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ABSTRACT

With the accuracy of modern observations the relativistic treat-
ment of the basic astronomical reference frames only requires the
consideration of comparatively simple types of metrics such as helio-
centric Schwarzschild metric, geocentric Schwarzschild metric and metric
of the Earth-Sun system. Dynamical (related to the motion of the
bodies) and kinematical (related to the 1ight propagation) characteris-
tics of these metrics enable one to perform the accurate relativistic
reduction of astronomical measurements. In this reduction, the choice
of specific quasi-Galilean coordinates may remain arbitrary. This
paper presents expressions for the main relativistic terms in coordi-
nates of the principal planets and Mcon using the PPN formalism para-
meters B, y and coordinate parameter a. General formulae for the
reduction of radar, radio-interferometric and astrometric observations
of planets and for the interpretation of lunar Taser ranging are given.
For estimating the actual magnitude of relativistic effects, the
ephemeris data should be expressed in terms of physically measurable
guantities.

INTRODUCTION

Relativistic treatment of the problem of astronomical reference
frames involves some distinctive features compared to the Newtonian
treatment.

First of all, much attention is given now to the physical approach
to this problem. Just as the problem of time measurement changed
from astronomy to physics, the definition of three orthogonal directions
in space will possibly be made in the future by laboratory means (such
as gyroscopes) rather than with the use of astronomical objects. Such
a laboratory measurement of time and determination of space directions
provide a reference frame suitable for astronomy as well. Mathemati-
cally this system is represented by four vectors subjected to Fermi-
Walker propagation along the world-line of the laboratory. They
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consist of the time-like tangent to the world-line and three space-
1ike vectors normal to it. This approach is developed in detail by
Synge (1960). In spite of extensive recent investigations of the
mathematical aspects of this problem, the presentation by Synge still
remains the most adequate for astronomical practice.

In addition, a relativistic reduction of astronomical observations
becomes increasingly important. In essence, astronomical observations
reduce to measuring angles between light rays or time intervals between
events marked by light signals. Relativistic treatment of these
quantities is due mainly to the effect of the solar gravitational field.
It is necessary to take into account both the direct influence of this
field on light propagation and the effect of performing measurements in
a curved space. Observations reduced in this way may be further used
for determining astronomical reference frames by classical methods.

Another feature of the relativistic analysis is of a purely mathe-
matical nature and is related with the possibility to use arbitrary
quasi-Galilean coordinates for describing events in the solar system.
Even though the mathematical character of the motion of bodies and the
propagation of light are different in distinct quasi-Galilean coordi-
nates, the physically measurable quantities do not depend on the choice
of coordinates. It is only important to calculate dynamical character-
istics and to perform relativistic reduction of kinematic data in a
single coordinate system.

This paper deals with questions pertaining to the last two facts.
Sections 2 and 3 are devoted to the reduction of radar, radio inter-
ferometric and astrometric observations. In extending the results of
Brumberg (1979, 1981) and Brumberg and Finkelstein (1979), the geo-
centric Schwarzschild metric is considered as enabling us to combine,
in a unified manner, both relativistic gravitation and aberration
effects. In Section 4, the lunar laser ranging is considered. It is
shown that, in opposition to the views of Baierlein (1967), the in-
fluence of the relativistic effects does not result in a mere multipli-
cation of Newtonian quantities by a constant factor. The whole treat-
ment is performed in the Parametrized Post-Newtonian approximation
(PPN) formalism (Will, 1974) but in arbitrary (to the sufficient degree)
quasi-Galilean coordinates.

HELIOQCENTRIC SCHWARZSCHILD METRIC
Metric
Heliocentric Schwarzschild metric is of the form where m = GI\ED/C2

ds® = {1 _2(m/r) + 208 - a(r)] (m/r)z} 2dt?

(1)
2

2 2La(r) - v (1] (/) (rdr)?

