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Abstract

Large scale functional motions of molecules are studied experimentally using numerous
molecular and biophysics techniques, the data from which are subsequently interpreted
using diverse models of Brownian molecular dynamics. To unify all rotational physics tech-
niques and motional models, the frame order tensor – a universal statistical mechanics theory
based on the rotational ordering of rigid body frames – is herein formulated. The frame order-
ing is the fundamental physics that governs how motions modulate rotational molecular phys-
ics and it defines the properties and maximum information content encoded in the observable
physics. Using the tensor to link residual dipolar couplings and pseudo-contact shifts, two dis-
tinct information-rich and atomic-level biophysical measurements from the field of nuclear
magnetic resonance spectroscopy, to a number of basic mechanical joint models, a highly
dynamic state of calmodulin (CaM) bound to a target peptide in a tightly closed conformation
was observed. Intra- and inter-domain motions reveal the CaM complex to be entropically
primed for peptide release.

Introduction

Observing solution-state molecular dynamics (MD) is the key to understanding the fine details
of how cellular machinery operates and how the energetics of macromolecules and flexible
organic molecules influence their micro- to macroscopic properties. To this end there is not
only a need to solve the three-dimensional (3D) structures of different dynamic states, but
also to study the mechanics, distribution and fine control of the continuous Brownian transi-
tions of the molecule between its infinite yet bounded states. Experimentally MD can be stud-
ied using diverse molecular physics techniques, many of which are modulated by stochastic
rotational motions. Among others these include: dielectric dispersion (Perrin, 1934); fluores-
cence spectroscopy (Perrin, 1926, 1934, 1936; Weber, 1952; Belford et al., 1972); phosphores-
cence spectroscopy (Razi Naqvi et al., 1973; Austin et al., 1979); dynamic light scattering
(Pecora, 1964, 1968); transient birefringence, linear dichroism, and optical rotation decay
(Wegener et al., 1979); nuclear magnetic resonance (NMR) spectroscopy (Bloembergen
et al., 1948; Woessner, 1962); and electron paramagnetic resonance spectroscopy (Freed,
1964). To extract the MD information from the ensemble or time averaged physics data, a stat-
istical mechanical model of the underlying Brownian diffusion process is fit to the data.

For the global tumbling of a rigid molecule, the Einstein equations of Brownian molecular
motion (Einstein, 1905) extended by Perrin for the free diffusion of an ellipsoid (Perrin, 1934,
1936) is an exact description for all rotational physics techniques. As this single ellipsoidal dif-
fusion tensor is insufficient for multi-domain, tethered, or segmental rigid body motions,
numerous mechanical joint models with varying internal degrees of freedom (DOF) have sub-
sequently been developed. For two-domain molecules with a single-pivoted motion, time-
dependent uniform distribution models of the Brownian diffusion tensor include: hinge

Speculation

Extracting translational and rotational diffusive motion of molecules in the fields of biophysics
and molecular physics from experimental data is an inverse problem. Today many of the most
complex rotational models of this inverse problem derive from the Perrin (1934) and (1936)
cornerstone publications on the Brownian diffusion of a free ellipsoid. We have extended Perrin’s
original work by describing the statistical mechanical ordering of a frame with time – or across an
ensemble – attached to any part of a molecule. This fundamental theory results in a series of
tensors that define the total physics content of all rotational biophysics and molecular physics
techniques and facilitate the modelling of far more complex motions.
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models with one bending DOF (Harvey, 1979; Wegener, 1980);
universal joints with two DOFs, equivalent to diffusion in a
cone with no torsional motion (Wegener et al., 1980); the fully
flexible universal joint with three DOFs as Euler angles {α, β, γ}
and the torsion angle defined as α + γ (Wegener et al., 1980);
and the hinged dumbbell model with three DOFs as one bending
and two torsion angles {α, β1, β2} (Harvey et al., 1983; García de la
Torre et al., 1985). The single pivot, 3DOF models are simply dif-
ferent parameterisations of the ball-and-socket or spherical
mechanical joint. For three or more domains, one model includes
the fully flexible universal joint extended to Y-shaped and double-
jointed molecules (Wegener, 1982). For segmental motions in lin-
ear systems with multiple domains or rigid bodies, wormlike chain
models are often used (Kratky and Porod, 1949).

