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Abstract

We show that the fundamental groups of smooth 4-manifolds that admit geometric decompositions in
the sense of Thurston have asymptotic dimension at most four, and equal to four when aspherical. We
also show that closed 3-manifold groups have asymptotic dimension at most three. Our proof method
yields that the asymptotic dimension of closed 3-dimensional Alexandrov spaces is at most three. Thus,
we obtain that the Novikov conjecture holds for closed 4-manifolds with such a geometric decomposition
and for closed 3-dimensional Alexandrov spaces. Consequences of these results include a vanishing result
for the Yamabe invariant of certain 0-surgered geometric 4-manifolds and the existence of zero in the
spectrum of aspherical smooth 4-manifolds with a geometric decomposition.

2020 Mathematics subject classification: primary 57R19, 19D50, 53C45; secondary 57M50, 57N16.
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1. Introduction

The uniformization theorem for topological surfaces, proved by Koebe [35] and
Poincaré [47], showed that geometric structures can effectively classify distinct fam-
ilies of manifolds. Their geometric classification scheme involves the three constant
sectional curvature two-dimensional geometries.

In dimension three, constant sectional curvature manifolds are insufficient to
include all 3-manifolds. W.T. Thurston defined a model geometry as a complete,
simply connected Riemannian manifold X such that the group of isometries acts
transitively on X and contains a discrete subgroup with a finite-volume quotient.
A manifold X is said to be geometrizable, in the sense of Thurston, if X is
diffeomorphic to a connected sum of manifolds that admit a decomposition into

HCP was supported by UNAM Posdoctoral Program (POSDOC). PSS thanks the Max-Planck-Institute
for Mathematics in Bonn.
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Math-
ematical Publishing Association Inc. This is an Open Access article, distributed under the terms
of the Creative Commons Attribution-NonCommercial licence (https://creativecommons.org/licenses/
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. The written permission of Cambridge University Press must
be obtained for commercial re-use.

176

https://doi.org/10.1017/S1446788725000072 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1446788725000072
https://orcid.org/0000-0002-4820-1798
https://orcid.org/0000-0002-1138-0921
https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446788725000072&domain=pdf
https://doi.org/10.1017/S1446788725000072


[2] Asymptotic dimension and geometric decompositions 177

FIGURE 1. A sketch of a 4-manifold X whose connected summands admit a decomposition into Thurston
geometries. Each circular region represents a geometric manifold, tagged with its model geometry.
Different regions indicate parts that are either geometric or have a proper geometric decomposition. The
lower-most region represents a submanifold X1, which decomposes into pieces modeled on the geometries
H

2
C and F4, glued along nilpotent boundaries N1, N2. In the region on the right, we see a submanifold X2

that decomposes into H3 × E, H2 × E2, and S̃L2 × E pieces, glued along flat boundaries F1, F2. The strips
joining different regions represent connected sums. Let the central, real hyperbolic piece be X0. Then
X = X0#X1#X2#S3 × S1#CP2.

pieces, each modeled on a Thurston geometry. In dimension three, there are eight
model geometries, and manifolds modeled in these serve as building blocks that when
assembled produce a global description of a 3-manifold. Comprehensive descriptions
of the model geometries in dimension three may be found in Thurston’s book [58],
and in a survey by Scott [52]. The success of the geometrization program in dimension
three by Thurston and Hamilton–Perelman [44] leads us to wonder about the nature
of geometrizable manifolds in higher dimensions. Filipkiewicz [22] classified all
maximal four-dimensional model geometries. The following list includes all of the
four-dimensional Thurston geometries that admit finite-volume quotients.

S
4, CP2, S

3 × E, H
3 × E, S̃L2 × E, Nil3 × E,

Nil4, S
2 × E2, H2 × E2, Sol4m,n, Sol41, Sol40,

S
2 × S2, S2 × H2, E

4, F
4, H

4, H
2 × H2, H2

C

Detailed explanations and examples for all of these geometries are available in
the work of Hillman [31, page 133] and Wall [61]. To keep our exposition short, we
recommend that interested readers should consult those sources. In Figure 1, we show
a schematic example of one of these manifolds.

We have previously studied the minimal volume entropy problem [55], and the
existence of Einstein metrics [15] on manifolds in this family.
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178 H. Contreras Peruyero and P. Suárez-Serrato [3]

Gromov defined the asymptotic dimension, asdim Γ, of a metric space Γ as a coarse
analog of the Lebesgue covering dimension [28] (for details see Section 2.1 below).

Here, we show the following theorem, which is our first main result.

THEOREM 1.1. Let X be a closed orientable 4-manifold that is geometrizable in the
sense of Thurston. Then, the asymptotic dimension of π1(X) is at most 4. Moreover,
when X is aspherical, asdim π1(X) is equal to 4.

In the case of 3-manifolds, by the same methods, we show our second, main result.

THEOREM 1.2. Let Y be a closed 3-manifold. Then asdim π1(Y) ≤ 3. Moreover, when
Y is aspherical, asdim π1(Y) is equal to 3.

Our proof uses the geometrization of 3-manifolds, specifically, the description of
π1(Y) as a graph of groups. Although it may be known to some experts, Theorem 1.2
improves upon the available published bounds for asdim π1(Y) [20, 39]. In related
work, Ren showed that such a π1(Y) has finite decomposition complexity [48].
However, a bound was not made explicit. In the special case of Hadamard 3-manifolds,
Theorem 1.2 was shown previously by Lang and Schlichenmaier [36].

Alexandrov spaces are a generalization of smooth manifolds with bounded
curvature, in the sense that they include all limits of sequences of smooth manifolds
with sectional curvatures bounded below. Briefly, they are locally complete, locally
compact, connected length spaces that satisfy a lower curvature bound in the
triangle-comparison sense.

Following the same terminology as for 3-manifolds, an Alexandrov three-
dimensional space Y is called geometric, with a given model Thurston geometry,
if Y can be written as a quotient of that geometry by some cocompact lattice. A closed
Alexandrov three-dimensional space is said to admit a geometric decomposition if
there exists a collection of spheres, projective planes, tori and Klein bottles that
decompose Y into geometric pieces. A geometrization theorem for Alexandrov
3-spaces was shown by F. Galaz-García and Guijarro. They showed that a closed
three-dimensional Alexandrov space admits a geometric decomposition into geometric
three-dimensional Alexandrov spaces [25, Theorem 1.6]. Moreover, they proved that
an Alexandrov 3-space Y may be presented as the quotient of a smooth 3-manifold Y∗

by the action of an isometric involution [25, Lemma 1.8].
The universal cover of an Alexandrov space is, by definition, the simply connected

cover with the induced metric structure that makes the covering map into a local
isometry. Here, the fundamental group of a compact Alexandrov space will be seen
as a discrete group of isometries of its universal cover. More details and related
rigidity results for Alexandrov 3-spaces may be found in the recent survey by
Núñez-Zimbrón [40].

We obtain the following third main result as a consequence of Theorem 1.2.

THEOREM 1.3. Let Y be a closed 3-dimensional Alexandrov space. Then
asdim π1(Y) ≤ 3.
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[4] Asymptotic dimension and geometric decompositions 179

Our proof crucially uses the quasi-isometric invariance property of asdim, applied
to a specific action of a group on the universal covering space of the 3-manifold Y∗

that produces Y after quotienting out by the isometric involution.
Recall that a space is aspherical if its universal cover is contractible. Our main the-

orems yield information about the Baum–Connes, Novikov, and zero-in-the-spectrum
conjectures, contained in the following corollaries. Although we give more details
about these topics in Section 2, we point interested readers to available reviews of these
conjectures, for example, by Yu [65], Davis [17], Ferry et al. [21], and Weinberger [62].

