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Abstract We characterize those commuting pairs of operators on Hilbert space that have the sym-
metrized bidisc as a spectral set in terms of the positivity of a hermitian operator pencil (without any
assumption about the joint spectrum of the pair). Further equivalent conditions are that the pair has
a normal dilation to the distinguished boundary of the symmetrized bidisc, and that the pair has the
symmetrized bidisc as a complete spectral set. A consequence is that every contractive representation
of the operator algebra A(P) of continuous functions on the symmetrized bidisc analytic in the interior
is completely contractive. The proofs depend on a polynomial identity that is derived with the aid of a
realization formula for doubly symmetric hereditary polynomials, which are positive on commuting pairs
of contractions.
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1. Introduction

The symmetrized bidisc is the set

F = {(Ai + A2) AiA2) : |Ai| < 1, |A2| ^ 1} C C2.

There are good reasons to study functions on F. From a pure mathematical viewpoint,
functions on F are the same thing as symmetric functions on the bidisc; moreover, F
has the virtue that it is possible to obtain explicit results despite the fact that F is
neither convex nor smooth nor homogeneous, and hence lies outside the scope of many of
the main positive results in the theory of several complex variables. There is also a more
concrete incentive to study F, relating to possible applications in control engineering, and
it is this that lies behind the operator-theoretic question we address in this paper. The
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problem of the robust stabilization of imperfectly known physical devices in H°° control
theory [7,9] gives rise to a range of interpolation problems for analytic functions. One of
these, the problem of /j-synthesis [6], is much studied but evidently intractable. A special
case of this problem led us to questions about interpolation by analytic functions from
the disc into F. A promising approach is to develop the operator theory associated with
F; this idea led us to the discovery of a significant new type of necessary condition for
spectral interpolation [5, Theorem 5.3]. This condition was a corollary of the main result
of [5], restated as Theorem 1.1 below, which can be thought of as a commutant lifting
theorem for F, or, alternatively, as a characterization of pairs of commuting operators on
Hilbert space which have F as a complete spectral set. Just as results about functions on
the disc can be obtained from an understanding of contractions, isometries and unitary
operators (see, for example, [8]), so the elaboration of analogues of these families of
operators associated with F provide us with an effective new technique. For example,
they permit the explicit calculation of the Caratheodory distance for F, as we intend to
show in a future paper. The /^-analogue of a contraction is a commuting pair of operators
having F as a spectral set. In [5] we began the development of the theory of such pairs;
here we carry it further. A central question is as follows.

Which commuting pairs of operators have F as a spectral set?

Here we strengthen the main result of [5] in three ways. Firstly, we remove entirely an
assumption about the joint spectrum of the pair of operators in question; since spectral
assumptions are hard to check, this is a significant improvement. Secondly, we show that
F is a spectral set for a particular commuting pair of operators if and only if it is a
complete spectral set. This is equivalent to saying that every contractive representation
of the analytic function algebra A(F) is also completely contractive. The third addition
to the theorem is an alternative characterization of pairs of commuting operators which
have f a s a complete spectral set, in terms of contractivity instead of positivity.

More specifically, let H be a complex Hilbert space and let C{H) denote the C*-algebra
of bounded linear transformations of H. For S, P 6 C{H), define p(S, P) € C{H) by the
formula

p{S, P) = 2(1 - P*P) -S + S*P-S* + P*S. (1.1)

For a compact set K in C2 and a commuting pair T = (Ti, T^) of operators in C(H), we
say (following von Neumann) that K is a spectral set for T if cr(T), the Taylor spectrum
of T, is a subset of K and

|/(z)|, (1.2)

for all functions / that are holomorphic on a neighbourhood of K. Following Arveson [4],
we say that K is a complete spectral set for T if a(T) C K and

(*)||, (1.3)
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for all matrix-valued functions / that are holomorphic on a neighbourhood of K.
In the special case when K is polynomially convex, the Oka-Weil Theorem (see [3] for

example) and the continuity of the Taylor functional calculus imply that K is a spectral
set for T if and only if (1.2) holds for all polynomials / . Thus, in the case of polynomially
convex K, the assumption in the definition of spectral set that cr(T) C K is unneces-
sary. Furthermore, K is a complete spectral set if and only if (1.3) holds for all matrix
polynomials. Thus, polynomially convex spectral sets and complete spectral sets can be
understood without reference to either the Taylor spectrum or the Taylor functional
calculus. It is easy to show that F is indeed polynomially convex [5, Lemma 2.1].

