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Abstract

We investigate a recent model proposed in the literature elucidating patterns driven by chemotaxis, similar to vis-
cous fingering phenomena. Notably, this model incorporates a singular advection term arising from a modified
formulation of Darcy’s law. It is noteworthy that this type of advection can also be well interpreted as a description
of a radial fluid flow source surrounding an aggregation of cells. For the two-dimensional scenario, we establish a
precise threshold delineating between blow-up and global solution existence. This threshold is contingent upon the
pressure magnitude and the initial total mass of the aggregating cells.

1. Introduction and main results

Various experiments with dilute bacteria have shown that they behave differently depending on their
density, given rise to collective motions, patterns, and hydrodynamic instabilities (cf. [14, 32]). In [3],
the authors proposed a mathematical model to explain patterns similar to viscous finger motion for
colony expansion driven by chemotaxis in radial geometry. The model has the form: (1)

on+ V{n(u+ xVv) — DVn} = F,(n, v),

V= AV + FZ(n’ V)7 (2)

where n denotes the density of the bacteria, v denotes the concentration of chemoattractant and u is
the advection term. The parameter D is assumed positive; meanwhile, x is a constant that can be either
positive or negative. The reaction term F; describes cellular proliferation, while F), is selected based on
whether there is chemoattractant consumption or production by the colony itself.

In experiments over thin films, it has been shown that describing the hydrodynamic velocity u accu-
rately is difficult (cf. [4, 27]). Several studies have shown that u can vary greatly depending on the shape
of the particles (cf. [282930]). For instance, Darcy’s law has been demonstrated to be sufficiently precise
for spherical particles. However, the motion of rod-shaped particles, such as E. coli, presents a differ-
ent scenario altogether. Experimentation with non-Newtonian fluids and adhesive elastomers has shown
that the formula:

VP
VP~
where ¢ is a characteristic of bacterial activity and P is a normalised pressure, which describes in the
colony the hydrodynamic velocity with significantly greater accuracy than the standard Darcy’s law.

ulx, ) =—

3)
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Figure 1. Visualization of cell aggregation driven by a radially symmetric source.

The parameter ¢ is negative in shear-thinning, positive in shear-thickening solutions, and ¢ = 0 repre-
sents the Newtonian case. To the best of our knowledge, this generalised Darcy’s law was first introduced
for the case { =2 in reference [23]. This generalisation was further extended for general exponents ¢ in
references [4, 17, 27]. In this paper, we focus on the case where ¢ > 0.

Overall, the mathematical model (1)—(3) contributes to understanding and quantifying the physical
properties of populations of rod-shaped particles which either promote cohesion or on the contrary
dispersion to the colony. As a result of this, we propose to examine not only the conditions for having
global solutions but also a potential blow-up.

The construction of local and global weak solutions for the system (1)—(3) proves challenging due to
the integrability problems associated with the advection term expressed in (3). Our goal in this paper is
to study a prototypical case with P = —p |x|*, where o is a positive constant and ¢ = 2, yielding the

u(x, )= |x|2'
We consider the case where the chemotaxis is positive, meaning the particles move towards regions
of high chemical concentration. Additionally, we assume F; =0 and F, =n — v. In other words, bac-
terial proliferation is neglected and the chemoattractant is produced by the organisms themselves.
Consequently, we obtain the system

Ox
on+V- Wn =DAn— xV - (nVvy),
X

v, =Av—v+n,

where D, x and Q (equal to 1/p in this case) denote positive constants. To simplify the analysis, we
also assume that the diffusion of the chemical is much faster than that of the chemoattractant. Then, a
classical rescaling argument leads us to describe the dynamics of the chemical by an elliptic equation
(cf. [15, 21]). This results in the following simplified version of the model:

n,+V~(§—“§n)=An—xv‘(an),xeB, t>0,
O:Av—%+n, with [ v(,H)=0,xeB, >0, )

where B represents a two-dimensional ball centred at the origin with radius equal to 1, and 0 :=
J,n(x,0).

A noteworthy observation is that the system (4) can also be interpreted as a Keller—Segel-type model,
where the aggregation of particles is influenced by a radial fluid flow, either inwards or outwards. The
direction of the fluid is determined by the sign of the parameter Q. Figure 1 illustrates this interpretation
for the case of a radial source flow.

The literature on Keller—Segel-type models describing particle aggregation in the presence of a sur-
rounding fluid has seen significant growth in the last decade. It is beyond the scope of this paper to
provide an exhaustive list of references. Interested readers are referred to [8, 9, 20, 22], and the references
therein.
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From this point onwards, we consider the general case where Q is a positive constant and introduce
the notation:

u(x) = gx = (QV log |x|, where x € B\ {0} . ®)

|x|*

We impose no-flux boundary conditions

0 0 0
—Vzo,and—”—xn—v—nQ—’;-nzo, xedB, t>0, (6)
an an an x|
and non-negative radial initial data in L' denoted by:
n(x, 0) = n(lx[,0)=mny = 0. (N

We establish that if the initial data n, satisfies the condition [, ny(x)dx < ‘@ (Theorem 1), then

the solution exists globally in time. Furthermore, when |, 5 Mo(x)dx > @, then a blow-up is feasible,
as demonstrated in theorem (Theorem 2). Notably, blow-up always occurs when Q > 2.
Our main result on global existence of weak solutions is stated as follows.

Theorem 1 (Global existence). Let B:= B(0, 1) € R? be a two-dimensional ball and let n be the out-
ward unit normal vector on dB. Let Q > 0 be a constant. Given a non-negative radial symmetrical

Sfunction ny € L*(B) satisfying
4 (2
0 — / Hodx < r2+0) (8)
B X
then the problem (4)—(7) has a weak solution n in the sense of definition 4.
We also establish the possibility of blow-up in finite time:

Theorem 2 (Blow-up). Let B = B(0, 1) C R? a ball and let n be its external normal to the boundary. Let
us consider a local solution of the system (4)—(7). Let us denote m(t) := f i |x|* dx. If the initial mass
6 := [, nodx satisfies

47 (2
PR C R O
X
and m(0) < 1 (9 — ‘“’(i—w)) then To < — 7 log (1 — W’?ﬂ@)) and
lim sup [|n(-, 1) || 4z = 00 for any g > 2. 9)
1= Tmax

Remark 3. Here, it should be noticed that the case Q = 0 corresponds to the classical parabolic-elliptic
Keller—Segel model. In this case, it is well known that the qualitative behaviour is divided basically in
three cases:

8 » 8t . 8w .
nodx < — (subcritical ), | nodx = — (critical), | nydx > — (supercritical),
B X B X B X

where under appropriate conditions the corresponding solution exists globally in the subcritical case
while it blows up in the supercritical case (cf. [26]). Thus, our result shows that the introduction of the
hydrodynamics velocity given by (3) produce a ’shift’ in the critical mass of this system. We will elucidate
how the corresponding proof utilises a recent version of the Moser-Trudinger inequality capable of
handling singularities (cf.[5]). Additionally, further study is required for non-radial cases and those
with higher dimensions.

The structure of this paper is outlined as follows. In Section 2, we introduce regularisation to our
model, leading to a version endowed with an energy functional. By subsequently passing to the limit in
the regularised system, we establish the existence of local solutions for our original model. In Section 3,
we employ a singular variant of the Moser—Trudinger inequality to demonstrate the existence of global

https://doi.org/10.1017/50956792524000809 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792524000809

4 E. Espejo

solutions. Finally, in Section 4, we derive sufficient conditions for finite-time blow-up. Our analysis
yields a novel threshold condition determining the feasibility of global existence versus blow-up.

2. Definition of weak solution

In the classical parabolic-elliptic Keller—Segel model, measure solutions are a well-established con-
cept (cf. [31]). However, when addressing the system (4)—(7), defining a similar notion becomes more
intricate due to the non-integrability of the singular flux:

u(x) = Qx/ |xf*.

To ensure proper definition of the term V - (l‘f—;n) as a distribution, we observe that |x/ |x|2| =1lg

lxl
L*(B) for all s e [1,2). Therefore, we will require n € L¢ for some ¢ > 2 to guarantee nx/ |x|* € L' by
virtue of Holder’s inequality. Consequently, we adopt the following definition of weak solution.

Definition 4. Let T > 0 and q > 2 be fixed constants and ny € L*(B). Let us define the space V :=
L>((0, T); LY(B)) N L*((0, T); H'(B)). We say that a function n € V is a weak solution to (4)—(7) if for
any ¢ € H' (B x (0, T))

/n¢dx—/t/n¢,dxdr+/t/ (Vn—Xan—nQ—);> .V¢dxdr:[n(x, 0)p(x, 0)dx, (10)
B 0o JB o JB |x] B

and for any y € H'(B)
0
/ (Vv -Vy + —y) dx = / nydx, (11)
B T B

holds for a.e. t € (0,T), v=v(-,f) € H(B) and fB vdx = 0.

To establish local existence, we initially regularise the model (4)—(7) by adapting the ideas in the
reference [12] to our frame. To do so, we observe V (log |x|) = x/ |x|* for x # 0. Next, we define

K=K (g) ,

where € > 0 and K is a radial monotone non increasing smooth function satisfying

—5- log |x| — 5= log € if |x| > 4,
K®:=10 ifxl <1,
Additionally, we assume
1
IVK(x)| < ,K(x) < —— log |x| and — AK(x) > 0 for any x € R%. (12)
27 |x| 2

Since K*(x) =K (%), we have

1
VK¢ <
| ™= 7 Il

Subsequently, we consider the following approximate system,

ng—V. -Q2rOn‘VK)=An*— xV-(nViv)xeB, >0,

for all x € R?\{0}. (13)

0=Av" -2 +n, with [ v(,0)=0,xeB, >0,
(14)
accompanied by the no-flux boundary conditions
ave an‘ ave
=0, and — xnt +270n‘VK*-n=0, x€9dB, t >0, (15)
on on an
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and non-negative, radially symmetric initial data given by:
n(x,0):= n(x,0)=ny>0. (16)
The concept of weak solutions for the regularised model is defined as follows.