COROLLARY 1.4. Let X be a manifold from Theorem 1.1. Then:

(i) the coarse Baum–Connes conjecture holds for X;
(ii) the Novikov conjecture holds for X; and
(iii) if X is aspherical, then its universal cover X̃ has a zero in the spectrum.

The second item above includes manifolds constructed using complex hyperbolic
pieces, which are not included in previous related work on higher graph manifolds
[2, 14, 24]. Moreover, these earlier results do not apply to dimension four, because
they depend on arguments from surgery theory that are not yet known to hold for
groups of exponential growth [23].

Lott showed that, for a closed geometric 4-manifold X, zero is in the
Laplace–Beltrami spectrum of X̃ [38, Proposition 18]. By comparison, Corollary 1.4
is shown by different methods. It subsumes previous work on aspherical geometric
manifolds, and further includes all the aspherical manifolds in Theorem 1.1.

Similarly, Theorem 1.3 has the following consequences.

COROLLARY 1.5. Let Y be a be a closed 3-dimensional Alexandrov space. Then:

(i) the coarse Baum–Connes conjecture holds for Y;
(ii) the Novikov conjecture holds for Y; and
(iii) if X is aspherical, then its universal cover X̃ has a zero in the spectrum.

Previous related work showing the Novikov conjecture holds for singular spaces
includes that of Ji on buildings [34], and on torsion-free arithmetic subgroups of
connected, rational, linear algebraic groups [33].

A conjecture attributed to Gromov–Lawson–Rosengberg states that there do not
exist Riemannian metrics with positive scalar curvature on compact aspherical
manifolds. As a consequence of Theorem 1.1 and work of Yu [63] (and, alternatively, of
Dranishnikov [18]), the aspherical manifolds in Theorem 1.1 do not admit Riemannian
metrics of positive scalar curvature. This result was recently shown for all aspherical
smooth 4-manifolds by Chodosh–Li [12] and by Gromov [29]. Nevertheless, our
methods provide an independent proof for the manifolds in Theorem 1.1.

A natural approach to understanding how topology and geometry are coupled is by
minimizing the curvature that a Riemannian manifold may have. One way to achieve
this is to minimize a norm of a curvature tensor. Let (M, g) be a compact Riemannian
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manifold with a smooth metric g. Consider a conformal class of Riemannian metrics,
γ := [g] = {u · g | M u−→ R+}.

The Yamabe constant of (M, g) is defined as

Y(M, γ) := inf
g∈γ

∫
M Scalgdvolg

(Vol(M, g))2/n .

Here, Scalg denotes the scalar curvature and dvolg denotes the volume form of g. The
Yamabe invariant of a manifold M is then defined to be Y(M) := sup

γ
Y(M, γ).

Next, we present an application of Theorem 1.1 to the study of the Yamabe invariant.

COROLLARY 1.6. Let X be a manifold from Theorem 1.1. If the geometric pieces of X
are modeled on the geometries

E
4, H

3 × E, H
2 × E2, Nil4, Sol41,

S̃L2 × E, Nil3 × E, Sol4m,n, Sol40, or F4,

then the Yamabe invariant of X#k(S3 × S1), with k ∈ {0, 1, 2, . . . }, vanishes.

This improves upon results by the second-named author [54, Lemme 1.4,
Proposition 2.6(i)], covering only closed E4,H3 × E, or H2 × E2 manifolds. In those
cases, the existence of a nonpositive sectional curvature metric obstructs the existence
of positive scalar curvature metrics.

When restricted to the special case of symplectic manifolds, Corollary 1.6 includes
previously known results, shown by the second-named author with an additional
hypothesis [54, Lemme 2.4], and by the second-named author and Torres [56].

Wall [61] showed that there is a close relationship between geometric structures
and complex surfaces. So, in Corollary 1.6, there is some overlap with the work of
LeBrun, who, as a part of a tour-de-force of results on the Yamabe invariant, showed
that compact complex surfaces of Kodaira dimension zero or one have null Yamabe
invariants [37]. For compact complex surfaces that admit a geometric structure listed
in Corollary 1.6, we now have an independent proof that their Yamabe invariant is
zero. For example, the compact complex surfaces known as Inoue surfaces are exactly
those admitting one of the geometries Sol40 or Sol41 [61]. Albanese recently showed
that Inoue surfaces have zero Yamabe invariants [1], and Corollary 1.6 now gives an
alternative proof.

Finally, we take this opportunity to include the following result that recovers part of
LeBrun’s aforementioned theorem [37], and for which we can now produce a simple
proof (given what is needed for the previous Corollary).

LEMMA 1.7. Let X be an aspherical compact complex surface of Kodaira dimension
at most one and which is not of class VII. Then Y(X) = 0.

Here, as usual, the Kodaira dimension κ = lim supm→∞(log(Pm(X))/ log m), where
Pm(X) is the dimension of the space of holomorphic sections of the m th tensor power
of the canonical line bundle of X, and κ := −∞ if Pm(X) = 0 for all m. Surfaces of
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Kodaira dimension −∞ that are not Kähler are called surfaces of class VII. These
include Inoue surfaces with vanishing second Betti numbers (featured in Corol-
lary 1.6), Hopf surfaces (which are known to be geometric, but are not aspherical),
certain compact elliptic surfaces, and surfaces with a global spherical shell, which
have positive second Betti numbers and are not aspherical. These are conjecturally all
the minimal surfaces of class VII. Similar results were previously shown for symplectic
4-manifolds by Torres and the second-named author [56, Theorem 2].

The relevant definitions for the concepts appearing in Corollaries 1.4, 1.5, and 1.6
are found in Sections 2.8, 2.9, 2.10, and 2.11. The proofs of each of the items in
Corollaries 1.4 and 1.5 appear as Corollaries 2.25, 2.29, and 2.31.

The proofs of Theorems 1.1 and 1.2 rely on close examinations of the fundamental
groups involved; both are in Section 3. We use various properties and operations
on groups to bound the asymptotic dimension from both sides. We rely on the fact
that the asymptotic dimension of lower-dimensional manifolds is finite. Extending
our techniques to higher-dimensional manifolds would first require knowing that
the asymptotic dimension of all lower dimensions (appearing on the boundaries) is
finite, which is currently an open question. Related results are available for higher
graph manifolds, due to the second-named author in collaborations with Connell [14],
and with Bárcenas and Juan Pineda [2]. All of these strategies are reminiscent of
the original work of Wall [60, Section 12] on codimension-one splittings along
a hypersurface, and of Cappell [8, 9] on amalgamated products. However, those
arguments from classical surgery theory need to assume that the dimension of the
manifold is at least five.

2. Preliminaries and proofs of Corollaries 1.4, 1.5, and 1.6

2.1. Definition of asymptotic dimension. Gromov introduced the concept of the
asymptotic dimension of a metric space (X, d) [28]. There are several equivalent
definitions. The following definition is the one that we use.

DEFINITION 2.1. We say that the asymptotic dimension of (X, d) does not exceed n,
written asdim X ≤ n, if, for each D > 0, there exist B ≥ 0 and families U0, . . . ,Un of
subsets that form a cover of X such that:

(i) for all i ≤ n and all U inUi, their diameter satisfies diam (U) ≤ B; and
(ii) for all i ≤ n and all U and V inUi, if U � V , then d(U, V) > D.

Although internalizing this definition may take some time, we recommend consult-
ing the friendly and accessible exposition by Bell [4]. In Figure 2, we see a specific
cover, by bricks on a plane, illustrating the two points of Definition 2.1. First, all
bricks are isometric, so their diameter is the same. Second, different bricks need to
be translated at least a distance D to match, and this quantity depends on the size of
the brick (itself determined by its diameter B).

