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Abstract
We investigate the optimal asset allocation and repayment strategy of an agricultural loan under a guaranteed
repayment condition in a continuous-time setting. We propose two forms of the problem: an analytically
solvable “separable” problem and a more realistic “nominal” problem that is investigated numerically. In the
numerical study, we calibrate our model to publicly available farm data and explore various forms of
repayment structures. While the widely used constant repayment structure has a surprisingly outstanding
performance, we also design two repayment structures for the nominal problem that perform quite well.
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1. Introduction
Debt financing is an integral part of farming operations as it increases the capital level for
production and allows farmers to expand their business, thereby leading to a higher expected
return from farming. However, debt financing is accompanied by repayment obligations, which
are usually independent of the income from farming operations, such as a bank loan. Farming
operations, in reality, can be highly variable and are affected by variables largely outside the
farmers’ control, such as weather and the prices of their output. Consequently, the repayment
structure should play an important role in the farm leverage decision.

Since time-contingent loans (for example, standard bank loans) are the most common form of
financing instruments in the real world, the repayment rate has usually been modeled as an
exogenously given constant in the economics literature. However, since income contingent loans
(ICLs) to fund higher education have been successfully implemented in many countries
(e.g., Australia, New Zealand, and England), various studies have considered the possibility of
developing a similar product in the context of agricultural financing. Botterill and Chapman
(2004) and Botterill and Chapman (2009) introduce an income stabilization instrument for
agricultural credit named revenue contingent loan (RCL). By its name, the RCLs link the loan
repayments to the generated revenue to avoid repayment hardship, especially when the revenue is
low. Botterill et al. (2017) propose RCLs as an alternative to the drought assistance subsidy
payments by the Australian government. They argue that RCLs improve equity and provide
sufficient protection against default risk.

Against this background, we analyze the effects of various repayment structures, including
those seen in practice (for example, bank loans) and new proposals (various types of contingent

© The Author(s), 2025. Published by Cambridge University Press on behalf of Southern Agricultural Economics Association. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

Journal of Agricultural and Applied Economics (2025), 1–27
doi:10.1017/aae.2025.10023

https://doi.org/10.1017/aae.2025.10023 Published online by Cambridge University Press

https://orcid.org/0009-0005-6000-0672
mailto:zheng.xu1@anu.edu.au
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/aae.2025.10023
https://doi.org/10.1017/aae.2025.10023


loans, including RCL and ICL), on the lifetime welfare of farm households in a continuous-time
setting. The model also derives the farm households’ optimal inter-temporal consumption and
investment strategies. As this is an important first step in understanding this problem, we
prioritize solving the model analytically; for this, we make a simplifying assumption that the loan
is guaranteed to be repaid by a pre-specified terminal date; that is, we ignore the possibility of
credit risk (Collins and Karp, 1993), which will be studied in a separate work.

In setting up the problem with the repayment guarantee, we make use of the mathematical
framework of portfolio insurance strategies from the field of finance, thus building a link between
agriculture economics and traditional finance fields. Portfolio insurance strategies can be regarded
as the optimal solution to a modified utility maximization problem with certain exogenous
guarantee constraints (Balder and Mahayni, 2010). The original constraint of simply a minimum
level of terminal wealth (for example, in the case of avoiding defaults on the outstanding loan) has
been extended to many other forms, such as value at risk (VaR) in the literature (see Basak and
Shapiro, 2001; Kraft and Steffensen, 2013; Chen et al., 2018). Two of the most prominent
insurance strategies in the finance literature are constant proportion portfolio insurance (CPPI)
and option-based portfolio insurance (OBPI), both based on the seminal works of Merton (1969,
1975), where a functional form of hyperbolic absolute risk aversion (HARA) utility is maximized.

Our main objective consists of integrating the literature on agricultural debt financing with the
literature on income-contingent loans to assess how repayment structures affect the farmer’s
lifetime utility in the presence of revenue variations and to provide analytical solutions to such
problems. To the best of our knowledge, a framework that encompasses the repayment structure,
consumption, and investment strategies is absent from the literature. As explained before, we
impose a full repayment guarantee to gain better insight into this type of low-credit-risk investors
while making our model analytically tractable. Further, we find that a problem that does not
explicitly take account of the utility from repayments has a trivial solution, implying that the
farmer would be indifferent to different repayment structures. Thus, we construct a framework
that assigns utility to repayments. In this spirit, we propose two reward functions to be maximized
under a general form of the net revenue process and a full repayment guarantee constraint.
A closed-form optimal solution is found for one of the reward functions, while the other reward
function and the corresponding problem are studied numerically.

We also perform an empirical test to compare several types of repayment structures
(deterministic, stochastic, and hybrids). The results highlight the advantages of deterministic
repayment rates, particularly the constant repayment rate (like those seen in standard bank loans),
due to its straightforward structure. This finding sheds new light on the optimality of deterministic
repayments and the impact of parameters while opening the door to further innovations and
studies on optimal debt management.

Our first contribution to the literature is to establish a theoretical farm household decision-
making framework for analyzing the effects of different repayment structures. In the literature, the
farm leverage decision is largely studied through an investigation of the optimal debt ratio, while
little attention is given to the repayment structure of the debt. From the farmer’s perspective, the
repayment rate implicitly reflects the speed at which the loan is repaid and the farmer’s credit access.
Thus, it should be an important factor in farmers’ leverage decisions, from which our research stems.
Most of the recent literature focuses on assessing the theoretical models empirically such as de Mey
et al. (2014), Uzea et al. (2014), Ifft et al. (2015), de Mey et al. (2016), Bampasidou et al. (2017),
Aderajew et al. (2019), and Key (2020), while few innovations are made in the theoretical framework
of farm capital structure. Notable exceptions include Wu et al. (2014), who explain the farm capital
structure choice in the presence of various credit access scenarios, and Wauters et al. (2015), who
consider the trade-off between total-farm-risk and off-farm-risk.

An important branch of literature related to our framework involves formulating the debt
decision problem alongside simultaneous consumption and production decisions in a farming
household setting. Studies such as Phimister (1995a), Benjamin and Phimister (1997), Ramirez
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et al. (1997), Cheng and Gloy (2008), and Briggeman et al. (2009) explore this dynamic trade-off
between consumption and investment. Interestingly, Ramirez et al. (1997) follows the Merton
model (Merton, 1969) and applies stochastic optimal control to solve for the optimal leverage and
consumption strategies in a continuous-time setting. However, the optimal leverage found by
Ramirez et al. (1997) has the same structural implications as the static Collins-Barry model, and
shortfalls in the operating return can be offset by additional borrowings implicitly. As identified by
Wu et al. (2014), such an assumption that the farmers have full access to credit and their risk
profiles are homogeneous differs from actual capital markets. In contrast, our framework fixes the
initial loan amount and prohibits further borrowing over the loan horizon. Alternatives in the
literature, such as Phimister (1995a) and Phimister (1995b), explicitly consider borrowing
constraints in life-cycle models, while Benjamin and Phimister (1997) introduce transaction costs
and adjustment costs for new borrowings.

As a second contribution, we provide the analytical solution to the farm leverage decision in the
separable problem1 along with the numerical illustrations for the nominal problem,2 while studies
in this field, almost exclusively, consider the effect of repayment rates from a numerical
perspective in a discrete-time framework (such as Leatham and Baker, 1988, who model the
farmer’s choice between a fixed-rate and an adjustable-rate loan by using a discrete sequential
stochastic programming approach). In doing so, we also provide an analytical investigation of the
effect of RCLs on the lifetime welfare of the farmer to the agricultural financing literature. We note
that such an analytical formulation needs to be improved even in the significantly more studied
and developed field of ICLs, from which RCL is derived. In the higher education sector, the central
strand of literature focuses on the public finance outcomes and the design of ICLs at the
macroeconomic level (Garcia-Penalosa and Wälde, 2000; Barr and Crawford, 2004; Chapman,
2006a, 2006b, a; Del Rey and Racionero, 2010; Eckwert and Zilcha, 2012). The closest studies are
those by Van Long (2014, 2019), which propose a general theoretical framework for a utility
maximization problem in discrete time for analyzing a piecewise-linear repayment schedule but
do not provide a method of solving the framework.

Finally, we contribute to the broader economic literature by noting that our model can be
applied to any industry with productive capital and incurred debt as long as the form of the
income or net revenue process aligns with our model. In continuous-time stochastic Ramsey
growth models with Cobb-Douglas production function, the optimal pathwise consumption
strategy generally lacks a closed-form solution; see Baten and Miah (2007) and Feicht and
Stummer (2010). A feedback form solution is provided by Morimoto and Zhou (2009), while
Feicht and Stummer (2010) and Menoncin and Nembrini (2018) recognize a closed-form solution
under a strict limitation on the risk-aversion parameter within a CRRA utility framework. To
achieve a closed-form solution, our model instead simplifies the Cobb-Douglas production
function into a linear form by making the parameters state-dependent. The solution is then found
using a change of control approach.