Of all molecular physics techniques, NMR provides the great-
est dynamic information content with multiple, independent
sources of atomic-level information. Consequently many
advanced statistical mechanical MD models specifically for
NMR exist. For time-dependent, information-rich relaxation
data, diverse two-domain models have been developed
(Baber et al., 2001; Horne et al., 2007; Ryabov and Fushman,
2007; Wong et al., 2009). Using time-independent residual dipo-
lar couplings (RDCs) and pseudo-contact shifts (PCSs), ensemble
models for two-domain systems are often used (Bertini et al.,
2004, 2007; Zweckstetter, 2008; Erdelyi et al., 2011; Yamamoto
et al., 2011; Russo et al., 2013), sometimes incorporating non-
rotational small-angle X-ray scattering (SAXS) data (Bertini
et al., 2010). Ensemble sampling models for segmental motions
in multi-domain systems and intrinsically disordered proteins
using RDCs, SAXS and other data types have also been developed
(Bernado et al., 2005; Nodet et al., 2009; Huang et al., 2014).

Despite the many advancements of the last century, MD mod-
elling for analysing experimental data is in active development. To
unify all rotational molecular physics data sources via individual
mechanical models, herein a bridging and universal physics the-
ory for single and multi-rigid-body motions will be developed
based on the statistical mechanical ordering of reference frames
– the frame order theory. The frame order link between model
and experiment is established via equations for a single rotation
matrix. A case study will be presented demonstrating multiple
motional modes in a calmodulin (CaM)–peptide complex using
experimental RDC and PCS NMR data.

Materials and methods

Sample preparation and NMR data collection

RDC and PCS values for CaM–IQ were previously measured
(Russo et al., 2013) using the N60D CaM mutant from Bertini
et al. (2003), and are presented in SI Section 7. In the N60D
CaM system, a lanthanide ion can selectively bind to the second
calcium binding site of the N-terminal domain. There are small
structural changes at the lanthanide binding site which have
been characterised previously by X-ray crystallography. They are
so small that they are considered negligible. They also have no
impact on the topic of this paper which is the long-range rigid
body motions between domains and subdomains in a macromol-
ecule. Mobile residues identified as those with published model-
free order parameters (Frederick et al., 2007) less than 0.8 were
excluded from the analysis (shown in SI Section 4 and listed in
the frame order analysis script in SI Section 6.3).

Frame order theory for RDCs and PCSs

The RDCs and PCSs in molecules arise from the anisotropy of the
magnetic susceptibility of the protein-attached paramagnetic lan-
thanide ions. In the case of RDCs the anisotropy of the magnetic
susceptibility leads to alignment in the external magnetic field.
PCSs are dominated by the anisotropy of the dipolar coupling
between the anisotropic magnetic moment of the electron and
the isotropic magnetic moment of the nuclear spin. The aniso-
tropic magnetic moment of the electron is due to the anisotropy
of the magnetic susceptibility of the lanthanide. Although linked
by the anisotropy of the magnetic susceptibility of the lanthanide
which causes both PCSs and RDCs to no longer average to zero,
these anisotropic observables emanate from different physical
processes and possess distinct MD information content. If rota-
tional Brownian motions between the rigid bodies are present,
then the lanthanide-tagged body exhibits the strongest alignment
force in the magnetic field and the alignment of the non-
lanthanide-tagged body is reduced by the MD. The RDC is a
rank-2 dominated physical process due to the nuclear magnetic
dipole–dipole coupling (see SI Section 1.2.1.1). It contains orien-
tational information between two proximal atoms – the inter-
atomic distance is generally known as covalently bonded atoms
are primarily studied – and hence RDCs report on molecule-wide
dynamic changes. In general, NMR parameters are considered to
be local. However, RDCs and PCSs are global parameters that
provide conformational restraints over infinite (RDCs) and long
(PCSs) distances. This is due to the fact that, with paramagnetic
metal ions, an alignment frame is created that is attached to a
rigid molecular frame of a part of the molecule (in our case the
N-terminal domain of CaM which carries the lanthanide). The
orientation of all internuclear vectors is then related to this align-
ment tensor via the RDCs, irrespective of distance of these inter-
nuclear vectors from the metal ion. Thus the RDC is truly a long
range (long = infinite) restraint. PCSs depend on the orientation
and also the distance with an r−3 dependence and therefore are
shorter range but, depending on the metal, can reach up to
20–30 Å. The RDC can be expressed as