Let Γ be a finitely generated group and let S be a finite generating set. The
word length with respect to S, denoted by lS, of an element γ ∈ Γ is the smallest
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FIGURE 2. This covering by bricks is helpful in understanding why the asdim of R2 is at most two. Observe
that a point in the plane either lies in the interior of a brick, or it lies on the boundary of a brick. In the
former case, there is a neighborhood contained in the brick. In the latter, there are two options: it either
lies exactly at the point where three bricks meet or it does not. In either of these cases, the neighborhood
of the point will intersect at most (dim(R2) + 1) bricks.

integer n ≥ 0 for which there exist s1, . . . , sn ∈ S ∪ S−1 such that γ = s1 · · · sn. The word
metric, denoted by dS, is defined as dS(γ1, γ2) = lS(γ−1

1 γ2). A finitely presented group,
equipped with the word metric, is a metric space. We refer the reader to the work
of Bell and Dranishnikov [6] for multiple examples of groups and spaces with finite
asymptotic dimension. For a finitely generated group Γ, the asymptotic dimension is a
group property, that is, it is independent of the choice of generators [6, Corollary 51].

LEMMA 2.2.

(i) [49, Example 9.6] The Euclidean n-dimensional space En has asymptotic
dimension equal to n.

(ii) [50] The real hyperbolic n-dimensional space Hn has asymptotic dimension
equal to n.

(iii) [6, Proposition 60] Let Γ be a finitely generated group. Then asdim Γ = 0 if and
only if Γ is finite.

A pair of metric spaces (X1, d1), (X2, d2) is called quasi-isometric if there exists a
map f : X1 → X2 and constants B > 0 and C ≥ 1 such that:

(1) for every pair of points x, y in X1,

1
B
· d1(x, y) − C ≤ d2( f (x), f (y)) ≤ B · d1(x, y) + C; and

(2) every point of X2 lies within a C-neighborhood of the image f (X1).

A well-known property of the asymptotic dimension is that it is an invariant of
the quasi-isometry type of a finitely generated group Γ [28]. As a consequence of the
Milnor–Švarc lemma, if M is a compact Riemannian manifold with universal cover M̃
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[8] Asymptotic dimension and geometric decompositions 183

and finitely generated group π1(M), then M̃ is quasi-isometric to π1(M) (with the word
metric). Therefore [6, Corollary 56],

asdim(M̃) = asdim(π1(M)). (2-1)

As an illustrative example, and because we need it later on, we focus now on the case
of surface groups and show the well-known fact that they have asymptotic dimensions
bounded above by 2.

LEMMA 2.3. Let Γ be the fundamental group of a closed 2-manifold. Then
asdim Γ ≤ 2.

PROOF. By the uniformization theorem for surfaces, Γ may be represented as either
the trivial group, a flat 2-manifold group ΓF, or the fundamental group of a genus g ≥ 2
surface with a hyperbolic metric ΓH . Observe that ΓF is quasi-isometric to E2 and ΓH is
quasi-isometric to H2. Therefore, by Lemma 2.2 and Equation (2-1), in all these cases,
asdim Γ ≤ 2. �

The following result was shown by Carlsson and Goldfarb.

LEMMA 2.4 [11, Corollary 3.6]. Let Γ be a compact lattice in a connected Lie group
G and let K be its maximal compact subgroup. Then asdim(Γ) = dim(G/K).

Next, we recall the definition of a coarse space, following Roe’s book [49].

DEFINITION 2.5. Let X be a set. A collection of subsets E of X × X is called a coarse
structure, and the elements of E are called entourages if the following axioms are
satisfied.

(i) A subset of an entourage is an entourage.
(ii) A finite union of entourages is an entourage.
(iii) The diagonal ΔX := {(x, x) | x ∈ X} is an entourage.
(iv) The inverse E−1 of an entourage E is an entourage: that is,

E−1 := {(y, x) ∈ X × X | (x, y) ∈ E}.

(v) The composition E1E2 of entourages E1 and E2 is an entourage: that is,

E1E2 := {(x, z) ∈ X × X | there exists y ∈ X, (x, y) ∈ E1, and (y, z) ∈ E2}.

The pair (X,E) is called a coarse space.

For example, topological manifolds M are coarse spaces, where entourages may be
defined as neighborhoods of points in M ×M [49, Ch. 2].

A pair of coarse spaces X, Y is coarse equivalent if there exist coarse maps
f : X −→ Y and g : Y −→ X such that the compositions f ◦ g and g ◦ f are close to
the identity maps on Y and X, respectively. An action of a discrete group Γ on a
metric space X is proper if, for every compact subset B ⊂ X and for all but finitely
many γ in Γ, the intersection γ(B) ∩ B = ∅. Let Γ be a discrete group acting properly
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on a proper metric space X. Then the asymptotic dimensions of Γ and X satisfy the
following relationship.

THEOREM 2.6 [33, Proposition 2.3]. Let (M, d) be a proper metric space. If a finitely
generated group Γ acts properly and isometrically on M, then, for any point x ∈ M, the
map (Γ, dS) −→ (Γx, d), γ −→ γ · x is a coarse equivalence, and hence

asdim Γ ≤ asdim M.

The following extension theorem of Bell and Dranishnikov [6] covers the case of
an exact sequence.

THEOREM 2.7 [6, Theorem 63]. Let 1 −→ K −→ G −→ H −→ 1 be an exact sequence
with G finitely generated. Then

asdim G ≤ asdim H + asdim K. (2-2)

The previous theorem is crucial for geometric decompositions that are injective
at the level of the fundamental group, as these determine a splitting into a graph of
groups. There are also some cases, involving decompositions into H2 × H2 pieces, that
fail to be π1-injective. We will treat that situation with the following result.

THEOREM 2.8 [5, Finite Union Theorem]. Suppose that a metric space is presented
as a union of subspaces A ∪ B. Then

asdim A ∪ B ≤ max{asdim A, asdim B}.

Let (X1,EX1 ) and (X2,EX2 ) be coarse spaces. Denote by pi : X1 × X2 −→ Xi the
projection to the i th factor. The product coarse structure is defined as

EX1 ∗ EX2 := {E ⊆ (X1 × X2)2 | (p1 × p2)(E) ∈ EXi for i ∈ {1, 2}}.

The following proposition was shown by Grave [26, Proposition 20].

PROPOSITION 2.9. Let (X,EX) and (Y ,EY ) be coarse spaces. Then

asdim(X × Y ,EX ∗ EY ) ≤ asdim(X,EX) + asdim(Y ,EY ). (2-3)

However, in general, the equality in Equation (2-3) does not hold (see [6, 26]).

2.2. Fundamental groups of geometrizable manifolds. Let M be an orientable
smooth four manifold that admits a proper geometric decomposition. A standard
argument using the Seifert–van Kampen theorem shows that π1(M) is isomorphic to
an amalgamated product A ∗C B or to an HNN-extension A∗C.

Here, A is the fundamental group of one of the geometric pieces.
Let Γ be a graph with vertex set V and directed edge set E. A graph of groups over Γ

is an object G that assigns to each vertex v a group Gv, and to each edge e a group Ge,
together with two injective homomorphism φe : Ge −→ Gi(e) and φē : Ge −→ Gt(e).
Here, ē is the edge with reverse orientation, the vertex i(e) is the initial vertex of e,
and the vertex t(e) is the final vertex of e.
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[10] Asymptotic dimension and geometric decompositions 185

An orientable smooth 4-manifold that admits a proper, π1-injective, geometric
decomposition has a fundamental group that is isomorphic to a graph of groups
constructed as an iterated amalgamated product [31, 55]. Observe that the only smooth
4-manifolds that admit geometric decompositions that are not π1-injective are those
with irreducible H2 × H2 pieces [31].