The remainder of the paper is structured as follows. In Section 2, we introduce the problem and
set up two reward functions for analyzing the effects of different repayment structures – the
separable problem and the nominal problem. We provide an analytical solution to the separable
problem in Section 3 and to a corresponding “net” problem. In Section 4, we use publicly available
Australian farm data to parameterize our model and provide an illustration of the separable
problem. More importantly, we solve the nominal problem numerically and present a speculated
optimal solution to the nominal problem that is assessed against other repayment structures and
found to exhibit the most favorable performance. Section 5 concludes.

1The separable problem is defined by (PS), where the consumption, repayment, terminal wealth and terminal outstanding
loan amount contribute to the lifetime utility through separated utility functions.

2The nominal problem is defined by (PN), in which both consumption and repayment contribute to lifetime utility through
the same utility function, as do terminal wealth and the terminal outstanding loan amount.
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2. Problem formulation
Consider a farmer whose sole external financing tool is a loan that was taken out at time t = 0
with a maximum repayment period of t = T. In a continuous-time setting, at time t∈ [0,T], the
farmer’s net wealthWt is defined as the summation of the amounts invested in the risky asset and
the amount of cash in the bank (B) less the outstanding loan amount Dt. For simplicity of
presentation, we will assume two risky assets,3 namely land (L), and farm capital excluding
land (K).

However, we note that our approach can be extended to multiple asset classes without the loss
of generality. In general, our methodology follows through if working with more generic sources
of risk, like technology, productivity shocks, or commodity prices, i.e., K = fK(X1, : : : ,Xm),
L = fL(X1, : : : ,Xm).

The representation for wealth would be Wt = LtptL + KtptK + BtptB −Dt, where Lt, Kt and Bt
denote the units invested in each asset class while ptL, ptK, and ptB are the corresponding unit price
at time t. Then we define the nominal wealth W̃t as the total available amount of investment as

W̃t � Wt � Dt � Ltp
L
t � Ktp

K
t � Btp

B
t : (1)

The evolution of ptB reflects the risk-free rate provided by the cash account, which is assumed
to be exogenously given as a constant rB over the whole period [0, T]. Thus, the process of ptB is
dptB/ptB = rBdt.

Similarly, the evolution of ptL and ptK reflects the appreciation of land value and the
depreciation of farm capital, respectively. Their processes are modeled as geometric Brownian
motions (GBMs), and the sign of the drift parameter μ captures appreciation:4

dpLt =p
L
t � µLdt � σLdzLt ;

dpKt =p
K
t � µKdt � σKdzKt ;

(2)

where ztL and ztK define standard Brownian motions with σ representing the respective diffusion
coefficient.

The overall effects of these price changes result in an instantaneous capital gain amount of
LtdptL + KtdptK + BtdptB for the farmer.

2.1. Net revenue from farm production

In addition to the overall capital gain resulting from the instantaneous changes in unit prices, the
farmer also generates revenue from farming. Let yt be the cumulative net revenue (i.e., revenue less
cost) until time t, then the instantaneous net revenue is

dyt � µ
y
t Lt;Kt� �dt � σ

y
t Lt ;Kt� �dzyt ;

where μy and σy denote the drift and volatility of the net revenue process, respectively, while zty

defines a standard Brownian motion.
We note that both μy and σy are functions of Lt and Kt because the net revenue is generated

from these two resources. Other sources of risk could have been considered for more generic drift
and diffusion terms e.g., μty(X1, t, : : : ,Xm, t), σt

y(X1, t, : : : ,Xm, t). Consistent with reality, this
revenue-asset relationship incentivizes the farmer to allocate wealth to these two asset classes. We
write μy and σy in terms of land value ptLLt and capital value ptKKt as follows:

3Other assets, such as machinery or livestock, as long as their price dynamics also follow geometric Brownian motions, can
also be considered in our model without loss of analytical tractability.

4A negative μ means depreciation effectively.
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dyt � αLpLt Lt � αKpKt Kt

� �
dt � βLpLt Lt � βKpKt Kt

� �
dzyt : (3)

Although the writing above appears linear in Lt, Kt, our model allows for α and β to be state
dependent, i.e., αt = α(Lt,Kt), βt = β(Lt,Kt). Thus, the well-known diminishing marginal effect
could be modeled by (3) by assuming that αt would decrease while land value and capital value
increase. For simplicity of presentation, we implement the case of constant α and β. Note that
Grigorieva and Khailov (2005) considers a similar optimal loan repayment schedule problem in
the case of linear production function but without the Brownian motion component.

Finally, we note that the three stochastic processes of ptL, ptK and yt can be correlated, and such
correlation is captured by a correlation matrix ρ which satisfies

dzt � dzLt ; dz
K
t ; dz

y
t

� �>� ρ dz̄Lt ; dz̄
K
t ; dz̄

y
t

� �>� ρdz̄ t;

where dz̄ t are uncorrelated Brownian motions. The correlation matrix ρ should be non-singular to
avoid perfect correlation amongst the three random processes.

2.2. Loan and wealth dynamics

We assume the farmer has an initial loan amount D0 at time t = 0, and the existing loan must be
repaid during the period [0, T]. Given the repayment guarantee, the outstanding loan amount Dt

at time t should satisfy

Dt �
Z

T

t
e�rB s�t� �dRs � DTe�r

B T�t� �; (4)

where dRs is the instantaneous repayment amount, and the equation above should hold for any
realized wealth path.

In our study, the functional form of dRt is very flexible; the only condition is zero quadratic
variation (i.e., Rt is a differentiable function of time),5 therefore dRt can be expressed as
dRt = atdt, where at could be a general function of any of the underlying variables, parameters, or
processes described previously, for example, t, yt,Wt, and Dt. Thus, the dynamics of Dt, according
to equation (4), satisfies

dDt � rBDtdt � dRt

� rBDt � at
� �

dt:
(5)

At any time t∈ [0,T], the farmer needs to determine the instantaneous consumption rate ct and
reallocate the assets after receiving the instantaneous overall capital gain and the net revenue dyt,
as well as settling the instantaneous repayment dRt. With the definition of wealth in equation (1),
the budget constraint is derived as:

dW̃t � dyt � ctdt � dRt � LtdpLt � KtdpKt � BtdpBt

Let π̃L
t � LtdpLt =W̃t; π̃

K
t � KtdpKt =W̃t and π̃B

t � π̃K
t � BtdpBt =W̃t denote the proportion of

nominal wealth invested in each asset class. Then, from equation (1), we receive π̃L
t � π̃K

t � π̃B
t � 1.

Rewriting the dynamics of nominal wealth in terms of the π’s, we get in matrix form

dW̃t � W̃t rB � π̃>
t µ̃

� � � ct � at� �� �
dt � W̃tπ̃

>
t σdzt (6)

with π̃t � �π̃L
t ; π̃

K
t �>; µ̃ � �αL � µL � rB;αK � µK � rB�>; c̃t = ct + at is the nominal consump-

tion and

5Richer repayment structures, such as those driven by Brownian motions, can be considered as a qualitative different class
worth exploring in future analyses.
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σ � σL 0 βL

0 σK βK

� �
:

Similarly, π, the proportion of net wealth invested in each asset class could also be defined.
Then we have πt

L = LtptL/Wt, πt
K = KtptK/Wt and πt

B = BtptB/Wt, as well as πt = (πtL,πtK)⊤,
which lead to W̃tπ̃

>
t � Wtπ

>
t .

With the dynamics of nominal wealth and equation (1), the dynamics of net wealth could be
derived as

dWt �dW̃t � dDt

� Wt rB � π>
t µ̃

� � � ct
� �

dt �Wtπ
>
t σρdz̄ t :

(7)

Since the last expression in the right-hand side of (7) is independent of Dt, the dynamics of net
wealth are unrelated to Dt, indicating that net wealth has no connection to debt or repayments
whatsoever.

2.3. Objective functions

Our main interest is to compare different repayment structures in terms of farmer satisfaction
with a fixed amount of initial loan under the constraint of full repayment, which could be
expressed as a constrained utility maximization problem. In this section, we propose a utility
framework in which not only net consumption and terminal wealth but also repayments
contribute to lifetime utility. We then present two reward functions: a separable problem in (PS)
and a nominal problem in (PN) within this framework. Of the two, the nominal problem is of
greater interest as it can accommodate a broad range of repayment schemes, including those
where either or both of at = 0 and DT = 0 (for example, due to early repayment, or only paying
off the loan at the very end). The separable problem is limited as it can only evaluate repayment
schemes where at ≠ 0 and DT ≠ 0. Some preliminary results and motivation can be found in
Appendix A.