D = dr̂T · A · r̂, (1)

where d is the magnetic dipole–dipole constant (Eq. (S33)), r̂ is
the interatomic unit vector between two adjacent spin-half nuclei,
and A is the rank-2 symmetric and traceless molecular alignment
tensor. As the fast vibrational and librational motions of the inter-
atomic vector are statistically self-decoupled from the slower rigid
body motions, the RDC due to a diminished frame ordering is

D = dr̂T · A · r̂, (2)

where A is the averaged and reduced alignment tensor. In contrast
the PCS is due to the coupling of the nuclear magnetic dipole with
the magnetic field induced by the lanthanide ion’s unpaired elec-
tron (see SI Section 1.2.1.2). The PCS is a long distance constraint
between the observed atom and lanthanide on the order of nano-
metres, containing both orientational and distance information –
and hence it can report on global conformational changes. This
global dynamic information content is however distinct from
that of the RDC. The standard PCS value can be written as

d = c

r�LN

∣∣ ∣∣5 r̂TLN · A · r̂LN, (3)
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where c is the PCS constant, r̂LN is approximated by the lantha-
nide ion to nuclear unit vector, and |r�LN| is the length of the vec-
tor (see Eq. (S35)). The PCS reduction is complicated by the
inverse fifth power of the electron–nuclear distance which, unlike
the RDC, is modulated by and coupled to the inter-body rota-
tions. Hence the PCS is a convolution of rotational and transla-
tion information. As the decoupling of the r�LN and A averaging
is currently intractable and a reasonable approximation could
not be found, instead a computationally expensive numerical inte-
gration was used to find an approximate solution by working
around the frame ordering physics (SI Section 3). This low quality
approximation circumvents the intrinsic frame order physics and
in so slows the analysis by many orders of magnitude. It suffers
from numerical precision artefacts especially for low amplitude
modes of motions due to computational limitations resulting in
non-uniform and inadequate sampling. The numerical sampling
algorithm, model nesting simplification, and optimisation space
simplification techniques employed – essential for speeding up
the analysis – also decrease the quality of the results. Excluding
optimisation and model failures (d’Auvergne and Gooley,
2006), observable in this analysis as a non-realistic average
domain position far from expected or large steric clashes, for
large amplitude motions the approximation would however be
close to the exact result obtained from symbolic frame order
equations. The rotation matrices of the numerical integration
can be used to create a uniformly distributed ensemble of
structures – and these structures will be bound by the same limits
of the motional model used in the frame order matrix equation
derivations (see ‘Frame order modelling of two domains’). As
the same mathematical representation of motion is shared
between the approximate numerical integration and the exact
frame order matrix equations, the PCS and RDC analyses are
hence compatible and the parameters of the mathematical
model can be optimised simultaneously using both the PCS and
RDC data.

