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ABSTRACT 

With the accuracy of modern observations the r e l a t i v i s t i c t rea t ­
ment of the basic astronomical reference frames only requires the 
consideration of comparatively simple types of metrics such as he l io­
centr ic Schwarzschild metr ic , geocentric Schwarzschild metric and metric 
of the Earth-Sun system. Dynamical ( re lated to the motion of the 
bodies) and kinematical (related to the l i g h t propagation) characteris­
t ics of these metrics enable one to perform the accurate r e l a t i v i s t i c 
reduction of astronomical measurements. In th is reduct ion, the choice 
of speci f ic quasi-Galilean coordinates may remain a rb i t ra ry . This 
paper presents expressions for the main r e l a t i v i s t i c terms in coordi­
nates of the pr incipal planets and Moon using the PPN formalism para­
meters 3, y and coordinate parameter a. General formulae for the 
reduction of radar, radio- inter ferometr ic and astrometric observations 
of planets and for the in terpreta t ion of lunar laser ranging are given. 
For estimating the actual magnitude of r e l a t i v i s t i c e f fec ts , the 
ephemeris data should be expressed in terms of physical ly measurable 
quant i t ies. 

INTRODUCTION 

Re la t i v i s t i c treatment of the problem of astronomical reference 
frames involves some d is t i nc t i ve features compared to the Newtonian 
treatment. 

F i rs t of a l l , much at tent ion is given now to the physical approach 
to th is problem. Just as the problem of time measurement changed 
from astronomy to physics, the de f in i t i on of three orthogonal direct ions 
in space w i l l possibly be made in the future by laboratory means (such 
as gyroscopes) rather than with the use of astronomical objects. Such 
a laboratory measurement of time and determination of space direct ions 
provide a reference frame suitable for astronomy as w e l l . Mathemati­
ca l ly th is system is represented by four vectors subjected to Fermi-
Walker propagation along the wor ld- l ine of the laboratory. They 
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consist of the t ime- l ike tangent to the wor ld- l ine and three space­
l i ke vectors normal to i t . This approach is developed in detai l by 
Synge (1960). In spite of extensive recent investigations of the 
mathematical aspects of th is problem, the presentation by Synge s t i l l 
remains the most adequate for astronomical pract ice. 

In add i t ion , a r e l a t i v i s t i c reduction of astronomical observations 
becomes increasingly important. In essence, astronomical observations 
reduce to measuring angles between l i g h t rays or time intervals between 
events marked by l i g h t signals. Re la t i v i s t i c treatment of these 
quant i t ies is due mainly to the e f fec t of the solar gravi tat ional f i e l d . 
I t is necessary to take into account both the d i rect influence of this 
f i e l d on l i gh t propagation and the ef fect of performing measurements in 
a curved space. Observations reduced in th is way may be fur ther used 
for determining astronomical reference frames by classical methods. 

Another feature of the r e l a t i v i s t i c analysis is of a purely mathe­
matical nature and is related with the poss ib i l i t y to use arb i t ra ry 
quasi-Galilean coordinates for describing events in the solar system. 
Even though the mathematical character of the motion of bodies and the 
propagation of l i g h t are d i f fe ren t in d i s t i nc t quasi-Galilean coordi­
nates, the physical ly measurable quant i t ies do not depend on the choice 
of coordinates. I t is only important to calculate dynamical character­
i s t i cs and to perform r e l a t i v i s t i c reduction of kinematic data in a 
single coordinate system. 

This paper deals with questions pertaining to the las t two facts . 
Sections 2 and 3 are devoted to the reduction of radar, radio in te r -
ferometric and astrometric observations. In extending the results of 
Brumberg (1979, 1981) and Brumberg and Finkelstein (1979), the geo­
centr ic Schwarzschild metric is considered as enabling us to combine, 
in a un i f ied manner, both r e l a t i v i s t i c grav i ta t ion and aberration 
e f fec ts . In Section 4, the lunar laser ranging is considered. I t is 
shown tha t , in opposition to the views of Baier lein (1967), the i n ­
fluence of the r e l a t i v i s t i c ef fects does not resul t in a mere m u l t i p l i ­
cation of Newtonian quant i t ies by a constant factor . The whole t reat ­
ment is performed in the Parametrized Post-Newtonian approximation 
(PPN) formalism ( W i l l , 1974) but in a rb i t ra ry (to the su f f i c i en t degree) 
quasi-Galilean coordinates. 