Bell and Dranishnikov proved the following results about the asymptotic dimen-
sions of amalgams [6, Theorem 82].

THEOREM 2.10. Let A and B be finitely generated groups and let C be a subgroup of
both. Then

asdim(A ∗C B) ≤ max{asdim A, asdim B, asdim C + 1}.

2.3. Aspherical geometrizable 4-manifolds. Hillman obtained the following clas-
sification of closed aspherical 4-manifolds with a geometric decomposition.

THEOREM 2.11 [31, Theorem 7.2]. If a closed 4-manifold M admits a geometric
decomposition, then either:

(1) M is geometric; or
(2) M is the total space of an orbifold with general fiber S2 over a hyperbolic

2-orbifold; or
(3) the components of M\ ∪ S all have geometry H2 × H2; or
(4) the components of M\ ∪ S have geometry H4, H3 × E1, H2 × E2 or S̃L2 × E2; or
(5) the components of M\ ∪ S have geometry H2

C or F4.

In cases (3), (4), and (5) χ(M) ≥ 0, and in cases (4) and (5) M is aspherical.

In the geometric case (1), M is aspherical only when its model geometry is
aspherical, and thus it must be modeled on E4, H4, H3 × E, H2 × E2, H2 × H2,
H

2
C, S̃L2 × E, Nil3 × E, Nil4, Sol41, Sol4m,n, or Sol40. In case (2), M is never an

aspherical manifold. Hillman expresses precise conditions under which such an
orbifold bundle with a geometric decomposition is not geometric [31, Theorem 10.2].

In case (3), we may or may not obtain aspherical manifolds, although some easy
constructions are well known to produce aspherical examples [31].

2.4. Hyperbolicity and relative hyperbolicity. A geodesic metric space (X, d) is
called δ-hyperbolic for δ ≥ 0 if d(x′, y′) ≤ δ whenever x, y, z ∈ X, x′ and y′ lie on the
geodesics from z to x and y, respectively, and if

d(x′, z) = d(y′, z) ≤ (1/2)(d(x, z) + d(y, z) − d(x, y)).

Let Γ be a finite group with finite generating set S. The Cayley graph of Γ, with
respect to S, is the graph C(Γ, S) whose vertices are the elements of Γ and whose
edge set is {(γ, γ · s) | γ ∈ Γ, s ∈ S\{e}}. We say that Γ is hyperbolic if the Cayley
graph C(Γ, S) associated to Γ is a δ-hyperbolic metric space, for some δ > 0. Gromov
observed that hyperbolic groups have finite asymptotic dimension [28], and a short
proof was made available by Roe [50].
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THEOREM 2.12. Finitely generated hyperbolic groups have finite asymptotic
dimension.

Let Γ be a group and consider a collection of subgroups {Hλ}λ∈Λ of Γ, indexed by Λ.
Let X be a subset of Γ. We say that X is a relative generating set of Γ with respect to the
collection {Hλ}λ∈Λ if Γ is generated by X ∪ (

⋃
λ Hλ). Let F(X) be the free group with

basis X. Then the group Γ can be expressed as the quotient group of the free group
F = (∗λ∈ΛHλ) ∗ F(X). We say that the group Γ has a relative presentation

〈X, Hλ, λ ∈ Λ | R = 1, R ∈ R 〉

if the kernel N of the natural homomorphism ε : F −→ Γ is a normal closure of a
subset R ∈ N in the group F.

If X and R are finite, then we say that the group Γ is finitely presented relative to
the collection of subgroups {Hλ}λ∈Λ.

Let H = ⊔λ∈Λ(Hλ\{1}). A word W in the alphabet X ∪H that represents 1 in the
group Γ admits an expression in terms of the elements of R and F given by

W =F

k∏
i=1

f −1
i R±1

i fi. (2-4)

Here, =F denotes equality in the group F, Ri ∈ R, and fi ∈ F for i = 1, . . . , k. The
relative area of W, denoted by Arearel(W), is the smallest number k in a representation
of the form in Equation (2-4).

A group Γ is hyperbolic relative to a collection of subgroups {Hλ}λ∈Λ if Γ is finitely
presented relative to the collection and there is a constant L > 0 such that, for any word
W ∈ X

⋃
(
⊔
λ(Hλ\{1})) that represents the identity in Γ, we have Arearel(W) ≤ L||W ||.

The next result that we need was shown by Dahmani–Yaman [16, Corollary 0.2] for
groups that are hyperbolic relative to a family of virtually nilpotent subgroups, and by
Osin [41, Theorem 1.2] in a more general form.

THEOREM 2.13. Let Γ be a finitely generated group that is hyperbolic relative to a
finite collection of subgroups {Hλ}λ∈Λ. If each of the groups Hλ has finite asymptotic
dimension, then asdim Γ < ∞.

2.5. Nagata dimension. Let X be a metric space and consider a family B = (Bi)i∈I
of subsets of X, with index set I. For some constant D ≥ 0, the family B will be called
D-bounded if, for all i ∈ I, diam Bi := sup{d(x, x′) | x, x′ ∈ Bi} ≤ D.

The multiplicity of the family is defined as the infimum over all integers n ≥ 0 such
that every point in the metric space X is in at most n elements of B. Let s > 0 be a
constant. The s-multiplicity of the family B is the infimum over all n such that every
subset of X of diameter ≤ s intersects at most n elements of B.

DEFINITION 2.14. Let X be a metric space. The Nagata dimension of X, denoted by
dimN X, is the infimum of all integers n such that there exists a constant c such that,
for all s > 0, X has a (c · s)-bounded covering with s-multiplicity at most n + 1.
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In Figure 2, we have a family B = (Bi)i∈I of bricks of sides l1 ≤ l2. These bricks

constitute a (c · s)-bounded collection of subsets of R2, where c equals
√

(l21 + l22)/s.
Now, to see that the multiplicity of that family is at most three, we need to observe
the following cases. Let x be a point in R2 inside a brick and consider a ball B(x, r)
centered on x of radius r ≤ l1/2. Then B(x, r) intersects just one of the bricks.

Now, let x be a point in the boundary of two or three bricks and consider again a
ball B′(x, r) of radius r ≤ l1/2 with center in x. Then B′(x, r) intersects two bricks if x
lies on the boundary of exactly two bricks, and it intersects three bricks if x lies on the
corner of a brick. We have exhibited a family of subsets of X with multiplicity at most
three, and therefore the Nagata dimension of R2 is at most two.

REMARK 2.15. By definition, the Nagata dimension is an upper bound for the
asymptotic dimension, that is,

dimN X ≥ asdim X.

The following result by Lang–Schlichenmaier [36] will be useful later.

THEOREM 2.16 [36, Theorem 3.7]. Let X be an n-dimensional Hadamard manifold
whose sectional curvature K satisfies −b2 ≤ K ≤ −a2 for some positive constants
b ≥ a. Then dimN X = n.

For example, we obtain the following corollary.

COROLLARY 2.17. The Nagata dimension of H2
C is equal to four.

PROOF. Recall that the sectional curvature of the Bergman metric on H2
C is bounded

between −4 and −1. As the real dimension of H2
C is equal to four, Theorem 2.16 yields

dimN H
2
C = 4. �

2.6. Lower cohomological bounds. There are several equivalent definitions of
cohomological dimension. Consider the following, based on K.S. Brown’s book
[7, Section VIII], where the definition of group cohomology Hn(Γ, Z) may also be
found.