To capture the important input variables and controls, we adopt the following notation J(⋅) for
the optimization problem and V(⋅) for the reward function. It should be noted that the functions
are written in nominal terms to keep repayments as part of the objective.

Let us define At as the set of unconstrained feasible consumption, repayment, and investment
strategies to distinguish it from Bt, the set of all the feasible consumption, repayment, and
investment strategies at time t induced by the repayment constraint (4). These are:

At � cs; as;π
L
s ;π

K
s

� �
s2 t;T� �

n o
;

and

Bt � c̃s; as; π̃L
s ; π̃

K
s

� �
s2 t;T� �j c̃s 	 as 	 0; W̃T 	 DT 	 0 P � a:e:

n o
:

The aim of Bt is to guarantee a positive net consumption rate cs and a positive net terminal wealth
WT when the loan has been incorporated.

We now create the utility framework where the farmer does not only gain utility from the inter-
temporal consumption cs but also from the inter-temporal repayment as. This repayment rate as
could be regarded as a pre-defined obligation by the loan provider, and the farmer could gain
utility when meeting those quantitative obligations. Following this idea, the terminal repayment
amounts to DT due to the full repayment constraint should also contribute to the lifetime utility,
while one additional explanation might be that it provides the farmer access to a funding source
without any concern of repaying it before the end of the period. Since the initial loan amount is
fixed, the difference in the lifetime utility results from the repayment scheme as and thus DT.
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Within such a utility framework, we propose two reward functions under CRRA utility:

V̂ Wt; t;Dt ; cs; as;πs� �s2 t;T� �
� � � Et

Z
T

t
e�δ s�t� � u cs� � � u as� �� �ds� εe�δT v WT� � � v DT� �� �

� �

� Et

Z
T

t
e�δ s�t� � c1�γs

1 � γ
ds� εe�δT

W1�γ
T

1 � γ

� �

� Et

Z
T

t
e�δ s�t� � a

1�γ
s

1 � γ
ds� εe�δT

D1�γ
T

1 � γ

� �

� V Wt; t; 0; cs; 0;πs� �s2 t;T� �
� �� V Dt; t; 0; as; 0; 0; 0� �� �s2 t;T� �

� �
;

(8)

where the second term in last equation is due to πs = (0,0) implied by the dynamics of Dt; and

V̄ W̃t; t;Dt ; c̃s; as; π̃s� �s2 t;T� �
� � � Et

Z
T

t
e�δ s�t� �u c̃s� �ds� εe�δTv�W̃T�

� �

� Et

Z
T

t
e�δ s�t� � c̃1�γs

1 � γ
ds� εe�δT

W̃1�γ
T

1 � γ

� �
;

(9)

where ε is a positive constant that denotes the relative weight the farmer places on terminal utility,
and a high value of ε reflects that the farmer regards terminal wealth as important relative to the
inter-temporal consumption. δ stands for the utility discounting factor, while γ is the coefficient of
relative risk aversion.

The main difference between these two reward functions is how the repayment rate as and DT

are allocated, i.e., V̂ assigns individual utility to as and DT term, while V̄ treats cs and as as a whole
and assigns utility to the whole of the nominal consumption c̃s and the nominal terminal
wealth W̃T .

By maximizing these two reward functions at time t, we have two objective function candidates:

Ĵ
�
Wt ; t;Dt

	
� sup

cs;as;πL
s ;π

K
s� �2At

V̂ Wt; t;Dt ; cs; as;πs� �s2 t;T� �
� �

; (PS)

and

J̄ W̃t; t;Dt

� � � sup
c̃s;as;π̃

L
s ;π̃

K
s� �2Bt

V̄ W̃t ; t;Dt ; c̃s; as; π̃s� �s2 t;T� �
� �

: (PN)

We define the problem (PS) as the separable problem and the problem (PN) as nominal
problem. The nominal problem captures the fact that both net consumption and repayment are
drawn from the same pool of nominal wealth and are allowed to influence each other.
Furthermore, in the nominal problem, net consumption and repayment contribute to the lifetime
utility together. This implies that the utility remains unchanged if a certain amount of wealth is
reallocated between net consumption and repayment. However, since such re-allocation affects
terminal nominal wealth, the farmer faces a trade-off between consumption and repayment, as
well as a trade-off between present and future utility when deciding how to allocate them.

In contrast, in the separable problem, net consumption and repayment contribute to the
lifetime utility through separate utility functions: net consumption is financed from net wealth,
while repayment is made from the outstanding loan balance. Consequently, there is no trade-off
between consumption and repayment at each point in time. As a result, net consumption and
repayment can be treated independently in the separable problem, which justifies its
decomposition into two independent sub-problems, as shown below.

We observe that V̂ is composed of two individual reward functions in the form of V in equation
(8), where one is solely affected by cs and WT, while the other is affected by as and DT. More
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importantly, the dynamics of Wt and Dt are independent of each other, which means Ĵ can be
further written as

Ĵ�Wt; t;Dt� � sup
as2At

sup
cs;π

L
s ;π

K
s� �2At

V Wt; t; 0; cs; 0;πs� �s2 t;T� �
� �� V Dt; t; 0; as; 0; 0; 0� �� �s2 t;T� �

� �
8<
:

9=
;

� sup
as2At

V Dt; t; 0; as; 0; 0; 0� �� �s2 t;T� �
� �� sup

cs;π
L
s ;π

K
s� �2At

V Wt; t; 0; cs; 0;πs� �s2 t;T� �
� �

:

(10)

Thus, this optimization problem Ĵ is solvable if each sub-problem is solvable, which we investigate
in Section 3.

However, the nominal problem in (PN) resembles an OBPI problem in the presence of an
additional constraint on consumption. To the best of our knowledge and ability, this problem does
not have a closed-form solution. This means we will approximate (PN) via (PNA), i.e., by fixing
the allocations and consumption while optimizing the repayment, this is:

J̄ W̃t; t;Dt

� � ≥ J̃ W̃t; t;Dt

� � � sup
as2Bt

V̄ W̃t; t;Dt ; c̃
s ; as; π̃

s� �s2 t;T� �

� �
; (PNA)

where c̃s* and π̃

t are the optimal solutions to the net problem (A.2).

3. Analytical solutions
While in this paper, we work with the constraint of certain repayments; we would like to ascertain
the impact of repayments on the farm household’s welfare. This leads us to the separable and
nominal problem described in (PS) and (PN). Although we cannot solve the nominal problem
(PN) analytically, we can solve the separable problem (PS) based on equation (10) and proposition
Appendix A.1.

Corollary 3.1. The solution to problem (PS) with wealth dynamics (6) is closed-form, in particular,
the life-time utility, the optimal net consumption, repayment rate, asset allocation, and nominal
wealth dynamics are, respectively:

Ĵ�Wt; t;Dt� �
g�t�γ
1 � γ

W1�γ
t � h�t�γ

1 � γ
D1�γ

t :

c
�Wt; t� �
Wt

g�t� :

a
�Dt ; t� �
Dt

h�t� : (11)

π
 � 1
γ
�σρρ>σ>��1µ̃:

dW̃

t � W̃


t rB � 1
γ
�1 � Dt

W̃

t
�µ̃>�σρρ>σ>��1µ̃

� �
� W̃


t � Dt

g�t� � Dt

h�t�

 �

dt

� 1
γ
�W̃


t � Dt�µ̃>�σρρ>σ>��1σdzt;
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where

A � δ� rB�γ � 1�
γ

� 1
2
γ � 1
γ2

µ̃>�σρρ>σ>��1µ̃;

B � δ� rB�γ � 1�
γ

;

and

g�t� � 1
A

1� ε1=γA � 1
� �

e�A�T�t�
� �

;

h�t� � 1
B

1� ε1=γB � 1
� �

e�B�T�t�
� �

:

Proof. Given equation (10), the separable problem (PS) has been decomposed to two sub-
problems where proposition Appendix A.1 could be applied because these sub-problems are in the
same form of the net problem (A.2). ▪

Corollary 3.1 implies that while the farmer still invests the loan in a risk-free manner, the
repayment rate is no longer irrelevant because now it enters into the reward function and the
optimal repayment rate is found to be a deterministic function of time t.

4. Empirical analysis
The aim of this empirical analysis is to provide an illustrative application of our model. Here, we
first estimate the parameter of the model using publicly available data Australian farm data
(Section 4.1). We note that the model is general enough that it can be easily adopted in any
jurisdiction. Next, we outline the repayment structures considered and explain the metrics used to
compare performances (Section 4.2). Following this, we explore repayment structures for the
various problems at hand in Section 4.3. First, given its analytical properties, we provide results for
the separable problem, (PS). In Section 4.3.2, we study the nominal problem in (PN) numerically
using the approximation in (PNA) for various repayment structures. Moreover, given the lack of a
closed-form solution, we also explore and motivate two ansatz for the optimal allocation,
consumption, and repayment structure of (PN). This allows us to compare, in Section 4.3.2, of all
candidate solutions.