Definition 5. Let T>0 a be fixed constant and ny€ L*(B). Let us define the space V,:=
L>*((0,T); L*(B)) N L*((0, T); H'(B)). We say that a function n° € V, is a weak solution to (14)—(16) if
forany ¢ € H'(B x (0, T))

/n%j:dx—/ /neqb,dxdr +/ /(Vne — xn‘VVv 4+ 2 QOn‘VK®) - Vodxdt =/n(x, 0)¢(x, 0)dx,
B 0 B 0 B B
(17)

0
/(V\f ~Vy—|——y> dx=/n€ydx, (18)
B T B

holds for a.e. t € (0, T), v¢ =v¢(-, 1) € H'(B) and fB vedx =0.

and for any y € H'(B)

3. Local existence of solutions for the regularised model
Let T > 0 be a constant. Let us consider the space Y given by:
Y := L*((0, T); L*(B)),

whose norm
1

T 1/4 T 2 ks
[nly = (/ 7, I)HZ(B) dt) = (/ (/ de) dt) .
0 0 B

is finite. We establish the local existence of solutions for the regularised model using
the Schauder fixed-point theorem. To this end, we define the convex set By(0,R):=
{ﬁ: 7]y <R, fB (-, Hdx = fB nodx =: 9}. Next, we construct a map I':By(0, R) — Y that associates
each 71 € By(0, R) with a function m := T'(71), defined through the following two-step process.

1. We find the distributional solution 7V to the semicoercive homogeneous Neumann problem
~ 0 ~
0=Av——+n, with /v(-,t):O, x€ B0, 1), 19)
T B

subject to the homogeneous Neumann boundary condition 3v/3n = 0 on 9B, in the trace sense. The
existence of a solution to this elliptic problem is standard, as outlined in [6, Theorem 6.2.3].

2. We determine m the solution to the linear parabolic equation
m,—V-QurOmVK)=Am— xV - (mVV), (20)

with initial data m(x,0) =n, and zero-flux boundary conditions. To establish the existence of
solutions for this equation, we first rewrite it as:

m, = Am —div {m (x VvV — 2 QVK*)} . 2D
We then employ regularity theory for elliptic equations to obtain, for each p > 1, a constant C;(p)
such that
0 - ~
|W(, t)|U’(B) =< Cl(p) ‘_; +n = Cl (9ﬁ+ |n|L2(3)) . (22)
1(B)

From (13) and (22), we conclude

xVV — 27 QVK® € L0, T;L*(B)) for all p > 1. (23)

https://doi.org/10.1017/50956792524000809 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792524000809

6 E. Espejo

Moreover, the Sobolev embedding theorem for traces (see [1, Th. 5.36]) gives H'(B) C L4(dB) for
all 1 < ¢ < o0, yielding

(X V¥ — 27 QVK®) - n €L*(0, T;LY(3B)) for all ¢ > 1. (24)

Consequently, we can invoke [24, Chapter III, Theorem 5.1] to establish the existence of solutions
to the linear parabolic equation (20).

Proposition 6. Let us assume that ny € L*(B). There exists T =T(ny) > 0 such that the regularised
model (14)—(16) has a weak solution n® in the sense of definition 5. Moreover nt € L*((0, T);H™'(B)).

In the next two Lemmas, we prove that I'(By(0, R)) C By(0, R) as well as compactness of the operator
I'. Thus, the result of local existence given in Proposition 6 will follow directly from the Schauder
fixed-point theorem. In order to simplify the proof, we previously introduce in the next Lemma a set of
auxiliary estimates.

Lemma 7 (Estimates for the linearised problem). Let T > 0 be a constant. Then the function m :=
() as defined above satisfies

a) [, m(x,dx= [, n(x,0)dx for all t > 0.

b) For some constant K, > 0 independent of €

/ (fv%) dt+/ <f|W|2dx) dt+/ (/|A“v‘|2dx> dt <K,. (25)
0 B 0 B 0 B

c) There exists a constant K, > 0 independent of € such that

/mzAde <K, (f (A dx + 1) (f 2a')c) / [Vm|* dx (26)

d) There exists a constant K; > 0 independent of € such that
/mz(x, Ndx<K; forO<t<T. 27
B

There exists also a constant K, > 0 independent of € such that

”m”LZ(O.T.Hl(B)) <K,. (28)

Proof. To streamline our proof, we will proceed with formal computations for smooth solutions. The
validity of these computations can be justified through a testing process.

a) The equation for m together with the zero-flux boundary condition give us % J, mdx=0.
b) Utilising the regularity theory for linear elliptic equations, we determine that v € W>*(B). This allows

us to derive
6 g 6\’
/|Av| dx-/(———i—n) dx<2/<—> dx+2/7z’2dx
B B \T B

< — + 2 f n*dx. 29)
Consequently,
2 2
! 86T !
/ (f |A7|2dx> dt < +4/ </7{2dx> dt
0 B m? 0 B
86T
< —— +4R" (30)
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Further, Poincaré’s inequality give us a constant C, satisfying

1/2 12
(/ vzdx> <G, (/ VY dx) . 31
B B
Using this, we deduce
1/2 1/2 1/2
/|V~| dx_—/vAvdx<</ > <f|Av| dx) <Cp </|V\7|2dx> (f|AV|2dx)
B B B
Thus,
1/2 1/2
</|W|2dx> <Cp (/|A’v“|2dx> ) (32)
B B

By using (30), (31) and (32), we readily arrive at (25) with

+ 4R4> .

80T
= (14207 ( ”

¢) Applying Cauchy’s inequality, we get

12 12
fmzA?de (/ m4dx> (/ (AT/’)zdx> . (33)
B B B

Moreover, the Gagliardo—Nirenberg—Sobolev interpolation inequality provides constants C, and C,

satisfying
2
/f4dx§ C </f2dx> </ IVflzdx) +C, </f2dx> for all f € H'(B).

Applying the last inequality to f = m, and utilising it in combination with (33)

<l (foras) (frsmae) v [war) | (feawrar)”

cor (o) (o) (o) s () (74)
16 (o) ([ o [rmtacs & (fusacr) ([

_ (<_Cc_) [syacs ) (foas) 1 [ oot

1/2
The inequality (26) follows with K, := max {X% + C°T %} .

d) Employing the equation (20), we multiply it by m and integrate the product by parts to yield

d

— | m’dx

dt Jg

5—2/|Vm|2dx—|—2/ mVm-ndo —2x /mV~(mV\7)dx+2/mV-(2anVK€) dx.
B dB B B

Now, we use the identity

1
/mV~(mVT})dx= 3 /mzAde

B B
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and apply item c) of this Lemma to calculate
d
—/mzdx§—2/|Vm|2dx+2/ mVm - ndo
dt B B aB

+ x <K2 (f (AVYdx + 1) (/ mzdx) + % / |Vm|2dx) +2me - 2r OmV K*)dx

5—/|Vm|2dx+2/ mVm - ndo
B dB

+ x K (I1AV][; + 1)/m2dx+2/
B

aB

m 2rQOmVK®) -ndo —4r Q / mVm - VK dx. (34)
B
For the last integral, considering the positivity of Q and AK* <0, we get

—47Q f mVm - VKdx = —27er Vm® - VK¢dx
B B
= —27rQ/ m*VK* - ndo + 27'[Q/m2AK€dx (35)
dB B

< —Zan m*VK* - ndo.
B

Using the trace inequality [f |25 <8 IIVf 172 + Cs If 2 » £ € H'(B), with f=m and § = 2
gives us

2
—Zan m*VK¢ - ndo <Q ﬂdd = Q/ m*do
dB oB

a5 x|
2 2
= 8 ”Vm”LZ(B) + QCX ”m”LZ(B)

Combining estimates (34) and (35) together with the zero-flux boundary conditions (15), we obtain

d 2 2 ~2 » 2
o | mdr=(=1+8) [ [VmlPdx+ (xK> (IAVI5 +1) + QC5) | m*dx. (36)
B B B

Applying Gronwall’s inequality and the estimate from item b).

/mZ(x, Ndx < </ médx) exp /t (XK2 (IIAVII% + 1) + QCg) ds
B 0

B
T xK
< </ m(z)dx) exp/ (% (1A%I5 +3) + QC5> ds
B 0

K 30K
< </ mgdx> exp <X22K1 n Xz 2T+QC5> = C.. (37)
B

Thus, we have proved (27) with K; := Cj;. Finally, we proceed to prove (28). From (36) and (37),
(1-=29) / / |Vm|* dxdt
0 B

< / (e, O)dx + / (ks (1A + 1) + QC5) K ) ds

B 0

2 ' XK, ~4

< | m*(x, 0)dx + 5 (IIAV|I; 4+ 3) + OG5 ) Ky { ds

B 0

< 2 XK2 » .
< [ m~(x,0)dx + > (K1 +3)+0GT | K5 =: Cy. (38)
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We conclude from (37) and (38) the validity of (28) with

T T
T / / e ddt + / / \Vmf? dxdi
0 B 0 B
C

4

§C3T+1 3 =:K,.

O

We proceed, in the next two Lemmas, to show the existence of a radius R and a time T such that the
hypotheses of the Schauder fixed-point theorem hold.

Lemma 8 (Self mapping). There exists a time T > 0 independent of € such that T'(By(0, R)) C By(0, R).
Proof. Applying Lemma 7 (item d), we derive the inequality

1/4

T 2
|F(ﬁ)|Y=( / ( / m?(x, t)dx) dt) <K)’T"*, (39)
0 B

Here, the constant K3 is defined in equation (37). We conclude taking K37'/* = R/2. O
Lemma 9 (Compacity). I': (By(0,R), |-|y) = (By(0,R), |-|y) is a compact map.
Proof. Let us suppose that

7; — 7 in the space Y as i — oo. (40)

According to the definition of the map I', we aim to show its compactness by demonstrating that the
sequence of functions m;, with i=1,2, ... defined by

my — V- QrOm;VK) = Am; — xV - (m;Vv;) 41
~ 0 ~ ~
Av— —+n;=0, with /v,(-,t):Oand dv/an=0on JB,
T B

am;
aﬂ—i—Zan,VK‘-n—Xm;W-n:O, X € 0B,
n

m;(x, 0) =my(x), x€B,
possesses a subsequence that converges to the solution of the linear system

m,—V-Q2rOmVK)=Am— xV - (mVv), (42)

~ 0 ~ ~
Av——+n=0, with/v(~,t):0and8v/8n:00n8B,
T

B
om
a—+2anVK€-n—mW-n:0, x € 0B,
n

m;(x,0) =my(x), x€B.