Reduced alignment

The global molecular dynamic information in the RDCs and
PCSs, excluding the PCS vector length modulation, is determined
by the reduced alignment tensor A. The alignment tensor averag-
ing can be expressed as

A =
〈 ∫tmax

0

R−1(Vt) · A · R(Vt)dt

〉
(4)

where the angular brackets denote the ensemble averaging, the time
integration is for a single molecule over the evolution period of
the physical interaction, and Ωt are the three time-dependent
angles describing the Brownian rotation of the rigid body. By writ-
ing this in index notation and rearranging, assuming that the
molecular alignment and inter-body motions are not strongly cou-
pled, the reduced alignment tensor can be seen to be linear combi-
nations of the full alignment tensor multiplied by ᛞ(2) frame order
elements (Eqs (6) and (7) and SI Section 1.2.2). Using a rank-1,
five-dimensional (5D) notation for the alignment tensors, this
can be expressed as a product of a rank-2, 5D frame order super-
operator, the elements of which are sums or differences of the ᛞ(2)

elements, and the original tensor (Eq. (S47)). Note that the

alignment tensor is itself simply the anisotropic component of
the first-degree frame order tensor ᛞ(1) (SI Section 1.2.3).

Integration of the RDC

Quadratic numerical integration is used for obtaining the frame
order matrix elements of the pseudo-ellipse model, as symbolic
integration for this model is intractable. However the surface area
normalisation factor is simplified by series expansion to numeri-
cally implement a two-dimensional trigonometric function labelled
the pseudo-elliptic cosine or pec(θx, θy) (SI Section 2.9.2).

Integration of the PCS

As the symbolic integration of the PCS is currently intractable due
to the convoluted translational and rotational information, the
frame order matrix equations derived in SI Section 2 are not
applicable and numeric integration of the physical interaction
must be used instead. Standard quadratic integration for the
PCS over the three dimensions of the isotropic and pseudo-elliptic
cones is however too computationally expensive. Instead, the
orders of magnitude faster quasi-random integration technique
using the Sobol’ point sequence (Sobol’, 1967) was used (SI
Section 3.1.2). As Sobol’ point generation is slow, the points
were oversampled and any points outside of the motional
model half-angles where skipped and integration stopped once
the desired number of points had been reached. Due to slow
data transfer speeds between nodes, all attempts at parallelisation
failed (SI Section 3.2). The most significant technique for speed-
ing up the optimisation by many orders of magnitude is model
nesting. As the most complex model consists of 15 parameters,
an initial grid search for optimisation is not possible. Instead
the optimised parameters from a simpler nested model are
taken as the starting point for the more complex model and a
grid search is only performed using the unique parameters of
the complex model (SI Section 3.3). A number of other tech-
niques were used to speed up optimisation including using a sub-
set of measured PCS values for finding an initial solution (SI
Section 3.4) and a few optimisation tricks including a lower
quasi-random integration precision in the initial grid search, a
zooming grid search, and a zooming precision optimisation
where the number of Sobol’ points are increased (SI Section 3.5).

PCS structural noise

The analysis of the PCS is influenced by two significant sources of
noise – the NMR experimental error and the structural noise asso-
ciated with the 3D molecular structure. The closer the nuclear
spin to the paramagnetic centre, the greater the influence of struc-
tural noise. This distance dependence is governed by the empiri-
cally derived equation:

sdist =
��
3

√ |d|PRMSD

rLN
, (5)

where σdist is the distance standard deviation (SD) component of
the structural noise, δ is the PCS value, PRMSD is the atomic posi-
tion root-mean-square deviation, and rLN is the paramagnetic
centre to spin distance. When close to the paramagnetic centre,
this error source can exceed that of the NMR experiment. The
equation for the angular component of the structural noise is
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however intractable, being influenced by distance, orientation in
the alignment frame, and the magnetic susceptibility tensor
geometry. Instead structural noise was simulated by randomising
atomic positions 10 000 times over a multivariate normal distribu-
tion, back-calculating the PCS value using an alignment tensor
calculated from the original data with the lanthanide position
assumed fixed, and calculating the PCS SDs. This additional
structural PCS error was combined with the experimental PCS
error using variance addition.

The CaM–peptide reference frame

For the CaM–IQ complex, an imprecise reference frame can be
defined by the common atoms of the three IQ peptides (Fig. 1).
With an origin at the centre of the peptide, the positive and neg-
ative axes roughly point to the major structural features of the
complex: the +x direction to the point of contact between the
two closed domains, the CaM clamp opening; the −x direction
to the melting point between the two domains; the ±y directions
along the helical peptide axis; the +z direction to the centre of
mass (CoM) of the C-domain; and the −z direction to the CoM
of the N-domain.

