It is, however,
unlikely that the end-Permian extinction selected
equally strongly against all these different eco-
logical attributes, and some of these traits appear
selected against because many of the traits are
shared among the taxa that went extinct. In add-
ition, extinction selectivity is highly complex, and
these previous studies use statistical approaches
that do not reveal key information about interac-
tions among these traits.
An alternative approach to investigate

extinction selectivity is to utilize machine learn-
ing algorithms, which can model interdepend-
encies between features. Machine learning is
one of the major subfields of artificial intelli-
gence, classically defined as computational
algorithms that have the ability to learn from

data as to improve performance or make accur-
ate predictions (Mohri et al. 2018). Machine
learning techniques can be subdivided into
supervised learning (labeled input and output
variables and an algorithm that produces an
inferred function to make predictions),
unsupervised learning (algorithms infer a func-
tion to describe a hidden structure from
unlabeled data), or semi-supervised (algorithm
is trained upon a combination of labeled and
unlabeled data) learning techniques. Statistical
methods and machine learning algorithms are
not mutually exclusive, but “statistics draws
population inferences from a sample, and
machine learning finds generalizable predictive
patterns” (Bzdok et al. 2018: p. 1). Machine
learning algorithms also typically compromise
interpretability for predictive power, which
makes statistical methods a better choice for
revealing relationships within the data.
State-of-the-art advances in machine learning,
however, mean that various methods have
now been proposed to help users interpret the
predictions of complex models (Lundberg and
Lee 2017), which also improves their utility in
extinction selectivity studies.
In this study, we apply decision tree algo-

rithms, some of the simplest, but powerful,
supervisedmachine learning algorithms,which
can solve both regression and classification pro-
blems (Breiman et al. 1984). Decision trees are a
set of nodes (conditions) and branches derived
from the data, with the terminal nodes (leaf
nodes) representing classification outputs/
decisions similar to a flowchart diagram. Deci-
sion tree algorithms aim to find which condi-
tions return the greatest information gain
based on evaluating certain metrics and then
pick a combination of conditions that gives
the highest/lowest value of a specific metric
(Breiman et al. 1984). Decision tree algorithms
offer immense potential to contribute to prob-
lem solving in geosciences (Karapatne et al.
2017) and can also be used to predict survival
during mass mortality events. A key example
is the Titanic dataset (Kaggle 2022), used to
train data scientists in predicting survivorship
based upon the metadata of passenger infor-
mation (e.g., gender, wealth, age). Despite the
potential of decision tree algorithms to predict
extinction risk and its many applications across
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biology (e.g., Boyer 2010; Hanna and Cardillo
2014), there have been few studies that have uti-
lized this technique for paleobiology (Finnegan
et al. 2012, 2015; Novack-Gottshall 2016; Smith
et al. 2018; Tietje and Rödel 2018). Besides
generating a model to predict extinction risk,
decision tree algorithms can also be used to
rank ecological factors that are most important
when making the predictive model and thus
can reveal extinction selectivity patterns. To
date, decision tree algorithms have only been
utilized for exploring extinction selectivity
during one mass extinction (i.e., the end-
Ordovician mass extinction; Finnegan et al.
2012); this study used a random forest algo-
rithm in which a large number of decision
trees are generated and combined using
averages at the end of the process. A different
approach is to use gradient boosted decision
trees, where each decision tree is built upon
the previous tree, rather than linearly combin-
ing trees at the end, which can result in a better
performance (Natekin and Knoll 2013). To
demonstrate the potential of decision tree algo-
rithms in revealing extinction selectivity, we
explore ecological selectivity during the end-
Permian mass extinction using the categorized
gradient boosting decision tree algorithm as
implemented in the CatBoost software library
(Dorogush et al. 2018). Here, through applica-
tion of a decision tree algorithm, the relative
importance of the determinants of extinction
can be resolved, which will reveal the relative
importance of explanatory traits for the end-
Permian event. Furthermore, we also include
the application of novel methods to increase the
interpretability of the machine learning output.
To investigate extinction selectivity patterns

across the end-Permian mass extinction, we
examined the ecological traits that were
selected against to infer extinctionmechanisms.
The intensely studied and species-rich rock
record of marine successions from South
China provides an excellent opportunity to
compare selectivity patterns between pre-
extinction and the extinction interval while
minimizing geographic, rock-record, and sam-
pling biases. It is particularly important that
South China covers a broad regionwith numer-
ous sections and facies representing time inter-
vals before the mass extinction that also occur

in other sections afterward, which allows for a
consistency with both the type of marine envir-
onment and paleolatitude of the investigated
Permian–Triassic successions. This limits the
impact of a facies’ control on fossil occurrence
patterns and any sequence stratigraphic over-
prints on the extinction pattern. In addition,
because 63% of pre-extinction Changhsingian
and 41% of postextinction Griesbachian occur-
rences in the Paleobiology Database (paleo-
biodb.org) are derived from China, and
because China is one of the few regions that
records both a continuous and fossiliferous
deposition across the Permian/Triassic bound-
ary, this high volume of data for China biases
our “global” understanding of the end-Permian
mass extinction (Fig. 1). This region, therefore,
offers the best perspective on extinction
dynamics for this event.