We notice that Lemma 7 (item d) provides the existence of a constant C; independent of i such that

T
/ / [Vm,|? dxdt < C,. (43)
0 B

To apply Aubin-Lions compactness lemma, we proceed to show the existence of a constant C,
independent of the index i such that

<C,. (44)

L2(0.T.H' (B)*)

dm,
dt
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For any p € H'(B) with ||l ;15 < 1, we have

(dm,‘ )
— M1
dt (H'(B)*,H' (B))

=(Am; — xV - (miwi) + V. Q2rQ0m;VK®), M)(HI(B)*,HI(B))
=—(Vm; — X(miwi) + 2r QOm;VK®), VM)(H'(B)*,H‘(B))
=—(Vm;, VM)(HI(B)*,HI(B)) + (ml-W,-, VM)(HI(B)*,HI(B)) — 2r Om;VK*, VM)(HI(B)*,HI(B)) .

Hence,

(dm,- )2 (45)
—Q M
dt (H' (B)*,H' (B))

< 3V V10 iy oy + 300V VI sy sy + 3 QT OMNV KV 1)1y 1y -
We analyse each term separately. First, we observe

3(Vm, V/*’L)?HI(B)*,H](B))

2
= 3 </ V’ni . V/'de) S 3 ”Vmi”iZ(B) ”V/’LHEZ(B) S 3 ”Vmi”iZ(B) s (46)
B

Next, we deduce for the second term in (45),
(M VYV, VI i @y it gy < ”mth’”LZ(B) IVl 2m < ||miWi||L2(3> < lm;ll 35, ||Wi||L6(B)

1/3 2/3
< [lmall )52 Nmall25 1Vl s, -

L2(B) L4(B)
Hence,
MV V Yo ey < Imill oy Nill ity IV e
< % gy, el ity + % IVl e, - 47)
To estimate the quantity ||m,-||iﬁ‘28) arising in the inequality (47), we use the Gagliardo—Nirengber—

Sobolev inequality,

/Bﬁdxf C </Bf2dx> (/B IVf|2dx> +G </Bf2dx> for all f € H'(B),

with f = m; leading to

/mfdxdr <C, (/ mfdx) </ [V, dx) +C, (/ mfdx) .
B B B B

By employing Lemma 7 (item d), we derive a constant C; such that

2/3 2/3 2/3 2/3
||mi||§ﬁf3) = </ m?dx) < C?/a (/ m?dx) (/ [Vm,|? dx) + C§/3 </ mfdx)
B B B B

1 2
<crey? (5 +3 / |V, | dx) + ey, (48)
B
Combining inequalities (47) and (48) and using Lemma 7 (item d), we obtain a constant Cs satisfying

1
(miwi’ VM)(ZHI(B)*,HI(B)) f CS (1 + / |Vm|2 dx) + 5 ”Wi”iﬁ(g) . (49)
B

Utilising Gagliardo-Nirenberg inequality, we further establish
||Wi||26(3> <Cs (||A;i||iz(3) + ||"7f||iz(3)) . (50)
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From equations (49) and (50), we can conclude

1 ~ ~
(miwh Vlu)(zHl(B)*,Hl(B)) S CS <1 + / |Vm|2 dx) + ECG (”Avt'”AzZ(B) + ”V[”iZ(B)) . (51)
B

Finally, evaluating the last term in inequality (45)

3 (ZaniVKés V/'L)(ZHI(B)*,HI(B)) = 3 ||27TszVKE “22(3) ”V/‘LHZZ(B)

2 2 2
S 12]‘[2Q2 ”VKE ”L°°(B) ||mi||L2(3) ”VM”LZ(B)

2 2
S 127‘[2Q2 ”VKE ||L°°(B) ||mi||L2(3)

< 127°Q°C5 | VK [} s - (52)

Combining (45), (46), (51) and (52) along with Lemma 7, we conclude the inequality (44). In summary,
Lemma 7 (item d) and inequality (44) imply the the existence of a constant C; such that

n;
- =< C7.

L2(0,T.H' (B)*)

1 207618y < C7 as well as

Utilising the embeddings

compaci continuous

H'(B) "5 12(B) "™ H'\(BY,

we apply the Aubin-Lions compactness Lemma to establish the existence of a subsequence (m;,)en such
that

m;; — m, strong in L*(0, T, L*(B)). (53)

Let us now demonstrate that m, satisfies equation (42). From Lemma 7 (item b), we deduce through a
subsequence that

Vv, — Vv, weakly in L*(0, T, L*(B)), (54)

where v, fulfils the equation
~ 0 ~ ~
AV, — — +m,=0, with /v*(~, t)=0and dv,/dn =0 on 0B.
T B
in the distribution sense. Consequently, from (53) and (54), we establish the weakly convergence for the
product
m; Vv; — m, Vv, weakly in L*(0, T, L*(B)).

Finally, by taking the limitin (41) as j — oco, we conclude that m, corresponds to the solution of problem
(42). Moreover, from Lemma 7 (item d), it follows that the sequence (mij),->. as well as m, are bounded

in L>(0, T;L*(B)) by some constant C;. Thus,

T T
/ |ml-,.—m*|4 dthC?/ |ml-,.—m*|2 dt — 0 as j — oo.
0 0

12(B) L2(B)

In conclusion, the operator I" is compact. O

4. Local solution by passing to the limit in the regularised model
The problem described by equation (14) exhibits positivity-preserving behaviour, as stated below.

Proposition 10. Ifthe initial condition n is non-negative, then the solution n®(x, t) remains non-negative
for almost every x and t > 0.
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Proof. Multiplying the first equation of system (14) by (n°)” := max{0, —n{}, integrating over B, and
integrating by parts, we obtain

%/B |(1)~|" dx = — /B V (1) - (Vnf — xn° Vv + 2mQn VK©) dx
< —/ |V(nf)*|2dx+ X / )~V (n°)” - Vvdx — 2nQ/(nf)* V (n)” - VK<dx. (55)
B B B
We rewrite the second integral in (55) in the form:
/B n) V@) -VWdx= % /B V((n)™ ) - Vvidx= —% /B( )™ Y Avedx. (56)
Regarding the last integral in (55), we observe
=21 Q / n)y" V@) -VKdx=—-nQ / V(((#n)™ ) - VKdx
B B
= —nQ/ ((n°)” VK -ndx+7mQ f ((n°)” *AKdx
a8 B
<-nQ / ((n)” PVK® - dx.
aB

Applying the property |VK| <3 and the trace inequality |f[|72qp <8 IVf 72 + Cs IIf 12 -

27 |x|

feH'(B) withf = (n°)” and § = j—'Q yields

€\~ \2
—nQ/ ((nf)*)2VKf~ndxan/ ((nf>*>2|VKf|doser/ (e )dcr:nQ/ ()" Ydo
B 9B 9B |x] 9B
<8 [ V() )3y, +70Cs [0y - (57)

Combining (55), (56), and (57), we arrive at
d 1
E/B‘(ne)"zdxf(—1+8)/B|V(n€)’|2dx—E/B((ne)’ PAVdx+mOCs () [y, - (58)

Proposition 10 yields n° € V, := L=((0, T);L*(B). Thus, by the regularity theory for elliptic equations,
we can assure that v € W>2(B) and

1 _ 1 N
—5/((#) )zAv‘dxzz/‘((ng) )z(n‘—G/n)dx

_! / (1) Y — — f (1) Y < — / (1) Ydx
2 B 2 B T 2 B '

It follows that for any constant &, > 0, there exists Cj, > 0 such that
1 0
-= / ((n)” ’Avidx < — /((né)f Y (1) )dx < 8, / ((n)")'dx + Gy, /((ne)f Ydx. (59)
2 Jp 2 Jp B " Js
Combining inequalities (58) and (59), we obtain
d en—12 en—|2 en— 4 en— \2
7 |n) |Tdx<(—148) | V)| dx+8 | ((n) )dx+ (Cs, + TQC5) | ((n°)” Vdx.
B B B B

Using the Gagliardo—Nirenberg—Sobolev interpolation inequality (see [18, 19]), we have

(60)

4
L’B) *

” (n6)7 “24(3) = CéNB || (}’lé)7 “22(3) ”V (n€)7 ||iZ(B) + ” (n6)7
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Therefore,

[l
dt ]R2 " .

<(—14848,Clyp

2

(n1)

2
+5 ( / () >2dx) .

2
f(Céz+”QC§)/((ne)i)2dx+52 (/((ne) )ZdX) .

Using again that n€ € V, := L*((0, T);L*(B)), we get

d 2
d—t‘/Rz‘(n)‘dx

< (= 148+ 852Gy, sup ||(n‘)‘HL2<B>)/ IV(nE)’|2dX+(Csz+”QCE)/((”€)_)2"X
3 B B

+ 8, sup | (ng)—||L2(B) (f ()~ )2dx) )
©.7) B

Choosing the parameters § and §, small enough, we conclude that

) / V()| dx + (Cy, + 7 QC5) / ((n°)~ )dx

L2(R?

d
w7 / ) ["dx < <c52+cha+62 sup |}(nf)||Lz(B)) / ()" )dx.
R2 0,7) B

Integrating the last inequality gives

[ o0 s ([ foresoy [ ae) eememsomlier ) g
R2 R2

implying that n°~ =0 on [0, T) x R?. Therefore, n¢ >0 on [0, T) x R

13

(61)

O

Lemma 11. Let us assume that ny € L1(B) with g > 2. There exists T € (0, T) independent of € such that

In°C, DNl oy < C for0<t<r.