4.1. Parameter calibration

To estimate the parameters in equations (2) and (3), we apply the Maximum Likelihood Method
(see, Aldrich, 1997) to the performance data of large-size cropping farms obtained from the
Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES).6 The data set
from ABARES contains the average farm business data (including, e.g., land value, capital value,
area operated, and depreciation) from 1990 to 2022, with large farms classified as those with total
cash receipts (in 2022–23 dollars) greater than $1,000,000. The estimates are shown in Table 1,
and the details are provided in Appendix B).

Since μK represents the mean appreciation rate of capital, it is worth noting that our estimate,
μ̂K = − 0.0971, is negative and thus captures the depreciation. However, this negative rate should
not be misconstrued as a deterrent for investing in capital. In fact, in the net revenue process, the

6We attemptedMLE on data of small, medium and large size farms across various industries. However, the estimates for the
large-size cropping farm are the most reasonable, as both α̂L and α̂K are positive. This aligns with the belief that land and
capital both have positive effects on the mean of net revenue.
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contribution of capital to the drift term, as represented by α̂K, far exceeds that of α̂L. Within the
context of the net revenue process’s diffusion term, dyt, the negative value of β̂K implies that
capital, when considered as an asset class, can help mitigate the overall risk associated with net
revenue. This characteristic makes capital investment quite appealing. On the other hand, the
positive value of β̂L signifies the risk associated with land ownership. This positive correlation is
consistent with the understanding that larger land holdings generally entail higher risk.

Given the parameter estimates presented in Table 1, we proceed to estimate the correlation
matrix by centering the data. The estimates are:

ρ̂ �
1 �0:1118 �0:0271

�0:1118 1 �0:0757
�0:0271 �0:0757 1

2
4

3
5:

We see that the stochastic processes described by equations (2) and (3) are negatively correlated.
Although most of the literature supports a positive correlation between the land price and capital
price (e.g., the land price and “buildings and structures” in Delbecq et al. (2014); the land price and
building in Sardaro et al. (2020)), Just and Miranowski (1993) found with the United States data
that the increase in land prices can be partially attributed to capital erosion; that is, when the
opportunity cost of alternative investments declines, land becomes a comparatively more
attractive investment, resulting in increased demand for land and potentially higher land prices.
Baldoni and Ciaian (2023) also showed with European data that land value is negatively correlated
with the livestock units (which can be regarded as a representative of capital) by coefficient
estimates.

In terms of the negative correlations between farm net revenue and land (L) as well as capital
(K), Beckman and Schimmelpfennig (2015) found that the land price and the prices paid by
farmers (i.e., the farm input prices) have a negative impact on the farm net revenue. Deaton and
Lawley (2022) also indicated a potential negative correlation between net revenue and the value of
land and buildings in certain regions of Canada.

For the numerical analysis, the borrowing rate is calibrated to be rB = 0.04 by Bayraktar and
Young (2007), Livshits et al. (2007), and Nakajima (2017). The inter-temporal utility discount
factor is δ = 0.02 (see, for example, Shin et al., 2007; Zeng et al., 2016; Lichtenstern et al., 2021;
Gong and Li, 2006), who use a range between 0.005 and 0.05). The relative risk aversion is set to

Table 1. The parameter estimates based on ABARES large-size cropping farm performance data

Estimates Estimated Value Standard Deviation

Parameters of land price dynamics

μ̂L 0.0693 0.0483

σ̂L 0.2603* * * 0.0336

Parameters of capital price dynamics

μ̂K − 0.0971* * * 0.0259

σ̂K 0.0258* * * 0.0033

Parameters of net revenue dynamics

α̂L 0.0192 0.0193

α̂K 0.1800* * * 0.0950

β̂L 0.0162* * * 0.0050

β̂K − 0.1955* * * 0.0250

Notes: * p<0.10, ** p<0.05, * * * p<0.01.
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γ = 2 to reflect a moderate level of risk aversion by Lim et al. (2008), which is also close to the
estimate γ = 2.211 from Pennings and Garcia (2001). The initial wealth of the farmer is
W0 = 100, 000, with an initial debt amount ofD0 = 50, 000, and the maximum borrowing period
is set at T = 20 years, which means that the loan should be repaid fully within this time span. The
relative weight on terminal utility, as denoted by ε, is set to be 1, implying equal weight by the
farmer on inter-temporal consumption and terminal wealth.

As per Proposition Appendix A.1 and Corollary 3.1 and with the parameter setting discussed
above, the optimal net investment strategy π (with regards to L and K) to net problem (A.2) and
the separable problem (PS), along with the values of A and B associated with g(t) and h(t)
respectively, are shown in Table 2. Corollary 3.1 demonstrates that the separable problem can be
decomposed into two sub-problems, where π appears only in the reward function of the net
problem, as shown in equation (8). Therefore, the optimal π for the separable problem is solely
determined by, and exactly the same as, the optimal π for the net problem.

In the separable problem (PS), the farmer’s optimal investment strategy is to allocate 37.32%
and 55.06% of his net wealth to land and capital, respectively. Excluding these investments, the
remainder of his nominal wealth is invested in the cash account. Since the sum of πL and πK is less
than 1, this result implies that the loan is effectively invested in a risk-free manner, which is due to
the full repayment requirement. As investment in land and capital is risky, it is possible that the
farmer’s terminal nominal wealth W̃T will fall below the terminal loan amount DT if he invests
more than his net wealth in risky assets.

4.2. Repayment structures and optimization problems

This section outlines the repayment structures that we explore in the subsequent sections. In
addition to the widely used constant repayment structure, we investigate various contingent and
hybrid repayment structures. We conclude this section with a description of our comparison
metric, the equivalent initial net wealth, which we use in the numerical analysis in Section 4.3.

The contingent repayment structures are based on the works of Botterill and Chapman (2004);
Botterill and Chapman (2009) and are designed according to the concept that the repayment rate
is proportional to the mean of a specific type of earnings, such as capital gain or revenue. On the
other hand, the hybrid structure combines both constant and contingent components, forming a
more comprehensive class of repayment structures. The intuition is that by making (a portion of)
the repayment proportional to earnings, the farmer can reduce their repayments during periods of
lower earnings and increase them when earnings are higher, thereby achieving a consumption-
smoothing effect.

In this study, we consider two types of earnings, capital gains, and net revenue, and create
contingent repayment structures based on them.7 We will provide the definitions and then derive
the dynamics for these structures. The instantaneous capital gain before consumption, denoted as
dGt, is defined as:

Table 2. The factors of optimal strategy based on the estimates in Table 1

Factors of the Optimal Strategy Value

πL 37.32%

πK 55.06%

A 0.0404

B 0.0300

7We also attempted the contingent structures where the repayment rate is proportional to earnings directly. However, the
performance of those structures is inadequate due to the high volatility of repayment.
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dGt � W̃t r
B � π̃>

t µ̃
� �

dt � W̃tπ̃
>
t σdzt; (12)

Rewriting the net revenue process in terms of W̃t and π̃t , we have:

dyt � αLpLt Lt � αKpKt Kt

� �
dt � βLpLt Lt � βKpKt Kt

� �
dzyt

� W̃t αLπ̃L
t � αK π̃K

t

� �
dt � βLπ̃L

t � βK π̃K
t

� �
dzyt

� �
� W̃t π̃

>
t αdt � π̃>

t βdz
y
t

� �
;

(13)

where α = (αL, αK)⊤ and β = (βL, βK)⊤. We note that given the stochastic nature of the
repayments, the exact time of full repayment is unknown. Thus, to formulate the expressions for
each repayment type, it is necessary to introduce the concept of a repayment stopping time, τ:

τ � inf t : Dt � 0f g:
The repayment structures we consider are summarized in Table 3, where b1 and b2 serve as

descriptive parameters. The Capital Gain Contingent and Revenue Contingent repayment
structures in our study essentially link the repayment rate to the mean level of instantaneous
capital gain and revenue, as shown in equations (12) and (13) respectively. Note, for each of the
repayment structures, the descriptive parameters, b1, b2, are our control variables, and their values
are determined numerically.

Based on the decomposition of the separable problem (PS), it is apparent that irrespective of the
chosen repayment strategy, the optimal consumption and investment strategies remain
unchanged. This happens since the repayment rate solely impacts the dynamics of Dt and not
that of Wt. Therefore, for any repayment structure aj, we can reformulate the optimization
problem (PS) as follows:

Ĵ W0; t � 0;D0; ajs
� 	

s2 0;T� �

� 

� sup

b
V̂t W0; t � 0;D0; c
s ; a

j
s;π


s

� 	
s2 0;T� �

� 

;

where b is the descriptive parameter vector of the structure aj, while πs* and cs* are the optimal
solution from Corollary 3.1.