DEFINITION 2.18. The cohomological dimension of a group Γ, denoted by cd(Γ), is
defined as

cd(Γ) = sup{n | Hn(Γ, Z) � 0}.

The dimension of an aspherical manifold provides an upper bound for the cohomo-
logical dimension of its fundamental group.

PROPOSITION 2.19 [7, Proposition 8.1]. Suppose that Y is a d-dimensional
K(Γ, 1)-manifold (possibly with boundary). Then:

(1) cd(Γ) ≤ d, with equality if and only if Y is closed (that is, compact and without
boundary); and

(2) if Y is compact, then Γ has a finite classifying space BΓ.
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As a consequence of this proposition, if M is an aspherical manifold, then

cd(π1(M)) = dim M.

Dranishnikov showed the following proposition.

PROPOSITION 2.20 [19, Proposition 5.10]. Let Γ be a finitely presented discrete group
such that its classifying space BΓ is dominated by a finite complex. Then

asdim Γ ≥ cd(Γ).

In the case of aspherical manifolds, we obtain the next lemma.

LEMMA 2.21. Let M be an aspherical manifold. Then

asdim π1(M) ≥ cd(π1(M)) = dim M. (2-5)

PROOF. This is mentioned by Gromov in his asymptotic invariants of infinite groups
essay [28, page 33]. A proof also follows by observing that, for a fundamental group
π1(M) of a compact aspherical manifold, M itself is a finite model for the classifying
space Bπ1(M). Therefore, by Proposition 2.20, inequality (2-5) holds. �

2.7. Properties of Alexandrov spaces of dimension three. A metric space (X, d)
is called a length space if, for every x, y ∈ X, d(x, y) = inf{L(γ) | γ(a) = x, γ(b) = y}.
Here, the infimum is taken over all continuous curves γ : [a, b]→ X, and L(γ) denotes
the length of the curve γ, defined as

L(γ) = sup
F

{ n−1∑
i=1

d(γ(ti), γ(ti+1))
}
,

where the supremum runs over all finite partitions F of [a, b].
Observe that if the length metric space (X, d) is complete and locally compact, then

there exists at least one geodesic between each pair of points x, y ∈ X.
Let k be a real number. We call a complete, simply connected two-dimensional

Riemannian manifold of constant curvature k a model space, and denote it by M2
k .

Depending on the sign of k, the space M2
k is isometric to one of the following [35, 47].

(1) If k > 0, then it is a sphere of constant curvature k, S2
k .

(2) If k = 0, then it is the Euclidean plane of null curvature, E2
k .

(3) If k < 0, then it is a hyperbolic plane of constant curvature k, H2
k .

Let |·, ·| be the usual length metric on the corresponding model space. Consider a
geodesic triangle pqr in the length space (X, d). That is, pqr is a collection of three
points p, q, r ∈ X and the segments connecting them, [pq], [qr] and [rp], are geodesics.
Given a geodesic triangle pqr in X, the geodesic triangle p̄, q̄, r̄ in the model space M2

k
is a comparison triangle for pqr if d(p, q) = |p, q|, d(q, r) = |q, r|, and d(r, p) = |r, p|.
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A length space (X, d) is said to have curvature bounded below by k ∈ R if, for every
x ∈ X, there exists an open neighborhood U ⊂ X of x such that, for every geodesic
triangle pqr in X and every comparison triangle p̄, q̄, r̄ in the model space M2

k , for all
s ∈ [p, q] and s̄ ∈ [(̄p), (̄q)] such that d(p, s) = |p̄, s̄|, we have that d(r, s) ≥ |r̄ − s̄|.

An Alexandrov space is a complete and locally compact length space (X, d) with
curvature bounded below by some k ∈ R. The following geometrization theorem for
Alexandrov 3-spaces was shown by F. Galaz-García and Guijarro.

THEOREM 2.22 [25]. A closed three-dimensional Alexandrov space admits a geomet-
ric decomposition into geometric three-dimensional Alexandrov spaces.

Moreover, they showed that an Alexandrov 3-space Y may be presented as the
quotient of a smooth 3-manifold Y∗, under the action of an isometric involution
ι : Y∗ → Y∗ [25, Lemma 1.8]. The fixed points of ι descend under the quotient to the
singular points S(Y) of the Alexandrov structure on Y.

We need the following Lemma, included here for completeness.

LEMMA 2.23. The universal coverings Ỹ∗ and Ỹ of the spaces Y∗ and Y, mentioned
immediately above (and in the same order), are the same. This universal covering
space is unique up to covering isomorphism.

Although this is likely to be evident to experts, we include a brief proof.

PROOF. The space Y, being presented as a global quotient of the 3-manifold Y∗, is
a very good orbifold. In this light, the quotient map Y∗ → Y is an orbifold covering
map. Now observe the fact, first recorded by Thurston in his notes [57] (with further
details also provided by Choi [13, Proposition 8]), that there exists a universal covering
orbifold, and that it is unique up to covering isomorphism. A standard argument proves
uniqueness, and extensive details are also available [13, Proposition 9]. �

2.8. Coarse Baum–Connes conjecture. Let M be a manifold and let Γ = π1(M).
Recall that a metric space is called proper if closed, bounded sets are compact.
The group Γ endowed with the word metric is a proper metric space. Consider the
C∗-algebra C∗(Γ). The coarse assembly map is defined as

μX : KX∗(Γ) −→ K∗(C∗(Γ)),

where K∗(C∗(Γ)) denotes the K-theory of the C∗-algebra and KX∗(Γ) is the limit of the
K-homology groups (see [59]). A metric space is said to have bounded geometry if,
for every r > 0, the cardinality of balls of radius r is uniformly bounded. The coarse
Baum–Connes conjecture states that if a proper metric space has bounded geometry,
then the coarse assembly map is an isomorphism. Yu [63] proved the following:
theorem.

THEOREM 2.24 [63, Theorem 7.1]. The coarse Baum–Connes conjecture holds for
proper metric spaces with finite asymptotic dimension.
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Therefore, combining Theorems 1.1, 1.3, and 2.24, we obtain a proof of the
following result.

COROLLARY 2.25.

(i) Let X be an oriented closed 4-manifold that is either geometric or admits a
geometric decomposition, as in Theorem 1.1. Then the coarse Baum–Connes
conjecture holds for π1(X).

(ii) Let Y be a closed three-dimensional Alexandrov space. Then the coarse
Baum–Connes conjecture holds for π1(Y).

2.9. Novikov conjecture. Let M be a manifold and let Γ = π1(M). If M is oriented,
then a rational cohomology class x ∈ H∗(BΓ, Q) defines a rational characteristic
number, called a higher signature (see [63]): that is,

σx(M, u) = 〈L(M) ∪ u∗(x), [M]〉 ∈ Q.

Here, L(M) is the Hirzebruch L-genus and u : M −→ BΓ is the classifying map.
The Novikov conjecture posits that all higher signatures are invariants of oriented
homotopy equivalences over BΓ.

As a way of explaining how a good picture of a metric space could be ‘drawn’ inside
a Hilbert space, Gromov [28] introduced the following concept.

DEFINITION 2.26. Let (H, dH) be a Hilbert space and let (X, d) be a metric space.
A map f : X → H is a coarse embedding into H if there exist nondecreasing functions
ρ1 and ρ2 on [0,∞) such that:

(1) ρ2(d(x, y)) ≤ dH( f (x), f (y)) ≤ ρ1(d(x, y)), for all x, y in X; and
(2) limr→+∞ ρ1(r) = +∞.

