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Eddies within the meso/submeso-scale range are prevalent throughout the Arctic Ocean,
playing a pivotal role in regulating the freshwater budget, heat transfer and sea ice
transport. While observations have suggested a strong connection between the dynamics
of sea ice and the underlying turbulent flows, quantifying this relationship remains
an ambitious task due to the challenges of acquiring concurrent sea ice and ocean
measurements. Recently, an innovative study using a unique algorithm to track sea ice
floes showed that ice floes can be used as vorticity-meters of the ocean. Here, we present a
numerical and analytical evaluation of this result by estimating the kinematic link between
free-drifting ice floes and underlying ocean eddies using idealised vortex models. These
analyses are expanded to explore local eddies in quasi-geostrophic turbulence, providing a
more realistic representation of eddies in the Arctic Ocean. We find that in both flow fields,
the relationship between floe rotation rates and ocean vorticity depends on the relative
size of the ice floe to the eddy. As the floe size approaches and exceeds the eddy size,
the floe rotation rates depart from half of the ocean vorticity. Finally, the effects of ice
floe thickness, atmospheric winds and floe collisions on floe rotations are investigated.
The derived relations and floe statistics set the foundation for leveraging remote sensing
observations of floe motions to characterise eddy vorticity at small to moderate scales.
This innovative approach opens new possibilities for quantifying Arctic Ocean eddy
characteristics, providing valuable inputs for more accurate climate projections.
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1. Introduction
Mesoscale and submesoscale oceanic eddies, ranging from 10 to 300 km and 0.2 to 20
km, respectively, are widespread throughout the global ocean. These coherent structures
are known to contain approximately 80 % of the ocean kinetic energy (Ferrari & Wunsch
2009; Klein et al. 2019), influencing global ocean circulation, biogeochemical tracer
transport and energy transfer across various length scales. Ocean variability at mesoscales
typically follows the principles of geostrophic turbulence, characterised by an inverse ener-
gy cascade that strengthens larger eddies and redistributes kinetic energy and by a forward-
enstrophy cascade that creates finer filament features in the flow (Boffetta & Ecke 2012;
Callies & Ferrari 2013; Klein et al. 2019). In ice-covered regions, such as the Arctic Ocean,
the characteristics of ocean turbulence are strongly affected by ice-ocean interactions;
oceanic eddies contribute to sea ice melting by enhancing vertical mixing and transporting
heat from deeper ocean layers to the surface (Horvat, Tziperman & Campin 2016; Gupta
& Thompson 2022; Manucharyan & Thompson 2022). In addition, atmosphere–sea ice–
ocean interactions lead to momentum and heat exchanges, resulting in increased dissipa-
tion of eddy kinetic energy due to sea ice–ocean drag (Liu et al. 2024; Müller et al. 2024).

With the continued global warming trend, the Arctic sea ice cover has experienced
changes in its characteristics and a rapid decline in its extent (Kwok & Rothrock
2009; Rampal, Weiss & Marsan 2009; Comiso 2012). As a result, Arctic marginal
ice zones (MIZ) – the transitional regions between dense pack ice and open ocean
– have become more prominent (Strong & Rigor 2013; Rolph, Feltham & Schröder
2020), fostering more energetic mesoscale variability in the ocean (Armitage et al.
2020; von Appen et al. 2022), and intensifying eddy fields (Manucharyan, Lopez-
Acosta & Wilhelmus 2022). However, the variability of MIZ eddies and their relation
to sea ice are yet to be fully characterised, partly due to the challenges of acquiring
observations in ice-covered regions. On the one hand, while in situ eddy observations,
such as those acquired via ice-tethered profilers (Timmermans et al. 2008; Zhao et al.
2016) and moorings (Zhao et al. 2016; Pnyushkov et al. 2018; Cassianides, Lique
& Korosov 2021), provide accurate, temporally resolved data, measurements remain
sparse and mostly out of MIZ. On the other hand, remote sensing techniques, including
satellite altimetry, offer broader spatial coverage and allow for a more comprehensive
characterisation of the eddy field (Kozlov et al. 2019; Kozlov, Plotnikov & Manucharyan
2020; Kubryakov, Kozlov & Manucharyan 2021). But, processing data in ice-covered
areas remains challenging, limiting analyses to seasonally ice-free regions. In addition,
satellite altimeters acquire measurements infrequently and with limited spatial coverage
at high latitudes, where the Rossby deformation radius is smaller compared with lower
latitudes. Notably, the recent launch of the Surface Water and Ocean Topography
(SWOT) satellite, with O(1 km) spatial resolution, promises more detailed surface
velocity information based on altimetry observations (Dibarboure et al. 2025). However,
methodologies for deriving surface velocities from sea surface height using SWOT
observations are still under development and not yet fully operational, particularly for the
MIZ.

Analysis of remote sensing sea ice imagery has been proposed as a unique alternative
to standard techniques for the characterisation of the turbulent eddy field in MIZ, albeit
qualitatively. The first description of subsurface ocean eddies imprinted on ice edges in
the Fram Strait MIZ was made using airborne remote sensing imagery (Johannessen
et al. 1987). More recently, studies employing synthetic aperture radar (SAR) images
have detected the distinct signature of ocean eddies and filaments on the distribution
of sea ice, enabling the quantification of eddy counts, sizes and positions (Kozlov
et al. 2019; Cassianides et al. 2021; Kozlov & Atadzhanova 2022). Similarly, under-ice
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eddy characteristics have been inferred through Lagrangian observations of ice floe
rotation rates (Manucharyan et al. 2022), retrieved from Moderate Resolution Imaging
Spectroradiometer (MODIS) optical imagery (Lopez-Acosta, Schodlok & Wilhelmus
2019). This study demonstrated that upper-ocean eddy vorticity has a close relationship
to ice floe rotations via ice–ocean torques, as atmospheric winds primarily drive ice floe
advection, resulting in persistent daily-scale floe rotations.

From a fundamental standpoint, fluid flows have long been characterised in laboratory
settings using micro-size particles as tracers. Inertialess spherical particles, for instance,
serve as idealised passive tracers, effectively measuring flow fields via particle
image velocimetry (Adrian & Westerweel 2011). However, different particle properties
(e.g. inertia, shape, size) result in distinct behaviours. Particle inertia causes a delayed
response to changes in the flow fields, leading to misalignment between particle motion
and the background flow field (Mortensen et al. 2007; Ouellette, O’Malley & Gollub
2008; Zhao et al. 2015; Brandt & Coletti 2022). In turbulent shear flows, particle inertia
can enhance rotational motion, especially near walls (Mortensen et al. 2007). Ouellette
et al. (2008) also demonstrated that Lagrangian measurements of inertial particles along
their trajectories differ from those of passive tracers in chaotic flows. In addition, inertial
particles with different sizes and shapes exhibit unique rotational behaviours induced
by local velocity gradients in various types of turbulent flows (Voth & Soldati 2017;
Brandt & Coletti 2022), including homogeneous isotropic turbulence (Bordoloi & Variano
2017; Allende & Bec 2023), turbulent channel flow (Zhao et al. 2015) and turbulent
boundary layers (Tee & Longmire 2024). These cumulative findings not only advance our
fundamental understanding of particle dynamics but also suggest a promising potential for
using particles to characterise a wide range of flow fields.

In systems where only a limited number of seeded particles are accessible, Lagrangian
approaches using these particles provide an effective way of retrieving flow structure, and
examples span cryogenic (Švančara et al. 2020) and environmental flows (Dauxois et al.
2021). For instance, in flows involving superfluid 4He, where only 100 particles can be
detected within a 1 Mpixel image, Outrata et al. (2021) employed Lagrangian particles to
determine the vorticity of vortex rings. Similarly, in MIZ, Lagrangian tracking of ice floes
presents a valuable opportunity to quantify ocean field characteristics. In general, during
winter, when sea ice concentrations are high, eddy activity in the surface layer is weak,
with only a limited number of eddies (Zhao et al. 2014). However, in MIZ observed during
summer, where many ice floes are present, the eddy field at the surface layer is more active
(Kozlov et al. 2019; Kubryakov et al. 2021; Kozlov & Atadzhanova 2022), suggesting
that Lagrangian observations of ice floes may be useful for characterising underlying
eddies. Recent efforts have also been aimed at characterising coherent structures and even
flow fields using sparse trajectories of particles (Mowlavi et al. 2022; Harms, Brunton &
McKeon 2024) and ice floes (Covington, Chen & Wilhelmus 2022). These cumulative
findings in fluid mechanics with particles imply the potential of particle tracking to
measure fluid vorticity, suggesting that sea ice could serve as an effective tracer for
quantifying ocean flow fields.

In this study, we explore the kinematic relationship between ice floes and underlying
ocean eddies, focusing specifically on the role of ice floe size relative to eddy size. We
employ ocean eddy models (Arbic et al. 2012) and ice floe models (Manucharyan &
Montemuro 2022; Montemuro & Manucharyan 2023) for ice floe–ocean simulations.
Ice floe rotation in an idealised ocean vortex is examined, and analytical relations for
ice floe rotation are introduced in § 3.2. The potential applicability of these analyses to
more realistic ocean conditions is also discussed in § 3.3. The effects of key factors, such
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Parameter Symbol Definition Value

Amplitude of streamfunction (TG) ATG — 1.23 ×103 m2s−1

Size of a vortex cell (TG) LTG — 35 km
Domain size (QG) L QG — 400 km
Rossby radius of deformation (QG) Ld — 5.2 km
Ratio of layer depths (QG) δ H1/H2 1
Vertical shear of horizontal currents (QG) �U U1 − U2 0.21 m s−1

Effective drag length scale (QG) r1 Cd,e f f /H1 2 × 105 m−1

Linear dissipation time scale (QG) r2 — 0.01 days−1

Density (ocean) ρo — 1027 kg m−3

Density (ice floe) ρ f — 920 kg m−3

Density (atmosphere) ρa — 1.2 kg m−3

Sea ice–ocean drag coefficient Cd,o — 5.5 × 10−3

Sea ice–atmosphere drag coefficient Cd,a — 1.0 × 10−3

Turning angle (ocean) θo — 15◦
Turning angle (atmosphere) θa — 0◦
Radius (ice floe) R f — 1–35 km
Thickness (ice floe) h f — 0.1–1.0 m
Young’s modulus (floe collisions) E f — 5 × 107 Pa
Shear modulus (floe collisions) G f E f /2(1 + ν) 1.9 × 107 Pa
Poisson’s ratio (floe collisions) ν — 0.3
Speed (atmosphere) |ua | — 0–12 m s−1

Coriolis parameter f — 10−4 rad s−1

Non-dimensionalised floe inertia H∗
f,o ρ f h f /ρoCd,o Lo 10−3–10−2

Rossby number Ro Uo/ f Lo 0.045
Nansen number Na

√
ρaCd,a/ρoCd,o 0.015

Table 1. Parameters and properties for ocean eddy (top) and ice floe (bottom) models.

as ice floe thickness (§ 4.1), atmospheric winds (§ 4.2), floe–floe collisions and sea ice
concentration (§ 4.3), on the rotational relationship are examined in § 4.

2. Methods

2.1. Ocean eddy models
Two numerical models were employed to generate idealised ocean flow fields: (a) the
Taylor–Green (TG) vortex and (b) a two-layer quasi-geostrophic (QG) model. We describe
the key details of the TG and QG simulations in turn. Simulation parameters for the two
models are summarised in table 1.

The TG vortex is an idealised two-dimensional flow field frequently employed in the
literature due to its exact closed-form solutions for incompressible flows. For example, it
has been used as a background flow field in studies of multiphase flows to investigate the
motion of particles (Wereley & Lueptow 1999; Qiao, Deng & Wang 2015; Jayaram et al.
2020), bubbles (Deng, Wang & Smith 2006) and droplets (Qiao, Deng & Wang 2014) in
idealised flow settings. Here, we examine the motion of ice floes over a TG vortex and
derive analytical expressions for their relationship.