Methods

We used a database of all genera of marine
invertebrates, conodonts, and calcareous algae
recorded from the Lopingian to the Middle Tri-
assic in South China downloaded from the
Paleobiology Database and supplemented
with additional data from the literature (Sup-
plementary Fig. S1). The database includes
25,683 occurrences of 1283 genera representing
Brachiopoda, Foraminifera, Mollusca, Cono-
donta, Radiolaria, Arthropoda, Chlorophyta,
Rhodophyta, Porifera, Cnidaria, Echinoder-
mata, Bryozoa, and Annelida. Vetting of the
data meant that undetermined genera and
informal genera were excluded from the data-
base. In addition, individual species were vet-
ted to ensure that they were not represented
within multiple genera in the database through
taxonomic synonymy, and the most up-to-date
generic identification of the species was fol-
lowed. To estimate the number of species
within a genus, the number of named species
for each genus in each time bin was tabulated
and loge transformed. Occurrences without a
species name or designated as indeterminate
species (e.g., sp. or spp.) were assumed to
represent a single species. Latest synonymies
and reidentifications were usedwhere possible,
and for mollusks were updated following
MolluscaBase (molluscabase.org). Given that
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metadata information (e.g., depositional envir-
onment, section name, and formation name)
were sometimes inconsistent among data
sources, even for the same fossiliferous bed in
the same section, or because it was absent
from the Paleobiology Database, the metadata
were updated for each section using the most
up-to-date literature for consistency. Occur-
rences of taxa from outside the South China
region that extend the stratigraphic ranges of
genera into the Permian or into the Triassic
were not included to avoid introducing spatial
variation and biases in the dataset. Where pos-
sible, using the original references, each occur-
rence was assigned to a conodont biozone
(Supplementary Fig. S1). In some sections, in
particular the Permian/Triassic Global Bound-
ary Stratotype Section and Point in Meishan,
single beds have been subsequently divided
into subbeds that relate to different conodont
biozones. Therefore, in older references that
did not subdivide these beds, the occurrence
is considered to have been present in all
respective biozones. All analyses were carried
out at the genus level because of increased like-
lihood of misidentifications at the species level,
29% of species occurrences in our database lack
a formal species-level identification, and the

high proportion of singleton species. For all
the analyses, genera with single occurrences
were omitted. Extinction rates were calculated
for those genera that could be assigned to cono-
dont biozones, that is 12,889 occurrences of 634
genera. Extinction rates were calculated follow-
ing Foote (2000): extinction rate =−log[Nbt/
(NbL +Nbt)], where NbL is the number of taxa
that cross the bottom boundary of a time bin
only and Nbt is the number of taxa that cross
both boundaries.
To investigate extinction selectivity, we char-

acterized each genus according to 10 ecological
traits (Table 1) and two phylogenetic criteria
(phylum and within-genus species richness)
using the primary literature, extant relatives,
and Paleobiology Database references to the
ecological attribute during a taxon’s adult life
stage (see also Supplemental Material). These
traits were chosen because they are expected
to show selectivity signals that would test the
role of the expected consequences of climate
change and can be applied to all the investi-
gated groups in this study. The geographic
range of each taxon was not included in the
analysis. This is because the Permian–Triassic
fossil record is strongly biased to a few regions
(see Fig. 1), which means that the reconstructed

FIGURE 1. Proportional extinctions of marine genera during the end-Permian mass extinction event in different regions.
Each hexagon cell represents an equal area, and only cells that include both pre- and postextinction data are included.
The plot was generated using data from the Paleobiology Database (paleobiodb.org) and plotted using the icosa package
(Kocsis et al. 2018) in R overlain on a base map from Scotese (2016).
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geographic range is overprinted by the limited
number of fossiliferous Permian/Triassic
boundary successions rather than representing
an ecological signal. In addition, both Payne
and Finnegan (2007) and Clapham and Payne
(2011) demonstrated that geographic range is
not a good predictor of extinction risk for the
end-Permian mass extinction. Genera that
exhibited ecological traits that differed between
species, for example, differences in the strength
of ornamentation, were split into different taxa
to consider within-genus ecological variation.
To analyze extinction selectivity, the data
were binned into four time intervals due to
the nature of the end-Permian mass extinction
event (see “Results”) and to avoid oversplitting
the data: the Wuchiapingian, pre-extinction
Changhsingian, the mass extinction interval
(Changhsingian Clarkina yini to the Griesba-
chian Hindeodus parvus Zone; as defined by
Wang et al. 2014), and the Griesbachian postex-
tinction interval.