HELIOCENTRIC SCHWARZSCHILD METRIC 

Metric 
2 

Heliocentric Schwarzschild metric is of the form where m = GM /c 

ds2 = (l - 2(m/r) + 2[B - a(r)] (m/r)2} c2dt2 
1 ] (1) 

-|l + 2[Y - a(r)] (m/r)} (dr)
2 - 2[a(r) - ra'(r)] (m/r3)(rdjr)2 , 
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6, and y are principal constants of the PPN formalism (for GRT, 
6=Y=1), a(r) is an arbi trary function of r satisfying the conditions 
of a quasi-Galilean metric: a ' ( r )+0, a(r)/r>0 with r-«° (the dash denotes 
differentiation with respect to r ) . Transformation 

r r - ma(r)r/r (2) 

converts (1) to the Eddington-Robertson metric (metric (1) with a=0). 
The most widely used coordinate systems correspond to a=0 (harmonic 
coordinates) or a=l ("standard" coordinates). Introduction of a(r) 
in a l i t e ra l form has two objectives. First of a l l , the appearance of 
a in the expression of any part icular quantity demonstrates i t s co­
ordinate dependence, in other words i t s unobservability. Besides t h i s , 
in final relations in terms of the ephemeris of physically measurable 
quant i t ies , a should disappear, which would confirm the correctness of 
the calculations. 

Motion of the Major Planets 

For approximate analytical estimations, i t is convenient to have 
the following expansions of polar orbital coordinates (radius-vector 
r , argument of lat i tude u) in powers of eccentrici ty e: 

J = 1 + l [ l + yk0(a)le2 - [1 + y k ^ a ) ] e COS(A - •*) 

- ^[l + yk2(a)l e2 cos 2(A - ir) + . . . , (3) 

u = A - tt + 2e sin (A - IT) + | + y ( - 3 - 3 Y + f B) e2 sin 2(A - -n) + 

These expansions result from the closed expressions of the 
Schwarzschild problem (Brumberg, 1972). Here 

4 4 2 1 2 
k 0 ^ = " ' 3 " 3 ' Y + ~ 3 e ~ a ^ + a a ' ^ + 2 a a"^a^ ' 

(4) 

k-| (a) = - 1 - y + B - a (a ) + a a ' ( a ) , 

k 2 (a) = - 4 - 4Y + 2e - a (a ) + aa ' (a) - j a2 a"(a) 

\i = m/a, A, TT, and Q, are angular arguments (mean long i tude , longi tude 
of the p e r i h e l i o n , longi tude of the node) with a being cons t an t , A and 
IT being l i n e a r functions of time with mean motions: 

A = n, TT = y (2 + 2Y - e) n/(l - O , [5) 
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n = (GMQ/a3)1/2 
1 + u 

1 3 , N 

- 2" Y - 3 + 2 a ( a ) 
(5) 

Light Propagation 

The law of l i g h t propagation under conditions 

I U Q ) =-TQ ' i(~°°) = c - ' 5 = "• 

is given by: 

jr(t) = IQ + c( t - tQ) a_ + m <J(Y + 1) 
a x (r_ x a_) a_ x (r x a) 

ro - sr0
 r - -a-r 

- a In 
r + £ £ 

r0 + ^ J 

, a(r) x 0' 
+ - v • • r r n r — r„ —0 (6) 

The velocity of l ight at the time t is obtained from: 

^ r ( t ) = a + ^ j [a( r ) - y - 1] a - [a(r) - ra' ( r ) ] ^ - r 

- ( Y + 1) 
a x(r_ x _â  

r - a r 

(7) 

For a solar ray, 

The solut ion of the boundary value problem 

is determined by (6) and (7) with 

= - 0 1 + m h + -J \ -1 -0 -01 + _ J _ 

- D01 D01 ) Y (rQ x L l ) 2 D^ 

a(rQ) a( r 1 ) 

L r 0 r l J 

[DQ! * (IQ X I T ) ] 

where 

(8) 