(62)

Proof. We start by multiplying the first equation in (14) by ¢(n¢)?~! and integrating the resulting product

by parts, yielding

d
= Yid
dt/B(n) x

Ag—1
5——(q )/|V(n5)q/2|2dx+q/. (n)"~'Vn - ndo
q B B

+4q / (n)'V .- Qe OnVK) dx — xq / (n°)™'V - (nf Vv )dx.
B B
To estimate the last integral, we rewrite it as:
/(ng)‘er . (nSVve)dxzf )V -ndo —(g—1) f n)'Vn© - Vvedx
B dB B

(g—1
q
(g—1)
q

:f n)IVv© - ndo — /V(ne)" - Vvedx
dB B

:/ (n)IVv© - ndo —
aB
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Since Vv - n =0 on 9B, we obtain
/ (Y - (Ve = L / (n°)! Av¥dx. (64)
B q B
Next, we apply the Gagliardo—Nirenberg—Sobolev inequality
2
/f“dxf C (/fzdx) (/ |Vf|2dx) + G, (/fzdx> for all f € H'(B).
B B B B
with f = (n°)*?. This yields
1/2
/(n‘)quédxf </ (né)z”dx> (/ (Ave)zdx>
B B
2 /2 12
(e fra) ([merta) e furaf] (fiere
B B B
172 1/2 1/2
([ ([t ([
1/2
+C)? ( / (nf)qu) ( / (Avf)zdx)
< qul (/ (Avf)zdx) (/ (ne)qu) + i (/ |V(ns)z1/2|2dx>
B X4 \Jp
1/2
(/ (n* )"dx) (( (AvV* )2dx> + 1)
— (g_a + —) (/ (AY) dx) (/ (nf)%lx) + 2 (/ }V(nf)q/zfdx>
X4 \Jp
1/2
( [ o )%c) (65)

Substituting (64)—(65) into (63), we obtain

d
- Y
dt/g(n) x

4g—1
S—M/W(né)‘”zrdx—i—q/ (n*)*~'Vnt - ndo
q B B

—{—q/(n‘)‘HV -2r On*VK®)dx — Xq/ (n)IVV - ndo
B dB

172
+x(@—-1) ((MCI < ) </(Av )zdx> </(n )"dx>+—/|V(n )2|* dx
1/2
Cz </ (n )qu>>
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< M- D/!V( el dx+q/ (n)"'Vn - ydo

+q/ ) Qr QOn*VK®) - ndo — 2mw Qq(q — l)f(n Y IVne VK‘dx—Xq/ IV - ndo

c\?
Fx@-1) (ﬂ+9> ||Avf||§/<nf)qu+i/|V(<nf>q/2 Faxt 2 (/(n )qu)
8 2 B X4q Jp

(66)
In order to bound the integral —27 Qq(g — 1) J, , (n)7'Vn® - VK*dx, we employ the fact that AK* <0
to obtain
—27Q0q(g—1) / (n®)*'Vn¢ - VKdx
B
=-210(g—1) / V() - VK dx
B
=-270(q — 1)/ (n)IVK® -ndo +27Q(g—1) / (n)'AK dx
oB B
<-2nQ(q— l)f (n)" VK| do. (67)
B
Using the property |VK*| < - together with the trace inequality [[f1|72.,5 < 8 I V/ 25 + Cs If 122, -
f € H'(B), applied with f = (n)%/> and § = 1), we have
(n°)?
“2nQ(g—1) | )" |VK‘|do <Q(g—1) do=Q(q—1) | (n°)'do
9B ap X 9B
<6 / Vo[ dx+ Qg = DG / (e, (68)
B B
Combining the estimates (66)—(68) and using the zero-flux boundary conditions, we obtain
d 2
. f (nYidx < ( - ) IRGERE (69)
dt J,
XqC C . . x@-1G" €
X (g—1) -+ =) 1AV 5 + g — DG /(n Ydx + F———— [ (n)'dx.
8 2 B 2 B
We observe that
0 ? 0\’
/ |Av‘|2dx:/ (—— +n€> dx < 2/ (—) dx—|—2/(n€)2dx
B B us B \T B
202
<—+42 / (n)?dx. (70)
T B

Using that (n€)* < @ + q;z holds for any g > 2, we obtain from (70),

2
/IAvl < 2@=27 2)” /(n ) dx. 1)

Combining (69) and (71), we derive

—/(n Yidx <( A9=D +8>/|V(n )‘1/2| dx
+ <s] +& / <nf>"dx) / (v,
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where

& :

C 0 2(q-27 -G
(_1)(xq1 )(7 (- ))+Q( 1)C5X(q )G
4
q

2
c, C
£:= x(q —1)<Xq + 22)

Therefore, we get the inequality

d% / (n°Y'dx < (sl +E / ()" dx) / (n°Yid.

Next, we consider the local smooth solution on the interval [0, t,) of the problem
ax
dt

X(0) = / (n(x, 0)7dx.
B

=¢E +86&X X,

By the comparison principle for ordinary differential equations, we obtain

/ (n°)?dx <X on [0, 7).

B

Consequently, the inequality (62) holds true with 7 = 7,/2 and C =sup,y,, », X(7). O
The proof of the following Lemma is an adaptation of [26, Lemma 2.1].

Lemma 12. Ifny € L*(B), then for some constant C independent of €,

[n°C, Dlle < Cmax {1, [ng||, » Inoll,~}  forO<r<t.

Furthermore, for a constant C independent of €
t
f /\V(né)(”“)/zrdxga forallp>1.
0 B

Proof. From Lemma 11 and the elliptic regularity theory, we conclude that v¢ € W*4(B) for any g €
[2, 00). Applying the Sobolev embedding theorem W>¢(B) < C"'~4(B) withn =2 and ¢ > 2, we deduce
that for a constant C; independent of ¢, we have

IVV(, D) <C for O<t<r. (72)
Now let p > 1. By multiplying the first equation in (14) by (n°)” and integrating by parts, we obtain

p—i—ldt_/(n )ian dx——/V(nf)P-(an — xnVV¢ 4+ 2 Qn VK®) dx

< —p/ ()P V() dx + xp/ (n°) Vn© - Vvidx — 2nQ/n‘V(n€)p - VKdx
B B B

P / |V(n€)("“)/2|2 dx+ xp / (n°)’ Vn© - Vvdx — 2 pQ
+1) Js B
)’ Vi - VK dx. 73)

B
Using (72) and Holder’s inequality, we obtain

2xpC ot
Xp/(ne)p Vn€~Vv€dx§)(pC/(n€)p |Vne| dx = &/(ne)%
B B p+1Jp

2
=0 +p1)z /B V)R dx + §x2c2 /B (n°y*dx. 74
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For the last integral in (73), we notice

2 2
—27p0 / ey Vi - VEdr = — P2 [ eyt viedy = 2P2 / (€Y AK dx < 0,
B p+1Js p+1Js
where we have used that AK€ < 0. Hence, we obtain

d 2 / » . pp+ 1D
- e\p+1 dx < — vV (nf (p+1)/2 dx + C/ e\pt1 d , 75
dt/B(n) ol B| (n%) | dx > B(n) x (75)

which implies (72) by using Moser’s technique (see [2]). Furthermore, rewriting the estimate (75), in
the form

2 ! 1 !
/(nf)erl dx—/(nf))p+1 dxi——p / /‘V(ne)wl)/zrdx—i—p(p—i_ )C/ /‘(ne)erl dx,
B B p+1Jo Js 2 o JB

we obtain as a byproduct of the estimate (72) that

/ /|V(n€)0’+“/2|2dx56, forallp> 1,
0 B

where C is a constant which does not depend on €. O

dmj

During the estimation (44) of the quantity] i | 2orm s We arrived at the estimate (52), which
turned out to be depending on €. As a consequence, we will modify this procedure completely to obtain
a uniform estimate of dn°/dt. The key ingredient in our new approach is the use of an appropriate free
energy functional associated with the regularised model.

4.1. Energy functional for the regularised model

In this section, we construct an energy functional for the regularised problem (14)—(16). To this purpose,
let us assume for a moment that we are dealing with smooth solutions.
We can rewrite the equation for n¢ as:

n; =div {n°V (logn — (xv* — 2n QK*))}.

We multiply this equation by log n® — (xv¢ — 27 QK*), integrate the product by parts, and apply the
no-flux condition (15) to obtain

/nf (logn® — (xv* — 27w QK")) dx = — f n |V (logn® — (xv¢ — 2w QK))|* dx. (76)

We notice that the no-flux condition implies % [ n*(x, n)dx =0 for all # > 0, and consequently (76) gives

/n‘ |V (logn® — (xv — ZnQKene))|2dx=/nf (xv* —ZJTQKE)dx—/.nf log n“dx

B B B
d
=:1— = /an log ndx.

We rewrite the integral I as:

d
I=— / (xnv¢ = 2w QK n®) dx — x /nevfdx. (77
dt Ju B
For the last integral in (77), we use the equation for v¢ to get
0 0 d 1d
/n‘vfdx: — / AV — — | Vidx=—— / Vedx + = — |[VV¥[3 (78)
5 B b4 T dt 2 dt

d (6 1
=—|— “dx + — Vvt dx ).
dt(n/v x—I—Z/BIVI x)
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Thus,

d d (6 1
I:—/(Xn€v5—2nQK€n‘) dx — x— —/v‘dx——/.erlzdx
dt B dt \ 2 B

d 0
=— /Xnevf—ZJTQKenG—X—/vedx—K/IVvelzdx .
dt \ J; b4 2 Jg

In conclusion, we have

- /n |V (log n¢ — (xv* — 2w QK n%))|* dx
B

_ d € € €. € € € Xe € X €12
=— nlogn®dx — | xnvdx+ [ 2rnQKn°dx+ — | vidx+ = | |V |"dx |,
dt \ Jy B B b4 2 J

or equivalently

d 0
— / n®logn® — xnv¢ + 2 QK*n‘ + X—ve + X [Vve|* ) dx
dt Jg b4 2

=— /n IV (log n¢ — (xv¢ — 2w QK n%))|* dx. (79)

B

In the framework of weak solutions, we have the following result.

Lemma 13. Let us assume that ny € L*(B). Let the functional W be defined by:

0
We(t) := / (nf logn® — xn“v" + 2w QOKn® + X?ve + % |Vv€|2> dx.
B

Then we have
W) — w0 < — / /n6 |V (log n° — (xv° — 2w QK n%))|* dx. (80)
0 B
Proof. Let § > 0 be a constant. Consider the function #:R — R defined by:
f(@:=log(z+ ) forallzeR.