Categorical Gradient Boosting Decision Trees.—
To identify and rank the key drivers of extinc-
tion risk, we applied the categorical gradient
boosting decision trees (CatBoost) method. Cat-
Boost is a powerful and high-performance
machine learning technique with a better pre-
diction performance in comparison with con-
ventional linear models (Ayaru et al. 2015;
Belyaeva et al. 2017). The core idea behind the
CatBoost technique is to combine simple deci-
sion tree models with gradient boosting (Fried-
man 2001) in such a way that the next decision
tree is combinedwith the previous decision tree
and the weights of the classifiers are modified
to minimize the error of the previous decision
tree. In the present study, we used a CatBoost
model to predict extinction risk as a binary clas-
sification problem, that is, whether a species
went extinct (“1”) or not (“0”) based on the set
of corresponding traits. To fit the CatBoost
model, we used the open-sourcemachine learn-
ing library for gradient boosting CatBoost

TABLE 1. Ecological categories used in this study. Physiological buffering capacity after Knoll et al. (2007) and Payne et al.
(2016). Tiering andmotility after Bambach et al. (2007). Ornamentation after Aberhan et al. (2006). Reproductionmode after
Bush et al. (2016). Descriptions for the remaining categories are given in the SupplementaryMaterial. Physiology and shell
mineralogy are ranked according to the expected sensitivity to ocean acidification following Knoll et al. (2007) and Ries
(2011), respectively. *Bimineralic refers to calcareous skeletons that are a mixture of aragonite and calcite shell layers. †Taxa
without a calcitic shell were classified as having a carbonate load of 0. Carbonate load is calculated as the body size
multiplied by the CaCO3 dry weight calculated for each class for modern representatives. ‡Bathymetric range is calculated
by the number of broad depositional settings from a taxon’s minimum depth to their maximum depth.

Physiology Tiering Ornamentation
1. Heavy carbonate load 1. Pelagic 1. Smooth
and no buffering capacity 2. Epifaunal 2. Fine

2. Moderate carbonate load 3. Semi-infaunal 3. Strong
and moderate buffering capacity 4. Infaunal

3. Little or no carbonate load Bathymetric range‡

Motility 1. One setting
Shell mineralogy 1. Motile, fast 2. Two settings
1. Aragonite 2. Motile, slow 3. Three settings
2. High-/intermediate-Mg calcite 3. Facultatively motile 4. Four settings
3. Low-Mg calcite 4. Stationary, unattached
4. Bimineralic* 5. Stationary, attached Phylum
5. Organophosphate 1. Annelida
6. Silica Reproductive mode 2. Arthropoda
7. No shell 1. Broadcaster 3. Brachiopoda

2. Intermediate 4. Bryozoa
Body size (mm) 3. Non-broadcaster 5. Chlorophyta
1. Micro (0.01–1) 6. Chordata
2. Meio (1.01–10) Respiratory protein 7. Cnidaria
3. Macro (>10.01) 1. Other 8. Echinodermata

2. Hemoglobin 9. Foraminifera
Carbonate load† 3. Hemocyanin 10. Mollusca
1. No carbonate (0) 4. Hemerythrin 11. Porifera
2. Low (0.01–1) 12. Problematica
3. Moderate (1.01–10) 13. Radiolaria
4. High (>10.01) 14. Rhodophyta
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(Dorogush et al. 2018; Prokhorenkova et al. 2018).
The feature importance of the CatBoost model
was done using the PredictionValuesChange
algorithm, wherein the feature importance
values are normalized so that the sum of all fea-
tures is equal to 100 (Dorogush et al. 2018).
Class imbalance (where the dataset is biased

toward one of the classes) is an important issue
to consider while dealing with classification
problems. Here, the distribution of our data
into two classes (extinct [1] and not extinct [0]
samples) is relatively balanced: only for the
Wuchiapingian are the data unbalanced, as
the percentage of “extinct” samples is around
11%, while for the remaining time intervals
this value fluctuates from 39% to 57%. To con-
sider the class imbalance issue that could be
present during the cross-validation, we use
the stratified approach for data splitting, which
ensures that analyzed folds preserve the per-
centage of samples for each class.
We trained an individual CatBoost model for