Frame order data analyses

The various two-domain motion models, linked via the frame
order matrix to the RDC and PCS data, were optimised using
software relax (d’Auvergne and Gooley, 2008). The optimisation
space for the isotropic and pseudo-elliptic models contain multi-
ple local minima which correspond to the permutations of the
cone opening and torsion half-angles, hence axis permutations
are used to sample all solutions (SI Section 2.13). Statistical
model comparisons were performed with the gold standard for
frequentist model selection – Akaike’s information criterion
(AIC) (Akaike, 1973; d’Auvergne and Gooley, 2003). Error anal-
yses via Monte Carlo simulations were not feasible due to exces-
sive computational times.

Pivoted motions in a structural ensemble

To compare with the single- and double-pivoted frame order
models, a new protocol was designed to iteratively find all pivoted
modes of motion in an ensemble of structures. This was applied

to the A, B and C structures of the CaM–IQ X-ray ensemble
(SI Section 5). The iterative Kabsch method for the fit-to-mean
superimposition algorithm was modified so that the centroid
position for translation and rotation of all structures is shared.
The 3D position of the shared centroid or pivot point can be opti-
mised by using the root-mean-square deviation (RMSD) as a
maximum-likelihood estimate. One mode of pivoted motion
can then be iteratively removed from the ensemble until no
more rigid body motions are present. The full implementation
is presented in SI Section 5.2.1.

Representations of the MD

Two new representations of MD have been developed to aid in the
visualisation and comparison of different types of dynamics. The
first is labelled as the ‘web-of-motion’ representation. This is used
for ensembles of N structures where N is small. Here the equiva-
lent heavy backbone atoms are connected using rods. The repre-
sentation highlights the amplitudes, directions, and other features
of the motions in 3D. The second representation is for an ensem-
ble of N structures where N is large. The ensemble is simply
shown with Cα backbone atoms shown as small spheres. The
other backbone atoms are excluded to minimise clutter and not
overwhelm the representation. This is used for the frame order
results by approximating the MD using a uniformly distributed
ensemble of 1000 structures.

Interatomic distance and parallax shift fluctuations

To decompose and visualise the motions in an ensemble of struc-
tures, two measures for comparing collections of atom pairs were
devised – the interatomic distance fluctuations and the parallax
shift fluctuations. These two measures of motions are close to
orthogonal to each other and so represent different components
of the motion. For the interatomic distance fluctuations, the cor-
rected sample SD is calculated for the distances between each back-
bone Cα atom pair in the ensemble. The collection of all atom pairs
produces a pairwise matrix of SD values which is frame and super-
imposition independent. The parallax shifts are calculated as the
SD of distances between the interatomic vectors of an atom pair
for all ensemble members and their projection onto their average
vector. The parallax shift is calculated for the collection of all
atom pairs, producing a pairwise matrix of SD values. This is a

Fig. 1. The CaM–IQ frame order average structure
ensemble. (a) The 2BE6 X-ray crystallographic struc-
ture was broken into a non-moving body of the
N-domain helices I and IV and calcium binding
loops, and two moving rigid bodies for the frame
order analyses – the N-domain helices II and III
and interconnecting loop, and the C-domain – and
the A, B, and C structures for each body superim-
posed. The moving bodies have been shifted to
their motional average position. (b) Different
orthogonal perspectives of a CaM–peptide reference
frame used to visualise the MD. This synthetic frame
is used to compare and describe the different CaM
motions.
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frame and superimposition dependent measure close to orthogonal
to the interatomic distance fluctuations, assuming the interatomic
vectors are not too divergent (it is orthogonal to the projection
of the distance fluctuations onto the average vector). It is similar
to an angle measure but, importantly, it is independent of the dis-
tance between the two atoms. For the frame order analyses, the uni-
form distribution models were approximated by discrete ensembles
of 1000 structures generated by randomly selecting structures that
satisfy the frame order model constraints.