Since f is Lipschitz continuous, by the chain rule, the composite function log (n° + §) belongs to H'(B x
(0, T)), as shown in [33, Theorem 2.1.11]. Similarly, the function ¢ given by ¢ := log (n° 4+ 8) — xv* +
27 QK¢ also belongs to the space H'(B x (0, T)). Therefore, we can use it as a test function in (17) to
obtain

/n(x, 0)p(x, O)dx:/n‘q&dx—/ /n%),dxdr—i—/ /(Vn‘ — xnVv¢ 4+ 27 On‘VK*) - Vodxdr
B B 0 B 0 B

=II_IQ+I3. (81)
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We compute

12=/ /n€ (log (n 4+ 68) — (xv° — 27 OK")), dxdt
0 B
t t
=/ /{(ne—i—é) log(ne~|—8),—xn€vj}dxdt—5/ /log(ne—i—(S)de
0 B 0 B

:/ /{(n6+8)10g(n6+8)r—Xnévj}dxdt—5/10g(n€+5)dx+8/10g(n€(x,0)+8)dx
0 B

B B
=/ /njdxdr—)(/ /n‘vidxdr—Sflog (n° +9) dx+8/10g (n‘(x,0) 4+ 8) dx
0 B 0 B B B
t
=—X/ /nfvjdxdt —8/10g (n“+96) dx+8/10g (n(x,0) 4+ 8) dx. (82)
0 B B B

On the other hand, from (18) with y =v¢, we have

! ! 0 "d 1 0
—X / fnevidxdt =—x / / (Vve -V + —vi) dxdt = —x / — / <— |VVeJ* + —V€> dxdt.
0o JB 0o JB 4 o dt Jp\2 T

(83)
From (82) and (83), we deduce

6 6
122—1/|W|2dx+1/|v¢(x,0)|2dx—X—/vfdx+x—/vf(x,0)dx (84)
2 B 2 B s B T B

—8/10g (n‘+8)dx+8/10g (n°(x,0) + ) dx.
B B

For I;, we have

I, =/ / (n° +8) V (log (n° + 8) — xv* + 27 OK*) - Vpdxdt +5/ f(vaf — 27 QVK®) - Vodxdt
0 B 0 B

=/ f(ne—i—c‘S)IV (log (I’le+3)—XV€+27TQKE)|2dxdT+5/ /(Xva—ZnQVKG)qubdxdr.
0 B 0 B
(85)

Combining (81), (84) and (85), and using n°(x, 0) = n(x, 0), we obtain

/ n(x, 0)¢(x, 0)dx

B

0 0
:/n‘q)dx—}—l/Wvﬂzdx—£f|Vv‘(x,0)|2dx+X—[v‘dx—X—[v‘(x,O)dx
B 2 Jp 2 Jp T Jg T Jg

+8/10g(n€+8)dx—8flog(n(x,0)+8)dx
B

B

+/ /(ne—i—é) |V (log (ne—i—c?)—Xv€+2nQK€)|2dxdt+3/ /(XVVG—ZTL'QVKe)'V(bdxdT.
0 B 0 B
(86)

https://doi.org/10.1017/50956792524000809 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792524000809

20 E. Espejo

Lemma 12 give us enough control to pass to the limit as § — 0 in the last identity, with the exception of
term

/ /(nf+a)|vaog (n +8) — xv + 2w QK)|* dxdr
0 B
t V € 5 2
=/ V@ + D | e 1 8) 32 [V 4+ 47°0° (o + 8) VKD
o Js ne+34
—2xVnt - Vv +4xQVnt - VK —4m x O (n° + 6) Vv¢ - VK dxdr. (87)

We rewrite the first integral in the last identity in the form

Y (n +5 '
//' (" + DI ddr=4f /‘V(ne—l—(S)l/Z]zdxdt,
ne+46 o Ja

and recalling the convexity of the functional

h—>/ /h|Vlogh|2dxdr=4/ /|Vh‘/2|2dxdr,
0 B 0 B

(cf. [10, Lemma 4]), we obtain by lower semicontinuity that, up to the extraction of sequence (;);>;
which converges to 0

/tf|V(n)l/2| dxdr<hm1nf/ /|V(n +5)'/2| dxdr. (88)
0 B

In conclusion, Lemma 12 together with (88) allow us to conclude

t
We(0) — We(r) > / /n6 |V (log n° — xv + 2w QK°)|* dxd-.
0 B

Lemma 14. Let us assume that ny € L™(B). For some constant C independent of €

/‘T dn‘
0

dt
Proof. We apply (12) together with Young’s inequality ab < alog a 4 exp (b) valid foralla > 0, b e R,

2

dt<C.

H(B)*

to obtain
27 Q / n‘Kédx < —Q / nlog x| dx=Q f nlog |x| ™" dx
B B B
<0 / n‘ log n“dx + Q/ Ix'dx=0 / nlogn‘dx 4+ 2m Q. (89)
B B B
From Lemma 12, we know that for some constant constant C,
I7°C, Dl o) < Co for all £ € (0, T). 90)

We denote M := Max,c[oc,] X log x. The estimates (89) and (90) readily give us
—ZnQ/KEndez —QnM — 27 Q. On
B

On the other hand, we recall the condition in f 5 Vdx =0, (see (4)), which allows us to apply Poincare’s
inequality to ensure that for a constant Cp,

1/2 1/2
/ ] dx < 7 ( / (vf)zdx> < VG ( / |W|2dx) ©92)
0\> 172 02\ 2
<J/7C» (/ (n‘——) dx) <27C, <C(2,71+—> )
B s T
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Thus, Lemma 12 together with (91) and (92) readily imply the existence of a constant C, independent

of € so that
We@) > C,. (93)

On the other hand,

dng . € € € €

7’ n = (div {n°V (10g nt— (xv° —2r0K DI M)(HI(B)*_HI(B))

‘ (H'B)* H'(B)
=— / n‘V (logn® — (xv* — 27 QK*)) - Vyudx.
B

Therefore,

dn®
dt

2 ()
= Sup M
m@r  Inlg st dt (H By H (B)
! 1
fzf”f'V“"g'f—<xvf—2nQK€>>|2dx+§f"f|vm2dx
B B

1 1
=3 /n |V (log n° — (v — 2w QK))|* dx + EC0
B

Integrating over (0, T) and applying Lemma 13 together with (93),

/T dn®
0

dt
1 [ 5 1
<= n® |V (logn® — (xv¢ — 27 QK®))|" dxdt + = C,
2 )0 Js 2

2

dt

L2(0,T,H" (B)¥)

1 1 1 1 1 1
<=WO)— =W(@t)+ =Co < =W(0) — =C, + =C,. 94
=5 0) 3 ()+20_2 0) 2.+20 94)
To obtain an upper estimate for W¢(0), independent of €, we first notice that

W) := / (ne (x,0)log n(x, 0) — xn‘(x, 0)v(x, 0) + 27 QK  (x)n“(x, 0) + % [Vve(x, O)Iz) dx

_ / (n(x, 0) log n(x, 0) — xn(x, 0)v(x, 0) + 27 QK (X)n(x, 0) + % IV, 0)|2) dx.
B
Note that an upper bound for the integral 277 Q f 5 K< (0n(x, 0)dx is provided by estimate (91). Thus,
W (0) < / (no log 1y — X 1oV + % |Vv0|2> dx + QM +270. (95)
B

In conclusion, estimates (94) and (95) give us a constant C,, independent of ¢, satisfying
/ " dn
0

dt
Theorem 15 (Local existence). Given a non-negative initial condition ny, € L*(B), there exists T =
T(ny) > 0 such that the problem (4)—(7) has a weak solution in the sense of definition 4. Moreover, for
any q > 2, there exist a constant C(q, T) such that

2

dt < G,.

H(B)*

O

InC, Dl e < Clg, T), a.e.on0<t<T (96)
If Trax is the maximal time of existence, the problem (4)—(7) and T, < 00 then
lim sup [|7a(-, D|| 1oz = 00. o7
t—>Tmax
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The functional

0
W) = f (n logn — xnv — Qnlog |x| + X+ % |Vv|2> dx,
R T

satisfies
W) < W(Q0) for all 0 < t < T 98)
Proof. Lemma (11) provides a constant C, and a time 7 independent of € such that
171l cao.r<m) < Cir-
Consequently, there exists n € L((0, T) x B) such that
n® — n weakly in L7((0, T) x B) when € — 0. (99)
The weak-lower semicontinuity of the norm implies

lnC, Dl ooryxn < Ci, forall 0 <t <T.

On the other hand, using |VK* (x)| < ==~ € L*(B) for all s € [1, 2) together with the convergence:

27t x|

VK* (x) —> ~3 al a.e in B when € — 0,
T

2
x|

we obtain by Lebesgue dominated convergence theorem

X
VK¢ (x) > —
21

|x|?

strongly in L*(B) x L'(B).
In particular, for the constant ¢g* = q%l e(L,2),

VK¢ (x) —> —% strongly in L7 (B) x L7 (B). (100)
T

Jxf?
From (99) and (100),

nVK* — —n weakly in L'((0, T) x B) x L'((0, T) x B) when € — 0*. (101)

x|

Lemma 11 readily provides the existence of a constant C, satisfying

[|n€ “Lz(O,TA,H](B)) <G. (102)
We also have from Lemma 14 the existence of a constant Cs, independent of € such that
d €
‘ - <G;. (103)
dt L2(0,T,HY(B)*)

Recalling the embeddings

compact continuous

H'(B) — L*B) — H'(B),

and taking into account that the constants C, and C; are independent of €, we get, up to a subsequence,
by the Aubin—Lions compactness Lemma

n‘ — nas € — 0, strong in L*(0, T, L*(B)). (104)
The theory of linear elliptic equations give us a constant C, satisfying
0
IV Ge, Oll gy < Ca | 0°Ce, 1) — — fora.e. t€(0,7). (105)
Tlrs

The last estimate together with Lemma 11 imply the existence of v(x, r) € H'(B) satisfying

Ve (x, 1) — v(*, 1) weakly in H'(B),
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as € — 0, as well as
v¢ — v weakly in L*(0, T, H'(B)). (106)
From (104) and (106),
n‘Vv¢ — nVv weakly in L'((0, T) x B).

In conclusion, taking limits in (17) and (18) when € — 0, we find that that n,v satisfy (10), (11). That is,
we have proved the local existence of solutions in the interval (0, 7).

In order to prove the extension criteria (97), we proceed by contradiction. Let us assume 7T, is the
maximal time of existence. If (97) does not hold, then we can repeat the argument to construct solutions
on (0, T,.,) to obtain a new solution with initial data in r = T,,,,. Thus, we would have a solution in some
interval of the form (0, 7*) with T* > T, which contradicts the maximality of 7.