°01 = ^1 " A) 
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That time of f l i g h t w i l l be 

D 

287 

t ] - tQ = - — + - \{y + 1) In ^ x „ „ — + a( r n ) 
r 0 + r l " D01 0; 

2r0D01 

2 2 n2 

a ( V 2r D 

For a solar ray (with r-, > r „ ) 

(9) 

h ' l0 = c T l • r0 + m 
r, 

(Y + 1) In — - a ( r j + a(r ) 
0 

(10) 

Doppler Sh i f t 

Let vg be the frequency of a l i g h t emitter at a given point £Q(to) 
and v] be the frequency of the l i g h t at a receiver si tuated at a point 
_r-j(t-|). Then 

vQ 1 - m/r1 - r^/(Zc ) dt-j 

v l 1 - m/rQ - r j j / (2c2) d t 0 

GEOCENTRIC SCHWARZSCHILD METRIC 

Metri c 

The transformation 

r = R(t) + p 

(11) 

(12) 

where R{t) is the heliocentric vector of the Earth transforming (1) to 
the geocentric Schwarzschild metric 

ds£ |l - 2(m/r) - (R/c)2 + 2 [e - a(r)] (m/r)2 - 2(m/r) [Y - a(r)] 

(R/c)' 

- 2(m/r3) [a(r) - r a t r ) ] (rR/c)2} c2dt2 - Z|R_ + 2(m/r) [Y - a ( r ) ] R 

+ 2(m/r3) [ a ( r ) - r a t r ) ] ( rR)r l dL dt - j l + 2(m/r) [Y - a ( r ) ]} dp2 

- 2(m/rJ) [a(r) - ra '(r)] (rdp] (13) 
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This metric describes the solar gravi tat ional f i e l d but from the 
geocentric point of view. The line-element d£ of space distance of 
th is metric is determined by 

d , 2 = j l + 2(m/r) [Y - a ( r ) ] | dp2 + 2(m/r3) [a(r) - r a ' ( r ) ] Info)2 

+ (Rdp/c)2 . (14) 

For the case of the synchronization of clocks i t results that 
instants tg at a point p_ and tg- at a point p_ + dp_ are simultaneous 
provided that 

t'o = ^ + Rdp/c2 . (15) 

Lengths and Angles 

I f P_, Q_ are three-dimensional vectors applied at a point r . ( t ) , 
the i r scalar product and length in space (14) is 

(PQ)r e l = PQ + 2(m/r) [Y - o ( r ) ] (PQ) + 2(m/r3) [a ( r ) - n / ( r ) ] 

x (Pr)(Qr) + (RP)(RQ)/c2 , (16) 

Prel = P{} + ( m / r ) h ~ a ^ + ^m / r 3^ ta(r) - r a ' ( r ) ] (Pr)2/P2 

+ (RP)2/(2c2P2)} , (17) 

where PQ and P = |P| denote the scalar product and the length in 
Euclidean sense. For the angle ip between vectors P_, Q̂  i f we define 

( pQ) r e l = p
r e i Qrel c o s * » o n e h a s 

cos i> = (PQ)/(PQ) + | (m/r3) [a(r) - ra' ( r ) ] [(Pr)(P_ x _r)/p2 - (Qr) 

x (Q x r ) /Q 2 ] + [(PR)(P. x R)/P2 - (QR)(Q x R)/Q2] / (2c2)} 

x (P.x Q)/(PQ) . (18) 

Geocentric Angle Between Light Rays 

The d i rect ion of a l i gh t ray (7) crossing the_earth in_a posit ion 
jR at the time t may be determined by a vector P̂  = p/c with p_ to be 
computed from (12) and (7) where we set _r = R_. Calculating the 
Euclidean length P of th is vector, one f inds 
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P/P = a + [a x (a x R) ] / c + (aR) [a x (0 x R ) ] / c - a{a x R ) 2 / ( 2 c 2 ) 

[ £ x {a_ x Rj] . (19) 

Hence, from (18) there results an expression for geocentric angle 
4> between two l i g h t rays having at t = -°° the direct ions o i , 02 and 
crossing the ear th , in the posi t ion jR at time t : 

co S 4, = a^a_2 + - {a^az - 1 ) (o_-, R, + o^R) + \ ( o , ^ - 1) U a ^ ) 2 + ( ( ^R) ' 
c 