However, given that the nominal problem (PN) is not analytically solvable, the optimization
problem for each repayment structure is addressed numerically using (PNA). As a reminder, this
involves applying the optimal solutions to nominal consumption and investment in problem
(A.2). Consequently, expressing J̃, specific to the repayment structure aj:

J̃ W̃0; t � 0;D0; as � ajs
� 	

s2�t;T �

� 

� sup

b
V̄ W̃0; t � 0;D0; c̃
s ; as; π̃


s� �s2�t;T �
� �

;

where b is again the descriptive parameter vector of repayment structure aj.
For illustrative purposes, we present in Table (4) the investment strategies and nominal

consumption at time 0 for the inner optimization problem of J̃ in equation (PNA). It should be
noted that both π̃t and c̃twill vary over time. Since the optimal investment strategy in the separable

Table 3. The repayment structures

Loan Scheme Repayment Structure

Constant (C) atC = b1

Capital Gain Contingent (CG) aCGt � b21ft�τgW̃t �rB � π̃>
t µ̃�

Revenue Contingent (R) aRt � b21ft�τgW̃tπ̃
>
t α

Hybrid of Constant and Capital Gain Contingent (HC) aHCt � 1ft�τg�b1 � b2W̃t �rB � π̃>
t µ̃��

Hybrid of Constant and Revenue Contingent (HR) aHRt � 1ft�τg�b1 � b2W̃tπ̃
>
t α�
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problem is also applied in the nominal problem, the strategy shown in Table (4) is effectively the
same as that in Table 2, albeit expressed in different nominal terms. Following the same logic, we
can see that the loan is invested in the cash account to ensure it can be fully repaid at the terminal
date. The initial optimal net consumption rate, c0 = 7062.38 (7.1 % of initial wealth), can be
interpreted, for simplicity, as the total net consumption in the first year, as g(t) does not vary
significantly over a short time period. However, a0 does depend on the specific repayment
structure.

We conclude this section with a discussion of the comparison metric used in the numerical
analysis. In the following, we select the constant repayment structure as the baseline. This choice is
motivated by its broad use in the real world and ease of understanding as well as the fact that it
appears in all of our analyses.

While our problem formulation involves utility maximization, the utility values themselves are
inherently subjective and hard to interpret as they have no intuitive meaning (see, for example
(Butt and Khemka, 2015)). Consequently, researchers have devised numerous measures to
quantify utility outcomes in an easier-to-understand manner. For example, Cocco et al. (2005) and
Khemka et al. (2024) use certainty equivalent consumption to compare utility outcomes of
different strategies, with results being represented as either the certainty equivalent values or its
change over different strategies. Other studies have used changes in certain variables such that the
utility is the same as that of the benchmark. For example, Huang et al. (2025) employ the extra
management fee that could be charged such that the utility from different investment strategies are
the same. Our metric stems from the latter strand of literature, where we calculate the equivalent
initial net wealth such that the utility for a given repayment structure is the same as that of the
baseline.

For each repayment structure denoted as aj, we identify an equivalent initial net wealth value,
denoted as W0

C, that enables the farmer to attain the same lifetime utility as under the constant
repayment structure aC, i.e.,

Ĵ W0; t � 0;D0; as � ajs
� 	

s2 0;T� �

� 

� Ĵ WC

0 ; t � 0;D0; as � aC
� �

s2 0;T� �
� 	

for problem (PS) and

J̃ W0 � D0; t � 0;D0; as � ajs
� 	

s2 0;T� �

� 

� J̃ WC

0 � D0; t � 0;D0; as � aC
� �

s2 0;T� �
� 	

for problem (PNA).
We also define, ΔW0, as the difference between W0

C and W0:

ΔW0 � WC
0 �W0; (14)

to measure the enhancement or deterioration of a particular repayment structure compared with
the constant one expressed in monetary units.

Table 4. The optimal nominal strategy based on the estimates in Table 1 at time t = 0

The Optimal Nominal Strategy Value

π̃0
L 24.88%

π̃0
K 36.71%

π̃0
B 38.41%

c̃0 7062.38 + a0
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4.3. Numerical results

In this section, we first provide the numerical output for the separable problem and then delve into
the solution of the nominal problem for each repayment structure outlined in Table 3, first using
(PNA), and then directly with (PN), all based on a dataset comprising 10, 000 simulations.

4.3.1. Results for separable problem (PS)
Given the form of the reward function (A.1) in the separable problem, which assigns utility to the
repayment rate at and the terminal loan amount DT directly, the reward function achieves negative
infinity when either at or DT equals zero. This scenario can arise in contingent repayment
structures when the loan is fully repaid before time T. Consequently, we cannot evaluate either
contingent or hybrid repayment structures under the separable problem, and only deterministic
repayment structures can be assessed.

Hence, we limit the comparison between the optimal repayment structure obtained in
Corollary 3.1 against a numerically optimized constant repayment structure.8 The results are
presented in Table 5 and Figure 1. While, visually, the optimal repayment structure exhibits an
approximately linear increasing pattern, it is in fact non-linear, as indicated by its functional form
(at = Dt/h(t)) in Corollary 3.1.9 Moreover, we note that the amounts being paid during the term
of the loan are quite close for the two repayment structures, though there is a significant difference
between the terminal loan repayment amounts. The comparison also shows that the optimal
repayment structure outperforms the constant one by approximately 0.78% in terms of equivalent
initial wealth. This is an important result as it shows that the “optimal” constant repayment
strategy is not “too sub-optimal” for the separable problem.

4.3.2. Results for nominal problem, (PN) and (PNA)
As we discussed before, the nominal problem (PN) is not analytically solvable. Hence, the true
“optimal” solution of the form of Corollary 3.1 is unavailable.10 In this section, we first introduce
and motivate two ansatz as candidates for solutions of (PN). We then compare all proposals, that
is, the two ansatz mentioned above, as well as the optimal solutions to (PNA) based on the
repayment structures in Table 3.

For our first ansatz candidate solution, we draw inspiration from the form of the optimal
consumption and repayment rate derived for the net problem (A.2). We postulate that the optimal
nominal consumption in the nominal problem (PN) might exhibit a similar functional
representation or can be approximated. The functional form of the solution could be written as:

c̃S Wt ;Dt; t� � � Wt

f t� � �
Dt

f t� � :

The intuition behind this proposal is that as γ approaches zero, the nominal problem (PN)
tends to converge toward the separable problem (PS).

Now, if we consider an approximation of f(t) as κg(t), where g(t) is obtained from Proposition
Appendix A.1, and κ is a measure of the degree of similarity between f(t) and g(t), then the
speculated optimal repayment rate for the nominal problem (PN) would be:

8The constant repayment structure can take many forms, from equal repayments in every period to no repayment over the
life of the loan and full repayment at the end. The optimization procedure identifies the form of the repayment structure that
maximizes the underlying reward function.

9We also note that approximately linear increasing pattern is a function of the current parametrization used in the analysis.
Further investigations show that increasing the utility discount factor parameter, δ, to 0.04 leads a visually non-linear
repayment structure.

10Searching for optimal numerical solutions in continuous-time models is quite time consuming and could be inaccurate.
This is an avenue for exploration in future research.
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aS Wt;Dt; t� � � c̃S Wt;Dt; t� � � c
 Wt; t� �
� Wt

f t� � �
Dt

f t� � �
Wt

g t� �
� Wt

1
κg t� � �

1
g t� �

� 

� Dt

κg t� � :
(15)

We call this the “Speculated Solution (S).”
For the second ansatz candidate solution, we introduce a two-stage solution for net

consumption and repayment. We propose that, initially, before the loan is fully repaid, the farmer
would focus solely on repaying the loan and set the net consumption to 0. Although the approach
might not seem attractive to farmers due to the zero net consumption while the loan is being
repaid, it signals a more rewarding strategy of minimal consumption at first. This aligns the
theoretical solution to the optimal level derived from the net problem where we consider Wt + Dt

as the net wealth value according to net problem (A.2) and its solution provided in Proposition
Appendix A.1. Once the loan is fully repaid in the subsequent stage, the nominal problem (PN)
transforms into the net problem. In both stages, the constant proportion investment strategy,
which is the optimal solution to the net problem, is applied to the net wealth Wt.

This two-stage solution ensures that the constraints in the nominal problem (PN) are satisfied.
Note that “net” wealth is invested optimally (which must be superior to the risk-free strategy)
while debt is invested in the risk-free asset. By regarding consumption and repayment as two
outflows from Wt and Dt, respectively, the farmer contributes to the nominal consumption from

Table 5. The characteristics of repayment structures and their equivalent initial net wealth W0
C in the separable problem

Repayment Structure Optimal Descriptive Parameter b1 DT W0
C

ΔW

Constant (C) 3504.95 1757.79 100, 000.00 0

Optimal Solution - 3884.24 100, 779.50 779.50

Figure 1. The repayment rates of the constant and optimal repayment structure in the separable problem.