Finally, let us show that n,v satisfies (98). Using Lemma 11 along with the strong convergence result
(104), we get, up to subsequence in €

n°(-,t) = n(-, 1) as € — 0 strong in L/(B), a.e. fort € (0, 7). (107)

and that the function n satisfies
I, Dl as < Cs a.e. forre (0, 7).

for some constant Cs. Also from Lemma 11, estimate (105) and the Rellich—-Kondrachov theorem

V(-,£) = v(-, 1) as € — 0 strong in L*(B), a.e. for t € (0, T), (108)
and

VVE(, 1) — VV(k, £) as € — 0 weakly in L*(B), a.e. for t € (0, T).
Therefore,
ne (G, OV, £) = n(-, Hv(-, 1) as € — 0 strong in L'(B), a.e. fort € (0, T), (109)

and by convexity

/ (n(-,t) log n(-, 1) + X |Vv(~,t)|2) < liminf/ (nf(-,t) log n(-, 1) + X |W(-,z)|2) dx ae. for1e€(0,T).
B 2 e—0 B 2

We also note that the strong convergence (108) implies o
V(- 1) = v(-, 1) as € — O strong in L'(B), a.e. for t € (0, T). (111)
Taking into account the convergence (107), we obtain, up to a subsequence,
n‘ —naeinB x (0, T as € — 0. (112)
We also have
K‘— KaeinBase— 0. (113)

It follows from (112), (113), Lemma 12 and the estimate

1
ne(x, K (x) < — |In°(, Ol o 1log |x]],
2

that we can apply Lebesgue dominated convergence theorem to obtain

1
/K%fdx—)——/nloglxldxase—>0+ for0<t<T.
B 2 J
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On the other hand, we have that

e—>0t

0
lim W¢(x, 0) = hm (/ (nf) log ny — xngvy + 2w QK ng + X—vf) + % ’va)
B T

)%)

0
= lim </ (no log ng — xnogvo + 2w QK*ny + X—vo + X |Vv0|2) dx>
=0t B T 2
x6
= nglog ng — xngve — One log |x| + —Vo + |VV0| (114)
B
We obtain from (109), (110) and (114)
X0
/ <nlogn—xnv—inog |x|+—v+ [Vv]| ) (115)
B

e—>0t

0
<Ilim inf/ (ne log n® — xnv" + 27 QK*n* + X—vf + % |Vv€|2> dx
B T

In conclusion, an application of the energy inequality given by Lemma 13 together with the estimates
(114) and (115) give us

X0
W(t):/ <nlogn—xnv—Qn10g |x|+—v+ [Vv| >dxglimian€(t)
B

e—0F

<liminf (Wf(O) —/ /n‘ [V (logn — (v — 27TQK€n€))|2dx>
0 B

e—07T

e—>071

X0
<lim 1an‘(O) = / (no log ny — xngvy — Ong log |x| + —vo + |Vv0| ) dx =W(0).
B

5. Global existence

The main tools in this section are the free energy functional and a version of the Moser—Trudinger
inequality involving singular weights. We recall firstly the classical Moser—Trudinger inequality.

Theorem 16 (Moser-Trudinger inequality, [25]). Let 2 be bounded domain in R" (n > 2). Let h €

W, () and
/ |Vh|"dx < 1.
Q

Then there exists a constant k depending only on n such that

_n_
/ e <k |9,
Q

VD and w,_, is the (n — 1) —dimensional surface area of the unit sphere in R".

where a < nw,”

Proposition 17. Let f € W'(B(0, L))) with f(x) =f( |x| ). Then for any € > 0, there exists a constant C,
depending on € and |B(0, L)| such that

JD) = e IVl wory + Co W llmow) » (116)

where the left-hand side of this inequality is interpreted in sense of the trace.

Proof. Since C'(B(0, L)) is dense in W'"(B(0, L)), it suffices to prove the case f € C'(B(0, L)).
Let us denote ¢, = ¢w'/". Choose r, € [e~*"/"~VL, L) such that

f("o)”(’T1 =< ;/ frrdr.

(1 —e=a/=D), | _cpnjn-yy,
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Then
1
flro) <ry™ (1 — e/ L, B(O,L)f (x)dx
< (e~em/m=Dpylon = e%nn/iH))Lwn,l o fx)dx
_ g ! F)dx

(1 —e=en/=Nrw,_y Jpor

ensn
~ n(1 — e=m/@=D) |B(0, L) BO.L)
Here, we used |B(0, L)| =n"'L"w,_,. Next, we apply Holder’s inequality to obtain

f(x)dx.

L

FLy=F(r) + f Fdr <fGro) + / Py

—enn/(n—=1),

L (n=1)/n L 1/n
<f(ry)+ (/ - rldr) </ . IF' | r"ldr>
e—enn/(n—1)[, e—enn/(n—1)[
L (n—1)/n 1 1/n
<o)+ ( [ rldr) (w—) vyl
e—enn/(n=1), n

1 1/n
=f(r)) + e, <5> VAL -

n

The last estimate, together with (117), and the definition of ¢, leads to

enswn_ I/n

f(L) <é ”Vf”[jl(g(o,[‘)) + ”f”L‘(B(O.L)) .
n

(1 — emeen"0/0=0) |B(O, L)
In conclusion, we have proved (116) with

—1/n
e"een

& T

n(1 —eeon "0y |B(O, )]

25

(117)

O

In the next result, we propose in the radial case an extension for a version of the Moser—Trudinger
inequality with weight (cf. [5, Theorem 2.1] and [7, Corollary 2.5]). The main novelty is that our result

allows having singularities in the weight function.

Proposition 18 (Singular Moser—trudinger inequality). Let P > —2 a constant and B := B(0, 1) C
R? a ball of radius 1 and centred at the origin. Let f € Hé (B) with f(x) =f(|x| ). Then there exists a

constant Cp = C(P, |B|) such that

log / il Mdx) < —|vfR+C
R ~ 872+ P) 2

(118)

Proof. Since C'(B) is dense in H'(B), we can assume that f € C'(B). We can also assume f > 0 because
if it is not the case, we apply (118) to the function f* =f + |sup§ f | > 0, which in turn lead us to get

(118) for such a function f. Let I := |, 5 |x|” exp (f)dx. In polar coordinates

1
I=2m / " exp (F(r))dr.
0

We look for a function p = p(r) producing pdp = r"*'dr and hence, we take
2 rp

2 .
P12

pi=
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Then

e i
1=27 / pexpf(r(o))dp = / exp (dy. (120)
0

Bp

where By := B (0 |55 +2 ) and f := f(r(p)) or equivalently,

= P+2 ™ 2
f(Y)5=f<(T) |y|P+2) fory € Bp.

Likewise, applying (119) yields

: vV |dpo [P 1 Vrr o odp
AlVf(x)|2dX:2ﬂ/ lfr|2rdr:27'[/ E , de 2NA |fp Vzdp
P42
=2 —— lfp| P p——/ V7| dy. (121)

Now, by applying both (120) and the Moser—Trudinger inequality (Theorem 16), we obtain

_ 7 Vi
I=/ exp (f)dxf/ exp H 4nf + ” f||L2(B”)
Bp Bp

” 167
L2(Bp)
197 n, anf i
<exp T” / exp dx < k |Bp| exp TP) (122)
T Bp H ||L2(Bp) i
We conclude from (121) and (122)
1 2
I <« |Bp| exp {(m) ||Vf||Lz(B)} . (123)

We conclude from (123) the validity of (118) with C» =1log (k |Bp|) = log (x 7 P*). O

Theorem 19. Let S > —2 and B := B(0, 1) CR? a ball of radius 1. Let g € H'(B) with g(x) = g( |x| ).
Then for any § > 0, there exists a constant C(6, S, |B| ) such that

1 2
5 dx < C(5,S, B ——— 43 ) IVels + = : 124
[ et = o5 | (g +8) 18+ bl | a2

Proof. Recalling that C'(B) is dense in H'(B), we assume without loss of generality that g € C'(B)
and g > 0. Taking into account that G:= (g — g(1)), € Hy(B) satisfies|VG|, < [|Vgl,, we apply
Proposition 18 to obtain

1
IOg </ |X|S€Gd)€) = m ||VG”§ + Cs. (125)
To estimate the left-hand side in (125) from below, we notice
/ Ix|® e%dx > e75® / |x|® etdx. (126)
B B
Therefore, we obtain from (125) and (126)
1
Sefdx < C — VG| D), 127
[t eta < lexp(gnms) IVGIZ +g(1) (127)
where C, := exp (Cs). The term g(1) can be estimated by Proposition 17 in the form
2
g <8 Vgl + = Bl g(X)dX+ Cs, (128)
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We conclude from (127) and (128) that (124) is valid with C(é, S, |B| ) := C, exp (Cs).

27

O

Proof of the theorem of global existence (Theorem 1). Let us denote by b a positive parameter to

be prescribed later and

uni= /|x|Q ePdx.
B

By leveraging the mass conservation property for n alongside Jensen’s inequality, we obtain

0 by 0 Q by
0= log (/ [x|° e dx>§/[—log<—|x| e )} o
B M B nown 0

1
=5/(nlogn—bnv—nlog9 +nlog u — Onlog |x|) dx
B

1
=- / (nlogn — bnv) dx —log 6 +log u — g /nlog |x| dx.
0 Jp 0 Js
Consequently,
0< / (nlogn — bnv) dx — 6 log 6 + 6 log (/ |x|2 e”"dx) — Q/nlog |x| dx.
B B B

The singular version of the Moser—Trudinger inequality (Theorem 19) gives for any § > 0
2b

1
1 Qexp(bv)dx | <> | ——— +8 ) | Vv|]? log C(3, O, |B]).
og(/lel exp (bv) x>_ (8n(2+Q)+ )ll v||2+|B| VIl 1 + log C(S, O, |B|)

From (129)—(130), we get

O§/(nlogn—bnv)dx—010g9
B

vort (— 1 s) iveiz+ 222
— v R—
872+ Q) 2T e

+010g C3,0,1B])— 0 / nlog |x] dx.
B

Substituting the definition of W into (131), we get

X ob 2 2
0 < W(a, —b dx — | = — ——= —$80b" | |V
=Wn,v)+(x )/anx (2 8721 0) Vvl
20b  x0
— = — | IVllpg +01log CG&, O, |B|) — 0 log 6.
Bl m
Using the monotonicity in time of the energy functional (98), we get
X ob’ 2 2
0 < W(ny, —b dx — | = — ———=—686b" | |V
< W(no, vo) + (x )/an x (2 ST+ 0) Vvl

260b X0
i (W B ?) VI3 + 6 log €3, Q. |BI ) — 6 log .