— x —? + ^m^b - i]+ (Y +1) j ( 1 ^ - w~rw2j 

Rela t i v i s t i c Reduction of Astronomical Measurements 

(o_i x o^) 

(20) 

For r e l a t i v i s t i c reduction, of astronomical measurements one may 
use relat ions (9) (radar ranging, rad io- in ter ferometry) , (11) (Doppler's 
observations) and (20) (astrometry). The detai led analysis of d i f fe ren t 
cases of th is reduction is given in Brumberg, (1981) for the Earth at 
rest (R=0). Let us r e s t r i c t ourselves to some basic statements. 

Radar ranging. A round-tr ip t rans i t reduces in essence to a 
double expression (9) . I f the coordinate dependent distance DQ-| is 
expressed in terms of i n i t i a l measured quant i t ies , then coordinate 
dependence on a in (9) disappears. The numerical value of the corre­
sponding r e l a t i v i s t i c e f fec t and i t s functional dependence on $, y may 
be determined by the i n i t i a l measurements (Brumberg, F inkels te in , 1979). 

VLB I. a radio wave coming from an i n f i n i t e l y distant source 
the Earth at a time tz and stat ion 1 at a time t ] . 

delay T = t ] - t ? , t£ being the time 

Let 
reach station 2 on 
At station 1, one measures a time 
at station 1 simultaneous with t2 
may be found from T = (ti - to) -

at station 2. The expression for 
- ...... . ,., _u# (t2 - tQ) - (t'2 - t2) (t0 is the 

time of the wave emission) by using (15) for t2 - t2 and (9) for t-j - tf 
(i = 1,2) with the limit ro-*». Further use of" (17)-(19) permits to 
express T in terms of physically measurable quantities such as the 
proper length of the base vector and the angle between the base vector 
and the direction to the radio souce (Brumberg, 1981). 

Angular measurements. Relation (20) covers a great variety of 
types of astrometric observations. Let, for instance, ajj be the direc­
tion of a light.ray at t = -°° from an infinitely distant source. Then 
if we let £2 = R/|Rj we obtain the special relativistic formula for the 
aberration, if we let £2 = R/R we obtain the formula for the light 
deflection, and if 02 is determined by (8) then we get an expression of 
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the angle between an observed planet and a distant source. Choosing 
the l a s t case, <r\ = R/R, one gets the expression for the angular dis­
tance of a planet from the Sun. Presenting coordinates of the planet 
and the Sun in terms of i n i t i a l measurements, one obtains coordinate 
independent r e l a t i v i s t i c effects determined only by measurements 
(Brumberg and Finkelstein, 1979). 

Regarding jR(t) in (12) and (13) as heliocentric vector of the 
point of observation on the Earth, we obtain the topocentric Schwarz-
schild metric enabling to take into account both the annual and diurnal 
motions of the Earth. In this matter we may combine the r e l a t i v i s t i c 
gravitational effects with those due to the special theory of re la t iv­
i ty . In practical calculations these reductions may be separated as i t 
was assumed in the above-mentioned papers. 

LUNAR LASER RANGING 

The Field of n Point Masses 

Using the parameters B, y of the PPN formalism (Will, Nordtvedt, 
1972) and the coordinate parameters a, v (Brumberg, 1972), the field 
of n non-rotating point masses M-j is described by the following metric 

0 i _ _ m. / m.\ , , m. ^ ^ m. 

' i ! \ i V 1 n i^i TJ # i 

+ 2ay 4 y m / J L - : L _ V P . r . . ) i (2 Y + DY -ir2 

+ ]-z (v - i) ^ E m i 4 c'dt2 + \E ^ \& + 2 - a - ¥ k 
c at -j ) i P-J L 

+ (a + f) ^ ( P . ^ . ) fi-i 
m. ? 

d£ cdt - 2 a J ^ - 4 (Pn. dr.) 
i 

3 
p i 

l —' 
1 + 2(Y - a) 

i 

m. 
l [dr)' [2 i : 

where p_-j = _r - r_-i , r.i j = Li - Lj > mi = GM /̂c . In contrast to (1) , 
a is constant. In papers on PT̂N formalism, the coordinate system is 
fixed by the choice a = 0, v = 1. In papers on GRT, harmonic system, 
with a = v = 0 are used. Denoting harmonic coordinates by ^ we have 
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f j= t 
2c 

v 3 
- ? 3 t mipT 

i 
(22) 

E M I -

1 
77^ 

r. = r. - a 
—i —i 

Y -J- r.. 
^—' r. . —ij 

(23) 

In the post-Newtonian approximation the parameter v does not af­
fect the motion of bodies and l i g h t propagation. 