We consider a TG vortex cell of size LTG centred at the origin, defined by |x |, |y|�
0.5LTG. The streamfunction of the square-shaped TG vortex is given by

ψTG = −ATGcos
(
πx

LTG

)
cos

(
πy

LTG

)
, (2.1)
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where ATG is the amplitude, and x and y are the spatial coordinates. Maximum vorticity
magnitude occurs at the vortex centre, gradually decreasing radially outward until reaching
zero at the boundary of the vortex cell. Without loss of generality, we consider only the
cyclonic case. Both anticyclonic and cyclonic eddies are present in the Arctic Ocean, yet
for the results derived here, the anticyclonic and cyclonic cases differ only in sign.

The two-layer QG model produces more realistic ocean eddies similar in size and shape
to those observed in the MIZ. We employed the QG flow field tuned to observations
from the Beaufort Gyre (BG) (Manucharyan et al. 2022). Full details of the model and
the tuning of its parameters can be found in Arbic et al. (2012) and Manucharyan et al.
(2022). The QG model set-up divides the ocean into two vertical layers. The model is
forced by an imposed mean flow assumed to be homogeneous in the horizontal direction.
The vertically sheared horizontal flows in these two layers induce a baroclinic instability,
resulting in the generation of eddies evolving over the horizontal plane of each layer, which
is the most common eddy generation mechanism in the global ocean (Tulloch et al. 2011),
including the Arctic BG (Hunkins 1974; Manucharyan & Stewart 2022). In both layers, the
mean horizontal velocity is imposed in the zonal direction U , leading to gradients in the
mean potential vorticity, Q, which accounts for vorticity with the presence of stratification.
These velocity and vorticity gradients result in zonal (x) and meridional (y) velocity
perturbations (u and v) as well as potential vorticity perturbation (q). The evolution of
the perturbation vorticity fields in each layer is described by the QG equations, which
account for the Coriolis force and the vertical shear of the velocity. There is no internal
friction between layers. The governing equations for each layer are as follows:

∂q1

∂t
+ (u1 + U1)

∂q1

∂x
+ v1

∂q1

∂y
= −v1

∂Q1

∂y
− r1|∇ × u1||u1| + s.s.d., (2.2)

∂q2

∂t
+ (u2 + U2)

∂q2

∂x
+ v2

∂q2

∂y
= −v2

∂Q2

∂y
− r2∇2ψ2 + s.s.d., (2.3)

where subscripts 1 and 2 denote the top and bottom layers, respectively, t is the time,
u is the vector form of the perturbed velocity, r1 = Cd,e f f /H1 stands for the effective drag
length scale for the top layer, Cd,e f f is the effective sea ice-ocean drag coefficient, H is the
layer depth, r2 is the linear dissipation time scale for the bottom layer,ψ is the perturbation
streamfunction and s.s.d. is small-scale dissipation using an exponential cutoff filter. In
this set of equations, uniform dissipation caused by the quadratic sea ice–ocean drag is
incorporated in the entire horizontal domain of the top layer, while Ekman-type friction
is included in the bottom layer. Small-scale dissipation is also considered to prevent a
forward-enstrophy cascade towards small scales. The imposed mean potential vorticity
gradients are given by

∂Q1

∂y
= U1 − U2

(1 + δ)L2
d

,
∂Q2

∂y
= δ (U2 − U1)

(1 + δ)L2
d

, (2.4)

where δ = H1/H2 is the ratio of layer depths, Ld is the Rossby radius of deformation
and �U = U1 − U2 is the vertical shear of horizontal currents. The perturbation potential
vorticities in the two layers are given by

q1 = ∇2ψ1 + ψ2 −ψ1

(1 + δ)L2
d

, q2 = ∇2ψ2 + δ(ψ1 −ψ2)

(1 + δ)L2
d

. (2.5)

The model uses an f -plane approximation since the Coriolis parameter is approximately
constant in the Arctic Ocean (Timmermans & Marshall 2020).
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The simulation domain spans 400 km × 400 km and is set up with doubly periodic
boundary conditions. Time integration was performed using the Adams–Bashforth two-
step method in Fourier space with 256 modes, producing a converged energy spectrum
previously validated by Manucharyan et al. (2022). The model was initialised with
randomly generated q1 and q2 in Fourier space. The simulation was conducted until the
flow field reached an equilibrated state. At that point, the energy production from the
mean flow was balanced by the energy dissipation from the top and bottom layers due
to the sea ice–ocean drag and the Ekman drag, respectively. This equilibration state is
typically achieved after approximately one simulation year. The model tuning parameters,
Ld , δ and �U , were adopted from Manucharyan et al. (2022). As a result, the simulated
eddy fields closely matched the statistics of the BG MIZ between 2003 and 2020. It is
important to note that the sizes of the produced eddies are within the observed range of
the eddy sizes (of the order of 10 km) in the MIZ (Johannessen et al. 1987; Kozlov et al.
2019; Kozlov & Atadzhanova 2022). In addition, the estimated eddy kinetic energy derived
from the simulated ice floes is comparable to the estimated eddy kinetic energy from in situ
measurements via moorings located in the area of the satellite observations (Manucharyan
et al. 2022).

Arctic MIZ eddies typically persist for a period of O(10) days (Johannessen et al. 1987;
Kozlov, Plotnikov & Manucharyan 2020; Cassianides et al. 2021; Kozlov & Atadzhanova
2022); hence, we consider stationary ocean fields during the 30 day simulation period.
Note that the simulation incorporates the effects of sea ice–ocean drag as an effective,
continuous, stationary drag force over the top layer, influencing the energetics of the QG
eddy field. The quadratic drag law is used due to the turbulent nature of the flow field,
consistent with studies on the ice–ocean boundary layer (McPhee 2012; Cole et al. 2014).
The effective sea ice–ocean drag coefficient represents the overall impact of drag forces on
the ocean field, implying the product of sea ice concentration and the actual ice–ocean drag
coefficient (Manucharyan & Stewart 2022). This constant coefficient neglects the small-
scale floe dynamics and seasonal variations. For the given Rossby radius, changes in the
effective drag coefficient of less than 25% compared with the tuned value have negligible
effects on the slope of the eddy energy spectrum. This implies that such variations in ice
floe surface properties may have a limited impact on energy transport across scales.

While the tuning parameters in the QG model can produce consistent eddy energetics,
local eddy sizes and velocities may vary, even for simulation runs set up with identical
tuning parameters. Therefore, instead of covering a wide range of eddy sizes, we set the
parameters in the TG vortex model according to the relative length scales of eddies and
ice floes (table 1). The majority of the observed ice floe sizes range from 1 to 35 km
(Manucharyan et al. 2022). The value of LTG was set to broadly cover the floe–eddy size
ratios from 0.05 to 2. Ratios higher than 2 were excluded, as these larger floes tend to
filter out most of the eddy information and have a limited reflection of the local eddies
underneath them. Concurrently, ATG in (2.1), was chosen to represent the maximum
velocity of local QG eddies corresponding to LTG. These length and velocity scales fall
within the ranges of observed eddy sizes (1–40 km) (Kozlov et al. 2019) and flow speeds
(0–0.5 m s–1) (Kozlov & Atadzhanova 2022) in the BG MIZ.

Finally, local eddies (or coherent vortices) in ocean flow fields are identified in this study
by using the Lagrangian-averaged vorticity deviation (LAVD)-based approach proposed
by Haller et al. (2016). We note that other identification schemes exist, such as the
Okubo–Weiss parameter (Okubo 1970; Isern-Fontanet et al. 2004), Lagrangian trajectory
methods (Haller 2005; Dong et al. 2011) and others based on the values of sea surface
heights and vorticity (Chelton, Schlax & Samelson 2011; Mason, Pascual & McWilliams
2014). We opted for the LAVD-based eddy detection method given that it is both time
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and rotation invariant and has demonstrated good performance in detecting coherent
structures in altimeter-derived velocity fields of the global ocean (Archiving, Validation
and Interpretation of Satellite Oceanographic (AVISO) data) (Abernathey & Haller 2018;
Liu & Abernathey 2023). More details are provided in § 3.3.

2.2. Sea ice model
We simulate the motion of circular ice floes using the SubZero discrete element sea ice
model (Manucharyan & Montemuro 2022). This model is designed to study the behaviour
of ice floes under mechanical forcing. We parameterise the sea ice–ocean and sea ice–
atmosphere stresses through a quadratic drag law (Leppäranta 2011)

τ o = ρoCd,o|uo − ui|eiθo (uo − ui) , τ a = ρaCd,a|ua − ui|eiθa (ua − ui) , (2.6)

where τ is the shear stress, ρ is the density, θ is the turning angle and the subscripts o, a
and i correspond to the ocean, the atmosphere and the ice floe, respectively. Since ua � ui,
(ua − ui )≈ ua was used. The ocean turning angle is the angle between the geostrophic
current and the surface shear stress, as the Coriolis effect causes the flow to turn within
the boundary layers. Here, uo represents the velocity of the geostrophic current beneath
the Ekman layer (∼20 m (Yang 2006; Ma, Steele & Lee 2017)), with a direction rotated
relative to the ocean surface velocity by a turning angle of θo. The geostrophic velocity
generally has larger magnitudes than the surface ocean velocity in the BG due to sea
ice–ocean drag. The wind turning angle is set to zero, as the surface wind is considered.

The velocity of ice floes comprises translational and rotational components, ui = u f +
Ω f k̂ × r′, where ui is the sea ice velocity over the ice floe area, u f is the translational
velocity of the centre of mass, Ω f is the rotation rate of the ice floe and r′ = r − rC is
the position vector on the ice floe with respect to its centre of mass, C . The translational
velocity and rotation rate of ice floes evolve according to the linear and angular momentum
conservation equations

M f

(
du f

dt
+ f k̂ × u f

)
=

∫∫
A

(
τ o + τ a − ρ f h f g∇η) dA +

∑
j,k

F j,k, (2.7)

I f
dΩ f

dt
=

∫∫
A

r′ × (
τ o + τ a − ρ f h f g∇η) dA +

∑
j,k

r′
j,k × F j,k, (2.8)

where M f = ρ f A f h f is the floe mass, ρ f is the floe density, A f = πR2
f is the floe area,

h f is the floe thickness, R f is the floe radius, t is time, g is the gravitational acceleration,
η is the sea surface height anomaly associated with ocean currents, A is the surface area
covered by an ice floe, F j,k is the interaction forces of the kth contact point with the j th ice
floe due to collisions, I f = M f R2

f /2 is the moment of inertia for a floe with an axis passing
through the centre of mass and r′

j,k = r j,k − rC is the position vector on the kth contact
point with the j th ice floe with respect to its centre of mass. The left-hand side of (2.7)
represents the rate of change of ice floe momentum and the Coriolis force acting on ice
floes, while the integration terms on the right-hand side consist of the sea ice–ocean stress,
the sea ice–atmosphere stress and the pressure gradient due to the sea surface tilt. Equation
(2.8) consists of the corresponding torque terms. Floe–floe collisions are neglected for ice
floes subjected only to oceanic and wind forcings, resulting in F j,k = 0. While these floes
can be more observable in regions with low sea ice concentrations, they effectively capture
the key connections between ice floes and underlying eddies. In addition, it establishes a
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baseline for ice floe motions in regions with high concentrations. Free-drifting ice floes
with no collisions are examined in most sections, while the effects of floe–floe collisions
are discussed in § 4.3.