Coarse embeddability of a countable group into a Hilbert space is independent of
the choice of proper length metrics [28]. Crucially for us, groups with finite asymptotic
dimensions are coarsely embeddable into a Hilbert space [64]. Moreover, the next
result follows from Yu [64], Higson [30], and Skandalis et al. [53] (see [65, Section 3]).

THEOREM 2.27. The Novikov conjecture holds if the fundamental group of a manifold
is coarsely embeddable into a Hilbert space.

The following result was established by Yu [65] (see also Bartels [3, Theorems 1.1
and 7.2] and Carlsson–Goldfarb [10, Main Theorem]).

COROLLARY 2.28 [65, Corollary 7.2]. Let Γ be a finitely generated group whose
classifying space has the homotopy type of a finite CW complex. If Γ has finite
asymptotic dimension (as a metric space with a word-length metric), then the Novikov
conjecture holds for Γ.
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COROLLARY 2.29.

(i) Let X be an oriented closed 4-manifold that is either geometric or admits a
geometric decomposition, as in Theorem 1.1. Then the Novikov conjecture holds
for X.

(ii) Let Y be a closed three-dimensional Alexandrov space. Then the Novikov
conjecture holds for Y.

To the best of our knowledge, the second item in Corollary 2.29 above is new.

PROOF. Combining Theorems 1.1, 1.3, and 2.27, we obtain the first item.
For the second item, we have already shown in Theorem 1.3 that Y has finite

asymptotic dimension. Moreover, as Y is aspherical, it serves as its own classifying
space. Hence, by Proposition 2.28, it remains to show that a closed three-dimensional
Alexandrov space Y is a finite CW complex.

Recall that we may decompose Y into a 3-manifold with boundary Y0 together with
a finite and pairwise disjoint collection of cones over RP2, one for each singular point
s in the singular set SY (see [25, Section 1]). Therefore, to describe an explicit finite
CW-complex structure on Y, we will describe one on a cone over RP2 and explain how
this may be made compatible with a CW structure on Y0. Repeating this process for
each s in SY will then exhibit a finite CW-complex structure on Y.

First, we describe a CW structure on RP2 as follows.

(1) 0-cell: a single point, denoted e0.
(2) 1-cell: a single 1-cell, denoted e1, with its boundary attached to e0.
(3) 2-cell: a single 2-cell, denoted e2, with its boundary attached to e1.

The attachment map for e2 is the map that identifies antipodal points on the
boundary of the 2-cell with the 1-cell.

Second, from the CW structure on RP2, we describe a CW structure on C(RP2), the
cone over RP2.

(1) 0-cells:
e0

1: the original 0-cell of RP2.
e0

2: the apex.
(2) 1-cells:

e1
1: the original 1-cell of RP2.

e1
2: the 1-cell connecting e0

1 and e0
2.

e1
3: a 1-cell connecting e0

2 to a point on e1
1. (Note: This 1-cell can be identified

with the interval [0,1], and its boundary is attached to e0
2 and e1

1.)
(3) 2-cells:

e2
1: the original 2-cell of RP2.

e2
2: a 2-cell connecting e0

2 to the boundary of e2
1. (Note: This 2-cell can be

identified with a cone over a disk, and its boundary is attached to e1
2 and e2

1.)
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Third, as Y0 is a 3-manifold with boundary, it admits a finite CW structure. Consider
a CW structure on Y0 such that its restriction to each boundary component gives the
same CW structure on RP2 as described in the first step.

Collecting the previous steps, we construct a finite CW structure on Y. �

2.10. Zero in the spectrum. Recall that the Laplace–Beltrami operator Δp, with
0 ≤ p ≤ n, of a complete oriented Riemannian n-manifold acts on square-integrable
forms. It is an essentially self-adjoint positive operator, so its spectrum is a subset of
the positive reals. A space X is said to be uniformly contractible if, for each R > 0,
there exists some S > R such that, for all x ∈ X, the ball B(x, R) is contractible within
B(x, S). Gromov’s zero-in-the-spectrum conjecture asks whether the spectrum of Δp

of a uniformly contractible Riemannian n-manifold contains zero, for any 0 ≤ p ≤ n
(see [38]). As a consequence of Theorem 2.24, Yu showed the following corollary.

COROLLARY 2.30 [63, Corollary 7.4]. Gromov’s zero-in-the-spectrum conjecture
holds for uniformly contractible Riemannian manifolds with finite asymptotic
dimension.

Recall that the universal cover of an aspherical manifold is not only contractible
but also uniformly contractible. This means that the contraction can be performed
in a controlled manner, independent of the starting point. Therefore, the following
corollary holds.

COROLLARY 2.31. Let Z be either an aspherical manifold from Theorem 1.1 or a
closed aspherical three-dimensional Alexandrov space. Then there exists a p ≥ 0,
such that zero belongs to the spectrum of the Laplace–Beltrami operator Δp acting
on square-integrable p-forms of the universal cover Z̃ of Z.

PROOF. Observe that, by Corollary 2.30, the result holds for an aspherical manifold X
from Theorem 1.1.

Let Y be a closed, aspherical, three-dimensional Alexandrov space. Then, by the
universal property in Lemma 2.23, its universal covering space Ỹ is also the universal
cover of the manifold Y∗ that is a (potential) double branched cover of Y. So Ỹ is a
smooth manifold, and, moreover, the Alexandrov structure on Y lifts to a Riemannian
metric g on Y∗ such that Y is the quotient of (Y∗, g) with respect to an isometric
involution (see [25, Section 1]). Then we lift g to g̃ on the universal covering Ỹ of Y.
Consider the Laplace–Beltrami operator Δp acting on square-integrable p-forms, on
the smooth Riemannian manifold (Ỹ , g̃). Observe that the asymptotic dimension of Ỹ
is finite, because it is equal to that of π1(Y), which is at most three by Theorem 1.3.
Therefore, again by Corollary 2.30, Gromov’s zero-in-the-spectrum conjecture holds
for Ỹ . �

2.11. Yamabe invariant. Obtaining bounds, or exact computations, of the Yamabe
invariant is a notoriously difficult problem. Schoen [51] showed that:
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(i) M has Y(M) > 0 if and only if it admits a positive scalar curvature smooth
metric; and

(ii) if M admits a volume collapsing sequence of metrics with bounded curvature,
then Y(X) ≥ 0.

A notable result by Petean states that every simply connected smooth compact
manifold of dimension greater than four has nonnegative Yamabe invariant [46].

As previously mentioned, Yu showed that an aspherical manifold with fundamental
group of finite asymptotic dimension does not admit a metric of positive scalar
curvature [63].

We now recall a notion, first introduced by Gromov [27], that generalizes the
effect of having a circle action in terms of vanishing of various invariants of smooth
manifolds (compare with [42]).

An F -structure on a closed manifold M is given by:

(1) a finite open cover {U1, . . . , UN};
(2) πi : Ũi → Ui a finite Galois covering with group of deck transformations Γi,

1 ≤ i ≤ N;
(3) a smooth torus action with finite kernel of the ki-dimensional torus,

φi : Tki → Diff(Ũi), 1 ≤ i ≤ N;
(4) a homomorphism Ψi : Γi → Aut(Tki ) such that

γ(φi(t)(x)) = φi(Ψi(γ)(t))(γx)

for all γ ∈ Γi, t ∈ Tki and x ∈ Ũi; and
(5) for any finite sub-collection {Ui1 , . . . , Uil} such that Ui1···il :=Ui1 ∩ · · · ∩Uil � ∅

the following compatibility condition holds: let Ũi1···il be the set of points
(xi1 , . . . , xil ) ∈ Ũi1 × · · · × Ũil such that πi1 (xi1 ) = · · · = πil (xil ). The set Ũi1···il cov-
ers π−1

ij
(Ui1···il ) ⊂ Ũij for all 1 ≤ j ≤ l. Then we require that φij leaves π−1

ij
(Ui1···il )

invariant and it lifts to an action on Ũi1···il such that all lifted actions commute.