By the distinguished boundary of F we mean the set

bF d= A2, AXA2) :\X1\ = |A2| = 1}.

We now recall Theorem 1.2 from [5]. For S and P commuting operators, let apo\(S, P)
denote the spectrum of (S, P) in the norm closed algebra generated by the polynomials
in S and P.

Theorem 1.1. Let {S,P) be a pair of commuting operators on a Hilbert space H
such that CTpoi(5, P) C F. The following statements are equivalent.

(i) p(aS, a2P) ^ 0 for all a G D.

(ii) For every matrix polynomial f in two variables

(iii) There exist Hilbert spaces H_, H+ and a commuting pair of normal operators
(S, P) on K = H- © if © H+, such that a(S, P) is contained in the distinguished
boundary of F and S and P are expressible by operator matrices of the form

*
0
0

*
5
0

*
*
*

and P ~
*
0
0

*
P
0

*
*
*

(1.4)

with respect to the orthogonal decomposition K = H- ffi H © i/4

We shall strengthen Theorem 1.1 in three ways. First we shall remove the hypothesis
that crpOi (S, P) C F. Specifically, we shall prove the following proposition.

Proposition 1.2. Let (S,P) be a commuting pair of operators on a Hilbert space. If
p(aS, a2P) ^ 0 for all a G D, then apo\(S, P) C F.

The second way in which we will strengthen Theorem 1.1 will be to show that state-
ment (ii) (that F is a complete spectral set for (S, P)) is, in fact, equivalent to the a
priori weaker statement that F is a spectral set for (S,P). This will be accomplished by
proving the following proposition.
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Proposition 1.3. If F is a spectral set for a commuting pair of operators (S, P), then

p(aS, o?P) > 0, for all a € D.

A third enhancement of Theorem 1.1 is an alternative to (i) in which positivity of the
hermitian operator pencil p{aS, a2P) is replaced by the contractivity of a pencil of linear
fractional transforms of the pair (S, P). For any a G D, we introduce the linear fractional
mapping ipa, given by

z2 - OLZX + a2

The denominator does not vanish on F (if z = (Ai + A2, A1A2), then the denominator is
(1 — aAi)(l — 5A2), and, since a € ID, this is non-zero for A in the closed bidisc). Thus,
ipa maps a neighbourhood of F analytically into C; moreover, it has modulus one on
the distinguished boundary of F, that is, ipa is an inner function on F. The connection
between the tpa and p is given by the following proposition.

Proposition 1.4. Let (S, P) be a commuting pair of operators on a Hilbert space and
suppose that for every a € D, 1 — aS + o?P is invertible and ipa{S, P) is a contraction.
Then

p(aS, a2P) ^ 0, for all a € D.

Putting together Theorem 1.1 and Propositions 1.2,1.3 and 1.4, we obtain the following
result.

Theorem 1.5. Let {S,P) be a pair of commuting operators on a Hilbert space H.
The following conditions are equivalent.

(i) F is a spectral set for (S, P).

(ii) For every a € P, 1 — aS + a2P is invertible and tpa(S,P) is a contraction,

(iii) p(aS, a2P) > 0 for all a € D.

(iv) (5, P) has a dilation to the distinguished boundary of F (i.e. statement (iii) of
Theorem 1.1 holds).

(v) F is a complete spectral set for (S, P).

The proof of Theorem 1.5 consists of the following observations, (i) => (iii) is Proposi-
tion 1.3. (iii) =4- (iv) => (v) follow from Theorem 1.1 and Proposition 1.2. (v) => (i) is
tautological, and so (i), (iii), (iv) and (v) are all equivalent, (ii) => (iii) is Proposition 1.4.
It remains to prove (iii) => (ii). Suppose (iii). We shall need Lemma 3.4, proved below,
which tells us that for every a G D, 1 — aS + a2P is invertible and so ipa(S, P) is defined.
We already know that (iii) => (i), and so F is a spectral set for (S, P). Since, moreover,
\%pa\ < 1 on F, we have \\ipa(S,P)\\ < 1 for all a € ID. Hence (iii) => (ii).
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The nub of this result is the equivalence (iii) •$=> (v). At the end of this section we shall
briefly outline the proof (given in [5]) that the positivity condition (iii) implies (v), that
P is a complete spectral set for (5, P).