Main Re la t i v i s t i c Terms in Lunar Theory 

Let indices 1 and 2 in (21) be 
respectively. Taking into account 
Ft being the hel iocentr ic vector of 
converted to the geocentric system 
sidered as a probe par t i c le moving 
the Sun. Then the equations of lun 
pr inc ip le and are described by the 
consider here only a point-mass th 
Nordtvedt e f fec t (breaking the pr in 
bodies). Thus the var iat ional ineq 
importance. Neglecting the sun's e 
inc l ina t ion of the lunar o rb i t and 
the radius-vector p-j and longitude 
sions 

referred to the 
that m] << m2> pu 
the Earth determi 
£ = R. + P_l • The 
in the f i e l d (21) 
ar motion fol low 
Lagrangian L = c^ 
e results obtaine 
c ip le of equivale 
ua l i t i es turn out 
ccen t r i c i t y , the 
para l lac t ic terms 
v of the Moon the 

Earth and Sun 
t n = R, I? = 0, 
ned by (3) , (4) 
Moon w i l l be con-
of the Earth and 

from the geodesic 
- c (ds /d t ) , i f we 

d eliminate the 
nee for massive 
to be of the most 

eccentr ic i ty and 
, one may f ind for 
fol lowing expres-

Ml ? I ? 4 1 1 1 
z± = 1 - IT! COS 2D + . . . + n l-j( - p - j + -^a + -^{Zy + ])m 

. / L 2 109 . 15 \ 2 A 

+ 13Z~ " T 6 ^ ' m 2 C0S 4 D ' 

v = nt + 

(1 
11 
32 - ^ m s i n 4D 

11 ? 
— mc s i n 2D + 

1 - la + {]• + 2Y + 2f 

•^v. -

- la), 

11 
12 

(6 + 2Y)m" 

cos 2D 

(24) 

sin 2D 

(25) 

Here n is the lunar mean motion, N is the mean motion of the Sun 
related to the semimajor axis A of the Earth o rb i t by 
is consistent with values for y as in (3 ) , (4 ) , m = N/(n - N). 
the difference of the mean longitudes of the Moon and the Sun. 
H i l l ' s para l lac t ic factor 

n 1 2 

5 ) , n = N2A2/c2 

D is 
a^ is the 

a0 = '0X 
? 1 

rTajJ = GM] 
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These terms are obtained up to m inclusively. For a = 0 they 
agree with the expressions of Finkelstein and Kreinovich (1976). 

Lunar Laser Ranging 

In accordance with (21), the time t - tQ of light propagation 
between points rQ and r_, neglecting the motion of the bodies, is 
determined by 

c ( t - tQ) 

0) 

I" V + 2 > i (Y
 + D m ' + (o) 

i f Pi + Ps 

, + p{0' * la, - 4 
>£i 

2 p i p i 

(P, + P S 0 ) ) f 7 , A 2 

(OJ 
!£,-

W 
^ i 

/ (o)V / (o)V 
\Bi "-Hi ) -[* -e-i j (26) 

Introduce the distance S between the Earth stat ion and a re f lec tor 
on the Moon, the distance d between the centers of mass of the Earth 
and Moon, the hel iocentr ic distance R of the Earth, the geocentric 
angle H between the direct ions to the Sun and Moon and the rad i i de, 
dm of the Earth and Moon respect ively. Considering the lunar laser 
ranging is usually performed near the meridian of the laser stat ion 
one may put in r e l a t i v i s t i c terms S = d - de - dm and p(0) = d e , 
p-i = d - d™_ n\0) = R. no = R - H rn<; H. There fo re , thp rmmd-t.v 3m> P> 
coordinate time 

R, p2 = R - d cos H. 
interval w i l l be 

Therefore, the rpund-tr ip 

2S 
c 

m„ ? 