Using the length Lo, velocity Uo and time To scales of the ocean field, (2.7) and (2.8)
can be rewritten in non-dimensionalised form
du∗

f

dt∗
= 1

H∗
f,o

∫∫
A∗

|u∗
o − u∗

i |eiθo
(
u∗

o − u∗
i
)

dA∗

+ Na2

H∗
f,o

∫∫
A∗

|u∗
a − u∗

i |
(
u∗

a − u∗
i
)

dA∗ + 1
Ro

∫∫
A∗

k̂ × (u∗
o − u∗

f )dA∗, (2.9)

dΩ∗
f

dt∗
= 2

R∗2
f

[
1

H∗
f,o

∫∫
A∗

r′∗ ×
[
|u∗

o − u∗
i |eiθo

(
u∗

o − u∗
i

)]
dA∗

+ Na2

H∗
f,o

∫∫
A∗

r′∗ × [|u∗
a − u∗

i |
(
u∗

a − u∗
i

)]
dA∗ + 1

Ro

∫∫
A∗

r′∗ ×
(

k̂ × u∗
o

)
dA∗

]
,

(2.10)
where H∗

f,o = ρ f h f /ρoCd,o Lo is the non-dimensionalised floe inertia characterising
ice floe inertia relative to surface ocean drag, Na =√

ρaCd,a/ρoCd,o denotes the
Nansen number, Ro = Uo/ f Lo denotes the Rossby number, A∗ = A/A f is the non-
dimensionalised floe area and the superscript ∗ indicates non-dimensionalised quantities.
Note that the sea surface height tilt terms in (2.7) and (2.8) are rewritten using −g∇η=
f k̂ × uo, indicating the geostrophic balance between the pressure gradient force due to
the sea surface tilt and the Coriolis force. Interaction forces due to floe–floe collisions are
neglected in the non-dimensionalised forms.

Simulations with the SubZero model employ an Adams–Bashforth two-step method for
time integration and a Monte Carlo scheme (Caflisch 1998) at each time step for spatial
integration of forces and torques acting on individual ice floes. The velocity and rotation
rate of ice floes are initialised with the averaged values of ocean eddies beneath them. In
this study, we excluded the first five days of simulation to eliminate any influence of initial
conditions on the dynamics. An extensive description of the Subzero model can be found
in Manucharyan & Montemuro (2022) and Montemuro & Manucharyan (2023). The codes
associated with the model are available at https://github.com/SeaIce-Math/SubZero.

The physical properties of the ocean, sea ice and the atmosphere used in the simulations
are chosen based on geostrophic drag coefficients and turning angles specific to conditions
in the BG MIZ (table 1, from Leppäranta (2011) and Brenner et al. (2021)). We considered
ice floes with sizes ranging from 1 to 35 km, covering most of the observations acquired
in the BG MIZ from 2003 to 2020 (Manucharyan et al. 2022). We removed the influence
of shape variations on the rotational relationship between ice floes and the ocean by
reducing observed floe geometries to circular shapes. This agrees with studies by Gupta &
Thompson (2022) and Gupta, Gürcan & Thompson (2024). For non-dimensionalisation,
the size and the velocity amplitude of a TG vortex are taken as the reference length and
velocity scales, respectively.

For the initial part of this study, we considered ice floes with a constant thickness of
h f = 0.5 m, in agreement with observed values in the BG MIZ (Krishfield et al. 2014;
Timmermans & Marshall 2020; Manucharyan et al. 2022). We also neglected atmospheric
stresses. The effects of varying ice floe thickness and wind speeds on the rotational
relationship between ice floes and underlying ocean eddies are presented in §§ 4.1 and 4.2.
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Figure 1. Ice floes drifting over a TG vortex field. (a) The trajectory of a circular ice floe released at the
radial position, r f , set to be half of the TG vortex size, Re (R f /Re = 0.5). The colours map the magnitude
of the fluid vorticity normalised by the Coriolis parameter, while the arrows indicate the direction of the fluid
velocity (with the arrow size set to scale according to the velocity magnitude) at a given location. The inset
schematic shows the orientation of relevant vectors: the ocean velocity averaged over the floe area, uo, the
ocean velocity at the centre of mass of the floe, uo,C , the ice floe velocity at its centre of mass, u f and the force
direction resulting from combining the Coriolis force and the pressure gradient force due to the sea surface tilt,
k̂ × (uo − u f ). (b) Radial positions of ice floes with floe–eddy size ratios of R f /Re = 0.1 (blue dashed lines),
0.5 (red dot-dashed lines) and 1.0 (green double dot-dashed lines), normalised by the size of the eddy. The ice
floe cases are compared with the passive tracer case (black solid lines). Supplementary movies are available at
https://doi.org/10.1017/jfm.2025.10213.

Lastly, the passive tracer, devoid of inertia, perfectly follows the fluid, mirroring the local
velocity and rotation of fluid flows. The passive tracer scenario serves as an idealised
baseline case in our analysis.

3. Results
This section investigates the rotational relationship between ice floes and underlying ocean
eddies for different floe–eddy size ratios in the TG vortex and two-layer QG flow fields.
Two types of ocean quantities were explored for the analyses: (i) area-averaged ocean
quantities, calculated by averaging ocean quantities over the ice floe area, representing
localised ocean information in regions with ice floe coverage and (ii) centre-of-mass
ocean quantities, obtained through the interpolation of quantities at the centre of mass
of the ice floe, offering pointwise ocean information. These two types of quantities are
complementary; area-averaged quantities can be used to create spatial vorticity maps when
sea ice concentration is high, while quantities derived from information at the centre of
mass can be leveraged to estimate ocean vorticity at lower concentrations, mainly when
ice floes undergo a closed-loop trajectory over a larger area.

3.1. Single ice floe dynamics
The motion of individual ice floes with different sizes was analysed in a TG vortex field
and compared with the passive tracer case (figure 1). Three floe–eddy size ratios were
considered, R f /Re = 0.1, 0.5 and 1.0. In all cases, the centre of mass of the ice floes was
initially positioned at r f = 0.5Re, where r f denotes the radial position of the floe centre
of mass, to capture the influence of ocean fields both inside and outside the vortex cell.

The trajectories of free-drifting ice floes are shaped by oceanic and atmospheric forcing,
the effects of floe inertia, the Coriolis force and the pressure gradient force due to the
sea surface tilt. Under low to negligible wind speeds and low sea ice concentration, ice
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floe motion is expected to be predominantly driven by oceanic forcing. However, it has
been hypothesised that ice floe inertia plays an important role in setting the direction
in which floes translate by delaying their response to changes in the underlying ocean
flow field. From the cases tested, the ice floe with a size ratio of R f /Re = 0.5 exhibited
the best performance at resembling a passive tracer and forming a closed-loop trajectory
over the TG vortex cell (figure 1a). While inertia does result in an outward tilt of the ice
floe velocity u f (t) relative to the ocean velocity averaged over the floe area at t , uo(t)
(a subset of figure 1a), the resulting force from combining the Coriolis force and the
pressure gradient force due to the sea surface tilt, k̂ × (uo − u f ), reduces this spiralling
effect, effectively driving the ice floe to form a closed loop (figure 1a). Finally, ice floes
were observed to undergo alternating periods of acceleration and deceleration relative to
the equilibrium state in which all forces balance instantaneously to zero. As a result, the
radial component of floe position oscillates (figure 1b).

Changes in floe size with respect to vortex size result in a deviation of floe motion
with respect to the eddying motion underneath. For example, smaller ice floes, for which
R f /Re = 0.1, followed an outwardly spiral trajectory. In this case, the ice floe velocity
and the averaged ocean velocity vectors were better aligned, reducing the inward effect
from the Coriolis and pressure gradient forces compared with floes with larger size ratios.
This is similar to the behaviour of millimetre-sized particles in a Taylor vortex (Wereley &
Lueptow 1999; Deng et al. 2006; Qiao et al. 2015) and a Rankine vortex (Varaksin &
Ryzhkov 2022), in which the role of inertia is linked to their resulting spiral trajectories
relative to the flow direction. As the floe–eddy size ratio increases to R f /Re = 1.0,
discrepancies between ice floe and averaged ocean velocities become more pronounced
due to filtration of measured ocean velocities over larger floe areas. This results in larger
forces directed toward the vortex centre compared with smaller floes, leading to an inward
spiralling motion.

The kinematics of ice floes with different sizes were examined along their trajectories
(figure 2). We present results using two normalisations: (i) considering ocean quantities
averaged over the floe area, including averaged ocean vorticity, ωo, and averaged ocean
speed, V o and (ii) ocean quantities at the floe centre of mass, such as ocean vorticity,
ωo,C , and ocean speed, Vo,C . Note that the floe rotation rates are normalised by half of
the ocean vorticity. Angle deviations are calculated by subtracting the angle of the ocean
velocity from that of the ice floe velocity, �θ f = θ f − θo and �θ f,C = θ f − θo,C , where
θ f denotes the angle of the ice floe velocity, θo denotes the angle of the ocean velocity
averaged over the ice floe area and θo,C denotes the angle of the ocean velocity at the
centre of mass of the ice floe. All angles are calculated using the direction of each velocity
vector with respect to the positive x-axis, measured in the counter-clockwise direction.

Normalised ice floe rotation rates, velocities and orientations oscillated over time,
periodically crossing the equilibrium values. Small ice floes with R f /Re = 0.1 show
higher sensitivity to local ocean quantities, leading to normalised rotation rates and speeds
close to unity and minimal angle deviations (figure 2). Ocean quantities averaged over the
floe area and at the floe centre of mass exhibit similar values, resulting in comparable
normalised rotation rates (figures 2a and 2b) and speeds (figures 2c and 2d). As ice
floes move farther from the vortex centre along their outwardly spiral trajectories, the
normalised rotation rates begin to decrease at later times. The angle deviations have
negative values for most of the evolution time due to the outwardly spiral shape of the
trajectory (figures 2e and 2 f ). Contrasting the ice floe case, the passive tracer perfectly
mirrors the vorticity and velocity of the underlying flow field with zero angle deviations.
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Figure 2. Motions of ice floes with different sizes in a TG vortex field. (a, b) Normalised rotation rates, Ω f ,
(c, d) speeds, V f and (e, f ) angle deviations of ice floes for floe–eddy size ratios of R f /Re = 0.1 (blue dashed
lines), 0.5 (red dot-dashed lines) and 1.0 (green double dot-dashed lines) are compared with the passive tracer
case (black solid lines). Floe rotation rates are normalised by the (a) ocean vorticity averaged over the floe
area, ωo, and (b) ocean vorticity at the floe centre of mass, ωo,C . Floe speeds are normalised by (c) ocean
speed averaged over the floe area, V o, and (d) ocean speed at the floe centre of mass, Vo,C . Angle deviations
are calculated by subtracting the angle of the (e) averaged ocean velocity, �θ f , and the ( f ) centre-of-mass
ocean velocity, �θ f,C , from that of the ice floe velocity. The ice floes are initially released at r f /Re = 0.5.

As the floe–eddy size ratios increase to R f /Re = 1.0, the normalised ice floe rotation
rates and speeds exhibit larger deviations from unity (figure 2a–d). With larger floe–eddy
size ratios, the floe rotation rates normalised by the averaged ocean vorticity increase
because the floe samples low-vorticity regions near cell boundaries, reducing the averaged
ocean vorticity (figure 2a). Conversely, the floe speeds normalised by the averaged ocean
speed decrease due to high-velocity regions near the cell boundaries covered by the floe
area, resulting in higher averaged ocean speed (figure 2c). In the context of ocean quantities
at the floe centre of mass, the normalised rotation rates and speeds of ice floes decrease
significantly for larger floe–eddy size ratios. This occurs because the ocean vorticity and
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Figure 3. Rotational motion of centred ice floes in a TG vortex field. Ice floe rotation rates, Ω f , normalised
by the (a) ocean vorticity averaged over the floe area, ωo, and the (b) the ocean vorticity at the floe centre of
mass, ωo,C , for different floe–eddy size ratios, R f /Re. The simulation results are compared with analytical
relations using square-shape approximation (dashed lines) and Taylor series expansion (dashed-dotted lines),
and the passive tracer case (solid lines).

velocity at the floe centre of mass are considerably higher compared with the values
averaged over the floe area (figures 2b and 2d). For both types of ocean quantities, the
angle deviation becomes more pronounced as the floe–eddy size ratios increase (figures 2e
and 2 f ). With larger ratios, the resultant forces from a combination of the Coriolis force
and the pressure gradient force due to the sea surface tilt become larger, resulting in a shift
of floe trajectories from an outwardly spiral shape to an inwardly spiral shape as the ratios
increase. As a result, the angle deviations at R f /Re = 0.5 are smaller than in the other two
cases since the floe trajectories form nearly closed loops. Floes with R f /Re = 1.0 show
positive angle deviations since they have inwardly spiralling trajectories.