One part of Theorem 1.5 is worth singling out. If A is an operator algebra, then a
basic question that one can ask is the following (see, for example, [11] or [10, ch. 4]).

Is every contractive representation of A completely contractive?

A class of examples is furnished by the algebras A = A(K) for compact sets K C C".
Here, A(K) denotes, as usual, the uniformly closed subalgebra of C{K) comprising the
functions that are holomorphic on the interior of K. It is known, for example, that the
answer to the above question is yes when A = A(K) and K is the disc, the bidisc, or an
annulus, but no when if is a tridisc. Theorem 1.5 gives a qualitatively new example to
add to the pot.

Theorem 1.6. Every contractive representation of A(F) is completely contractive.

Here we are regarding A(F) as an algebra of operators on the Hardy space of the bidisc
H2(B2) in a natural way. We define n : B>2 -> F by

TI"(AI, A2) = (Ai + A2, AiA2),

so that h t-> hon is a bijection between analytic functions h on F and symmetric analytic
functions on the closed bidisc. Then h £ A(F) is identified with the operator Mho-n on
i/2(D2) of multiplication by h o TT. In this way, A(F) becomes a commuting algebra of
operators on the Hilbert space H2(O2), and so it makes sense to speak of completely
contractive maps on A(F).

Proof. Let r be a contractive representation of A(F) on a Hilbert space H. Let s,
p be the restrictions to F of the coordinate functions on C2, and let T(S) = S, r(p) =
P € £{H). Then SP = PS, and, for any polynomial function h € A(F), we have
r{h) = h(S,P). By the contractivity of r, F is a spectral set for (S,P). Hence, by
Theorem 1.5, F is a complete spectral set for (S,P). We claim that r is completely
contractive. Consider any matricial polynomial h = [hij] G Mn(C) <g> A(F). Regarded as
an operator on H2(B2)n, h is identified with the multiplication operator [MhijOw] = Mhon,
and so

On the other hand, the representation rn of Mn(C) <8> A(F) on Hn induced by T satisfies

Tn{h) = [T(/ly)l = [^ (5 , P)] = h(S, P),

and hence, since F is a complete spectral set for (S, P),

\\rn(h)\\ = \\h(S,P)\\ ^ snp\\h(z)\\ = sup \\hoir(z)\\ = \\h\\.
r 2
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Since the polynomial functions are dense in A(F), this inequality remains valid for all
h £ Mn(C) <g> A(F). Since it is true for all positive integers n, we conclude that r is
completely contractive. •

A natural question is: does every contractive representation of A(F) extend to a con-
tractive representation of the bidisc algebra? Equivalently, if (S, P) is a commuting pair
of operators on H for which F is a spectral set, does it follow that there are commut-
ing contractions A,B on H such that 5 = A + B, P = AB? The answer is no: there
is an obstruction involving the existence of square roots. If such an A, B exist, then
S2 — 4P = (A — B)2, so that S2 — AP has a square root. Consider the case 5 = 0: it
follows from Theorem 1.1 that F is a spectral set for (0, P) if and only if P is a con-
traction. Hence, if we take P to be a contraction having no square root, then (0, P) is a
counter-example.

Propositions 1.2—1.4 will be proved in § 3 of the paper. It is interesting that the proofs
of all three depend on the same algebraic identity.

Proposition 1.7. If a £ D, then the following polynomial identity obtains:

(1 - ayi + a2y2)(l - axi + a2x2) - (y2 - &Vi + 6L2){X2 - otx\ + a2)

= i(l - \a\2) [|1 - a|2(^2(l - y2x2) - ^ ( 1 / 2 * 1 - Vi) ~ f r

+ |1+ a\2 f 2(1 - y2x2) + l±J(jfea:i - yi) + l±SL(ylX2 - Xl)X\.

The connection between this identity and (ii) & (iii) in Theorem 1.5 will become
apparent later: in Lemma 3.1 below, we substitute S, P and their adjoints into it to
obtain an operator identity that relates tl>a(S, P) and p{wS,u>2P) for a suitable u> of unit
modulus.

One proof of Proposition 1.7 is easily executed: expand both sides into sums of mono-
mials, collect terms, equate coefficients. A second approach would be to notice that if
the identity is multiplied by |1 — a|2 | l + a|2, it becomes a polynomial identity in the six
variables xi, x2, j/i, y2, a and a, an identity that can be verified either by hand or on a
computer.