Journal of Agricultural and Applied Economics 15

https://doi.org/10.1017/aae.2025.10023 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2025.10023


the repayment as much as possible in the early stage to grow net wealth and thus achieve a higher
level of expected nominal wealth overall. We call this the “Two-stage Strategy (TS).”

Table 6 provides the output of the numerical investigation for the nominal problem. The TS
achieves the highest performance amongst all the repayment structures and outperforms the
constant repayment strategy by 2.5 percent. Interestingly, in the speculated solution (S), the
optimal value of κ is approximately 0.9812, which is very close to 1 and aligns with the hypothesis
on the form of the repayment structure. Note that this repayment structure would initially be
dominated by its deterministic component, Dt

κg�t�. However, since g(t) is a decreasing function, the

impact of the stochastic component Wt
1

κg�t� � 1
g�t�

� 	
becomes increasingly significant over time.

Although the performance of S is inferior to TS, it outperforms the hybrid structures where the
enhanced flexibility only yields marginal improvements compared to the constant repayment
structure. It is worth noting that the optimal b2 values in the hybrid structures are relatively small,
suggesting that the impact of the contingent components should beminimal. This observation aligns
with the fact that both contingent repayment structures exhibit significantly poor performance.

We also perform sensitivity analysis for the two ansatz candidate solutions in Appendix C. The
sensitivity analysis reveals that the performance of these strategies improves as the utility discount
factor, δ decreases and the risk-free rate, rB, increases.

The median values of the various repayment rates over time are illustrated in Figure 2. We see that
the hybrid repayment structures closely resemble the constant repayment structure, as evidenced by
the relatively small scale of b2 in these hybrid structures. On the other hand, the speculated solution
(S) deviates more from the constant repayment structure as it approaches the terminal date.

In contrast, the two-stage, optimal capital gain, and revenue contingent repayment structures
exhibit a significantly wider range of repayment rates over time. The median paths show that early
termination of the loan is highly likely under these three repayment structures. It could be seen
that the median repayment period of the loan under the two-stage repayment structure is at about
5 years, while those of the capital gain and revenue contingent structures are at approximately 12.5
and 14 years, respectively.

Apart from the constant repayment structure, the repayment amounts within all the other
repayment structures are path-dependent and, hence, stochastic in nature. Thus, the terminal
repayment amount at time T, DT is a random variable in these repayment structures, whose
distributions are shown in Figure 3, while Table 6 provides the median values. Given the high
likelihood of early repayment for the capital gain (CG) and revenue (R) contingent repayment
structures, we see DTs centered around 0 for these structures. Note that given the nature of the TS,

Table 6. The characteristics of different repayment structure and their equivalent initial net wealthW0
C in problem (PNA) as

an approximation of the nominal problem (PN)

Repayment Structure

Optimal Descriptive
Parameters

Median of
DT W0

C
ΔWb1 b2 κ

Constant (C) 3530.17 - – 1410.62 100, 000.00 0

Speculated Solution (S) - - 0.9812 2534.37 100, 050.12 50.12

Two-Stage Strategy (TS) - - – 0 102, 521.83 2, 521.83

Capital Gain Contingent (CG) - 0.5285 – 0 94, 924.75 − 5, 075.25

Revenue Contingent (R) - 0.5018 – 0 93, 166.55 − 6, 833.45

Hybrid of Constant and Capital Gain Contingent
(HC)

3462.04 0.0010 – 2798.95 100, 008.79 8.79

Hybrid of Constant and Revenue Contingent (HR) 3482.70 0.0066 – 2749.78 100, 006.11 6.44
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early repayment is certain. This affects the scale of the graphs and is omitted for visualization
purposes from Figure 3. We find that the hybrid structures (HCCG and HCR) have a similar
distribution with medians of approximately $2,800. The speculated solution (S) also has a non-
zero DT but has a much narrower range and a slightly lower mean than the hybrid structures.

Given the numerical illustration above for the nominal problem, in the presence of a full
repayment guarantee constraint, the two-stage repayment structure demonstrates a substantial

Figure 2. The median repayment rates of the optimal repayment structures in problem (PNA) over time.

Figure 3. The distribution of terminal outstanding loan amount of the optimal repayment structures in problem (PNA) as
an approximation to the nominal problem (PN).
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outstanding performance, even though it entails net consumption being 0 until the loan is entirely
repaid. Importantly, we see that the constant repayment structure significantly outperforms the
contingent structures and attains a performance level comparable to the hybrid structures and the
speculated solution (S), indicating that it is not “too sub-optimal.” This is particularly appealing
due to its straightforward structure and widespread use in the real world. A more practical
scenario may allow for the financial risk that the farmer might default on the loan, which could
serve as an advanced topic for future research.

5. Conclusion
In the first part of this study, we introduce a theoretical model for understanding the dynamics of
a farmer’s wealth in the presence of a loan. While the net revenue process depends on land and
capital investments, the flexibility of its parameters allows us to capture various features of net
revenue, such as diminishing marginal returns. We then propose two distinct reward functions
that the farmer might seek to maximize, leading to the formulation of two constrained
optimization problems: the separable problem and the nominal problem.

This paper solves the separable problem analytically in the presence of a full repayment
guarantee. By doing so, we extend the classical results of Merton to a more flexible revenue
process. The optimal investment strategy shows that the farmer should invest the loan amount in a
risk-free manner, while the optimal repayment structure is deterministic and exhibits an
approximately linear increasing pattern over time.

The nominal problem is our main objective, where deterministic, contingent, and hybrid
repayment structures can be evaluated. The nominal problem is superior to the separable problem
due to its flexibility, which allows us to investigate any repayment structure. Unfortunately, the
nominal problem does not have a closed-form solution to the best of the authors’ knowledge, and
thus, the optimal repayment rates are found numerically. Additionally, we introduce two ansatz
candidates for the optimal solution. The first is inspired by the optimal solution in the net
problem, and the second is a two-stage solution derived from optimal investment theory. These
solutions outperform all other structures, with the two-stage solution achieving significantly
higher results.

An interesting result of our analysis is the performance of the widely used constant repayment
structure. In both problems, the constant repayment performs relatively well and significantly
outperforms the contingent structures. This shows that the constant repayment structure is not
too sub-optimal. This is insightful to policymakers and lenders considering alternative repayment
structures, albeit with a full repayment guarantee.

Our study allows for improvements to be addressed in future research. For instance, we assume
full repayment of the loan without incorporating credit risk. The production function is modeled
as a function of land and capital, excluding other economic factors such as commodity prices.
Additionally, we assume farm assets are perfectly liquid, which might not be realistic for some
assets. Moreover, we note that our conclusion of the comparable out-performance of the simpler
repayment structures of the constant repayment schedule and the second Ansatz candidate
solution is likely a byproduct of the problem formulation: the choice of the risk-averse utility
function and our approximation to solution of the nominal problem, where we use the net
consumption from the inner problem. Future research could explore solving the nominal problem
holistically to generate a combined consumption and repayment policy functions, albeit, we
suspect that it requires a significantly more complicated model that allows for credit risk in the
model to generate a closed-form solution.

Data availability statement. The data that support the findings of this study are openly available in the Australian Bureau of
Agricultural and Resouce Economics and Sciences (ABARES), at https://www.agriculture.gov.au/sites/default/files/docume
nts/fdpperformance-by-size.csv.
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Appendix A. Motivation for objective function and preliminary result

To achieve this goal, we start with the reward function in (A.2) for the net wealth under a widely used utility framework. This
will serve as a building block for addressing the reward functions of interest in (PS) and (PN).

If the farmer is assumed to gain utility from nominal consumption c̃s, and nominal terminal wealth W̃T , following a well-
known Merton’s problem setting with a hyperbolic absolute risk aversion (HARA) utility assumption (Merton, hereafter,
Merton, 1969, 1975), we first consider the reward function below:

V W̃t ; t;Dt ; c̃s; as; π̃s� �s2 t;T� �
� � � Et

Z
T

t
e�δ s�t� �u c̃s� �ds� εe�δTu�W̃T �

� �

� Et

Z
T

t
e�δ s�t� � c̃s � as� �1�γ

1 � γ
ds� εe�δT

�W̃T � DT�1�γ
1 � γ

� �

� Et

Z
T

t
e�δ s�t� � cs � 0� �1�γ

1 � γ
ds� εe�δT

WT � 0� �1�γ
1 � γ

� �

� V Wt ; t; 0; cs; 0;πs� �s2 t;T� �
� �

;

(A1)

where ε is a positive constant that denotes the relative weight the farmer places on terminal utility, and a high value of ε reflects
that the farmer regards terminal wealth as important relative to the inter-temporal consumption. δ stands for the utility
discounting factor, while γ is the coefficient of relative risk aversion.