The motion of a single floe provides insight into the instantaneous response of ice floes
to an underlying ocean eddy flow field. Our results demonstrate the importance of floe–
eddy size ratios modulating the distribution of forces due to drag, Coriolis and the pressure
gradient on ice floes as they drift over ocean eddy fields.

3.2. Statistics of ice floe kinematics in an idealised vortex
Based on the statistics of ice floes in a TG vortex field, we derived analytical expressions
describing the kinematic link between ice floe rotation and the ocean vorticity underneath.
Appendix A outlines the criteria for identifying trapped ice floes. Given the time duration
of the simulation and the requirements for floe selection, ice floes with floe–eddy size
ratios ranging from 0.05 to 1.4 were considered for further analysis.

We examined ice floes positioned at the centre of a TG vortex representing an idealised
scenario (figure 3). In this case, the ice floes are initially released at the centre of the vortex,
exhibiting a distinct trend in their rotation driven solely by spatial variations in ocean
vorticity within the vortex core. The ice floe rotation rate normalised by the ocean vorticity
averaged over the floe area shows a monotonic growth with increasing floe–eddy size ratios
(figure 3a). This observed rise in rotation rates can be attributed to the gradual decline in
local ocean vorticity from the centre of a vortex cell toward its periphery. As floe–eddy
size ratios increase, the averaged ocean vorticity decreases, increasing normalised rotation
rates. In contrast, the rotation rate normalised by the ocean vorticity at the floe centre of
mass decreases for larger floe–eddy size ratios (figure 3b). This is due to the fact that large
ice floes rotate at slower rates while the ocean vorticity is maximised at the centre of mass
of the rotating ice floes.
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Building upon the physical interpretation of ice floe rotation, we established analytical
relations for the normalised rotation rates by balancing the torques acting on the ice
floes. In the present analysis, the quadratic drag terms in the angular momentum
equation (2.10) are substituted with linear drag, thereby enabling the derivation of explicit
relations describing the dependence of the normalised rotation rates on floe–eddy size
ratios. We investigated the effect of this substituted parameterisation on the rotational
relationship using the Rankine vortex, a simplified case for which solutions for both
drag parameterisations can be derived. The analytical relation for the normalised rotation
rate of ice floes shows minimal sensitivity to the choice of drag parametrisation, as
detailed in Appendix B, such that a linear drag law was used in deriving an analytical
relation.

By introducing a so-called size parameter, γ = R f /Re, we derived an analytical
relationship for the normalised rotation rate of an ice floe located at the centre of the TG
vortex. Near the centre of the TG vortex (2πx/LT G , 2πy/LT G 	 1), the ocean surface
velocity can be approximated using a Taylor series expansion. In the absence of wind, ice
floe rotation is dominated by ice–ocean stress for which the induced equilibrium of torques
leads to the relation ∫∫

A∗
r′∗

f × (u∗
f − u∗

o)dA∗ = 0. (3.1)

Substituting the second-order Taylor series expansion into (3.1) yields the following
expression for the ice floe rotation rate normalised by the averaged ocean vorticity:

Ω f

ωo/2
=

[
1 − π2

8

(
γ 2

3

)
+ π4

64

(
γ 4

48

)]
[

1 − π2

8

(
γ 2

2

)
+ π4

64

(
γ 4

24

)] . (3.2)

Given that the ocean vorticity at the centre of mass of the centred floe in the TG vortex is
ωo,C = 2Aπ2/L2

TG, the ice floe rotation rate normalised by the ocean vorticity at the floe
centre of mass can be expressed as

Ω f

ωo,C/2
=

[
1 − π2

8

(
γ 2

3

)
+ π4

64

(
γ 4

48

)]
. (3.3)

Equation (3.2) is in good agreement with the simulation results for the rotation rates
normalised by the averaged ocean vorticity provided R f /Re � 0.7 (figure 3a). In this
range, the Taylor series approximation effectively restores the original functions. However,
we observed noticeable deviations in the normalised rotation rate when the ice floe size
exceeded the eddy size due to limitations of the Taylor series expansion near the edge
of the vortex cell. Equation (3.3) aligns well with simulation results for the rotation rate
normalised by the ocean vorticity at the floe centre of mass for different floe–eddy size
ratios because the ocean vorticity remains constant (figure 3b).

We derived another analytical relation for the normalised rotation rate of the centred ice
floe by approximating the floe shape as a square with the same characteristic length scale.
With the equilibrium condition for ice–ocean stress torques, the analytical relation can be
expressed as

Ω f

ωo/2
= 12
π2γ 2

[
1 − πγ

2
cot

(πγ
2

)]
. (3.4)
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We positioned square-shaped floes centred with respect to the origin. This simplification
allows for the direct use of trigonometric functions. As a result, the ice floe rotation
rate normalised by the ocean vorticity at the floe centre of mass can be written
as

Ω f

ωo,C/2
= 12

π2γ 2

⎡
⎢⎣sin

(πγ
2

)
πγ

2

⎤
⎥⎦

2 [
1 − πγ

2
cot

(πγ
2

)]
. (3.5)

Equation (3.4) closely matches the simulation results for the rotation rates normalised
by the averaged ocean vorticity because it incorporates trigonometric functions fully
in the solution (figure 3a). However, (3.5) deviates from the simulation results for the
rotation rates normalised by the centre-of-mass ocean vorticity due to the square-shape
approximation (figure 3b). It is worth noting that, for the centred ice floes, the derived
analytical relations (3.2)–(3.5) are functions solely of the floe–eddy size ratios.

We also examined a more realistic scenario of an ice floe being positioned off centre
with respect to the TG vortex cell. We conducted simulations with over 2000 randomly
distributed ice floes for each floe–eddy size ratio. While centred ice floes remain at the
vortex centre, off-centred ice floes have the potential to drift away, depending on their
radial positions. For the present analysis, only trapped ice floes were considered.

The normalised rotation rates of off-centred floes are dependent on the position of the
floes relative to the vortex core. Therefore, to analyse this case, we computed probability
density functions (PDFs) over all floe positions for each bin of floe–eddy size ratios
(figure 4). As discussed in the single floe analyses (§ 3.2), the observed variability arises
from floe inertia, causing a delay in ice floe response to changes in the underlying ocean
eddy field. This delay results in a discrepancy between the rotation of the ice floes and the
underlying ocean eddies. Considering ice floe rotation rates normalised by the averaged
ocean vorticity, ice floes behave as passive tracers provided R f /Re � 0.7 (figure 4a).
However, as the floe–eddy size ratio increases and approaches 1.4, the peaks in the
normalised rotation rates shift to greater values, reaching approximately 1.8, similar to
the case of centred ice floes (figure 3a). Around R f /Re ≈ 0.5, the distribution narrows
and exhibits higher peaks, suggesting that a solid body rotation approximation accurately
captures floe motion within this range of floe–eddy size ratios. This behaviour can be
attributed to the ice floe area filtering out ice floe–ocean stress, thereby reducing ice
floe responsiveness to any variability within the vortex cell. As floe–eddy size ratios
increase, excessive filtering of ocean information over the ice floe diminishes sensitivity
to underlying ocean characteristics, resulting in a broadening of the PDF. For ice floe
rotation rates normalised by the ocean vorticity at the floe centre of mass, ice floes
behave as passive tracers when R f /Re � 0.25. The peaks of the PDF shift to smaller
values as the size ratios increase, reaching approximately 0.25 at R f /Re = 1.4 (figure 4b).
Similar to the behaviour observed for averaged ocean vorticity, the distributions are
more dispersed for small floes, while clear peaks are evident for R f /Re � 0.25, as
the centre-of-mass ocean vorticity for larger floes tends to exceed the area-averaged
vorticity.

Following the same approach as for centred ice floes, we derived analytical relations for
the off-centred floes. By employing the Taylor series expansion, the analytical relations
for the ice floe rotation rate normalised by the averaged ocean vorticity can be derived
as

1015 A51-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
21

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10213


Journal of Fluid Mechanics

2.0

1.5

1.0

0.5

0
0.05 0.25 0.50

Rf/Re Rf/Re

0.75 1.00 1.251.40

2.0

1.5

1.0

0.5

0
0.05 0.25 0.50 0.75 1.00 1.251.40

10−5

10−4

10−3

10−2

10−1

100

10−5

10−4

10−3

10−2

10−1

100
PDF PDF

Square approximation
Taylor expansion
Passive tracer

Square approximation
Taylor expansion
Passive tracer

–
Ω

f/
(ω

o/
2
)

(a)

Ω
f/

(ω
o,

C
/
2
)

(b)

Figure 4. Rotational motion of off-centred ice floes in a TG vortex field. The PDFs of ice floe rotation rates,
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(3.6)
where x f and y f are the horizontal Cartesian coordinates of the floe centre of mass,

respectively, and r f =
√

x2
f + y2

f is its radial position. Similarly, the ice floe rotation rate
normalised by the centre-of-mass ocean vorticity can be then expressed as
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(3.7)
In contrast to the centred ice floe cases, relations (3.6) and (3.7) not only depend on
the floe–eddy size ratio, but also on the radial positions of the ice floes. Therefore, the
normalised rotation rates were averaged over all r f values for each of the floe–eddy
size ratio bins. As r f → 0, the analytical relations for the off-centred floes (3.6) and
(3.7) converge to the relations for the centred floes (3.2) and (3.3). Equation (3.6) is in
good agreement with the PDF peaks for small floe–eddy size ratios (figure 4a). Their
differences become evident around R f /Re ≈ 0.5 and become more pronounced for larger
size ratios due to the issues of the Taylor series expansion near the cell edges. Conversely,
(3.7) closely aligns with the PDF peaks of ice floe rotation rates normalised by the
centre-of-mass vorticity for most floe–eddy size ratios (figure 4b).

The square-shape approximation for off-centred floes yields the same analytical
relations as for centred floes. Thus, (3.4) and (3.5) are also used to describe the rotation
rates of off-centred floes. These equations match the PDF peaks over a wide range
of floe–eddy size ratios and only show minor deviations at ratios around R f /Re = 1.4
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Figure 5. Translational motion of off-centred ice floes in a TG vortex field. The PDFs of ice floe speed, V f ,
normalised by the (a) ocean speed averaged over the floe area, V o, and the (b) ocean speed at the floe centre of
mass, Vo,C , and (c and d) angle deviations. For these last quantities, ice and ocean velocity angles are calculated
using the direction of each velocity vector with respect to the positive x-axis, measured in the counter-clockwise
direction. Then, deviations are computed by subtracting the angle of (c) the averaged ocean velocity, �θ f , and
the (d) centre-of-mass ocean velocity, �θ f,C , from that of the ice floe velocity, for different floe–eddy size
ratios. The simulation results are compared with analytical relations using square-shape approximation (dashed
lines) and Taylor series expansion (dashed-dotted lines), and the passive tracer case (solid lines).