- {1+ 2Ly - (0] ()} (an)
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, and y are principal constants of the PPN formalism (for GRT,
), a( ) is an arbitrary function of r satisfying the conditions
quasi-Galilean metric: a’( )0, a(r)/r-0 with r+= (the dash denotes

B
=1
a

fferentiation with respect to r). Transformation

B=y
of
dif
¥=r - ma(r)r/r (2)

converts (1) to the Eddington-Robertson metric (metric (1) with o=0).
The most widely used coordinate systems correspond to o=0 (harmonic
coordinates) or a=1 (“"standard" coordinates). Introduction of af{r)

in a Titeral form has two objectives. First of all, the appearance of
o in the expression of any particular quantity demonstrates its co-
ordinate dependence, in other words its unobservability. Besides this,
in final relations in terms of the ephemeris of physically measurable
quantities, o should disappear, which would confirm the correctness of
the calculations.

Motion of the Major Planets

For approximate analytical estimations, it is convenient to have
the following expansions of polar orbital coordinates (radius-vector
r, argument of latitude u) in powers of eccentricity e:

£,= 1+ %{} + uko(a)]e2 - |1+ uk](a)] e cos(r - m)
-1+ kp@)] € cos 200- ) (3)

u=ax-+2esin (x - n) + [%A+ n(-3-3y + % 3ﬂ e2 sin 2(x - @) + ...
(4)

Ihese expansions result from the closed expressions of the
Schwarzschild problem (Brumberg, 1972). Here

4 4 2

kola) = -3 - 3y +38-ala) + ad’ (a) + 2

a” a"(a)

Nf —i

kj(a) = -1 -y +g-afa) +a(a) ,

-

kz(a) = -4 - 4y +28 - afa) + ad’ (a) - E—az a"(a) |,

p =m/a, A, m, and @ are angular arguments (mean longitude, longitude
of the periheiion, longitude of the node) with o being constant, A and
7 being Tinear functions of time with mean motions:

f=n,  a=u@2+2y-8)n/(i-ed) (5)
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1/2
n = (GM@/a3> {] + u|:- ]?Y - B+ % oa(a):l} (5)

Light Propagation

The law of 1ight propagation under conditions
—E(tO) =_r0 ’ _-Y:("w) = Co s g = 1

is given by:

r_(t)=£0+c(t-t0)g+m (Y_I_])[GX({‘_O -

"o~ 2X r-gor
r+or a(ras)
0 250 0
The velocity of light at the time t is obtained from:
1 : m ' (o r)
E—r(t) oty La(r) - v - 110 - [a(r) - ro (r)] > I
r
o x o) (7)
- (y+ 1) o

For a solar ray,
a = (rg/rg) = (x/r)
The solution of the boundary value problem

o) *Ly - Myl En

is determined by (6) and (7) with

Dy ry - rg* Dy g falrg) alry)
o=pg tp )t s
01 Do (rg x ry) 0y L "0 1
(8)
« [2g1 < (g = 1y)]
where
Dgy =1y -1
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That time of flight will be

D rr+r, +D rS - rS - DY
01 m 0 1 01 ] 0 01
t, - t, ===+ =<y +1) In =—————+ a(r,)
1 0 C C o + r- DO] 0 2rODO]
2 2 2
r~-r;y -0D
+ alr)) L] (9)
1701
For a solar ray (with ry > ro) .
bt =L e n l e ) s (e + a(ry)
1 0 ¢ ' 0 Y o 1 0

Doppler Shift
Let vg be the frequency of a Tight emitter at a given point roltg)

and vy be the frequency of the light at a receiver situated at a noint
ri{ty). Then

22
1 - m/r] - rq/(Zc ) dt]

2, 1 ()
M- i - r/(2cf) Yo
GEOCENTRIC SCHWARZSCHILD METRIC
Metric
The transformation
r=R(t) +op (12)

where R(t) is the heliocentric vector of the Earth transforming (1) to
the geocentric Schwarzschild metric

d32

{1 - 2twre) - (R0 + 2 16 - a(r)] (wr)? - 20wr) [y - alr)]

x (R/c)

2/%) [a(r) - retn)] (rh/e)?} Pat? - 2R + 2m/r) Ty - a(r] R

+

20/1%) [a(r) - ralr)] (e} do ot - {1+ 2(we) [y - a(r)lf &°

3 [alr) - reé(r)] (rdo)? . (13)

- 2{m/r
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This metric describes the solar gravitational field but from the
geocentric point of view. The line-element d¢ of space distance of
this metric is determined by

2

as? = {1+ 2w/ [y - w1} do? + 2w/r) Lalr) = v (1)] (rdp)