It can be seen from equation (A.1) that the HARA construction on nominal terms is linked to a constant relative risk
aversion (CRRA) on net terms, which implies that the farmer only gains utility from net consumption cs and terminal wealth
WT. Thus, the objective function under (A.1) could be expressed as

J W̃t ; t;Dt

� � � sup
c̃s ;as ;π̃L

s ;π̃
K
s� �2Bt

V W̃t ; t;Dt ; c̃s; as; π̃s� �s2 t;T� �
� �

� sup
cs ;π

L
s ;π

K
s� �2At

V Wt ; t; 0; cs; 0;πs� �s2 t;T� �
� �

� J Wt ; t; 0� �:

(A2)

where the second equality holds from the fact that when Dt and as become 0, the set Bt would be the same asAt . We name this
as the net problem.

In this section, we will show that the net problem (A.2) has an analytical solution which could be interpreted as the farmer
setting aside the loan and acting as per “Merton’s solution” in the remaining wealth.11 This analytical solution would be the
same for any repayment structure, which implies that the net problem does not value the repayment structure and, thus, is not
appropriate for the purpose of our study. Nonetheless, the optimal net consumption and net allocation obtained here will
prove helpful in deriving the solution for problem (PS) and approximating the solution for problem (PN).

With the relationships W̃t = Wt + Dt and c̃t = ct + at, the solution to the constrained utility maximization net problem
(A.2) can be expressed in nominal terms:

Proposition Appendix A.1. If the parameters α and β in the revenue process (3) satisfy the relation for λ in equation (A.12),
the solution to the net problem (A.2) with wealth dynamics (6) will be:

11Our solution is an actual generalization of Merton’s solution as we have allowed for a more flexible revenue process.
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the life-time utility is

J�W̃t ; t;Dt� �
g�t�γ
1 � γ

�W̃t � Dt�1�γ : (A3)

the optimal nominal consumption rate is

c̃
�W̃t ; t� �
W̃t � Dt

g�t� � at : (A4)

the optimal asset allocation strategy is

π̃
�W̃t ; t� �
1
γ

1 � Dt

W̃t

� 

�σρρ>σ>��1µ̃: (A5)

the optimal nominal wealth dynamics is

dW̃

t � W̃


t rB � 1
γ

1 � Dt

W̃

t

� 

µ̃> σρρ>σ>� ��1µ̃

� �
� W̃


t � Dt

g�t� � at


 �
dt

� 1
γ
�W̃


t � Dt�µ̃>�σρρ>σ>��1σdzt ;
(A6)

where

A � δ� rB�γ � 1�
γ

� 1
2
γ � 1
γ2

µ̃>�σρρ>σ>��1µ̃; (A7)

and

g�t� � 1
A

1� ε1=γA � 1
� �

e�A�T�t�
� �

: (A8)

Proof. We can see from equation (7) that the dynamics of net wealth is not related to the amount of outstanding loan amount
Dt or the instantaneous repayment dRt, which enables us to derive an elegant generic solution. Since the constraint about c̃ in
the net problem (A.2) is c̃t> at, the corresponding constraint of ct becomes ct> 0, which is effectively redundant due to the
nature of maximizing the CRRA utility function u(⋅). Similarly,Wt> 0 in the net problem (A.2) would also be not binding by
the nature of maximizing the CRRA utility function u(⋅). On the other hand, the proportions πi � π̃i W̃

W for i∈ {L,K} are
unconstrained since π̃i 2 R and W̃

W > 1 would result in πi∈ℛ, which is not constrained. Thus, the feasible set for {c, πL, πK}
would be equivalent to the unconstrained set At .

Then, the HJB equation of (A.2) is given by

δJ W; t� � � LcJ W; t� � � LπJ W; t� � � ∂J
∂t

W; t� � � rBWJW W; t� �; (A9)

where

LcJ W; t� � � sup
c	0

u c� � � cJW W; t� �f g; (A10)

and

LπJ W; t� � � sup
π

WJW W; t� �π>
t µ̃� 1

2
JWW W; t� �W2π>

t σρρ
>σ>πt


 �
: (A11)

Since ρ is non-singular, the matrix σρρ⊤σ⊤ would be real-valued symmetric positive-definite, and thus has a unique Cholesky
decomposition, i.e.

σ̄σ̄> � σρρ>σ>;

where σ̄ is a lower triangular matrix with real and positive diagonal entries.
We could then define φt and λ in the following way:

φ>
t � π>

t σ̄;

λ � σ̄�1µ̃
(A12)

It should be noted that λ should be a constant vector to make the following calculations work. Importantly, equation (A.12)

conveys a relationship between α and β. To see this, take ρ = I, then we get αL � λ1
�����������������������������
�σL�2 � �βL�2

p
� µL � rB and

αK � λ2
������������������������������
�σK �2 � �βK�2

p
� µK � rB . This implies β could be any state-dependent process, and consequently, α will be a
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similar state-dependent process, and vice versa. In particular, if β is constant, then α should also be constant, as per the
numerical section of this paper.

Rewriting the HJB equation (A.11) with φt as the control:

LφJ W; t� � � sup
φ

WJW W; t� �φ>
t λ� 1

2
JWW W; t� �W2φ>

t φt


 �
: (A13)

The first-order condition for the maximization of (A.10) is

u0 c� � � JW W; t� �; (A14)

Since u�c� � c1�γ
1�γ and u 0(c) = c−γ, we can solve for the optimal consumption c from equation (A.14):

c
 � JW W; t� �� ��1
γ : (A15)

Substituting c* back to equation (A.10), we have

LcJ W; t� � � u c
� � � c
JW W; t� � � γ

1 � γ
JW W; t� �1�1

γ : (A16)

The first-order condition for the maximization in (A.13) leads to

WJW W; t� �λ� JWW W; t� �W2φt � 0: (A17)

By solving (A.17) we can get the optimal investment strategy:

φ

t � � JW W; t� �

WtJWW W; t� �λ: (A18)

and we can substitute φt* back to equation (A.13) and get

LφJ W; t� � � � 1
2
JW W; t� �2
JWW W; t� �λ

>λ: (A19)

With equations (A.16) and (A.19), the HJB equation (A.9) could be transferred to a second order PDE:

δJ W; t� � � LcJ W; t� � � LφJ W; t� � � ∂J
∂t

W; t� � � rBWJW W; t� �

� γ

1 � γ
JW W; t� �1�1

γ � 1
2
JW W; t� �2
JWW W; t� �λ

>λ

� ∂J
∂t

W; t� � � rBWJW W; t� �:

(A20)

with the terminal condition J(W,T) = εW1− γ/(1−γ).
As the wealth dynamics (7) is linear inW, we could conjecture that if the strategy (c*, φ*) is optimal withW and t, then the

strategy (kc*, φ*) would still be optimal with kW and t. If it is true, we have

J kW; t� � � Et

Z
T

t
e�δ s�t� �u kc
s� �ds� εe�δTv kW


T

� �� �

� Et

Z
T

t
e�δ s�t� � kc
s� �1�γ

1 � γ
ds� εe�δT

kW

T

� �
1�γ

1 � γ

� �

� k1�γEt

Z
T

t
e�δ s�t� � c
s� �1�γ

1 � γ
ds� εe�δT

W

T

� �
1�γ

1 � γ

� �

� k1�γ J W; t� �:

(A21)

Thus, the indirect utility function J(W, t) is homogeneous of degree 1− γ in the wealth W. Let k = 1/Wt, we then have
J(1, t) = J(W, t)/W1− γ and so J(W, t) could be expressed as:

J W; t� � � W1�γ J 1; t� �:
It can be seen that J(W, t) is a product of W1− γ and a function solely related to t. For the convenience of solving the PDE
(A.20), we define g(t) as:

g t� �γ� 1 � γ� �J 1; t� �1=γ :
Then we have

J W; t� � � g t� �γW1�γ

1 � γ
; (A22)
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JW W; t� � � g t� �γW�γ ; (A23)

JWW W; t� � � �γg t� �γW�γ�1; (A24)

∂J
∂t

W; t� � � γ

1 � γ
g t� �γ�1W1�γg 0 t� �: (A25)

By substituting equations (A.22), (A.23), (A.24), (A.25) back to the PDE (A.20), we get

δ

1 � γ
� rB � 1

2γ
λ>λ

� 

g�t� � γ

1 � γ
� γ

1 � γ
g 0�t� � 0; (A26)

or

g 0 t� � � Ag t� � � 1; (A27)

with terminal condition g(T) = ε1/γ, where

A � δ� r γ � 1� �
γ

� 1
2
γ � 1
γ2

λ>λ:

The ODE (A.27) has a unique solution:

g t� � � 1
A

1� ε1=γA � 1
� �

e�A T�t� �� �
:

Given the explicit form of g(t), the indirect utility function J(W, t) could be derived from equation (A.22):