(figures 4a and 4b). Overall, the square-shape approximation provides accurate estimates
of the PDF peak compared with the Taylor series approximation.

The PDFs of normalised ice floe speeds and floe–ocean angle deviations depend on
the floe–eddy size ratios (figure 5), corresponding to the results of single floe analyses
depicted in figure 2. For the ice floe speed normalised by the ocean speed averaged
over the floe area, the PDF peaks at unity (V f /V o = 1), resembling the behaviour of a
passive tracer (figure 5a). As the floe–eddy size ratio increases and approaches 1.4, the
normalised speed at the PDF peaks gradually decreases to V f /V o = 0.75. In contrast
to the ice floe rotation rate results, the PDFs of normalised floe speeds for small-sized
floes exhibit narrow distributions. This trend can be attributed to the fact that the Coriolis
force and the pressure gradient force due to the sea surface tilt depend on the velocity
difference, �u f = uo − u f , while the torque generated by these forces depends solely on
ocean velocity, uo, with no contribution from the Coriolis force. As a result, floe speed
is less responsive to changes in ocean speed. This is reflected in the third term of (2.9),
which is derived using the geostrophic balance between the pressure gradient force due to
sea surface tilt and the Coriolis force.
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Overall, the ocean speed at the floe centre of mass is greater than the ocean speed
averaged over the floe area. The peaks of the PDF for the floe speed normalised by the
centre-of-mass ocean speed decrease to 0.25 as the floe–eddy size ratio increases to 1.4
(figure 5b). It is useful to note that the velocity difference between the ice floe and the
underlying ocean remains relatively constant across different floe–eddy size ratios, such
that |�u f | ≈ C0, where C0 denotes a constant. This value can be derived by equating the
magnitude of the ice floe–ocean stress (the first term on the right-hand side of (2.9)) to a
combination of the Coriolis force on the ice floe and the pressure gradient force due to the
sea surface tilt (the third term on the right-hand side of (2.9)) under torque equilibrium,
as follows: |�u∗

f |2/H∗
f,o ∼ |�u∗

f |/Ro. Then, the floe speed normalised by the averaged
ocean velocity can be expressed as

V f

V o
≈ 1 − C0

V o
, (3.8)

implying that, for lower averaged ocean speeds as in the case of larger floes, there is a
reduction in normalised floe speeds.

Similar to (3.6)–(3.7), the analytical relation for ice floe speed normalised by the ocean
speed averaged over the floe area and by the ocean speed at the floe centre of mass can be
derived using the Taylor series expansion and the square-shape approximation. In relation
(3.8), the averaged ocean speed can be approximated using a Taylor series expansion as
follows:

V o =
(π

2

)2
(

ATG

Re

)(
r f

Re

)
Mo, (3.9)

where Mo = [(x f /r f )
2 M2

o,1 + (y f /r f )
2 M2

o,2]1/2. The parameters Mo,1 and Mo,2 are
given by
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12
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2

)2
{

3γ 2 + 2
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(
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]}
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(
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, (3.10a)
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{

3γ 2 + 2

[
3
(

x f

Re

)2

+
(

y f

Re

)2
]}

+ 1
96

(π
2

)4
{
γ 4 + 2γ 2

[
3
(

x f

Re

)2

+
(

y f

Re

)2
]

+ 8
(

x f

Re

)2 (
y f

Re

)2
}
. (3.10b)

Similarly, the ice floe speed normalised by the centre-of-mass ocean speed can be
expressed using the averaged ocean speed as follows:

V f

Vo,C
=

(
1 − C0

V o

)(
V o

Vo,C

)
. (3.11)

The centre-of-mass ocean speed can also be approximated using the Taylor series
expansion

Vo,C =
(π

2

)2
(

ATG

Re

)(
r f

Re

)
Mo,C , (3.12)
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where Mo,C is given by

M2
o,C = 1 − 1

3

(π
2
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(
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Re

)2
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(

x f

r f

)2 (
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(
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(
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(

x f

r f

)2 (
y f

r f

)2

+ 1
4
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r f

Re

)4 (
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r f

)4 (
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]
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(3.13)

Note that, for comparison with the simulation results, the normalised floe speeds in
the analytical relations were averaged over all r f values for each bin of floe–eddy size
ratios. Similarly, using the square-shape approximation, the averaged ocean speeds can be
approximated as the following:

V o =
(π

2

) (
ATG

Re

) [
sin

(πγ
2

)/(πγ
2

)]2

×
[

cos2
(
π

2
x f

Re

)
sin2

(
π

2
y f

Re

)
+ sin2

(
π

2
x f

Re

)
cos2

(
π

2
y f

Re

)]1/2

.

(3.14)

The centre-of-mass ocean speed can also be obtained as

Vo,C =
(π

2

) (
ATG

Re

) [
cos2

(
π

2
x f

Re

)
sin2

(
π

2
y f

Re

)
+ sin2

(
π

2
x f

Re

)
cos2

(
π

2
y f

Re

)]1/2

.

(3.15)
The analytical relation using the square-shape approximation ((3.14) and (3.15)) shows

good agreement with the peaks of the normalised speeds, while the analytical relation
using the Taylor series expansion ((3.9) and (3.12)) exhibits deviations for R f /Re � 1
(figures 5a and 5b). The constant C0 = 0.15 was chosen, producing the best-fit to the PDF
peaks. Note that as r f → 0, the analytical relations for the normalised floe speed ((3.8)
and (3.11)) converge to the centred floe case, as expected.

The PDFs of the angle deviation between ice floe velocity and ocean velocity are also
contingent on the floe–eddy size ratio (figures 5c and 5d). As discussed in the single
floe analysis (figure 2), the velocity of larger floes exhibits greater deviations from ocean
velocity, including the averaged ocean velocity and the centre-of-mass velocity, thus
resulting in more dispersed distributions for larger floe–eddy size ratios. While the vectors
of the averaged ocean velocity and the centre-of-mass ocean velocity differ slightly in
magnitude, their orientations are the same. This observation can be readily confirmed
using the square-shape approximation, as follows:

tanθo = −tan
(
π

2
x f

Re

)/
tan

(
π

2
y f

Re

)
= tanθo,C , (3.16)

indicating that the angle of the averaged ocean velocity is equal to the angle of the centre-
of-mass ocean velocity.

In addition to calculating ocean velocity and vorticity beneath single ice floes, we can
also compute local ocean vorticity from Green’s theorem by using ice floe trajectory
information. Passive tracers trapped in an eddy exhibit closed-loop trajectories. In this
case, we can estimate the averaged ocean vorticity of the region enclosed by the trajectory
as ω̃o = ∫

utr · dStr , where utr is the tracer velocity, Str is the tracer trajectory and ∼
denotes the averaged quantity over the closed region. Here, since utr = uo, the true ocean
vorticity, ω̃o, can be obtained. Similarly, trapped ice floes have been observed to form
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Figure 6. Averaged ocean vorticity estimates from ice floe trajectories in a TG vortex field. The PDFs of ratios
between the averaged ocean vorticity of the region enclosed by ice floe trajectories, ω̃ f , and true averaged
ocean vorticity of the region, ω̃o, for different floe–eddy size ratios. The simulation results are compared with
analytical relations using the square-shape approximation (dashed line) and Taylor series expansion (dashed-
dotted line), and the passive tracer case (solid line).

nearly closed-loop patterns, with the endpoints slightly offset from the starting points.
However, as previously discussed, the velocity of ice floes corresponds to the filtered
ocean velocity over the floe area but is not exactly the same. As a result, any averaged
ocean vorticity estimate within a trajectory-enclosed region, ω̃ f , does not match the true
averaged ocean vorticity of the same region, ω̃ f �= ω̃o. Nonetheless, their ratios can be
approximated using the ice floe and underlying ocean velocities as

ω̃ f

ω̃o
=

∮
u f · dS f∮

uo,C · dS f
≈ V f

Vo,C
, (3.17)

where uo,C is the ocean velocity at the floe centre of mass and S f is the ice floe trajectory.
Floe trajectories are not perfectly closed, with just a short segment between the start

and endpoints. Hence, the line integration in (3.17) is conducted from the first to the last
points. The true averaged ocean vorticity can be calculated by integrating the centre-of-
mass ocean velocity along the floe trajectory. The ratio of the ocean vorticity estimate
based on ice floe velocity to the true ocean vorticity, ω̃ f /ω̃o, can be approximated by the
normalised ice floe speed, V f /Vo,C (3.17).

The PDFs of the ratio between the ocean vorticity estimate and the true ocean vorticity
depend on floe–eddy size ratios (figure 6). The floe speed normalised by the centre-of-mass
ocean speed significantly decreases for larger floe–eddy size ratios (figure 5b), resulting
in smaller vorticity ratios. Furthermore, the peaks of the PDF for most floe–eddy size
ratios align with the analytical relation for normalised floe speed using the square-shape
approximation ((3.11), (3.14) and (3.15)). The relation using the Taylor series expansion
((3.11)–(3.13)) is in good agreement with the PDF peaks for R f /Re � 0.75, showing a
discrepancy for larger ratios due to the coverage limit of the Taylor series expansion near
the edge of the vortex cell.

3.3. Statistics of ice floe kinematics in a QG flow field
We performed simulations of ice floes in a QG flow field to apply the derived analytical
relations to a more realistic ocean eddy field (figure 7). Passive tracers were released into
the flow field, and ocean vorticity was interpolated to the Lagrangian tracer positions.
Then, a LAVD-based eddy detection method (Haller et al. 2016) was used to identify the
boundaries of eddies by searching for the outermost closed contour of the LAVD, which
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Figure 7. Motion of ice floes in a QG flow field. Boundaries (red lines) and centres (red dots) of the detected
eddies are shown in the field of (a) ocean vorticity and (b) LAVD normalised by the Coriolis parameter f .
(c– f ) Representative cases of trajectories (black dashed lines) of trapped ice floes within local eddies marked
as A to D with white dashed boxes in the QG and LAVD flow fields, respectively. The colour and arrows in
the figure correspond to the magnitude of the normalised vorticity and LAVD and the magnitude and direction
of the velocity at a given location, respectively. The floes (white circle) are positioned at the endpoint of their
trajectories.

indicates local rotation relative to mean rotation. The LAVD was computed by averaging
the vorticity deviation along the Lagrangian tracer trajectory as follows:

LAVD (x0, y0)=ω′
o

[
X (x0, y0) , Y (x0, y0)

]
, (3.18)

where (X, Y ) are the coordinates of tracers with an initial position of (x0, y0), and ω′
o

is the vorticity deviation from the spatial average over the whole domain. Given that the
ocean field is time-independent in the present study, the time component is not considered
in (3.18). A total of 70 eddies were identified in the QG flow field (figure 7a); their
morphologies become more apparent in the LAVD field (figure 7b). Note that the LAVD
has been widely used to capture vorticity-dominated structures in atmospheric and oceanic
flows and has also been used as a baseline for evaluating trajectory-based diagnostics to
quantify the kinematics of an underlying fluid (Aksamit et al. 2024). By leveraging the
rotational relationship between floes and underlying eddies, the LAVD has the potential to
be applied to the trajectories and rotation rates of ice floes for eddy detection purposes.

We selected four varying-size representative eddy cases to examine the kinematic
link between drifting ice floes and the underlying flow field (figure 7c– f ). To this end,
we randomly released over 2,000 ice floes near each eddy, identifying floes trapped
within vortex cores (Appendix A). Ice floes released near the eddy boundary exhibited
nearly closed-loop trajectories resembling the shapes of the eddies (figure 7c– f ). Hence,
the trajectories of individual trapped ice floes provide a direct estimate of local eddy
length scales, whereby the size of the largest enclosed region by ice floe trajectories,
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Figure 8. Rotational motion of trapped ice floes in local QG eddies. (a–d) The PDFs of ice floe rotation rates,
Ω f , normalised by the averaged ocean vorticity over the floe area, ωo, for different ratios between floe size
and trajectory-derived length scale, R f /Rtraj , in local eddies marked as A to D with white dashed boxes
in a QG flow field, respectively. The simulation results are compared with analytical solutions using square-
shape approximation (dashed line), Taylor series expansion (dashed-dotted line) and the passive tracer case
(solid line).