Here we shall adopt a third approach. As with most identities that have interesting
applications, the hard thing is to find them, not to prove them. In § 2 of the paper
we shall derive the identity by explicitly computing the symmetric realization (see [5,
Theorem 3.5]) of the 'simplest' symmetric inner functions on the bidisc. For this purpose
we shall require the elements of the hereditary functional calculus for operators. All
of the paper except the derivation of the above identity can be understood without
this theory, but some of the point of the paper would be lost. A brief introduction to
hereditary functions can be found in § 3 of [5], and a fuller one in [2]. In brief, a hereditary
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polynomial in a commuting pair of operators T = (Ti,T2) is a finite sum

h(T) = h(TuT2) = £ f s {
r,s,t,u

We think of this as the result of applying the scalar polynomial in four variables

r,s,t,u

to T. We also consider matricial polynomials h.
A central idea in the hereditary polynomial approach is that a family of commuting

pairs of operators can be understood in terms of the cone of hereditary polynomials,
which are positive on all members of the family. If the family is such that this 'dual
cone' admits a simple description, for example, in terms of a small generating set, one
typically obtains powerful representation results. We illustrate with a broad brush sketch
of the proof that (iii) => (v) in Theorem 1.5 above. Let D denote the closed unit disc.
Suppose the commuting pair of operators (S, P) is such that p{aS, a2P) ^ 0 for all
a £ D. Consider any matricial polynomial that is bounded by 1 on f; we must show
that g(S, P) is a contraction. Since g o TT is bounded by 1 on D2, it follows from Ando's
theorem [12] that the hereditary polynomial

h : (x, y) >-)• 1 - gfa + y2, yiy2)*g(xi + x2,x\x2)

is positive on pairs of commuting contractions. This hereditary polynomial is also doubly
symmetric, that is, invariant under the transposition of coordinates in both x and y
independently. By Theorem 2.2 below and the spectral theorem for unitary operators, h
can be approximated uniformly on compact subsets of D2 by finite sums of the form

G o Tr(y)*i/U(n(x), n(y))G o n(x),

for some analytic operator-valued function G on F and certain hereditary polynomials vw

indexed by CJ 6 T; the vu constitute the desired small set of generators for the appropriate
dual cone in this case. Put

n(x) = {s,p), ir(y) = (s*,p*),

to get
1 -9(s*,P*)*g{s,p)

i
The hereditary polynomial vu has the property that

and hence,
i-9(s,pyg(s,p)
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Since each p(<jjjS,u'jP) ^ 0, it is clear that

l-g(S,Pyg(S,P)>0,

that is,

Thus F is a complete spectral set for (S, P).

2. An identity

In this section we shall show in detail how the doubly symmetric hereditary realization
formula from [5] can be used to derive the identity in Proposition 1.7. Recall from [5, § 2]
that a hereditary function h on D2 is said to be positive on contractions if h(T) ^ 0
whenever T is a pair of commuting contractions. The following result is proved in [2].

Theorem 2.1. Let h be an £(C)-valued hereditary function on D2. Then h is positive
on contractions if and only if there exist Hilbert spaces C\, C2 and analytic functions

fr.3
2^C(C,Cj), 3 = 1,2,

such that for all A, /i G D2,

h(X, p) = (1 - A I A I ) / I ( M ) * / I ( A ) + (1 - A2A2)/2(A*)V2(A).

For A = (Ai,A2) € C2, let X" = (A2,Ai). For h a hereditary function on D2, say h is
doubly symmetric if h(X", p) = h(X, p) = h(X, p") for all A, fj, 6 C2. Evidently, hereditary
functions on F induce doubly symmetric hereditary functions on D2. It turns out that
the hereditary functions on F that are positive on pairs (S, P) satisfying the equivalent
conditions of Theorem 1.1 are exactly those that induce doubly symmetric hereditary
functions on D2 that are positive on contractions. Furthermore, this fact is equivalent to
Theorem 1.1 modulo various abstract model theory manoeuvres and technical details.
For this reason one wants to obtain a realization formula for doubly symmetric hereditary
functions that are positive on contractions.