each investigated time interval with default
CatBoost hyperparameters, fivefold cross-
validation (i.e., splits, where data are randomly
split into a training and evaluation subset), and
the log loss function as an optimization criter-
ion. Machine learning algorithms can often be
configured using a wide range of hyperpara-
meters. Although the Catboost algorithm is
known for its even performance across differ-
ent hyperparameter choices, the effect of vary-
ing the more important hyperparameters
should be evaluated. We tested the perform-
ance of a number of Catboost models created
using different sets of hyperparameters (learn-
ing rate, L2 regularization, and tree depth). Sig-
nificant differences between the performance
on testing and training data can be discerned
in runs with a high learning rate, pointing to
overfitting. However, the performance on test-
ing data is remarkably stable across a wide
range of hyperparameters, justifying the choice
of using the default parameters of the algo-
rithm (Supplementary Fig. S2, Supplementary
Table S1). This generally low impact of hyper-
parameters on the test performance can be
attributed to several reasons: (1) gradient
boosted trees are stable with respect to hyper-
parameter selection (Cawley and Talbot 2010);
(2) the prediction task is complex due to the

fact that not all taxa in a functional trait have
the same status of extinct/not extinct, but the
model can only assign one prediction; and (3)
the significance of hyperparameter optimization
in the study is also questionable as the datasets
are small, where very small changes in the pre-
diction already would have a considerable
impact on the score. It is also worth noting that
usingmultiple models and comparing their per-
formance already provides a good indicator that
the model does not underperform.
We estimated the obtained model perform-

ance with the area under the receiver operating
characteristic (AUC) which is sensitive to type I
and type II errors. An AUC is a measure of dis-
crimination between two distinct groups of
species we try to classify as extinctions or survi-
vors; thus, it is closely related to the Wilcoxon
signed-rank test, which determines whether
two randomly dependent samples have the
same distribution. An AUC was averaged
over the splits we used for cross-validation.
Additionally, we performed recursive feature
elimination analysis (as proposed in Belyaeva
et al. 2017), which confirmed the robustness
of the proposed approach in ranking traits.
As we expected correlations among our vari-
ables, we checked the predictors for multicolli-
nearity before model building (Supplementary
Fig. S3). A correlation plot of the different pre-
dictors shows that a few predictors are corre-
lated, for example, body size and carbonate
load during the extinction interval (Supple-
mentary Fig. S3). Generally, correlation values
are low, however, indicating that no undesir-
able levels of multicollinearity are present.
Machine learning algorithms are often

described as a black box due to the lack of trans-
parency associated with how algorithms make
predictions. To demonstrate how the CatBoost
algorithm generates its predictions and to
increase interpretability, we applied Shapley
additive explanations (SHAP) values to exem-
plify the output from the CatBoost algorithm
(Lundberg and Lee 2017). First, we investigated
the collective SHAP values for each variable,
which highlight how much each predictor con-
tributes to the target variable, and then the indi-
vidual SHAP values for each genus, which
show how the contribution of different features
affects the prediction.
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All the data and code regarding performed
machine learning modeling and analysis are
available on GitHub (https://github.com/
PaleoML/permian-selectivity). Each part of
our research workflow can be reproduced
interactively using Binder.1

The results using the Catboost method were
also compared with random forest and multi-
variate logistic regression algorithms. These
comparisons showed that Catboost produced
better AUC values by 0.08 and 0.03 than the
random forest methods for the Wuchiapingian
and Changhisingian, respectively, and an
AUC value 0.07 better than the logistic regres-
sion for the extinction interval (Supplementary
Fig. S4). In addition, the Catboost method
(SHAP range: −0.8 to 0.7) produced a larger
range of SHAP values than the random forest
algorithm (SHAP range: −0.25 to 0.3), allowing
clearer inferences about the importance of a
given feature andwithin-feature selectivity pat-
terns to be drawn (Supplementary Fig. S5).

Results

Nature of the End-Permian Mass Extinction.—
Exploring the selectivity of the end-Permian
mass extinction first requires the timing and
the duration of the event to be determined.
The mass extinction event has been described
as a single event in the latest Permian (Jin
et al. 2000), two separate events extending
into the earliest Triassic (Song et al. 2013), or a
single extended extinction interval spanning
the Permian/Triassic boundary (Wang et al.
2014). Our analyses of extinction rates in
South China show that those genera that can
be correlated to conodont biozones have heigh-
tened extinction rates in the Clarkina yini Zone,
in theHindeodus zhejiangensis–Hindeodus chang-
xingensis Zones, and throughout most of the
Griesbachian (Fig. 2, Supplementary Fig. S6),
but a low extinction rate in the Clarkina meisha-
nensis Zone (Fig. 2). This low extinction rate in
the C. meishanensis Zone also corresponds
with a relatively low number of occurrences
compared with surrounding zones, and the
low extinction rate is likely a consequence of

insufficient sampling. Given that the highest
extinction rates occurred in the extinction inter-
val as defined by Wang et al. (2014), we follow
those researchers and interpret the extinction
event as representing an interval spanning the
Permian/Triassic boundary, which also avoids
oversplitting the data. This suggests that the
extrinsic changes that occurred over this
approximately 60 kyr interval (Burgess and
Bowring 2015) caused the end-Permian mass
extinction. Consequently, to investigate extinc-
tion selectivity, the data were aggregated into
four time intervals: the Wuchiapingian, pre-
extinction Changhsingian, the mass extinction
interval (Changhsingian C. yini to the Griesba-
chianHindeodus parvusZone;Wang et al. 2014),
and the Griesbachian postextinction interval.