Rtraj =√
Atraj/π , was chosen as a trajectory-derived length scale for each local eddy.

Here, Atraj is the area of the largest enclosed region by ice floe trajectories. This length
scale closely matches the eddy size in the TG vortex.

In QG eddies, ice floes simultaneously covering both the inside and outside regions of
an eddy often become entrapped by the eddy, resulting in minor discrepancies between
eddy size and trajectory-derived length scales. These differences arise due to variations
in vorticity and velocity distributions among different QG eddies, leading to diverse
trajectory shapes and trajectory-derived length scales. In the selected QG eddies, R f /Rtraj
range from 0.05 to 1.25. Beyond these ranges, ice floes generally remain translating near
the eddies or drift away from them over the simulation period.

We investigated the rotational relationship between trapped ice floes and the underlying
local eddies for the four eddies marked in figure 7. Despite variations in eddy size and
shape, the normalised rotation rates of ice floes showed similar qualitative and quantitative
trends to those in the idealised vortex cases (figure 8). Notably, the PDFs of ice floe rotation
rates, normalised by the ocean vorticity averaged over the floe area, peak at unity when
R f /Rtraj � 0.5 for all four cases (figure 8). Note that the distributions of the normalised
floe rotation rates in the QG eddy cases are more dispersed than in the TG vortex cases.
We attribute this discrepancy to the highly nonlinear, deformed eddies dominant in the
QG flow field. The PDF peaks become more pronounced in the QG cases as the floe size
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Figure 9. Rotational motion of trapped ice floes in local QG eddies. (a–d) The PDFs of ice floe rotation rates,
Ω f , normalised by the ocean vorticity at the floe centre of mass, ωo,C , for different ratios between floe size and
trajectory-derived length scale in local eddies marked as A to D with white dashed boxes in a QG flow field,
respectively. The simulation results are compared with analytical solutions using square-shape approximation
(dashed line), Taylor series expansion (dashed-dotted line) and the passive tracer case (solid line).

approaches half of the trajectory-derived length scale (R f /Rtraj = 0.5). The peaks shift
toward 1.5 as R f /Rtraj hits 1.25. Analytical relations derived for the TG vortex effectively
characterise this behaviour. The relation from the Taylor series expansion (3.6) aligns with
PDF peaks for smaller R f /Rtraj , while the relation from the square-shape approximation
(3.4) agrees well with the peaks across most size ratios.

The PDFs of ice floe rotation rates normalised by the ocean vorticity at the floe centre
of mass exhibit similar qualitative behaviours compared with the idealised vortex case
(figure 9). As R f /Rtraj increases to 1.25, the PDF peaks decrease to 0.25, consistent
with the TG vortex cases (figure 4b). However, analytical relations (3.5) and (3.7), derived
for the TG vortex, exhibit discrepancies with the PDF peaks due to differences in the
eddy structures of the flow fields. Vorticities near the centre of QG eddies exhibit smaller
spatial gradients compared with the TG vortex, leading to smaller normalised rotation rates
in the QG eddy cases. In addition, the centre-of-mass ocean vorticity changes abruptly
across regions, contrasting with the averaged ocean vorticity, such that the rotation rates
normalised by the centre-of-mass ocean vorticity show more discrepancies with the TG
vortex cases and analytical relations derived for them.

The ocean vorticity estimate of the region enclosed by ice floe trajectories in QG eddies
exhibits similar trends to the estimate in the TG vortex (figure 10). The PDFs of the ratio
between the ocean vorticity estimate and true ocean vorticity reach their peaks at unity.
However, these peaks decrease to 0.25 for larger R f /Rtraj , reaching up to 1.25. This trend
is likely due to a greater discrepancy between the averaged ice floe velocity and the ocean
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Figure 10. Averaged ocean vorticity estimate using ice floe trajectories in local QG eddies. (a–d) The PDFs
of ratios between averaged ocean vorticity of the floe trajectory-enclosed region, ω̃ f , and true averaged ocean
vorticity of the same region, ω̃o, for different ratios between floe size and trajectory-derived length scale in local
eddies marked as A to D with white dashed boxes in a QG flow field, respectively. The simulation results are
compared with analytical solutions using square-shape approximation (dashed line), Taylor series expansion
(dashed-dotted line) and the passive tracer case (solid line).

velocity at the floe centre of mass in QG eddies. Overall, analytical relation (3.17) captures
the qualitative behaviour of the PDF peaks, albeit with minor quantitative discrepancies
observed for certain R f /Rtraj .

The observed ice floe motions and their analytical relations to the ocean, derived from
the idealised eddies, offer insights into the rotational relationship between ice floes and
local eddies in the QG flow field. These findings demonstrate the potential applicability
of these derived relations to analyse ocean eddies and estimate their vorticity using ice
floes. The complexity in the QG case stems from how each eddy exhibits a unique
structure, velocity and vorticity distribution, as illustrated in figure 7. These fundamental
differences between the TG vortex and QG eddies limit the direct application of these
relationships to QG fields. Nonetheless, further investigation, including analysing the
effects of deformed eddy configurations and different vortex types, holds promise for
developing a comprehensive framework to characterise the ocean eddy field from ice floe
satellite remote sensing observations.

4. Discussion and further analyses
Following the analysis with idealised free-drifting ice floes, we investigated additional
relevant factors influencing the link between ice floe rotation and the vorticity of
underlying ocean eddies. Specifically, we discuss the effects of ice floe thickness,
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atmospheric winds and floe–floe collisions, corresponding to specific sea ice
concentrations, on the rotational relationship between ice floes and the TG vortex.

4.1. Effects of ice floe thickness on ice floe kinematics
The motion of ice floes is affected by their inertia, which is closely linked to their
thickness. Thicker ice floes inherently possess greater inertia than thinner floes, leading
to increased discrepancies between ice floe motions and the underlying ocean kinematics.
Observations of ice floe thickness in the BG MIZ are limited (Haas & Druckenmiller
2009), but estimates typically fall within the order of O(0.1) m during the spring-to-
summer season (Manucharyan et al. 2022), especially for young and first-year ice, as
estimated based on upward-looking sonars (Krishfield et al. 2014). To assess the influence
of thickness on our results, we performed additional simulations considering floes with ice
floe thicknesses ranging from 0.1 to 1 m, corresponding to H∗

f,o = 1.0 × 10−3–1.0 × 10−2,
for three different floe–eddy size ratios. We examined the PDFs of normalised ice floe
rotation rates and the trajectory-derived ocean vorticity estimates.

The sensitivity of the rotational relationship to ice floe thickness depends on the floe–
eddy size ratio, with smaller ice floes being the most responsive to changes in ice
floe thickness (figure 11). For R f /Re = 0.1, the PDFs of the normalised rotation rate
consistently peak at unity (figures 11a and 11b). However, as ice floes become thicker, their
inertia increases, leading to greater deviations in their rotation from the ocean rotation. As
a result, the peaks gradually diminish, and the distributions become more dispersed. In
addition, thicker ice floes tend to follow a more pronounced spiral trajectory, resulting in
skewed distributions toward larger normalised rotation rates. Similarly, the PDFs of the
ratio between averaged ocean vorticity estimates of the trajectory-enclosed region and true
averaged ocean vorticity peak at unity (figure 11c). However, for thicker ice floes, the peaks
gradually decrease, and the distributions become more dispersed and skewed toward lower
ratios.

As the floe–eddy size ratio increases, the effect of ice floe thickness on the rotational
relationship becomes relatively minor (figure 11d–i). Specifically, at R f /Re = 0.5, thicker
ice floes exhibit more dispersed distributions for the rotation rate normalised by the
averaged ocean vorticity, skewed toward larger values (figure 11d). In contrast, these floes
show negligible changes in the rotation rate normalised by the centre-of-mass vorticity
and in the averaged ocean vorticity estimates normalised by the true ocean vorticity
(figures 11e and 11 f ). At R f /Re = 1.0, the PDFs become more dispersed compared with
floes with R f /Re = 0.5 (figure 11g–i), as discussed in § 3. However, thicker ice floes
exhibit nearly identical distributions to thinner ice floes, indicating negligible effects of ice
floe thickness. Overall, thicker ice floes tend to follow more pronounced spiral trajectories
due to their increased inertia. Nevertheless, these larger floes are less sensitive to changes
in ocean information over the floe area, as this information is filtered out, resulting in
minor changes in the rotational relationship between ice floes and the underlying ocean.

4.2. Effects of atmospheric winds on ice floe kinematics
While our analysis primarily focused on sea ice–ocean interactions, surface wind drag
also influences ice floe motions in practical scenarios. Strong winds predominantly exert
force on ice floes, potentially weakening the kinematic relationship to ocean vorticity and
increasing uncertainty when inferring this information. Here, we investigate the effect of
atmospheric winds on the rotational relationship between ice floes and the underlying
ocean eddies by incorporating the surface wind drag term in (2.9) and (2.10) into our
analysis.
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Figure 11. Motion of trapped ice floes with different thicknesses in a TG vortex. The PDFs of ice floe rotation
rate, Ω f , normalised by the (a, d, g) averaged ocean vorticity over the floe area, ωo, and the (b, e, h) ocean
vorticity at the floe centre of mass, ωo,C . and of (g, h, i) ratio between estimated ocean vorticity averaged over
the trajectory-enclosed region, ω̃ f , and true ocean vorticity of the same region, ω̃o, for different floe–eddy size
ratios, R f /Re = (a, b, c) 0.1, (d, e, f ) 0.5 and (g, h, i) 1.0.

In general, atmospheric winds have larger length scales compared with upper-ocean
eddies, potentially causing ice floes to trace straight trajectories rather than curved ones
(Lopez-Acosta 2021; Manucharyan et al. 2022). Thus, we considered unidirectional
atmospheric winds with consistent positive speeds across the entire domain in both
the zonal and meridional directions. These winds do not directly affect the rotation of
ice floes under homogeneous conditions (i.e. uniform surface roughness and thickness
within floes). However, unidirectional winds influence the translational motion of the ice
floes, leading to increased discrepancies between their rotations and the rotations of the
underlying ocean.

We investigated the motion of ice floes under weak and strong wind conditions. In low
winds, ice floes tend to remain within the vortex cell. In these cases, surface wind stress
to surface ocean stress ratios, τa,re f /τo,re f , range from 0 to 0.1, and wind velocities have
magnitudes from 0 to 2.5 m s–1. Here, the stress ratio is calculated relative to zero ice floe
speed. As wind speeds increase, the influence of wind forcing on ice floe motion becomes
more significant, leading to ice floes escaping the vortex cell and a notable decrease in the
number of trapped ice floes, especially the large floes. In high winds, stress ratios range
from 0.2 to 2.0, and wind speeds vary from 2.5 to 10.6 m s–1, corresponding to observed
wind speeds in the MIZ (Kozlov & Atadzhanova 2022).
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Figure 12. Motion of trapped ice floes in a TG vortex with low winds. The PDFs of ice floe rotation rate, Ω f ,
normalised by the (a) averaged ocean vorticity over the floe area, ωo, and the (b) ocean vorticity at the floe
centre of mass, ωo,C , and (c) of the ratio between averaged ocean vorticity estimate of the trajectory-enclosed
region, ω̃ f , and true averaged ocean vorticity of the same region, ω̃o, for different floe–eddy size ratios. The
wind stress to ocean stress ratio is τa,re f /τo,re f = 0.1. The simulation results are compared with analytical
solutions using square-shape approximation (dashed line) and Taylor series expansion (dashed-dotted line),
and the passive tracer case (solid line).