The strategy taken in [5] was to state the doubly symmetric realization formula [5,
Theorem 2.5] and then to prove it. Here we shall derive the formula and, in the process,
not only prove it but explain how it was discovered. We shall then specialize the derivation
to a particular h and in the process discover the identity from § 1.

Accordingly, let h be an £(C)-valued hereditary function on D2 such that h is doubly
symmetric and positive on contractions. By Theorem 2.1, there exist a pair of Hilbert
spaces, C\ and C2, and a pair of analytic functions, f\ and /2, such that fc : D2 -* C(C, Cj)
and

h(X, p) = (l- MIAI)/I(M)*/I(A) + (1 - M2A2)/2(/i)*/2(A), (2.1)
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for all A g ID2. It follows (as in the proof of Lemma 3.3 of [5]) that if a Hilbert space £
is defined by

(2.2)

and an analytic C(C, £)-valued function on B>2 is defined by

F(A) = (l/v/2)/1(A)©/2(Aff), (2.3)

then

h(X, p) = (1 - MiAOF^rFtA) + (1 - /X2A2)F(MTF(AC T), (2.4)

for all A,/it 6 D2. Also, as in the proof of Lemma 2.4 of [5], there exists a unitary operator
L on £ such that

L(F(X) - F(X")) = AiF(A) - A2F(ACT), (2.5)

for all A € D2.

Now define G : P2 -> C{£) by setting

G{X) = (A2 - L)-lF(X). (2.6)

With this definition, (2.5) implies that G is symmetric and (2.4) becomes

h(X,p,) = G(M)*[(1 - MiA!)(M2 - £)*(A! - L) + (1 - / ^ X / Z ! - L)*(A2 - L)]G(X).
(2.7)

Note that (2.7) holds for any choice of unitary L satisfying (2.5) provided G is defined
by (2.6).

Next we see that if the bracketed expression in (2.7) is expanded and the terms are
grouped appropriately, then

h(X,p.) = G(M)*[2(1 - WmXiXi) + (JLUI2(XI + A2) - (m + /x2))L

2 - (Ax + A2))L*]G(A). (2.8)

To simplify the appearance of (2.8) somewhat we introduce the polynomial u, defined by

v(x,y) = 2(1 -2/2z2) +V2X\ - Vi +V\X2 - xi- (2.9)

Recall that n is defined by
7r(A) = (A1+A2,AiA2),

so that the bracketed expression in (2.8) simplifies to

v{-n{XL*),ir{iiL)).
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Here we are using the notation

XL* = {XlL\X2L*),

so that
n(XL*) = ((X1+X2)L*,(X1X2)L*2).

We summarize the previous calculation in the following theorem (cf. [5, Theorem 3.5])

Theorem 2.2. Let h : ©2 x D2 -t C(C) be a doubly symmetric hereditary function
that is positive on contractions. There exist a Hilbert space £, a unitary operator L on
£, and a holomorphic symmetric C(C, £)-valued function G on D2 such that

h(X, p.) = G(n) V(TT(AL*), n(fiL))G(X). (2.10)

Note that the converse of Theorem 2.2 follows immediately from (2.7), Theorem 2.1
and basic algebraic properties of the hereditary functional calculus.

We shall now repeat the derivation of (2.10) for a particular function h. Our goal will
be to calculate F, G and L explicitly. For fixed a e i , define functions sa and Ba on D,
and a function tpa on D2, by the formulae

. z — a
1 — az

and
<^Q(A)=JBa(A1)BQ(A2).

We remark that sa is the normalized Szego kernel function for the point a, and that
Ba is the Blashke factor with zero at a. Since <pa is an inner function on O2, Ando's
Theorem [12] guarantees that <pa maps pairs of commuting contractions to contractions.
Thus, since (pa is also symmetric, there exist G and L such that (2.8) holds with

,) = 1 - (pa(n)(pa{X).

To compute G and L for this choice of h, we start with the computation of (2.1). A
well-known identity on the disc is

1 - Ba{fi)Ba{X) = (1 - fiX)sa(n)sQ(X).

Hence,

1 - ya{n)va{X) = 1 - Ba(fi1)Ba(fi2)Ba{X1)Ba{X2)

- Ba(fi2)Ba(X2))Ba(X1)

= (1 - /iiAi)sQ(/ii)sQ(A!) + (1 -
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and we see that (2.1) holds with

C=Ci=C2=C,

and

/2(A) = Ba(Ai)sQ(A2).