Extinction Selectivity.—The AUC (Fig. 3)
visualizes the CatBoost model performance.
This curve plots the true-positive rate against
the false-positive rate. An AUC of 0.5 indicates
the performance of a random classification that
has no utility (Fig. 3). It is unlikely that a deci-
sion tree algorithm will give an AUC value of
1, which represents a perfect classification;
instead, an AUC > 0.7 is typically considered
representative of a good model (Mohri et al.
2018). The AUCs for each time interval
(Fig. 3) show an average of 0.75, 0.84, 0.81,
and 0.72 for the Wuchiapingian, pre-extinction
Changhsingian, mass extinction interval, and
Griesbachian postextinction time interval,
respectively. In particular, the curves for the
pre-extinction Changhsingian and the mass
extinction interval show that the CatBoost
model is a good classification model for inter-
preting extinction selectivity. This means that
the machine learning algorithm creates a good
model for understanding extinction selectivity
in the pre-extinction Changhsingian and
extinction interval.
CatBoost reveals that the relative importance

of the ecological variables associatedwith extinc-
tion varies between intervals (Fig. 4, Supplemen-
tary Table S2). The difference in the relative
importance of factors between the pre-extinction
Changhsingian and the extinction interval indi-
cates that the end-Permian mass extinction was
not simply triggered by an intensification of pre-
extinction pressures, a characteristic shared with
other mass extinction events (Finnegan et al.

1https://mybinder.org/v2/gh/PaleoML/permian-
selectivity/HEAD.
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2012; Dunhill et al. 2018). The relative import-
ance of different factors for the extinction interval
highlights that bathymetric range, within-genus
species richness, skeletal mineralogy, and physi-
ology are the best predictors of extinction risk.
These were also better predictors of extinction
than phylum, showing that these ecological
attributes are more significant in predicting
extinction than phylogenetic membership.
Bathymetric range and number of species were
important predictors of extinction before the
defined extinction interval (Fig. 4), suggesting
that some of themain drivers of ecological select-
ivity before the extinction interval were still
important during the extinction interval. There
is, however, also a correlation between the num-
ber of occurrences and both the number of spe-
cies and bathymetric range of a genus
(Supplementary Fig. S3), which suggests that
these variables are potentially also affected by
sampling and taxonomic artifacts. In this case,
the importance of species richness and bathy-
metric range as predictors of extinction risk
might be slightly exaggerated in our results. Fur-
thermore, when exploring the genera that the

algorithmmisclassified, it became clear that mis-
classified genera had a low number of both spe-
cies and occurrences. These genera are, therefore,
interpreted to have a poor fossil record, which
may explain their unpredictability.
The SHAP values improve the interpretability

of feature importance, as they show how the fea-
tures are used by the decision tree algorithms.
The SHAP summary plot (Fig. 5) reveals the
SHAP value for each genus for each feature.
The values range between −0.8 and 0.7 and the
further a value is from 0, the more influence it
will have on the prediction, whereas values
near 0 will have less of an impact on predictions.
The SHAP summary plot (Fig. 5) therefore
shows that phylum is a poor predictor of extinc-
tion, because most of the SHAP values are close
to 0, and mineralogy is a good predictor of
extinction, because clusters of samples with the
same classification have large positive and nega-
tive values. The SHAP force plots (Fig. 6) show
the sum of the SHAP values across all the fea-
tures added to the base value (the average pre-
dicted probability) for selected genera, which is
used by the algorithm to make its predictions.