1 + -—• (Y + 1 - a s i n H) 
d - d 

+ -J- (2Y + 2) (27) 

For harmonic coordinates a = 0 th is formula was derived f i r s t by 
Baier lein (1967). Noticing the propor t ional i ty of the right-hand mem­
ber of (27) to S/c with p rac t i ca l l y a constant factor (the las t term 
in (27) may be mul t ip l ied wi th in the adopted accuracy by S/d), 
Baier le in came to conclusion that i t is impossible to reveal r e l a t i v ­
i s t i c effects in measuring T. But the right-hand member of Baier le in 's 
formula represents a coordinate-dependent expression va l id only in 
harmonic coordinates. In the Newtonian, part the distance S is not a 
physical ly measurable quant i ty. The expression of S in terms of 
measurable quant i t ies (mean motions of the Moon and Sun and grav i ta­
t ional parameters of the Earth and Sun) contains time-dependent 
r e l a t i v i s t i c correct ions. In accordance wi th (24), Newtonian value 
Ŝ , may be presented as follows 

a^Jl - m cos 2D + . . . ) (28) 

https://doi.org/10.1017/S0252921100081409 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100081409


ASTRONOMICAL MEASUREMENTS AND REFERENCE FRAMES 293 

Putting S = d in r e l a t i v i s t i c terms and using (24), there resul ts 

2SN m. d " dm , 2 ^ ( l 4„ , 3 . 1 
c ^ - ^ + f + i(2Y + l ) m 

1 0 9 L 2
 + 

95/m + 
1 + (Y + 2g - f)m2 cos 2D + 2̂ - m2 cos 4D> 

(29) 

This relation enables us to obtain a real estimate of the re la t iv ­
i s t i c effects in lunar laser ranging. The most significant periodic 
r e l a t i v i s t i c effect with the argument, 2D (with period of 14.76 days) 
depends rather faintly on parameters g, y and i t s amplitude is 
determined in fact by ycJg/2 = 2 meters (y = 10_8, m - 0.08, ajj = 4 • 10$ 
km). I t may be added that according to Finkelstein and Kreinovich 
(1976), parameters 3, Y make a contribution to the para l lac t ic term 
with the argument D and a coefficient proportional to y(aQ/A)/m. But 
the magnitude of this term is smaller by at least one order than the 
magnitude of the main r e l a t i v i s t i c variational term. 

The transformation to the proper time x of the laser station is 
performed by 

ml 
T 

e 

1 
2 RV - J u l dt (30) 

where R. is heliocentric velocity of the center of mass of the Earth, 
V_ is geocentric velocity of the laser s ta t ion. Integrating the righ-
hand member of (30) yields the known formula relating x and t (Mulhol-
land, 1972). Such a relation is necessary for an accurate computation 
of solar and lunar ephemerides. But in order to estimate the time 
delay in lunar laser ranging, one may neglect the variations of the 
functions appearing in (30) and consider this formula as a direct 
relation between proper x and coordinate T time delays. 

CONCLUSION 

The problem of determining astronomical reference frames meets 
with dif f icul t ies even at the Newtonian level (Kovalevsky, 1975). 
The theory of r e la t iv i ty increases these d i f f icu l t ies . Much remains 
to be done to perform all part of the Newtonian theory in a re la t iv­
i s t i c basis. In this paper some questions of the r e l a t i v i s t i c reduction 
of astronomical measurements have been considered. 

But the di f f icul t ies of the r e l a t i v i s t i c treatment of reference 
frames should not be exaggerated. The practical problem is to correlate 
results of measurements performed at different times in d is t inc t 
observatories. Knowing with some accuracy the metric of the gravita-
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t ional f i e l d , one may calculate the motions of observatories and 
reduce a l l measurements to one actual or f i c t i t i o u s laboratory at some 
moment of time (placed, for instance, in the center of mass of the 
Earth, Sun or Solar system). A discussion of such reduced measurements 
leads in turn to an improvement of the metr ic. 
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