The second-named author showed that the manifolds in Corollary 1.6 admit an
F -structure.

THEOREM 2.32 [55, Theorems A and B]. Let X be a manifold that is either geometric
or admits a geometric decomposition into pieces modeled on one of the following
geometries.

S
4, CP2, S

3 × E, H3 × E, S̃L2 × E, Nil3 × E, Nil4, Sol41,
S

2 × E2, H2 × E2, Sol4m,n, Sol40, S
2 × S2, S

2 × H2, E
4, F

4.

Then X admits an F -structure.

The connection between the existence of F -structures and bounds for the Yamabe
invariant is given by the next theorem of Paternain and Petean.
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THEOREM 2.33 [42, Theorem 7.2]. If a closed smooth manifold X admits an
F -structure, dim X > 2, then Y(X) ≥ 0.

We are now ready to present a proof of Corollary 1.6.

PROOF OF COROLLARY 1.6. By Theorem 2.32, the manifolds with geometric pieces
modeled on these geometries admit an F -structure. Then, by Paternain and Petean’s
Theorem 2.33, its Yamabe invariant is nonnegative. From Theorem 1.1 and Yu’s
celebrated result [63] it follows that such a manifold X does not admit a metric
of positive scalar curvature. Then Schoen’s result mentioned above implies that
Y(X) ≤ 0. Therefore, Y(X) = 0.

Now consider the connected sums of X with S3 × S1. We appeal to a result of
Petean, who showed that performing zero-dimensional surgery on X leaves the Yamabe
invariant unchanged [45, Proposition 3]. Iterating this last argument yields the result
for any finite number of connected sums with S3 × S1, as claimed. �

We now include a proof of Lemma 1.7.

PROOF OF LEMMA 1.7. By the work of Paternain and Petean on collapsing of
compact complex surfaces, X admits an F -structure [43, Theorems A and B]. Hence,
Theorem 2.33 yields Y(X) ≥ 0. Now, by Chodosh and Li [12] and Gromov [29], X
does not admit a metric of positive scalar curvature. Thus, by the previously mentioned
results, we obtain Y(X) ≤ 0. Therefore, we conclude that Y(X) = 0. �

3. Proofs of our main results

We start with the following lemma, which is needed for the proofs of our main
results.

LEMMA 3.1. Let Y be a compact 3-manifold that is geometric in the sense of Thurston.
Then asdim π1(Y) ≤ 3.

PROOF. This can be verified for each of the model geometries, which we group as
follows.

(1) E
3 this case follows from Lemma 2.2, item (i).

(2) H
3 this case follows from Lemma 2.2, item (ii).

(3) S
3 these groups are finite, which follows from Lemma 2.2, item (iii).

(4) Nil3, Sol3, S̃L2 these cases are covered by Lemma 2.4. The geometries E3, Nil3

and Sol3 are all Lie groups. Notice that the Lie group S̃L2 is the universal cover
of the 3-dimensional Lie group SL2 of all 2 × 2 matrices with determinant 1.

(5) S
2 × E,H2 × E for these geometries the proof follows from the previously

mentioned result for S2 and H2 in Lemma 2.3 in combination with the bound
for products of spaces found in Proposition 2.9.

Therefore, in all of the possible cases, we obtain that asdim π1(Y) ≤ 3. �
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3.1. Proof of Theorem 1.1.

PROOF OF THEOREM 1.1. First, we prove the upper bound for asdim π1(M) for
geometric manifolds, and then for manifolds with geometric decomposition. �

3.1.1. Geometric manifolds. Here, we prove the statement for manifolds modeled on
a single model Thurston geometry.

Finite fundamental groups: S4, S2 × S2,CP2. Let Γ be a finite group. Then Γ
is finitely generated. Hence, by item (3) in Lemma 2.2, its asymptotic dimension
asdim Γ = 0. Therefore, as the fundamental groups of geometric manifolds modeled
on S4, S2 × S2 or CP2 are finite, they have asymptotic dimension zero.

Quotients of Lie groups. The asymptotic dimension of quotients of simply con-
nected Lie groups can be effectively bounded. By Lemma 2.4 a cocompact lat-
tice Γ in a connected Lie group G with maximal compact subgroup K satisfies
asdim Γ = dim(G/K). Hence, we obtain that asdim π1(X) ≤ 4 for geometric manifolds
X modeled on the geometries Nil3 × E, Nil4, Sol41, Sol4m,n, Sol40, or E4.

Product geometries: S3 × E, H3 × E, S̃L2 × E, S2 × E2, H2 × E2, S2 × H2,
H

2 × H2. By Proposition 2.9, we know that the asymptotic dimension of a product
of coarse spaces is bounded by the sum of the asymptotic dimensions of each space.
Therefore, for all of the product geometries S3×E, H3×E, S2×E2, H2×E2, S2×H2,
and H2 × H2, we have that their asymptotic dimension is bounded above by the sum
of the asymptotic dimensions of their factors. Therefore, by Lemmas 2.3 and 3.1 and
Proposition 2.9, the asymptotic dimension of each of these product geometries is at
most four.
H

4 and H2
C manifolds. Observe that compact H4 or H2

C manifolds have hyperbolic
fundamental groups, so, by Theorem 2.12, above their asymptotic dimension is finite.
Finite volume manifolds modeled on these geometries, truncated to be used as pieces
of a geometric decomposition, are relatively hyperbolic with respect to their peripheral
structure, that is, the systems of fundamental groups of their boundary components.
Such groups have finite asymptotic dimension, by Theorem 2.13. Moreover, we showed
in Corollary 2.17 that complex hyperbolic pieces have Nagata dimension four. That
real hyperbolic pieces have asymptotic dimension four follows from item (ii) in
Lemma 2.2.
F

4 manifolds. For the case of F4, the extension result of Bell–Dranishnikov in
Theorem 2.7, applied to a short exact sequence of the fundamental group, yields the
desired bound. Let X be a manifold modeled on F4. Then π1(X) is isomorphic to a
lattice in R2

� SL(2, R) [31]. Let π1(X) be the image of π1(X) in SL(2, R). Recall
that X = F4/π1(X) as an elliptic surface over the base B = H2/π1(X), where B is a
noncompact orbifold [61, page 150].

The identity component of Iso(F4) is the semidirect product R2
�α SL(2, R), where

α is the natural action of SL(2, R) on R2. Let p : R2
�α SL(2, R)→ SL(2, R) be

the projection homomorphism. The manifold X is diffeomorphic to the quotient of
T2 × H2 under the action of p(π1(X)), acting on T2 through
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ψ : p(π1(X))→ Aut(T2 = R2/(π1(X) ∩ R2)),

and on H2 in the usual way.
The quotient B := H2/p(π1(X)) is a finite volume hyperbolic 2-orbifold, and hence X

is an orbifold bundle over B. If B is smooth, that is, p(π1(X)) acts without fixed points,
then M is a torus bundle over B with structure group SL(2, Z) and ψ is precisely its
holonomy.

The manifold X is a T2 fibration over a noncompact, finite area, hyperbolic orbifold
B (see [61, page 150] and [55, Section 10.1]). Therefore, the fundamental group π1(X)
can be written as an extension, π1(T2)→ π1(X)→ π1(B). Thus, (2-2) of the extension
Theorem 2.7 implies that asdim π1(X) ≤ asdim π1(T2) + asdim π1(B) ≤ 2 + 2.