Inter domain tensor comparisons

To compare the X-ray structures, frame order motional distribu-
tions and MD simulation ensembles, an inter-domain tensor
comparison was performed (Fig. 5). In the reference frame of
the N-domain, where alignment is strongest due to the bound
lanthanide ion, full alignment tensors AC were predicted for the
moving C-domain via an ensemble model. To this end, the struc-
tures were superimposed over the N-domain backbone heavy
atoms and the full N-domain alignment tensors AN calculated
using high precision lanthanide position optimisation with errors
due to structural noise added to the PCS values. Within the same
superimposition, the C-domain structures were then used to cal-
culate a second alignment tensor AC with the addition of the PCS
structural error but no lanthanide position optimisation. As this
tensor calculation requires an ensemble of structures, the frame
order uniform distribution models were roughly approximated
using 1000 randomly selected structures. The frame order com-
parisons were tested on ensembles of 10 and 10 000 structures,
but these suffered from counteracting sampling inaccuracy and
numerical PCS truncation artefacts respectively (Fig. S86).
Hence a perfect number of structures for the frame order ensem-
ble approximation can never be reached and an extra error due to
approximation is present in AC. If the ensemble model were a per-
fect description of the dynamics then, to within experimental
error, the moving C-domain ensemble tensors should predict
the non-moving N-domain tensors so that AC = AN. The N-
and C-domain tensors are compared using two measures: the ten-
sor size ratio defined as the ratio of anisotropic components Aa

reflecting the absolute size of the traceless A tensors; and the
inter-tensor angle. For the tensor size ratio Aa

N/Aa
C, the ideal

value is one. This ratio however only includes one piece of geo-
metric information from the five required to describe the symmet-
ric and traceless tensor A. The inter-tensor angle measure is more
comprehensive as it includes all of the geometrical and orienta-
tional tensor information. For the ideal model this angle should
head to zero. Another error source of note is that these measures
do not take the internal N-domain motions into account.

Data analysis

All theoretical derivations, experimental data, analysis scripts, and
analysis methods are presented in the Supplementary Material.

Results

The theory of frame ordering

For a rigid body within a molecular system – ranging from single
atoms all the way to molecular complexes – its orientational time
dependence is described by the rotation matrix R(t) operating on
the rigid body frame. To interpret the observed experimental data

from rank-n rotational molecular physics processes, the frame
order tensor is defined as

ᛞ
n( ) t( ) = R⊗n t( ). (6)

The overbar is the statistical mechanics ensemble average, and ⊗n
is the nth tensor power, or the outer product n times. It is a
rank-2n, 3D orientational tensor describing the rotational order-
ing of the frame after time t. For a single molecule, an alternative
frame order tensor is the time average of Eq. (6). The first-,
second-, third-, and higher-degree frame order tensors {ᛞ(1),
ᛞ
(2), ᛞ(3), …} decompose the stochastic motions into elements

that modulate rank-{1, 2, 3, …} physical processes. Depending
on frame of reference and symmetries in the motions, only a sub-
set of frame order matrix elements will be active and non-zero.

To drastically simplify the interpretation of frame order for
non-freely diffusing rigid bodies, the time-dependent and inde-
pendent components of the rotation matrix can be separated
into transformation matrices as R(t) = E · F(t) · ET. The transfor-
mation E is from the motional average 3D position of the rigid
body to the directional axes of the mechanical model (the
motional eigenframe). As the starting 3D structure of the rigid
body will not be at the average position, another time-
independent component is required, namely the forwards rotation
Rave. The frame order tensor can then be expressed as

ᛞ
(n)(t) = E⊗n · F⊗n(t) · ET⊗n · RT⊗n

ave , (7)
where T⊗n denotes the nth tensor power of the transposed
matrix. When the directions of motion are orthogonal, as is
often modelled, E and F are rotation matrices. In practice the
3D structure can be pre-rotated to the average position using Rave.