Notably, the condition [, vdx = 0 permits the utilisation of Poincare’s inequality, yielding
”V”iZ(B) S CP ”VVHiZ(B) .

Thus, we derive the existence of a constant Cs > 0 such that

(29b X0

B 7) IVl < 8 IVl72s + Csy < 8C, VY1325 + Cs.
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Consequently, combining (133) and (134),

<ﬁ s (66 + C )) VY2 + (b — )/nvdx (135)
2 872+ 0) ’ : “ ],

< W(ny, vo) + 6 log C(, Q, |B] ) — 0 log 6 + Cs;.
Now, we look pick the b such that it satisfies

X ov” 0 and b
—_—— > an > X.
2 8712+ 0) X
Equivalently
W< < 4”(9&.

The existence of such a b is clear since the condition (8) implies
, 4nx2+0)
X< —.

0
We fix one of those such a constant b and next, we choose § > 0 small enough to have
X ob* s
= —§(0b°+C 0.
Y “saro OG>

Therefore, we obtain from (135) that for some constant C; = C,(Q, x, 6),
Wil <G, /nvdx <C,. (136)
B

To estimate the integral f nlog ndx, we first notice that (132) together with (134) and (136) imply that
W is lower-bounded. Let us denote by C, := C,(x, Q, 6) a constant satisfying

W(n,v) = C(x, Q. 0). (137

The function

n 25+0)

§(s):= eR,

satisfies £(1) = ‘“’i—*Q) > 6. Hence, we can assure by continuity the existence of 0 < s, < 1 such that

Ar 25+ Q)

£(s0) = 0. (138)

We rewrite the energy functional as:

1 0

W(ny) = Wmn(t)) =1 — sy) / nlog ndx + s, f (n logn — énv — M + X—v + X |Vv|2> dx.
B B So So TSy 25,

(139)

According to the estimate in (137), we can ensure that the second integral is lower-bounded by the
constant C,(x /o, Q/so, 0) as long as
o< 4w 2+ Q/s0) 4w (250 + Q)

X /50 X
what turns out to be true by definition of s, (cf. (138)). Consequently, we deduce from (139) that

(140)

W (0) — s,C s
fnlogndxf (0) — s0C2(x /50 Q/So)‘ (141)
B 1 — 8o
Let n, := nl,<, then
|B]
0< [ n,|logn,|dx<—. (142)
B e
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Combining (141) and (142),

/nllognldx:fnlogndx—Z/n* |log n,| dx
B B B
= WO = 50G(x /50, Q/So) 2|B|

1—sp e

(143)

At this juncture, we aim to control the L-norms of the variable n. Before proceeding, let us recall
that if n € L2((0, T);H'(B)) and n, € L*((0, T);H~'(B)), it ensures that n € C([0, T1;L*(B), as well as the
absolutely continuity of the the map ¢ — ||n(-, £)|| 25, and the validity of the identity

d
yr /nz(x, Ndx=2(n'(-,0),n(-,1), ae. 0<r=<T,
B

cf. [16, chapter 5, theorem 3.]. Now, we take ¢ = n in (10) to obtain

/ 2dx—/ /nn dxdr+/ /(Vn—anv |Q| ) Vndxdr—fnz(x, 0)dx,

or equivalently

1 2 ' 2 Ox 1 2
— | nodx+ Vil — xnVv-Vn—n— -Vn | dxdt = = | n"(x,0)dx.
2 Jg o JB |x] 2 Jg

Rearranging and integrating by parts,

1 2 ' 2 1 2 ' X 2 ' Ox
— | n"dx+ [Vn|"dxdt = = | nydx + —=Avn°dxdt + nVn- —dxdt. (144)
2 Jg o JB 2 Jg o Jg 2 o Ja ||

To estimate the last integral, we rewrite it in polar coordinates
/ f dxdr = Q/ / / nn,drd0dt
:Qn[ "*(1, 7) — n*(0, 7))dr
0

<0On /t n*(1, 7)dr. (145)
0

Applying Proposition 17, we obtain that for any € > 0,

t t t 2
/nz(l,t)dt§2£2/ f|w|2dxdr+2c§/ </ndx) dr
0 0 B 0 B
t 2
:282/ /|Vn|2dxdr+2C§ (/nodx) t.
0 B B

The last inequality together with (145) give

t t 2
/ /nVn- Q—);dxdt <28°0m f / |Vn|* dxdt +2C*Qx (f nodx) t. (146)
0o JB |x| o Ja B
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It follows from (144) and (146) that for any ¢ > 0,

1 5 t )
= [ nidx+ |Vn|® dxdt
2 B 0 JB

' X 1 ' 2
< [ [-Zawiasar+ 3 [avr2s0n [ [ 1vnf dar +260x ( [ mar) «

o Jp 2 2 Js o Js A

X ! 3 1 t 5
< —/ /(—n3+3 |AV|3) dxdt+—/n§dx+2ngn/ /|Vn|2 dxd‘L’—}-szQn’ </ nodx> t.
2o s \2 2 Js o JB B

(147)
Choosing ¢ such that 26*Qm = 1/2, we get
1 ) 1 [ )
— [ nodx+ = |Vn|® dxdt
2 /s 2J)o Je
3 ! 3 !
< —X/ /n3dxdr + —X/ /|Av|3 dxdt + Cs,
4 0 B 2 0 B
where
1 2
Cyi= - /nédx—i—ZC?Qn (/ nodx> T.
2 B B
The theory of regularity for elliptic equations give us a constant C, satisfying
3
/|Av|3dx§C4f n—— dx§C5/(n3+l)dx. (148)
B B T B
It follows that
1
2/ ndx + - / /|Vn| dxdr<—/ / n’d dr+—C5/ / (n’ + 1) dxdt + C;
3
< (—X —cs> / / ndxdt + C.
with positive constant Cs > 0. Now we apply the embedding inequality (See [11]).
Inll, <& IVal,™" lInlog nlll;"” 4 ki llnlog |lll, + k; lInll;"” , (149)

for any n € H'(B). Next, we apply the boundedness of the entropy (143) and the inequality (149) with
p =3 and € > 0 small enough to conclude that for some positive constant C;

1
2/ nidx + ~ //IVnI dxdr < C,. (150)
B

In order to obtain further regularity, we first use the next Gagliardo—Nirenberg inequality
lInll, < Cs (1VRI17 10137 4 lInll,) (151)
with p = 4. Then using (150) and integrating (151) over (0, t) gives

t t
/ Il dr < Gy ( / (19n12 lInll + lInll) dr)
0 0

<Cy (/ (||V”||§+1) dT) =Cu. (152)
0

Next, we take ¢ = n? in (10) and repeat the reasoning leading to (147) to deduce the control of the
L*(B)-norm through the estimate

3/}1 dx < Cj, </ /n +/ /|Av| dx> fnodx<C13 (153)
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Hence,

<Cis.

L3(B)

VI3 < Cis |[n— —

T

We conclude from Morrey’s inequality
IVllctismy < Cis [Vllwas ) < Ci6Cis =: Ciy.
In particular,
IVV(, Dlim) < Cis. (154)

For r > 2, we take ¢ = n" in (10) to obtain

/ ndx — / /n(n) dxdt—i—/ /(Vn—anv—n|Q| > Vn’dxdt-/n’“(x, 0)dx.
B

implying that

1 ! 1
/nr+1dx+/ / <Vn — xnVv— nQ—);> -Vr'dxdt = /n(r)“dx.
r+1Jp 0o Jg |x| r+1Jg

Subsequently, we utilise the identity

r ' r—1 2 4r
Vn-Vn'dx=r n'~ |Vn| dxdt=—2
B o JB (r+1
to derive

1
/nr+ldx
r+1 Jg
1 4 !
= /ng“dx— d /
r+1J (r+172Jo Js

In order to estimate the last integral, we write it in polar coordinates to obtain

t Qx t 2 1 t 2 1
/ /nVn’ - ——dxdt = Q/ / / n(n’),dpdddr = Q/ / / n (rnr_lnp) dpdbdrt
0 JB |x] 0o Jo 0 0

_2n / L T — 0, T <_/ w1, de. (156)
r—|—1 0

i |2

i

dx,

2 t t Q)C
7| dx+ X/ /an - Vn'dxdt +/ /nVn’~ —dxdr.
o JB 0o JB |x|

(155)

Given any constant &, > 0, Proposition 17 provides a constant C,, such that

2
(1, tdr 528%/ |VfI? dxdr +2C) <ffdx> ,
B B

for any f € W', In particular for f = n"*9/?