In low wind scenarios (τa,re f /τo,re f = 0.1), the PDFs of the normalised rotation rates
and the ratios between averaged ocean vorticity estimates and true ocean vorticities exhibit
similar peaks and distributions (figure 12) compared with those under zero wind conditions
(figures 4 and 6). For normalised rotation rates, distributions become more dispersed for
most floe–eddy size ratios, with peaks slightly shifting toward higher values due to wind
forcing deforming ice floe trajectories toward cell boundaries. In addition, the analytical
relations (3.4)–(3.7) and (3.17) align well with PDF peaks, demonstrating the potential
applicability of these derived relations under low wind conditions.

In high winds, the effects of surface wind drag on the rotational relationship vary
depending on the floe–eddy size ratios (figure 13). Note that all ice floes are considered
in the analyses. For R f /Re = 0.1, the effects of wind forcing on the rotation rate
normalised by the averaged ocean vorticity are negligible (figure 13a). However, wind
forcing marginally decreases the peaks of the PDFs and results in slightly more dispersed
distributions (figure 13b). As the floe–eddy size ratios increases, the effects of wind forcing
become more pronounced, resulting in skewed distributions. For R f /Re = 0.5 and 1.0, the
PDF peaks of rotation rates normalised by the averaged ocean vorticity shift toward greater
values (figures 13c and 13e), whereas the peaks of rotation rates normalised by the centre-
of-mass ocean vorticity shift toward lower values (figures 13d and 13f ). The peak values
in both cases decrease, and the distributions become more dispersed as the stress ratio
increases from 0.1 to 0.5. Beyond this range, the PDFs begin to converge, showing minor
differences in the distribution. The peaks slightly decrease, and the distributions become
more dispersed at larger stress ratios.

Overall, the wind breaks off the influence of ocean eddies on ice floe rotation, with the
effect being most pronounced under strong wind conditions. In such cases, ice floes tend
to move around and along the boundaries of the vortex cell, where ocean and wind stresses
are comparable, resulting in skewed distributions of normalised rotation rates. At the same
stress ratios, larger floes show significant changes in the peaks and distributions of their
rotation rates due to their greater coverage of the flow field.

4.3. Effects of floe–floe collisions on ice floe kinematics
Ice floes with no collisions are typically found in regions with low sea ice concentrations.
In contrast, in areas of higher sea ice concentrations, floe–floe collisions become more
common due to the densely packed distribution of ice floes (Leppäranta 2011) affecting
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Figure 13. Motion of trapped ice floes in a TG vortex with high winds. The PDFs of ice floe rotation rate,Ω f ,
normalised by the (a, c, e) averaged ocean vorticity over the floe area, ωo, and the (b, d, f ) ocean vorticity at
the floe centre of mass, ωo,C , for different wind stress to ocean stress ratios, τa,re f /τo,re f = 0.1 (black circle),
0.5 (blue up-pointing triangle), 1.0 (red down-pointing triangle), and 2.0 (green square). The floe–eddy size
ratios are R f /Re = (a, b) 0.1, (c, d) 0.5, (e, f ) 1.0. The simulation results are compared with the passive tracer
case (solid line).

floe rotations (Brenner et al. 2023). These collisions exert contact forces that weaken
the connection between ice floes and the underlying ocean, introducing noise into the
estimation of ocean information through ice floe motions. In this section, we explored
the effects of floe–floe collisions on the rotational relationship between ice floes and the
underlying ocean to assess the feasibility of using ice floes with collisions for inferring
ocean kinematics.
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Figure 14. Motion of ice floes with collisions in a TG vortex. The PDFs of ice floe rotation rate,Ω f , normalised
by the (a) averaged ocean vorticity over the floe area, ωo, and the (b) ocean vorticity at the floe centre of
mass, ωo,C , for different sea ice concentrations, α = 0.30 (blue up-pointing triangle), 0.40 (red down-pointing
triangle) and 0.50 (green square). The floe–eddy size ratio is R f /Re = 0.5. The results are compared with the
freely drifting floes (black circles) and the passive tracer case (solid lines).

Simulations were conducted with 2,000 randomly released ice floes, and rotation rate
measurements began once the overlapping areas between ice floes were reduced to less
than 10 % of their total area. Sea ice concentration was calculated as the total ice floe
area divided by the size of the smallest rectangular domain confining all ice floes over the
simulation time. Since the domain size is determined by the instantaneous positions of the
ice floes, sea ice concentration can vary slightly over time. Thus, the time-averaged sea ice
concentration was used to represent each simulation. In (2.7) and (2.8), the contact forces,
F j,k , and the corresponding torques, r′

j,k × F j,k , were incorporated into the simulations.
The simulation parameters are consistent with those described for ice floes in the BG MIZ,
as detailed in Manucharyan et al. (2022) and summarised in table 1. For the ice floe set-up,
the total of 2,000 ice floes was divided into smaller subsets to ensure that the number of
collisions remained within specified ranges of interest while maintaining the desired sea
ice concentration. Similar to the strong wind cases (§ 4.2), the simulated ice floes exhibited
significant deviations from the closed-loop patterns observed in the idealised cases due to
collisions and thus all results were indiscriminately considered.

We examined the PDFs of normalised ice floe rotation rates for different sea ice
concentrations, α, and compared them with floes with no collisions (figure 14). As a
representative case, we selected floes with R f /Re = 0.5, showing a clear peak in the
PDFs. Sea ice concentrations ranging from α= 0.3 to 0.5 were considered, reflecting
typical moderate values in the MIZ, where concentrations range from α = 0.15 to 0.80.
Overall, the PDF peaks occur at the same rotation rates for different concentrations, but
higher concentrations lead to more dispersed distributions. For rotation rates normalised
by the averaged ocean vorticity, the PDF peak decreases from 0.89 (no collision
case) to 0.22 (α= 0.5) (figure 14a). Similarly, for rotation rates normalised by the
centre-of-mass vorticity, the PDF peak decreases from 0.49 (no collision case) to 0.19
(α = 0.5) (figure 14b). These changes are caused by increasing collision counts at higher
concentrations, which reduce the influence of ocean vorticity on ice floe rotation. The
average collision count increases from zero (no-collision case) to 160 (α= 0.5). Despite
these changes, the distributions retain their shapes across different concentrations, as
collisions show no directional bias in altering floe rotation.

While sea ice concentration represents the overall fraction of ice floes in the domain,
collision count reflects the extent of contact forces and corresponding torques affecting ice
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Figure 15. Motion of ice floes with collisions in a TG vortex. The PDFs of ice floe rotation rate, Ω f ,
normalised by the (a) averaged ocean vorticity over the floe area, ωo, and the (b) ocean vorticity at the floe
centre of mass, ωo,C for different collision count ranges, ncol = 70 ± 10 (black circle), 90 ± 10 (blue up-
pointing triangle) and 110 ± 10 (red down-pointing triangle). The floe–eddy size ratio is R f /Re = 0.5. The
results are compared with the passive tracer case (solid lines).

floe motions. We compared the PDFs of normalised rotation rates for cases with different
collision counts, ncol = 70 ± 10, 90 ± 10, 110 ± 10, at R f /Re = 0.5 to assess the influence
of floe–floe collisions (figure 15). Within each simulation run, the collision counts vary
over time and only the time ranges corresponding to the selected collision counts were
considered for the analysis. The PDFs consistently peak at the same rotation rates for
different collision counts but become increasingly dispersed as collision counts rise. This
behaviour aligns with the trends observed for different sea ice concentrations, in which
higher concentrations generally coincide with more frequent collisions, assuming constant
floe sizes.

Lastly, we explored the impacts of floe–eddy size ratios for the same collision count
ranges. While sea ice concentration can be maintained through various combinations of
floe sizes and the number of floes, it represents only the combined effects of these factors
and is insufficient as a standalone control parameter. Instead, we used collision count as
a control parameter to assess the influence of floe–eddy size ratios on ice floe rotation
rates. The PDFs of normalised rotation rates for different floe–eddy size ratios were
compared in the collision count range ncol = 70 ± 10 (figure 16). Overall, the distributions
exhibit qualitatively similar trends to the free-drifting cases (figure 4). The PDFs of floe
rotation rates normalised by the averaged ocean vorticity exhibit distinct peak values and
distributions for different floe–eddy size ratios (figure 16a). At R f /Re = 0.1, the PDF
peaks at unity but has a more dispersed distribution compared with R f /Re = 0.5, where
the PDF also peaks at unity. As R f /Re increases to 1.0, the PDF peak shifts to 1.1. The
PDFs of floe rotation rates normalised by the centre-of-mass ocean vorticity peak at lower
rotation rates and show greater skewness for larger R f /Re (figure 16b).

5. Conclusion
We quantified the kinematic relationship between ocean eddies with surface expression
and floes trapped within their cores and derived analytical relations linking their rotations
and velocities, with floe–eddy size ratios as a key parameter in the analysis. Our results
show that ice floes can act as vorticity meters of the ocean even though the combined
effects of floe inertia and the filtering effect of ocean information over the floe area
produce differences between direct measurements of ocean velocities and rotations and
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Figure 16. Motion of ice floes with collisions in a TG vortex. The PDFs of ice floe rotation rate,Ω f , normalised
by the (a) averaged ocean vorticity over the floe area, ωo, and the (b) ocean vorticity at the floe centre of mass,
ωo,C for different floe–eddy size ratios, R f /Re = 0.1 (black circle), 0.5 (blue up-pointing triangle) and 1.0 (red
down-pointing triangle). The collision count range is ncol = 70 ± 10. The results are compared with the passive
tracer case (solid lines).

estimates derived from ice floe observations. These findings and the derived analytical
relations demonstrate the direct applicability of our methodology for inferring ocean eddy
characteristics from ice floe remote sensing measurements.

We began our analysis with a TG vortex, employing two distinct vorticity metrics:
averaged ocean vorticity over the floe area and ocean vorticity at the floe centre of
mass. Our analysis revealed that in idealized vortices ice floes typically follow closed-
loop trajectories, driven by the interplay of sea ice–ocean drag and a resultant force
comprising the pressure gradient force due to sea surface tilt and the Coriolis force. Along
these trajectories, the rotation rates and velocities of ice floes show oscillatory behaviour,
undergoing alternating periods of acceleration and deceleration relative to the equilibrium
values of force and torque. The floe rotation rate normalised by the area-averaged ocean
vorticity underneath it increases with increasing floe–eddy size ratio for both centred and
off-centred ice floes. This trend arises from the gradual decrease in local ocean vorticity
from the centre of the TG vortex toward its boundaries. Ice floes behave as passive tracers
when floe size is smaller than about 70 % of the eddy scale; however, as the floe–eddy size
ratio increases to 1.4, the PDF peaks of rotation rates normalised by the averaged ocean
vorticity shift toward higher values, reaching approximately 1.8. When floe size is about
half the eddy scale, the distribution narrows and exhibits higher peaks, indicating that a
solid body rotation approximation effectively describes ice floe motion within this range.
Conversely, the rotation rate normalised by the centre-of-mass ocean vorticity decreases
for large floe–eddy size ratios. The velocities of ice floes were also used to estimate the
averaged ocean vorticity within regions enclosed by their trajectories. These estimates
were smaller than the true ocean vorticity of the same region; their ratios can be described
by the relationship between ice floe and ocean velocities.