+ (Rdp/0)e . (14)

For the case of the synchron1zat1on of clocks it results that
instants ty at a point p and tO at a point p + dp are simultaneous
provided tRa

= t, + Rdo/c® . (15)

’
= %o
Lengths and Angles

If P, Q are three-dimensional vectors app11ed at a point r(t),
their scalar product and length in space (14) is

(PQ) o7 = PQ + 2(n/r) [y - a(r)] (PQ) + 2(m/r?) [a(r) - ro’(r)]

x (Pr)(Qr) + (RP)(RQ)/C® (16)
Pret = P{1 + (/r) [y - a(r)] + (n/r°) [a(r) - ra’ (r)] (Pr)%/P°
v (B0 (2P0} (17)

where PQ and P = |P| denote the scalar product and the length in
Euclidean sense. For the angle y between vectors P, Q if we define
(Eg)re1 =Pl Qre] cos ¢, one has

(pQ)/(PQ) + {(m/r®) [a(r) - v’ (1)1 [r)E % £)/P? - (ar)

cos U

X

(Q x 1)/Q°] + [(PR)(P x R)/P% - (QR)(Q x E)/QZJ/(ZCZ)}
x (P xQ)/(PQ) . (18)
Geocentric Angle Between Light Rays
The direction of a light ray (7) crossing the earth in a position
R at the time t may be determined by a vector P = p/C with p to be

computed from (12) and (7) where we set r = R.™ Ca]cu1at1ng the
Euclidean length P of this vector, one finds
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PP = o+ [ox (o x R/c + (oR) [o = (o x DI/ - alo x R/ (2c)

(oR)
+ %>{[a(R) - Ra’ (R)] ~§§—-+ = OR} [o x (o xR)] . (19)

Hence, from (18) there results an expression for geocentric angle
¢ between two light rays having at t = -« the directions o}, og» and
crossing the earth, in the position R at time t:

cos v = 019, + ]E (0102 )(o R + 99 ) + 1—2 (g]gz - 1) [(Q]E)Z + (QZB_)Z
c
. . 2 : m (29 R x g,
*+ (91R) (g,R) - B} tly+1) ﬁ(R - Ry R-Ry, (57 % 2p)
(20)

Relativistic Reduction of Astronomical Measurements

For relativistic reduction, of astronomical measurements one may
use relations (9) (radar ranging, radio-interferometry), (11) (Doppler's
observations) and (20) (astrometry). The detailed analysis of different
cases of this reduction is given in Brumberg, (1981) for the Earth at
rest (R=0). Let us restrict ourselves to some basic statements.

Radar ranging. A round-trip transit reduces in essence to a
double expression (9). If the coordinate dependent distance Dyy is
expressed in terms of initial measured quantities, then coordinate
dependence on o in (9) disappears. The numerical value of the corre-
sponding relativistic effect and its functional dependence on g, v may
be determined by the initial measurements (Brumberg, Finkelstein, 1979).

VLBI. Let a radio wave coming from an infinitely distant source
reach station 2 on the Earth at a time tp and station 1 at a time t;.
At station 1, one measures a time delay t = t; - t%, tz be1ng the time
at station 1 simultaneous with to at stat1on % Tﬁe expression for t
may be found from t = (t] - tg) - (t 2 -t (th - t2) (tg is the
time of the wave emission) by using ( gor t9 - tp and (9) for ti - tg
(i =1,2) with the Timit rg-. Further use of (17)-(19) permits to
express t in terms of physically measurable quantities such as the
proper length of the base vector and the angle between the base vector
and the direction to the radio souce (Brumberg, 1981).

Angular measurements. Relation (20) covers a great variety of
types of astrometric observations. Let, for instance, oj be the direc-
tion of a 1ight,ray at t = -~ from an infinitely distant source. Then
if we let op = R/|R| we obtain the special relativistic formula for the
aberration, if we let o o2 = R/R we obtain the formula for the light
deflection, and if oy is determined by (8) then we get an expression of
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the angle between an observed planet and a distant source. Choosing

the last case, o7 = R/R, one gets the expression for the angular dis-
tance of a p]anet from the Sun. Presenting coordinates of the planet
and the Sun in terms of initial measurements, one obtains coordinate

independent relativistic effects determined only by measurements

(Brumberg and Finkelstein, 1979).