FIGURE 2. High-resolution extinction rates of marine genera across the Permian/Triassic boundary in South China. The
extinction interval is highlighted in gray afterWang et al. (2014). Radiometric ages after Burgess and Bowring (2015). Cono-
dont zones after Yuan et al. (2014); a, Clarkina meishanensis; b, Hindeodus zhejiangensis–Hindeodus changxingensis; c, Hindeo-
dus parvus; d, Isarcicella staeschei, C. changxing, Clarkina changxingensis, I. isarcica = Isarcicella isarcica. Extinction rates for the
full studied interval are shown in Supplementary Fig. S6.
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In this study, positive SHAP values indicate that
the respective feature is a good predictor of
extinction, and negative values indicate a good
predictor of survival.
The end-Permianmass extinction was highly

selective according to an organism´s mineral-
ogy, with the SHAP summary plot indicating
that CatBoost would predict a lower extinction
risk for genera with no shell or an organopho-
sphatic shell (i.e., large negative SHAP values
in Fig. 5) and a higher extinction risk for genera
with a siliceous shell (i.e., large positive SHAP
values in Fig. 5). This can also be seen in the
SHAP value attributes for individual genera,
wherein mineralogy for these mineralogical

groups has one of the greatest importances in
model predictions (Fig. 6A–C). The selectivity
of the other mineralogical groups is less clear,
because the SHAP values are near 0 and are
less important for other mineralogical groups
(e.g., the low-Mg calcite brachiopods; Fig. 6D,
E). Aragonite, high-Mg calcite, and low-Mg cal-
cite genera aremore likely to go extinct than the
remaining mineralogical groups, but this only
has a small influence on CatBoost (Fig. 5),
owing to the fact that the extinction percentage
based on these three functional traits is between
50% and 60% (i.e., random).
Physiology and motility are also important

for the CatBoost model during the extinction

FIGURE 3. Area under the receiver operating characteristic (AUC) curves for the splits used for cross-validation in each time
interval. This curve plots the true-positive rate against the false-positive rate. The black dashed line represents an AUC of
0.5, which indicates a model with a random classification that has no utility. It is unlikely that a decision tree algorithmwill
give an AUC value of 1, which represents a perfect classification; instead, an AUC > 0.7 is typically considered represen-
tative of a good model (e.g., the splits for the pre-extinction Changhsingian and the extinction interval).
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interval (Fig. 5). When considering physiology,
the high SHAP values show that genera with a
heavy carbonate load and no buffering capacity
were selected against, whereas animals with a
moderate carbonate load and a moderate buf-
fering capacity were less likely to go extinct
(Fig. 5). Genera with little or no carbonate
load, however, show a mixed signal, because
this group includes siliceous taxa that were
highly selected against and taxa with no shell
that were not selected against. This means
that for non-siliceous genera, for example, the
articulate brachiopod Costatumulus (Fig. 6D),
physiology is a good predictor of extinction
risk, whereas for siliceous taxa, mineralogy is
a better predictor of extinction risk (Fig. 6A,
B). When looking at the extinction magnitude
between the different types of motility, genera
that are motile are less likely to have gone
extinct than stationary genera (Fig. 5). The Cat-
Boost also shows that for facultatively motile
taxa, motility is the most important factor for
predicting a low extinction risk (Fig. 5).

Discussion

The number of species within a genus was a
good predictor of extinction for the

Changhsingian and extinction interval, where
species-rich genera were more likely to survive
and species-poor genera were more likely to go
extinct. An important role for species richness
in the end-Permian mass extinction event has
previously been reported but was overlooked,
as other factors were interpreted as more
important (Payne and Finnegan 2007; Clapham
and Payne 2011). The importance of the species
richness of a genus can be interpreted as a bio-
logical signal; it would be generally expected
that genera with a high number of species
have a larger pool of variation and collectively
a greater tolerance to a wide range of environ-
mental conditions. There will, however, be
exceptions, as some species will have wider
environmental tolerances than multiple species
combined (e.g., Farrell 2009; Verberk et al.
2016). The number of species also explains
some of the within-phylum selectivity; for
example, articulate brachiopod genera with a
higher number of species were more likely to
survive (compare Fig. 6D with Fig. 6E).
The extinction selectivity according to an

organism’s bathymetric rangewas the best pre-
dictor of extinction for both the pre-extinction
and extinction intervals (Fig. 4). The import-
ance of this feature, however, decreases in the

FIGURE 4. The relative importance of each ecological variable for identifying extinction selectivity based on marine genera
from South China.
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extinction interval. Broad bathymetric ranges
are expected to enhance survivorship, because
genera are expected to have tolerated a broad
range of environmental conditions, but this sig-
nal is expected to be less strong during mass
extinction events (Jablonksi 1986), which is
also supported by our results. Of the organisms
with restricted bathymetric ranges, the extinc-
tion percentage of those that were restricted to
basinal settings increases from 38% to 86% dur-
ing the extinction interval, whereas the extinc-
tion rate of organisms restricted to platform
settings only changes from 65% to 68%. As
indicated by redox proxies from South China
(Song et al. 2012), this is tied to the expansion
of oxygen minimum zones and the concomi-
tant reduction of habitable areas in basinal set-
tings (He et al. 2015). The loss of these genera
from basinal settings is not considered a conse-
quence of a sea-level change, sampling bias, or
rock record bias, because postextinction basinal
facies in South China have also been intensely
studied but do not yield many body fossils.
Shoaling of the carbonate compensation depth
(CCD), which is the depth at which carbonate
is undersaturated, leading to dissolution of
marine shells, may also explain the selective
loss of genera in basinal settings, as increases