The majority of rotational molecular physics techniques are
dominated by rank n = 2 interactions and hence are modulated
by the rank-4, second-degree frame order tensor ᛞ(2). This tensor
can be written as a 3D matrix of 3D matrices. The on-diagonal
matrices are the second-degree ordering, or auto-correlations, of
the frame axes to themselves whereas the off-diagonal matrices
are the cross-correlations between the three axes. The frame
order tensors are a logical extension of the non-zero subset of
time-averaged rotation matrix elements and double-products cij
and cijckl which appeared historically in Perrin’s derivations
(Perrin, 1936). These terms are the non-zero elements of ᛞ

(1)

and ᛞ
(2) from Eq. (6) under the condition of rigid-body free dif-

fusion. Interestingly the free ellipsoid second-degree matrix starts
as ᛞ(2)(0) = I1 and the matrix elements evolve mono-exponentially
to ᛞ

(2)(∞) = 1/3I2, where Ii are the rank-4 identity matrices (SI
Section 1.5.1). When motions are more complicated than those
of a free ellipsoid, Eqs. (6) and (7) drastically simplify the process
of linking the dynamics model to the experimental physics. For
the second-degree frame order tensor elements active for the
rank-2 NMR processes of the experimental RDC and PCS data
analysed herein, see the ‘Materials and methods’ section.

Frame order modelling of two domains

For the molecular two-body problem in which two rigid bodies
are tethered by a flexible linker, the dynamics is represented by
the spherical joint. This mechanical system consists of a single
pivot point and three rotational DOF. Euler angles are a poor rep-
resentation of this system so instead the more natural
‘tilt-and-torsion’ angles used for describing symmetrical spatial
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parallel mechanisms in the field of robotics was used (Korein,
1985; Crawford et al., 1999; Huang et al., 1999; Bonev and
Gosselin, 2006) (SI Section 2.1.2). Starting with the z–y–z Euler
angles {α, β, γ}, the torsion angle is defined as σ = α + γ, as in
the fully flexible universal joint (Wegener et al., 1980), and the
tilt angles are θ = β and φ = γ. The advantage of this angle system
is that the mechanics of the tilt and torsion can be modelled inde-
pendently. Three simple uniform distribution models of the tor-
sion angle twisting include a restriction to within the opening
half-angle ±σmax, the torsionless model with the complete restric-
tion of σmax = 0, and the free rotor with unrestricted torsions. The
tilt component was also modelled using simple uniform distribu-
tions including complete rigidity, an isotropic cone with an open-
ing half-angle θmax, and a pseudo-elliptic cone with maximum
opening half-angles θx and θy. Nine different models were created
as all combinations of the tilt and torsion submodels and were
labelled as the rigid, rotor, free rotor, isotropic cone (normal, tor-
sionless and free rotor), and pseudo-ellipse (normal, torsionless
and free rotor). Additionally a more complicated double-pivoted
motional system, the double rotor, was modelled using two tor-
sion angles (Fig. S1). The full set of model parameters can be par-
titioned into the average domain position (translation and
rotation), the pivot point(s), the motional eigenframe, and the
half-angles restricting the MD (SI Sections 1 and 2). The use of
a motional pivot allows for some translational freedom in the
domains to be modelled, however not all of the uncoupled trans-
lational DOF can be modelled. In the case of CaM–IQ inter-
domain motions, the PCS values for the non-tagged domain are
less than 1 ppm, with most being below 0.3 ppm (Table S9).
The result of this, together with the combined fixed 0.1 ppm
NMR spectral errors and structural noise, is that the modelling
of uncoupled translational freedom is not stable. More precise
PCS and structural data would be required.

For each model, a rotation matrix within the motional eigen-
frame is defined using the active tilt-and-torsion parameters
(Eq. (S74c)). The RDCs and PCSs are both time and ensemble
averaged, hence devoid of time information, so the frame order
tensor at t =∞ is used (see the ‘Materials and methods’ section).
As the models are uniform distributions, ᛞ(n) is simply the nor-
malised surface integral of the nth tensor power of the rotation
matrix, within the limits of the motional model. The frame
order ᛞ(1) and ᛞ

(2) equations for the models are presented in SI
Section 2 and implemented in version 4 of the software relax
(d’Auvergne and Gooley, 2008).