Regarding R(t) in (12) and (13) as heliocentric vector of the
point of observation on the Earth, we obtain the topocentric Schwarz-
schild metric enabling to take into account both the annual and diurnal
motions of the Earth. In this matter we may combine the relativistic
gravitational effects with those due to the special theory of relativ-
ity. In practical calculations these reductions may be separated as it
was assumed in the above-mentioned papers.

LUNAR LASER RANGING
The Field of n Point Masses
Using the parameters g8, vy of the PPN formalism (Will, Nordtvedt,

1972) and the coordinate parameters o, v (Brumberg, 1972), the field
of n non-rotating point masses Mi is described by the following metric

2
m. m. m. m.
2_ ). il - il - i -
ds -{1 2Zp_+2(e oc)(Zp) * 4 -2) 2 )
3 i 3 i R YERRRN
il -1, _1 VS 2
+ 20y 3ij<r“ p>\p]£”) 7 (2v + 12 oy Ui
i Py Al 1 1
2
1 ) 2.,.2 p m v
+—2—(\)-])*‘22m1p1 cdt™ + Z_‘I_ (Zy+2—0t-'2“) r_]
1 m;
+(o¢+—2-)—2(p1r‘1)p1 dr Cdt—ZuZﬂg(p dr)” - |1 + 2(v - a)
fi Py
m.
1| 2
XZB—;] (dr) (21)
i
where pj = r - r rij = = GM. /c . In contrast to (1),
o is constant. }n papers on P_ﬁ formal1sm, the coordinate system is

fixed by the choice o = 0, v = 1. In papers on GRT, harmonic system,
with ¢« = v = 0 are used. Denoting harmonic coordinates by ~ we have
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Y \
t=t+ 22 me. (22)
¢ ot ; i
m. m.
o __1_ v _ J
Fer-a)] > S PP (23)
i AR,

In the post-Newtonian approximation the parameter v does not af-
fect the motion of bodies and light propagation.

Main Relativistic Terms in Lunar Theory

Let indices 1 and 2 in (21) be referred to the Earth and Sun
respectively. Taking into account that mj << mp, put ry =R, rp = 0,
R being the heliocentric vector of the Earth determined by (3), (4)
converted to the geocentric system r = R+ pj. The Moon will be con-
sidered as a probe particle moving in the field (21) of the Earth and
the Sun. Then the equations of lunar motion follow_ from the geodesic
principle and are described by the Lagrangian L = ¢ - c(ds/dt), if we
consider here only a point-mass the results obtained eliminate the
Nordtvedt effect (breaking the principle of equivalence for massive
bodies). Thus the variational inequalities turn out to be of the most
importance. Neglecting the sun's eccentricity, the eccentricity and
inclination of the Tunar orbit and parallactic terms, one may find for
the radius-vector p7 and longitude v of the Moon the following expres-
sions

p .
1 _ 2 2 4 1 1 1
EB-— 1 -m"cos 2D+ ... + u {—§v - B - gt t §(ZY + 1)m
1 2 109 15 2 1 1 1 1 2 .
+<§B'§“Y‘"9€+T6°‘)m +[Z'§“+<I+ZY+26'§“>’”]C°S 2D
7 7\ 2
¥ (‘3“2 - 16°>m o2 4D} ’ o

. 1 2 .
v=nt+e+t l% m2 sin 2D+ ... + ¢ {[?a T - 12(8 + 2y)m ] sin 2D

11 1y 2 .
+ (%Eu - §?>m sin 4D} . (25)
Here n is the lunar mean motion, N is the mean motion of the Sun2
related to the semimajor axis A of the Earth orbit by (5), n = N2 A2/ c

is consistent with values for p as in (3), (4), m = N/(n - N) D is
the difference of the mean longitudes of the Moon and the Sun, g is the
Hill's parallactic factor
a, = an(l - 1 m2 + ) n2a3 GM
0 0 6 Tl 0 1
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These terms are obtained up to m2 inclusively. For a = 0 they
agree with the expressions of Finkelstein and Kreinovich (1976).