in dissolved CO2 will lead to calcium carbonate
undersaturation. Notably, some basinal succes-
sions became devoid of carbonate in the upper
Changhsingian (He et al. 2005), which has been
inferred as deposition below the CCD (e.g., Iso-
zaki 1997). Understanding the processes that
govern the shoaling and stability of the CCD
during the Paleozoic is, however, speculative
because changes in the position of the CCD in
modern oceans involves important pelagic cal-
cifiers, that is, planktic foraminifera and cocco-
lithophores, that did not become an important
component ofmarine ecosystems until themid-
Mesozoic. During the extinction interval, shal-
low platform settings (below fair-weather
wave base) were also exposed to transient
anoxic conditions (Song et al. 2012), which
may explain the high extinction risk in this set-
ting. The selective loss of genera restricted to
deep-water habitats suggests that the expan-
sion of the oxygen minimum zone in basinal
settings was one of the main drivers of
extinction.
The end-Permian extinction was highly

selective against siliceous taxa compared with
calcareous genera (Fig. 5). A drop in the diver-
sity and abundance of both radiolarians and
silicisponges led to a crash in biosiliceous

FIGURE 5. Shapley additive explanations (SHAP) summary plot showing how the different values of each ecological attri-
bute affect the model predictions for the extinction interval. The horizontal location of the values shows whether a data
point from the training dataset is associatedwith a higher or lower prediction. The vertical position corresponds to the rela-
tive importance of each ecological attribute. The SHAP summary plot for split 5 is shown, because of its high AUC value
and because it resembles the average for all the splits combined. SHAP plots for all splits are available in Supplementary
Figs. S8 and S9. The points are colored according to the categorical value given in Table 1 for each feature. For example, the
feature “Mineralogy” has seven values (1, aragonite; 2, high-/intermediate-Mg calcite; 3, low-Mg calcite; 4, bimineralic; 5,
organophosphatic; 6, silica; 7, no shell) and uses the first seven colors of the palette.
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ooze production, resulting in an equatorial
chert gap during the Early Triassic (Racki
1999). One factor that could have led to the
demise of effective silica factories during the
end-Permian extinction is rapidly rising ocean
temperatures that would have increased silica
dissolution rates and altered the silica satur-
ation state (Racki 1999; Beauchamp and Baud
2002). Temperature stress is also expected to
produce selective patterns of extinction by pref-
erentially extinguishing genera that already
lived near their upper thermal limits (Song
et al. 2014). Based on what is known on the
thermal limits of modern radiolarians (Song
et al. 2014), the temperatures that developed

during the extinction interval in South China
(Joachimski et al. 2012) likely made equatorial
surface waters uninhabitable. Further support
that high temperatures caused this selective sig-
nal is that radiolarians, silicisponges, and chert
deposits that do occur after the mass extinction
event are only known from thermal refugia,
that is, high paleolatitudes or deeper-water set-
tings (Takemura et al. 2002; Godbold et al.
2017), and that in shallow-marine settings, the
major metabolic stress in the tropics was ther-
mal stress (Penn et al. 2019).
The preferential extinction of siliceous genera

does not negate ocean acidification and instead
highlights that rapid increase in CO2 into the

FIGURE 6. Relative Shapley additive explanations (SHAP) value attributes showing how the different ecological variables
for five example genera—A, Ishigaum, B, Coelocladiella, C, Lingularia, D, Costatumulus, and E, Crurithyris—change in the
model prediction for the extinction interval. The x-axis is the model output value. The base value is the prediction if no
ecological variables are considered, that is, the average predicted probability. Model output value is the prediction consid-
ering the ecological variables for the investigated genus, with positive values indicating extinction and negative values
indicating survival. Features that push the prediction higher (to the right), that is, more likely to go extinct, are shown
in burgundy, and the opposite is shown in blue. The categorical values for the functional traits are given in Table 1 for
each feature.
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ocean–atmosphere system has numerous com-
plex consequences on ecosystems. Experimen-
tal studies investigating the impact of ocean
acidification on the biological calcification of
marine animals have shown that species that
precipitate aragonite and high-Mg calcite are
more vulnerable than those that precipitate
low-Mg calcite (Ries 2011). Even though our
results show that genera that precipitate sili-
ceous skeletons were more susceptible to
extinction than any other mineralogical group,
aragonite, high-Mg calcite, and low-Mg calcite
genera were also significantly selected against
when compared with genera that possess no
shell (Fig. 5). Despite this selectivity pattern
that is consistent with an ocean acidification
scenario, the slightly higher extinction likeli-
hood of genera with low-Mg calcite skeletons
over aragonite skeletons during the extinction
interval is inconsistent with modern studies
(e.g., Ries et al. 2009; Ries 2011) suggesting
that ocean acidificationwas not a selective pres-
sure during the extinction interval.
It is not only a genus’CaCO3 polymorph that