J W; t� � � g t� �γW1�γ

1 � γ
� W1�γ

1� γ

1
A

1� ε1=γA � 1
� �

e�A T�t� �� �
 �
γ

:

By equation (A.15), the optimal consumption strategy is

C W; t� � � W
g t� � � A 1� ε1=γA� 1

� �
e�A T�t� �� ��1W;

and the optimal φ could be derived from (A.18):

φ
 W; t� � � � JW W; t� �
WtJWW W; t� �λ

� 1
γ
λ:

(A28)

The form of C(W, t) and ϕ(W, t) could verify that our guess in equation (A.21) is correct.
According to our transformations W̃ = W+D, c̃ = c + a and

π̃
 � W

W̃
π
 � W

W̃
σ̄>� ��1φ
:

the optimal strategies c̃* and π̃
 could be expressed in terms of W̃:

c̃
 W̃t ; t
� � � W̃t � Dt

g t� � � at ;

π̃
 W; t� � � 1
γ

1 � D

W̃

� 

σ̄>� ��1λ

� 1
γ

1 � D

W̃

� 

σρρ>σ>� ��1µ̃:

Thus, we see that a repayment structure with zero-quadratic variation would have no impact on the net consumption and
investment strategies (in dollar amount) whatsoever. This conclusion can also be extended to a broader range of repayment
structures according to our proof, where once we let the control variables be cs, as and πs, the dynamics of Dt become
irrelevant. Intuitively we can say that regardless of the repayment structure, the farmer sets the loan aside, invests it in the bank
account and repays the loan, which is the reminiscence of the well-known CPPI strategy in finance (see e.g., Balder and
Mahayni, 2010). Under this kind of problem setup, the farmer never uses the loan to invest in the farm, as that may make the
probability of default non-zero (recall the repayment guarantee constraint).
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Appendix B. Parameter estimation process

The data set from ABARES includes the average farm business data from 1990 to 2022 within different farming industries by
farm size, with large farms classified as those with total cash receipts (in 2022-23 dollars) greater than $1,000,000. The total
cash receipts of the category medium size is between $500,000 and $1,000,000, while that of the small size is less than $500,000.
We consider large-size farms for our estimation. Since the data is on a yearly base, we would set dt = 1 and treat all the
parameters as constants.

For estimating μL and σL, we first calculate the land price per hectare year ptL by dividing the terms “Value of land and fixed
improvements ($)” by “Area operated at 30 June (ha)” in the data set.

According to the land price process

d ln pLt � dpLt =p
L
t �

1
2

σL
� �

2dt � µL � 1
2

σL
� �

2

� 

dt � σLdzLt :

If we use xL = (xtL)t = 1990, 1991, : : : , 2021 to denote the observations ln pLt�1 − ln pLt for t from 1990 to 2021 based on the data set,
we have

xLt � N µL � 1
2

σL
� �

2; σL
� �

2

� 

:

The log-likelihood function for such a normal distribution would be

l xL;µL; σL
� � � � n

2
ln 2π σL

� �
2 �

X2021
t�1990

� xLt � µL � 1
2 σL
� �

2
� �� �

2

2 σL
� �

2 : (B1)

where n = 32 is the dimension of xL. The estimates μ̂L and σ̂L are obtained by maximizing the log maximum likelihood
function (B.29).

The process for estimating μK and σK is similar because the form of the capital price process is exactly the same as that of
the land price process. Note that we treat the summation of the terms “Depreciation ($)” and “Total closing capital ($)” in the
data set as the “Initial capital amount” for each year. By assuming the initial price of capital in each year is $1 per unit and the
number of units during each year does not change, we have

ln pKt�1 � ln pKt � Total closing capital
Initial capital amount

:

which form the data points substituted into the log maximum likelihood function of xK.
For estimating αL, αK, βL and βK, we treat “Value of land and fixed improvements” in the data set as the land value ptLLt and

“Initial capital amount” as the capital value ptKKt in equation (3), while the net revenue observation in each year xty = yt + 1− yt
would be “Profit at full equity ($)” in the data set, which would be the inputs to the log likelihood function.

From (3), we have

xyt pLt Lt ; p
K
t Kt

� � � N αLpLt Lt � αKpKt Kt ; βLpLt Lt � βKpKt Kt

� �
2

� �
:

Then, we could get the estimates for these four parameters by maximizing the corresponding log-likelihood function.
The covariance matrices of these estimates are approximated by the inverse of the corresponding Fisher information

matrices (see, Van der Vaart, 2000), while the standard deviations are calculated by taking the square roots of the diagonal
elements of the covariance matrices.

Appendix C. Sensitivity analysis

We conduct sensitivity analysis on the performance of the two speculated solutions S and TS. Our tests show that the two most
influential parameters are the utility discount factor, δ, and the risk-free rate, rB, whose baseline values are set to be δ = 0.02
and rB = 0.04 respectively. In the following tables, b1 is the optimal constant repayment rate, while κ is the optimal descriptive
parameter of S.

Appendix C.1 The Ansatz candidate solution S

Table C.1 demonstrates that as δ varies from 0.01 to 0.05 while keeping other parameters constant, the equivalent initial wealth
W0

C consistently rises. Note that delta is independent of the optimal investment strategy, optimal b1 and κ. In summary, the
speculated solution has a better performance when δ is larger.
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Table C.2 shows the impact of changing the risk-free rate rB from 2 to 6%. We find that the equivalent initial wealth W0
C

exhibits a U-shaped pattern with a low point at rB = 0.05 where it underperforms the constant strategy. In general, we state
that solution S outperforms the constant repayment structure. We also note that the other parameters exhibit a change when rB

changes.
In conclusion, the speculated optimal solution S outperforms the constant repayment structure in most cases, and the

improvement is particularly pronounced when δ is larger and rB is smaller.

Appendix C.2 The Ansatz candidate two-stage solution

We see from Table C.3 that when δ increases, the performance of the TS solution improves, but the improvement is
marginal. In contrast, when there is a significant relationship with the risk-free rate rB (Table C.4). We see that as rB increases

Table C3. The sensitivity analysis result about utility discount factor δ

rB δ

Optimal Investment Strategy Optimal Parameters

W0
C

ΔWπL πK b1

0.04 0.01 0.3732 0.5506 3523.24 102,505.22 2,505.22

0.04 0.02 0.3732 0.5506 3530.17 102,521.83 2,521.83

0.04 0.03 0.3732 0.5506 3535.79 102,559.12 2,559.12

0.04 0.04 0.3732 0.5506 3541.10 102,616.76 2,616.76

0.04 0.05 0.3732 0.5506 3546.13 102,695.79 2,695.79

Table C1. The sensitivity analysis result about utility discount factor δ

rB δ

Optimal Investment Strategy Optimal Parameters

W0
C

ΔWπL πK b1 κ

0.04 0.01 0.3732 0.5506 3523.24 0.9812 100,007.86 7.86

0.04 0.02 0.3732 0.5506 3530.17 0.9812 100,050.12 50.12

0.04 0.03 0.3732 0.5506 3535.79 0.9812 100,114.71 114.71

0.04 0.04 0.3732 0.5506 3541.10 0.9812 100,201.38 201.38

0.04 0.05 0.3732 0.5506 3546.13 0.9812 100,309.81 309.81

Table C2. The sensitivity analysis result about the risk free rate rB

rB δ

Optimal Investment Strategy Optimal Parameters

W0
C

ΔWπL πK b1 κ

0.02 0.02 0.5281 0.8058 2960.22 0.9622 100,762.74 762.74

0.03 0.02 0.4507 0.6782 3237.17 0.9725 100,294.52 294.52

0.04 0.02 0.3732 0.5506 3530.17 0.9812 100,050.12 50.12

0.05 0.02 0.2958 0.4231 3839.52 0.9887 99,995.82 −4.18

0.06 0.02 0.2183 0.2955 4165.50 0.9945 100,081.84 81.84
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from 2 to 6%, the out-performance of the TS solution over the constant strategy decreases markedly. This is because of the fact
that repayments have to be made for longer as rB increases.

In conclusion, if δ is large while rB is small, the proposed two-stage optimal solution would outperform the constant
repayment structure substantially and vice versa, similar to our observation in S above. In addition, the two-stage solution also
performs significantly better than the speculated solution.

Table C4. The sensitivity analysis result about the risk free rate rB

rB δ

Optimal Investment Strategy Optimal Parameters

W0
C

ΔWπL πK b1

0.02 0.02 0.5281 0.8058 3523.24 105,444.19 5,444.19

0.03 0.02 0.4507 0.6782 3530.17 103,845.90 3,845.90

0.04 0.02 0.3732 0.5506 3535.79 102,521.83 2,521.83

0.05 0.02 0.2958 0.4231 3541.10 101,504.02 1,504.02

0.06 0.02 0.2183 0.2955 3546.13 100,806.93 806.93
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