From (2.2) and (2.3), we deduce that (2.4) holds with the choices

£ = C2 and F(X) = -^ L A" W A J " ^2"11^

We now need to compute a unitary L acting on C2 such that (2.5) holds. Equa-
tion (2.11) and a little linear algebra gives the following description of an L:

L = CJIUI <S> ui + u!2u2 ® u2, where

1 - a 1 + a 1 Til 1 [ 1 1 (2-12)
l—a 1 + a \/2 [1] y/2 [_— X

Next, we see from (2.11) that (2.10) holds if L is as in (2.12) and G is defined by

1 (2.13)

Thus, viewing G as vector-valued (rather than £(C, C2)-valued) we deduce that

1 - ¥>a(/i)Va(A) = <i/(7r(AL'),7r(/iL))G(A),G(Ai)>. (2.14)

The remainder of the computation will be achieved by expressing G in terms of u\ and
U2, the eigenvectors of L. Note that (2.12) implies that

R C\ J (
• R a(A 2 )

1 + Ba{\2) = | 2u/2
s"(^2)(1 ~ a)(^2 ~ W]

and

1 - Ba{\2) = - ( 1 _ | a | 2 ) 1 / 2 ga (A 2 ) ( l + a)(A2 - ,
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Hence, from (2.12) and (2.13), we see that

BQ(\2))(\2 - L ) - V + (1 - BQ(A2))(A2 - L)~lu2)

Ba{\2)){\2 - wi)"1*! + (1 - Ba(X2))(X2 - w2)-
lu2

= 2 (1 - |o,|2)i/2

Since

Sa(AiK(A2)((l - a)ui - (1 + a)u2).

we obtain from (2.14) the equation

- ,2sa(fJ,i)sa(^2)sa(\i)sa(X2)

x [|1 - a|2i/(7r((DiA), ir(u>ip,)) + \1 + a\2v(n(u>2\), 7r(w2/2))]- (2.15)

Finally, notice that if we multiply this last formula by (1 — a/j,i)(l — a//2)(l — «Ai)(l -
aA2) and use (2.9), we obtain Proposition 1.7 after the substitutions

= x2,

and

ll\\L2 = J/2.

3. The proofs

In this section we shall prove Propositions 1.2, 1.3 and 1.4 from § 1. For a G C, we define
polynomials ga and ha in two variables by the formulae

ga(x) = 1 - axi + a2x2,1

ha(x) = x2 - axi + a2. j

Note that ga and ha are such that

A G D2, (3.2)

and ipa (see equation (1.5)) satisfies

, , -. K{z) z2 - azi + a2 . .
WaKZ) = j-r = z 35 • («3.o)

ga(z) l — ' - 2 -
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Note that tpa is an inner function on F which is analytic on a neighbourhood of F
whenever a e D . For w G C we define a hereditary polynomial vw by the formula

The polynomials vw were heavily used in § 2 of [5] and we note here the facts that if v is
the polynomial defined in (2.9), then

for all A, p, G C2 and that if (S, P) is a commuting pair of operators and p is defined as
in (1.1), then the hereditary functional calculus yields

vu(S,P)=p(u,S,CJ2P),

for all w € C with |u>| = 1 (this may be taken to be the definition of 1^(5, P)).
For any polynomial function g we define the conjugate polynomial gy by

gv(x) = g{x),

for all x € Cn. The identity in Proposition 1.7 from § 1 can be written in terms of our
new notations in the following way:

9a(y)9a(x) - K{y)ha{x) = i(l - |a|2)[|l - a\2^(x,y) + \1 + a|2^2(*,</)],

where a>i, a>2 are as in equation (2.12). Hence, by the hereditary functional calculus, we
have the following lemma.

Lemma 3.1. 1/(5, P) is a commuting pair of operators on a Hilbert space and a £ i ,
then

9a(S,PTga(S,P) - hQ(S,P)*ha(S,P)

(3.4)

To prove the propositions we need the following simple lemmas.

L e m m a 3 . 2 . Let z G C 2 . Then z&F if and only ifga(z) ^ 0 for all a G D .