To further understand this dynamics, we derived analytical relations for ice floe rotation
rates and velocities using the Taylor series expansion and the square-shape approximation.
While the Taylor series expansion agrees well with the PDF peaks for small floe–eddy
size ratios (R f /Re � 0.5), the square-shape approximation aligns closely with the PDF
peaks across a broader range of size ratios. Analytical relations for the ratio between
the averaged ocean vorticity estimate and true ocean vorticity also show good agreement
with the PDF peaks. These relations were applied to a more realistic ocean eddy field
obtained from a two-layer QG model. The trends observed in the TG vortex are also
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evident in the QG flow field when floe size is normalised by the trajectory-derived length
scale. As the normalised floe size increases, the rotation rates normalised by the averaged
ocean vorticity increase, while those normalised by the centre-of-mass ocean vorticity
decrease. The derived relations closely match the PDF peaks for normalised rotation rates,
demonstrating their potential applicability in inferring ocean kinematics through ice floe
motions.

We closed our study by exploring other factors influencing the rotational relationship
between ice floes and the underlying ocean, such as ice floe thickness, atmospheric winds
and floe–floe collisions. For ice floe thicknesses ranging from 0.1 to 1 m, we found that
thicker floes exhibit reduced PDF peaks and more dispersed distributions due to increased
floe inertia. Interestingly, the impact of varying floe thickness lessens with increasing floe–
eddy size ratios and becomes negligible at R f /Re = 0.5. We also examined atmospheric
wind forcing under low and high wind conditions. Under low wind conditions, wind–sea
ice stresses have a minor effect on the normalised rotation rates, causing their PDF
peaks to shift slightly to higher values. In high wind conditions, the PDFs of normalised
rotation rates are skewed as stress ratios increase. The PDFs converge under larger stress
ratios for increasing floe–eddy size ratios (R f /Re =0.1–1.0). Finally, we investigated the
impact of floe–floe collisions, which weaken the rotational link between ice floes and the
underlying ocean. For R f /Re = 0.5, higher sea ice concentrations and larger collision
counts lead to reduced PDF peaks and more dispersed distributions. When considering a
fixed collision count (ncol = 70 ± 10), the PDFs for different floe–eddy size ratios exhibit
trends consistent with those observed in free-drifting cases.

5.1. Directions for future research
Our idealised simulations effectively capture the key rotational relationship between ice
floes and the underlying ocean eddies in low-wind conditions and without significant
floe interactions. However, incorporating additional ocean and ice floe observations may
enhance the estimation accuracy of our framework for practical applications in ocean
characterisation from ice floe remote sensing measurements.

The derived relations in the present study are applicable to both mesoscale and
submesoscale motions in the ocean surface layer. These relations are particularly well
suited for analysing eddies in the mesoscale regime (Ro 	 1), where flows are
predominantly horizontal and close to geostrophic balance (Taylor & Thompson 2023),
resulting in rotation-dominant behaviours. In the submesoscale regime (Ro ∼ 1), vertical
motions and ageostrophic effects, such as convergence and divergence of flows, may
introduce additional uncertainties into estimating ocean vorticity based on ice floe rotation
rates. However, submesoscale motions still exhibit surface expressions at length scales
comparable to the Rossby radius (5–15 km), similar to the smaller end of observed
ice floe sizes (4–70 km) in Lagrangian ice floe datasets (Lopez-Acosta et al. 2019;
Manucharyan et al. 2022), for which our framework is designed. At these scales, rotational
flows remain more dominant than converging or diverging flows, preserving their two-
dimensional characteristics. Nonetheless, a comprehensive assessment of the applicability
of the derived relations to submesoscale motions is needed to improve accuracy in this
regime.

In the Arctic ocean, inertial oscillations and internal tidal motions, occurring roughly
twice a day (Gimbert et al. 2012; Watkins et al. 2023; Yuan et al. 2023), may influence
the motion of small-scale ice floes on sub-daily time scales. However, their effects on floe
rotation at the length and time scales applicable to satellite observations are likely to be
negligible. Our framework is designed for datasets with daily resolution, capturing floes
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with a size down to approximately 5 km. At these temporal and spatial scales, inertial
and tidal oscillation effects would result from averaging oscillations over a few cycles
with random phases for each floe observation and hence be expected to manifest as noise.
Moreover, these oscillations primarily affect the trajectories of ice floes rather than their
rotation rates about the centre of mass, with minimal impact on the rotational relationship
between ice floes and the underlying ocean. As part of future work, the effects of inertial
and internal tidal oscillations will be further investigated using high-resolution ocean–
sea ice models or in situ buoy measurements, which provide higher temporal and spatial
resolutions.

In addition to ocean characteristics, ice floes indeed show variability in their physical
properties, such as non-circular shapes (e.g. polygons) and rheology. During late spring
to summer, large ice packs crack and fracture along preferential directions, generating
diverse floe sizes and shapes, which in turn influence ice floe rotation rates. Ice floes with
anisotropic shapes would exhibit distinct rotational behaviours, which can be expected
from the motion of small, micro-scale particles in turbulent flows (Parsa et al. 2012; Voth &
Soldati 2017). These particles undergo rapid orientation changes due to intermittently large
velocity gradients and tend to align with these gradients in the flow. A similar preferential
alignment is expected for ice floes, which may orient along large velocity gradients in
the flow, thereby influencing their rotation rates. Further investigation is needed to fully
understand this effect.

The rheological properties of ice floes can influence their rotational motion. Collisions
between ice floes, as well as the convergence and divergence of underlying oceanic flows,
can induce internal stress within floes, leading to deformation (Gimbert et al. 2012; Yuan
et al. 2023). This deformation can create inhomogeneities in ice floe thickness and surface
topography (Feltham 2008), complicating the rotational relationship between ice floes
and the ocean. Such effects may broaden the PDFs of the rotational relationship in our
framework, increasing uncertainties in estimating ocean vorticity from ice floe rotation
rates. However, in regions with low sea ice concentrations, where floe–floe collision rates
are relatively low, treating ice floes as solid objects effectively captures the key features of
the relationship. In addition, even in areas with high sea ice concentrations, our framework
remains applicable to free-drifting ice floes – experiencing nearly zero internal stresses
due to their consistent and unidirectional motion – for characterising large-scale ocean
currents, as well as local eddies.

While the present study focuses on the dynamical behaviour of sea ice driven by
ice–ocean drag, the thermodynamics of sea ice can influence the ice–ocean boundary
layer, primarily through melting. Melting ice floes typically lower the surface temperature
beneath them. During summer, substantial melting deposits freshwater to the ocean
surface layer, creating sharp surface buoyancy gradients that drive mixed-layer instabilities
(Shrestha & Manucharyan 2022; Gupta & Thompson 2022). These instabilities, in turn,
generate submesoscale eddies and filaments near floe boundaries, which propagate from
the ice edge toward floe centres. Such eddies can also transport ice floes into the open
ocean, enhancing melting. In addition, induced vertical heat transport due to submesoscale
motions may further increase ice floe melt rates (Horvat, Tziperman & Campin 2016;
Gupta & Thompson 2022; Manucharyan & Thompson 2022). However, the effects of sea
ice melting on the ice–ocean boundary layer become significant about a month after the
onset of melting and have a reduced influence at low sea ice concentrations (Gupta &
Thompson 2022); the conditions under which our framework is designed to operate.
Furthermore, our framework focuses on ice floes during the spring-to-summer transition,
whereas melting is generally more pronounced later in the summer.
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Our findings and analytical relations provide a new framework for estimating local
ocean vorticity with associated uncertainties. By incorporating Lagrangian observations
of ice floe trajectories, rotation rates, velocities and shapes, the analytical relations can
provide locally averaged ocean vorticities and velocities. Furthermore, PDFs of ice floe
rotation rates enable the assessment of uncertainties in estimated ocean information.
Beyond kinematic analyses, ice floe rotation rates, which contain local, spatial ocean
information, have the potential to provide insights into ocean kinetic energy and enstrophy
spectra, thereby aiding in the characterisation of energy cascades in mesoscale and
submesoscale ranges. While the derived relations effectively describe the ice floe–ocean
relationship, practical applications require further consideration of factors, including
ocean characteristics (e.g. strong currents, eddy shapes, inertial and internal tidal
oscillations and mesoscale and submesoscale motions) and ice floe characteristics (e.g.
shapes, thickness, surface topography, rheology, deformation and thermodynamics).
Nonetheless, this study lays a foundation for a robust framework to characterise eddies
from satellite remote sensing observations of sea ice motion, which can easily be extended
beyond the BG to include MIZ eddies in the Arctic and Antarctic Oceans.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10213.
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Appendix A. Identification of ice floes trapped by an ocean eddy
We leverage ice floe trajectories resembling closed loops to identify floes trapped in an
eddy core, in agreement with conventional eddy detection algorithms (Chelton et al. 2011;
Mason et al. 2014). Several physical criteria were established for selecting closed-loop
trajectories based on previous work using processed satellite remote sensing observations
via the ice floe tracker algorithm (Lopez-Acosta et al. 2019; Lopez-Acosta 2021). First, the
curvatures of all daily segments along the trajectory must be of the same sign, indicating
that an ice floe has been rotating clockwise or counterclockwise. Then, considering a
nominal eddy size of 20 km, trajectory curvatures are evaluated as they should surpass
a predefined threshold typically set at 0.05 (km−1). A third condition is set by the ratio
of the arc length along the trajectory to the distance between the initial and final points.
This value must exceed a specific threshold, typically set at 3, based on the geometry
of a half-closed circular loop. Finally, only trajectories with lifetimes greater than four
simulation days are considered to ensure adequate data points. Only trajectories meeting
all four criteria are classified as closed-loop trajectories.

Appendix B. Effects of ice–ocean stress parametrisation on the relationship between
ocean vorticity and the rotation rate of ice floes
The idealised Rankin (RK) vortex was used to examine the effect of ice–ocean stress on
the rotational relationship between ice floes and the underlying ocean. In the RK vortex,
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Figure 17. Motions of ice floes in a RK vortex field. (a) An ice floe (white circle) positioned at the centre of
the vortex core (yellow region), with a floe–eddy size ratio of R f /Re = 0.5. The colours and arrows in the
figure correspond to the magnitude of the vorticity normalised by the Coriolis parameter and the magnitude
and direction of the velocity at a given location, respectively. (b) Rotation rates of the ice floe normalised by
the averaged ocean vorticity over the floe area for different floe–eddy size ratios. The simulation results are
compared with the analytical relations derived using the linear (dashed line) and quadratic (dashed-dotted line)
drag laws, as well as with the passive tracer case (solid line).

vorticity remains constant within the core region (r � Re) and is zero in the outer region.
The velocity field is defined as uθ =Ω f r for r � Re and uθ =Ω f (R2

e/r) for r > Re,
where uθ is the azimuthal velocity. By representing the sea ice-ocean drag term using
a linear drag law in (2.8) and (2.10), we can derive the relation for ice floe rotation as
follows:

Ω f = ωo

2
for R f � Re, Ω f = ωo

2

[
2 −

(
Re

R f

)2
]

for R f > Re, (B1)

where ωo is the spatially averaged ocean vorticity over the floe area. For R f � Re, ωo =
2Ω f , whereas for R f > Re, ωo = 2Ω f (Re/R f )

2. These relations suggest that when R f �
Re, the rotation of the ice floe mirrors the average rotation of the underlying eddies, akin
to the passive tracer case. However, when R f > Re, the rotation rate increases and tends
to converge toward twice the averaged ocean rotation as R f approaches infinity. With the
quadratic drag law (2.6), the rotation rate of ice floes remains unchanged compared with
the linear parameterisation, provided that R f � Re. For R f > Re, the rotation rate of ice
floes can be determined by solving the following algebraic equation:
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= 0, (B2)

where Ω f =ωo/2 for R f = Re. The quadratic drag parameterisation exhibits a closer fit
to the simulation results compared with a linear drag (figure 17). However, the analytical
relations demonstrate minimal dependence on drag parametrisations, as evidenced by the
marginal error in the linear drag case.
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