dictates whether it is vulnerable to ocean acid-
ification. For instance, an organism’s ability to
regulate pH and carbonate chemistry at the
site of calcification, the degree to which the
organism’s biomineral is protected by an
organic coating, and shell microstructure are
characteristics that have also been noted (Ries
et al. 2009; Ries 2011; Garbelli et al. 2017).
Even though these factors are important, it is
not yet possible to include these in a detailed
deep-time extinction selectivity analysis, as
this information is largely unknown, even for
extant organisms. Physiological classifications
to include these factors have been performed,
but only at the class level (Knoll et al. 2007).
These studies found a selectivity pattern con-
sistent with an ocean acidification event.
Using the same physiological categories, our
study found a selective pattern that is inconsist-
ent with ocean acidification and previous stud-
ies; that is, genera with little or no carbonate
load were more strongly selected against than
“buffered” genera with calcareous skeletons
(Fig. 5), owing to the selective loss of siliceous
genera. When siliceous taxa are removed from
the study, however, the extinction pattern is
consistent with an ocean acidification scenario

(Fig. 5). Our study also shows that physiology
was one of the most important ecological fac-
tors for predicting extinction in non-siliceous
taxa (e.g., Costatumulus; Fig. 6D). Notably, the
few studies that have been able to compare
some of these additional factors within phyla
have found a selectivity pattern consistent
with ocean acidification, for example, differ-
ences in the shell microstructure of Strophome-
nata and Rhynchonellata brachiopods (Garbelli
et al. 2017).
The remaining variable that had a selective

signal on extinction risk is motility. Genera
that are motile are less likely to have gone
extinct than stationary genera (Fig. 5), consist-
ent with previous observations (Foster and
Twitchett 2014; Clapham 2017). The resilience
of motile genera to rapid climate warming is
likely due to motile genera typically having a
greater aerobic scope, inherently high extracel-
lular pCO2, and higher maximum thermal tol-
erance limits (Clapham 2017). The selective
loss of stationary genera did not exist before
the mass extinction, which suggests that condi-
tions responsible for this selective pattern
developed rapidly during the extinction inter-
val. The preferential extinction of stationary
genera compared with motile taxa cannot be
used to infer individual extinction mechan-
isms, as the physiological adaptations of motile
taxa are advantageous under high-temperature,
low-oxygen, and low-pH conditions.
Recently, the biogeographic and physio-

logical selectivity of the end-Permian mass
extinction has been interpreted to have been a
consequence of a combination of high tempera-
tures and widespread marine anoxia (Penn
et al. 2019). Our CatBoost results, however,
show that ecological selectivity during the end-
Permian extinction varies among different
groups of organisms and that a synergy of mul-
tiple environmental stressors best explains the
overall end-Permian extinction selectivity pat-
terns. Given that the selectivity patterns
observed for the extinction interval in this
study are interpreted as a consequence of
expanded oxygen minimum zones, high sea-
surface temperatures, and ocean acidification,
this selectivity pattern corroborates the infer-
ences of previous studies (i.e., Knoll et al.
2007; Clapham and Payne 2011) that suggest

MACHINE LEARNING IDENTIFIES EXTINCTION PATTERNS 369

https://doi.org/10.1017/pab.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2022.1


multiple factors synergistically drove the end-
Permian mass extinction event and that this
“deadly trio of carbon dioxide” is responsible
for the ecological selectivity signal at the end-
Permian extinction.

Conclusions

Decision tree algorithms have a great poten-
tial to reveal selectivity patterns during both
past and projected extinction events. Applying
the categorical gradient boosting algorithm to a
database of marine invertebrates, conodonts,
and calcareous algae that span the Permian/
Triassic boundary in South China, our analysis
reveals that extinction risk was greater for gen-
era that had a low species richness, were limited
to deep-water habitats, had a stationary mode
of life, possessed a siliceous skeleton, or, less
critically, had calcitic skeletons. Furthermore,
these selectivity patterns did not exist before
the extinction, suggesting that extinction dri-
vers changed between the pre-extinction inter-
val and the extinction interval. We linked
these selective losses to the synergistic effects
of rapid climate change associated with the
end-Permian mass extinction, that is, expanded
oxygenminimum zones, rapid oceanwarming,
and ocean acidification.
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