Therefore, our arguments have now covered all the possible cases and we conclude
that all the four-dimensional geometric manifolds have asymptotic dimension at most
four.

3.1.2. Manifolds with a geometric decomposition. As we explained in Section 2.2
above, the fundamental group π1(X) of a geometrizable 4-manifold X with a proper
and π1-injective geometric decomposition is isomorphic to a graph of groups. By
Theorem 2.10, the asymptotic dimension of a graph of groups is finite provided each
vertex group has finite asymptotic dimension. Moreover, we have computed the explicit
bound we need.

We now cover each of the possible geometric decompositions, in the same order of
Hillman’s Theorem 2.11 above.

X is the total space of an orbifold bundle with general fiber S2 over a hyperbolic
2-orbifold. Notice that, by Theorem 2.6, the relevant fiber and base orbifold groups
have asymptotic dimension at most two. Consider the decomposition of X into its
geometric pieces Xi, i ∈ {1, . . . , k} (see [32]). Then the arguments explained above for
the geometric cases yield asdim π1(Xi) ≤ 4. As X is compact for k < ∞, the finite union
Theorem 2.8 implies that asdim π1(X) ≤ 4.

Manifolds that decompose into H2 × H2 pieces. These manifolds have two kinds of
decompositions: they are called irreducible if the boundary inclusion into each piece
is π1-injective and called reducible otherwise.

In the irreducible case, we obtain a decomposition of the fundamental group into a
graph of groups, and the result follows as in other similar cases.

In the reducible case, we use the finite union Theorem 2.8. First, we apply
it to a couple of contiguously glued H2 × H2-pieces. Then we perform induction
over the number of pieces of the geometric decomposition to obtain the desired
upper bound. Hence, in both the reducible and irreducible cases we have that
asdim π1(X) ≤ 4.

Manifolds that decompose into H4, H3 × E1, H2 × E2, or S̃L2 × E2 pieces. First,
observe that a manifold X that decompose into pieces modeled on the hyperbolic
geometry H4 are relatively hyperbolic. Their ends are either flat or nilpotent, and
therefore the fundamental group of each geometric piece has finite asymptotic
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dimension by Theorem 2.13, because they are relatively hyperbolic. Notice that the
fundamental groups π1(Y) of flat or nilpotent 3-manifolds Y have asdim π1(Y) = 3, by
Lemma 2.4.

Now, for the case where the manifold X decomposes into pieces modeled on the
geometries H3 × E1, H2 × E2 or S̃L2 × E2. We have already proved that the asymptotic
dimension of all of these product geometries is at most four. Therefore, in both cases,
by Theorem 2.10 the asymptotic dimension of π1(X) is bounded above by four.

Manifolds that decompose into H2
C or F4 pieces. If a manifold X decomposes into

pieces modeled on the hyperbolic geometry H2
C, then, again, it is relatively hyperbolic.

So, as in the case of H4, the fundamental group of each geometric piece has finite
asymptotic dimension.

For the case where X decomposes into pieces modeled on the geometry F4, we know
that the asymptotic dimension of each piece is bounded above by four. By Theorem
2.10, the asymptotic dimension of π1(X) is bounded above by four.

Therefore, we have shown that asdim π1(M) ≤ 4 when X is a closed orientable
4-manifold that is geometric or admits a geometric decomposition in the sense of
Thurston.

3.1.3. Equality for aspherical manifolds. Now we prove that the lower bound
asdim π1(M) ≥ 4 in the case of aspherical manifolds, which will imply the equality
we claim. By Theorem 2.11, we know that a geometric manifold modeled on
H

3 × E, H2 × E2, H4, H2 × H2, H2
C, S̃L2 × E, Nil3 × E, Nil4, Sol41, Sol4m,n, or Sol40

is aspherical. Hence, Lemma 2.21 implies that the asymptotic dimension of such
a fundamental group is bounded below by its cohomological dimension. Observe
that the cohomological dimension of π1(M) is equal to the dimension of M, so
asdim π1(M) ≥ dim M = 4. This concludes the proof for geometric manifolds.

In the cases of manifolds with a geometric decomposition, by items (4) and (5)
of Theorem 2.11, we know that if the pieces of the geometric decomposition have
geometries H4, H3 × E1, H2 × E2, S̃L × E2, H2

C, or F4, then the manifold is aspherical.
Using Lemma 2.21 again, we obtain that the lower bound for their asymptotic
dimension is four.

Therefore the equality follows for both cases, covering all the possible aspherical
manifolds, as we claimed.

Finally, we mention the effect of connected sums on the asymptotic dimension.
Observe that taking connected sums of manifolds corresponds to performing free
products at the level of fundamental groups. So, if the pieces of the connected sum
have finite asymptotic dimension, then the resulting connected sum also has finite
asymptotic dimension. Moreover, the upper bound in this case remains the same,
according to Theorem 2.10. This concludes our proof.

3.2. Proof of Theorem 1.2. We now present a proof of Theorem 1.2.

PROOF OF THEOREM 1.2. The success of Thurston’s geometrization program implies
that π1(Y) may be presented as a graph of groups GY ; each vertex group Vi is a discrete
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group of isometries of one of the eight model geometries, while the edge groups Ei,j,
between the vertices Vi and Vj, are surface groups. By Lemma 3.1, the asymptotic
dimension of the groups Vi is bounded above by three, that is, asdim Vi ≤ 3.

Continuing with the proof, observe that a finite graph of groups is isomorphic to an
interated amalgamated product. Therefore, by Theorem 2.10, and Lemmas 3.1 and 2.3,
we obtain asdim GY ≤ max{asdim Vi, asdim Ei,j + 1} ≤ 3. In the nonorientable case,
consider the orientation double cover to obtain the same result.

Finally, in the aspherical case, Lemma 2.21 yields three as the lower bound for the
asymptotic dimension. �

3.3. Proof of Theorem 1.3. Now we continue with a proof of Theorem 1.3.

PROOF OF THEOREM 1.3. Let Y be a compact three-dimensional Alexandrov space.
Then, as explained previously, there exist both a smooth Riemannian 3-manifold Y∗

and an isometric involution ι of Y∗ such that Y is homeomorphic to Y∗/{y � ι(y)}, with
y ∈ Y∗ [25]. We write Ỹ for the universal covering of Y∗. Then the fundamental group
π1(Y∗), seen as a group of deck transformations, acts on Ỹ . Moreover, observe that, as
ι is an isometric involution acting on Y∗, it lifts to an action on Ỹ .

Denote by Γ the group formed by composing the action of π1Y∗ on Ỹ , with the
action of ι on Y∗. The orbit equivalence classes of Γ, acting on Ỹ , present Y as a
quotient space. Recall that, by Lemma 2.23, Ỹ is the unique universal cover of both Y∗

and Y. Therefore, Γ is isomorphic to the fundamental group of Y.
We claim that Γ acts properly on Ỹ , because the isotropy groups are of the following

two kinds only.

(i) The trivial group, for the nonsingular points of Y, whose space of directions is
homeomorphic to a ball.

(ii) Isomorphic to Z/2, for the singular points S(Y), whose space of directions is
homeomorphic to a projective plane.

As these two cases cover all possible types of isotropy groups, the action is proper,
as claimed. Hence, the group acts properly, and also isometrically, on the proper metric
space Ỹ . Therefore, Theorem 2.6 implies that asdim Γ ≤ asdim Ỹ , and by Equation
(2-1) and Theorem 1.2, asdim Ỹ ≤ 3. �
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