Proof. If z = TT(A), then z G F if and only if A G clos D2, while ga(z) ^ 0 for all a G D
if and only if (1 — <5Ai)(l — 5A2) ^ 0 for all a £ i , that is, if and only if Aj ^ (I/a) for
all a G D and i = 1,2, hence, if and only if Ai, A2 G closD. •

Lemma 3.3. For any commuting pair (S, P) of operators, cr(S, P) C F if and only if
ga(S, P) is invertible for all a G D.
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Proof. By Lemma 3.2, a(S, P) C F if and only if ga does not vanish anywhere on
a(S, P), that is, 0 £ ga(a(S, P)). By the spectral mapping theorem, this is equivalent to
0 $ <r(9a(S, P)), that is, ga(S, P) is invertible for all a € D. •

The final fact we need is the following perturbation result.

Lemma 3.4. Let (S, P) be a commuting pair of operators on a Hilbert space H. If

p(ctS, a2P) > 0, for all a € D, (3.5)

then

ga(S, P) is invertible for all a € D. (3.6)

Proof. First assume that (3.5) holds and that we are in the special case where ||P|| <
1. Let

O = {aeB):ga(S, P) is invertible},

and note that O is an open non-empty subset of D, since 0 € O. Hence, (3.6) will follow
if we show that

dO C dD. (3.7)

To prove (3.7) we argue by contradiction. Accordingly, assume that /? e D\O and that
there exists a sequence {an} in O such that an -> (3. Thus, gan(S,P) is invertible for
each n, yet

90(S,P)=limogan(S,P)

is not invertible, i.e. gp{S,B) lies in the boundary of the set of invertible elements of
C(H). Consequently, there exists a sequence {un} in H with ||un|| = 1 and

K||->O. (3.8)

Now notice from (3.4) and (3.5) that

h0{S,P)'hfi{S,P) ^ 9f3(S,Pygp(S,P).

Hence, (3.8) implies that

\\h0(S,P)un\\^O. (3.9)

Observe from (3.1) that

<*ga(x) - aha(x) = a(\a\2 - l)(x2 - (a/a)).

Hence (3.8) and (3.9) imply that
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But, since 0 G D, \0\2 - 1 ^ 0 , and since 0 £ O, 0 ^ 0. Thus,

(P - (/3/£)K -> 0

and we see that 00~x G tf(P), contradicting the fact that ||P|| < 1.
We have shown that Lemma 3.4 holds when ||P|| < 1. To prove Lemma 3.4 in general

now assume that (5, P) is a pair such that (3.5) holds. Fix a € B. Choose r < 1 such that
(a/r) G D. Since the pair (rS,r2P) satisfies the hypothesis of Lemma 3.4 and | |r2P| | < 1,
by the special case of the lemma just proved,

g(3{rS,r2P) is invertible for all/3 € D.

In particular, if 0 = (a/r), we have that g@(rS,r2P) = ga(S,P) is invertible, and the
proof of Lemma 3.4 is complete. •

We are ready to complete the proof of Theorem 1.5. We must prove Propositions 1.2,
1.3 and 1.4.

To prove Proposition 1.2, fix a commuting pair (5, P) such that

P(aS,a2P)>0,

for all a e D. By Lemma 3.4, it follows that ga(S,P)) is invertible for all a €E D. By
Lemma 3.3, a(S,P) C F. Since F is polynomially convex [5, Lemma 2.1], it follows
from the Oka—Weil Theorem (see, for example, [3]) that apo\(S,P) C F. This proves
Proposition 1.2.

We prove Proposition 1.4. Let (S,P) be a commuting pair such that 4>a(S,P) is a
contraction for all a G D. For any 0 £ T we have

and hence,

2 1 , (3.10)

for all a G D and (3 G T. Since /3 >-¥ tpa(f3S,P2P) is analytic on a neighbourhood of
the closed disc, the maximum principle implies that the inequality (3.10) holds for all
a, ft G D, and so

1 - ^Q(/35,/32P)>Q(/35,/?2P) ^ 0,

for all a,/3eB. From (3.3), we deduce that

2p) > o,

for all a,0 G P. Hence, by Lemma 3.1,
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for all a,P eW>. In this last inequality let a be real and let a —*• 1, to obtain

p(/3S,P2P)>0,

for all (3 6 D. This proves Proposition 1.4.
Proposition 1.3 follows immediately. Suppose F is a spectral set for the commuting

pair (S, P). Since ipa has supremum norm on T equal to 1, we have

and so, by Proposition 1.4, p(aS,a2P) ^ 0 for all a g D ,
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