Lunar Laser Ranging

In accordance with (21), the time t - t, of Tight propagation
between points rg and r, neglecting the motion of the bodies, is
determined by

oy + o1+ lgy - of”)
(071

- {B' -0

c(t - to) = |r - EOI + s (v +1) 1In
i p: T o

(0),

o (Pg *o K (0))2 ( (0))2]
+ . - oy Y PR (26
Zingo) lo. - E_§0)| Pi 7 L4 L T2 (26)

=i

Introduce the distance S between the Earth station and a reflector
on the Moon, the distance d between the centers of mass of the Earth
and Moon, the heliocentric distance R of the Earth, the geocentric
angle H between the directions to the Sun and Moon and the radii de,

dm of the Earth and Moon respectively. Considering the lunar laser
ranging is usually performed near the meridian of the laser station
one may put in relativistic terms S = d - de - d and p{0) = dq,

P = d - dy, pé =R, pp = R - d cos H. Therefore, the round-trip
coordinate timé interval will be

d-d
m

de

. (27)

m m
. 2 :
T:E_S_|:]+R_2(Y+]-as1n H):|+El(2Y+2)ln

For harmonic coordinates o = 0 this formula was derived first by
Baierlein (1967). Noticing the proportionality of the right-hand mem-
ber of (27) to S/c with practically a constant factor (the last term
in (27) may be multiplied within the adopted accuracy by S/d),
Baierlein came to conclusion that it is impossible to reveal relativ-
istic effects in measuring T. But the right-hand member of Baierlein's
formula represents a coordinate-dependent expression valid only in
harmonic coordinates. In the Newtonian, part the distance S is not a
physically measurable quantity. The expression of S in terms of
measurable quantities (mean motions of the Moon and Sun and gravita-
tional parameters of the Earth and Sun) contains time-dependent
relativistic corrections. In accordance with (24), Newtonian value
SN may be presented as follows

2
SN = go(l -m° cos 2D + ...) - de - dm . (28)
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Putting S = d in relativistic terms and using (24), there results

25 d-d 2ua
i B m =) _ 4 3,1
T= rgler+2) In——+ = {‘s‘Y 3 g3ty m
2 1
+ (%g -3y - 18%>m + [Z + (y + 28 - %)mé] cos 2D + 3; 2 cos 4D}

(29)

This relation enables us to obtain a real estimate of the relativ-
istic effects in lunar Taser ranging. The most significant periodic
relativistic effect with the argument, 2D (with period of 14.76 days)
depends rather faintly on parameters 8, vy and its amplitude is
determined in fact by pag/2 = 2 meters (u = 10-8, m = 0.08, ag = 4 - 109
km)., It may be added that according to F1nkelste1n and Kre1nov1ch
(1976), parameters B, y make a contribution to the parallactic term
with the argument D and a coefficient proportional to u(ag/A)/m. But
the magnitude of this term is smaller by at least one order than the
magnitude of the main relativistic variational term.

The transformation to the proper time t of the laser station is
performed by

m
1 .3
dr = 1-32—-?5\_/-—11 dt (30)

~nNo

where R is heliocentric velocity of the center of mass of the Earth,

V is geocentric velocity of the laser station. Integrating the righ-
hand member of (30) yields the known formula relating t and t (Mulhol-
land, 1972). Such a relation is necessary for an accurate computation
of so]ar and lunar ephemerides. But in order to estimate the time
delay in Tunar laser ranging, one may neglect the variations of the
functions appearing in (30) and consider this formula as a direct
relation between proper t and coordinate T time delays.

CONCLUSION

The probiem of determining astronomical reference frames meets
with difficulties even at the Newtonian level (Kovalevsky, 1975).
The theory of relativity increases these difficulties. Much remains
to be done to perform all part of the Newtonian theory in a relativ-
istic basis. In this paper some questions of the relativistic reduction
of astronomical measurements have been considered.

But the difficulties of the relativistic treatment of reference
frames should not be exaggerated. The practical problem is to correlate
results of measurements performed at different times in distinct
observatories. Knowing with some accuracy the metric of the gravita-
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tional field, one may calculate the motions of observatories and

reduce all measurements to one actual or fictitious Taboratory at some
moment of time (placed, for instance, in the center of mass of the
Earth, Sun or Solar system). A discussion of such reduced measurements
leads in turn to an improvement of the metric.
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