2
I’lr+1(1,t) < 28%] |Vn(r+l)/2|2 dxdt +2C§2 (/ n(r+l)/2dx> ) (157)
B B

From (156) and (157),

t 2 4 CZ t 2
/ /nVn'~ 0% 4 4r < 41078 / /|V R grdr + rQm / < / n(,-+1>/2dx> .
o JB |x] r+1 1 0 B
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Combining this estimate with equation (155), we have

1 ' 4r ! 2 !
nldy < — dx+ x nVv .- Vn'dxdt
r+1Jp (r+1y o JB

4VQ7T82//|V (r+])/2| dxdt
r+1

4rQrC? ! 1
N Q+ lsz / (/ n(r+1)/2dx) dr + — /n{f'dx. (158)
r o \Js r B

4rQm &3 - r
r+1 ~— (r+1)7

t
1 /nr+ldx5_ 3r /
r+1 B (I"+1)2 0

4rQn C* ! ? 1
() o
o \Js B

Moreover, the boundedness of the gradient for the chemical concentration, as given by (154), implies

X/ anv-Vn"dxdr
0 B
! ! 2xrC r
:Xr/ /n"Vv.Vndxdrferlg/‘ /n’Iandxdt— X" 19// 5
0 B 0 B
< // 2 gy 4 x2rC2, /t/n’“dx. (160)
r+1D" Jo Js 0o JaB

From the estimates (159) and (160), we deduce
2 t
T dx+ x*rGC, / / n'*dx
0 B
2

1
2

Choosing &, such that

we get

2 t
T dx+ y / /an- Vn'dxdt
0 B

t
1 /nrJrlde _ 2}’ / /
r+1Jg r+10*Jo Js
2
+ 4rQ7TCSz /t /n(r‘+l)/2dx 1 nr+ldx‘
r+1 0 B r+1J;°

% / ;+1dx + 1 X r(r+ l)c f / r+ldx
r
+2rQnC§2/ (/ (’+”/2dx) dt + = /ng“dx.
0 B 2 B

Let r=2¢— 1,7, =n"s = n®"'. Thus, we establish
t
—12'cs, / / 7 dxdt
0 B

1/ 2k—1
b n
2 B h 2k 0 B
t 2 1
+4(2"—1))an§2/ (/ﬁ]dx) dr+§/ﬁ§dx. (161)
0 B B

We will leverage the inequality (161) as a foundation for applying the Moser—Alikakos technique (2) to
establish the sought-after L* bound of n. We demonstrate how to use the estimate (161) to derive an
upper bound of the integral [’ 5 ufk dx in terms of |, 5 ufH dx. This step sets the stage for a recursive process.
Through a recursive application of the derived estimate, we progressively obtain bounds depending

Equivalently,

L
2
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solely on the bounded integral |,  widx = 0,. Careful control of the constants involved in this iterative
process allows us to gracefully transition to the limit, ultimately securing the desired L* bound.
Defining v, = = x*(2* = D2 C}y and b, = 42" — 1))Qn CZ, we derive

1 t t
—/ﬁzdxf—vk/ /IVﬁI2 dxdt—i—ak/ /ﬁzdxdr
2 B 0 B 0 B
t 2 1
+bk/ ([ﬁ,dx) dt +§ /ﬁ(z)dx. (162)
0 B B

Recall the Nirenberg—Gagliardo interpolation inequality:
For each 1 < q<p < 0o and for any f € H', there exist a constant C > 0 such that

Il < CIFNG 1N

21<a

wherea=1— g.
Applying this inequality with p =2 and ¢ = 1, we obtain

Ifll2 < CIFILE AN

By utilising Young’s inequality, the equality ||f|| = 713 VS ”iz and choosing 0 < ¢ < % it follows
that

llflly <1 =) Ifll;> < e IVFl + IU‘IILI

Substituting f =7 and ¢ = &;, we derive

C :
— /ﬁzdx—i— — (/ ﬁdx) > —2¢ | |VAl*dx.
B 2¢gy B B

Multiplying both sides by a; + &, we get

C? :
—(ay + &) / dx + Clate) ( / ﬁdx) > —2e(a; + &) / |Vl dx. (163)
B 28 B B

Choosing &, such that 2&,(a; + &) < v, we obtain from (162) via (163),

1 t t
—/r_zzdxf—vk/ /IVﬁI2 dxdr—i—ak/ /ﬁzdxdt
2 B 0 B 0 B
t 2 1
+bk/ (/ﬁdx) dr+—fﬁgdx
0 B 2 B
t t
< _28k(ak+8k)/ /|Vﬁ|2 dxdf‘i‘ak/ /ﬁzdxd‘[
0 B 0 B
t 2 1
+bk/ (/ﬁdx) dt + - /_de
O 2
C? !
(&) / / Rdxdr + — X&) (ak+8k) [ ( / ndx) dr + a, / / #dxdt
0 B
1
+bk/ (/ndx) dt + = f de
0 B 2 B
' c ' ? 1
§—ek/ /ﬁzdxdr+ (M+bk)/ </ﬁdx) dr+—/ﬁ§dx
o JB 2, 0 B 2 Jg
C(ay P
< (M +bk> (sup[ﬁdx) t+ = /ﬁgdx
28k =0 JB 2 B
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Therefore,

c
/ dx < 2 max {( (@ + &) +2b) (sup
B Ex >0

C2
<2 max { ( @+ e + 2bk) (suP
Ek >0

Thus, we obtain the recursive inequality

, 2C? S\
/ i < max {((“—“) +4bk) (sup / o 'dx) T,2m ||no||i;} L a6
B Ex =0 Jp

) 7. [ dx}

/
/ dx) Tn||n0||Loo}.

Similarly

. 2C(a,._ _ S5\ _
fnz‘ 'dx < max {(M +4bk1) <sup/n2k 2dx> T, 2 IInolliio]} :
B Er—1 =0 JB

Then

2
(%ﬁ”") + 4bk) (sup,20 I nzkfldx)
2 22
< max {(%:“‘) + 4bk> (% + 4bk_1) (suptZO /; nszx) T2, (165)
(3 1 ap,) 22 g2}

We choose ¢, such that &‘2‘*”) +4b,>1,k=1,2,.... From (164) and (165), we conclude that,
&k

/ n? dx
B

2C%(a, 2Cay  + 60 ’ S\
< max :(M +4bk> <M +4bk1> (Sup / nzk de> TS’ (166)
B

Ex Ek—1 >0

2C? €
<—(“k e 4bk> 2 ||no||i;} :
Ek
To simplify further, we impose the additional condition on &,

20
ap < 2@ T 0

Ex

Therefore,

/nzkdx
B
2 22
- max {<4cz(ak+ek)> <4cz(ak1 +sk1)> (Sup /nZH dx) . <4cz(ak+ek)> 2 % }
Ex Er—1 >0 JB Ex

https://doi.org/10.1017/50956792524000809 Published online by Cambridge University Press



https://doi.org/10.1017/S0956792524000809

European Journal of Mathematics

Continuing this process

/n2kdx
B
2 k=1 k
< max {4C2(ak + &) (4C2(ak—l +8k_1)> o <m> (sup / ndx)2 Tzk,l,
Ex Er—1 & =0 JB

<4Cz(“k +£k)> <4Cz(“k—1 + Sk—')> o <4C2(a1 +sl>) 2 ||no||iio} .

Ek Ek—1 &

With K = max {1, ||n]l, , |70l , T}, this last inequality implies

/nzk < AC @t &) <4CZ(ak_1 + ek_o)z o <4CZ(a1 +é
| ¥ <

Ex &

Er—1

35

k=1
)) 22 2 g (167)

Now, let’s demonstrate that the right-hand side of the last inequality behaves like a constant to the
power of 2. By taking the 1/2* power of both sides, we can transition to the limit and derive the L*

estimate.
First, let us estimate &;. With 2e(a; + &) < vi, we find that

- 1 1
X Q25 = 1)25"Che +6r < 3 (1 — i) :

So, it is enough to find &, such that

- 1 1
X2(2k _ 1)2k 1C?98k =+ & < E (1 - ?) >

(-5)

or

(@ =1D2'Clyx* +1) & <

N =

P . 1 1
<
This lmphes Ex 2((21‘ 2k %9)(2 ]) (1 — _2k)' NOW,

1 1 1 1
 J— P -
2((2 =12 1ChHx2 + 1) < 2k> ~2(2921Cyx2 + 1) ( 2)
1
> )
4(21C x> +1)

By setting &, = we find that

1
4(22%-1Ct 2 +1)°

ACH(ar + 1) _ 4C28k(112k + &) < 2C2V_1;
Er Ex Ex
1— 4
— 2C2 2k 5 < 2C2(22k+1 C?9X2 + 4)2
1

Thus, for every & up to finite number, we conclude
22k+1 C%QXZ 2 4
Consequently,

4C2(ak =+ Sk) < 24ka
Ex

s
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for some constant value a. Thus, we get from (167) that

/nzkdx < 2% (24(1{71)a)2 (24(k—2)a)22 L. (24(k7(k—1))a)2k7] 22kn2szk
B

_ azk_l 24(2k+l _k_2)22kn2kK2k.
Taking the limit k — oo for the 1/2*-th power of both sides, we obtain

. k_ k k+1__ k
7]l < lim @® ~D/2 2@ 42207 K — 2an K.
k—o00

6. Blow-up

The following result is an adaptation of the classical moments technique for the Keller—Segel system
(cf. [26]).

Proof of the result of blow-up (Theorem 2). We formally multiply the equation for 7 in (4) by |x|*
and integrate to obtain

d d |x)?
_/n|x|2dx:—/ |x|* n(a - n)do —|—2/(x u)ndx+4/ndx+/ x|? —d / n il do
dt Jg g 0N

—X/ |x|2—vd0+2xfn(x-Vv)dx.
9B an

B

Using that [x| =1 on 0B, applying the zero-flux boundary condition (6), and noting [, na‘;‘n‘z do =
2 [,,ndo >0, we get

d
—fn|x|2dx§2/(x-u)ndx+49+2)(fn(x-Vv)dx. (168)
dt B B B
On the other hand, multiplying the equation of the chemical concentration
1 0
0=-90,(rnv,) — — +n
r b4

by r and integrating over the interval (0, r) yields

0 " o [
0=rt +/ ondp — —/ odp. (169)
ar 0 T Jo
Denoting the cumulative mass by M(r, 1) := |, B0y X =27 for npdp, we obtain
av M n 6 ’ do < M n Or (170)
or 2mr Twr), PP T T o

Hence, applying (170) and using the identity x - Vv = r% we obtain

9y ! M Op
n(x-Vv)dx =2n np—pdp <2m npl———+4+— 1 pdp
B 0 ap 0 2rp  2nm

1 1
— | Mnpdp +9/ np’dp
0 0

1 1
R d — d. 171
o [ Mo o [ it ax a7
Letm(t):= [, n|x|> dx. From (171), we have
6? 0
n(x-Vv)dx < —— + —m(1). (172)
B 4T 2w
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Returning to (168) and using x - u =Q together with (172) and the estimate (172), we obtain

dm(t
ﬂ <200 +46 42y /n(x-Vv)dx
dt B
62 0
<20+00 -2 L X0, (173)
2 b4
Solving the last differential inequality, we get
X 1 4 2 X
m(t) < e {m(O) ¥= <M _ 9) (1 _ ef’)} . (174)
2 X
We notice that the right-hand side of inequality (174) vanishes at the time #* defined by:
0
1 7 (2+0)
o\ Tp- )

and therefore

m(t) <O forall r > 1.

This last inequality contradicts the positivity of m. We conclude that that 7,,,, < t*. The result (9) follows
from the extensibility criterion in Theorem 15.
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