CaM–IQ X-ray structure and MD simulation

To demonstrate the frame order modelling, the 2BE6 X-ray crys-
tallographic structure (Van Petegem et al., 2005) of CaM bound to
the helical IQ domain of the CaV1.2 voltage-gated calcium chan-
nel was studied. The CaM–IQ X-ray structure consists of three
distinct states A, B and C. These states are also seen in solution
and the absence of separate peaks in the NMR spectrum for
each state implies fast interconversion between these and addi-
tional states as found in Russo et al., (2013). For reference, a
labelled representation of the CaM–IQ complex is shown in
Fig. 1. To better understand this MD, a frame and superimposi-
tion dependent, iterative, pivoted motion finding algorithm was
designed (see ‘Materials and methods’, ‘Pivoted motions in a
structural ensemble’ and SI Section 5.2). Two dependent modes
of motion were found in the reference frames of both the N-
and C-domains (Figs 2, S35, S36). The primary mode has a

mechanical pivot located within the non-moving domain and a
rotation axis perpendicular to the axis between the two domains
– it is a sliding of the moving N-domain over the peptide and
non-moving C-domain, obliquely crossing the peptide axis. The
secondary mode has its pivot located within the moving
N-domain close to its CoM with an axis almost perpendicular
to both the inter-domain axis and the peptide axis – it is the
domain rolling along the IQ peptide. From the interatomic dis-
tance and parallax shift fluctuations (Figs 2f and i, S38, S39,
S40), it is clear that the C-domain together with the IQ peptide
form a rigid core, that intra-domain motion occurs in the loop
between helices II and III and the termini of the N-domain,
matching the direction of the secondary inter-domain motions
(Fig. 3), and that the inter-domain contact point near the centre
of both domains remains in a closed state. This agrees with the
higher affinity of the C-domain for the target peptide (Van
Petegem et al., 2005).

In the CaM–IQ ensemble analysis using MD simulations and
measured RDC and PCS data (Russo et al., 2013), two seven-state
ensembles were created with simulation snapshot selection via
quality (Q) factor optimisation: the X-ray structures with four
simulation structures (4M + 2BE6); and seven simulation structures
(7M). From the visual representation in the original publication
and Figs S81 and S82, the primary inter-domain motional mode
can be seen to be almost parallel to but with a slight rolling over
the IQ peptide axis.

CaM–IQ motions were also predicted via Gaussian network
models (SI Section 15) using the iGNM server (Li et al., 2016).

CaM–IQ frame order motions

Using the published RDC and PCS data (Russo et al., 2013), mul-
tiple frame order analyses were performed to identify and investi-
gate two major motions – the CaM inter-domain motions and the
N-domain sub-domain rigid body motions. To significantly
improve the robustness to outlier PCS values, an extra error due
to structural noise was simulated and added to the experimental
PCS errors (see the ‘PCS structural noise’ section). For the analysis
it is important to take this additional positional error in the 3D
structures into account as it shifts the optimised lanthanide posi-
tion away from the true position due to proximal atoms exhibiting
the greatest errors with a hyperbolic distance dependence (Eq. (5)).
A biased lanthanide position has a large effect on the optimised
alignment tensor for the PCS but no effect on the RDC alignment
tensor. The structural error contribution to the RDC results in an
overall decrease in alignment tensor size (Zweckstetter and Bax,
2002). This structural noise effect is much smaller than the lantha-
nide position bias, and the generous 1 Hz RDC errors should cover
the combined NMR spectral and structural noise components. The
current analysis is also based on the differences in alignment
between different domains and, as the effect of structural noise
on RDC derived alignment tensors should be the same for all
domains of the molecule, this noise is not expected to influence
the results. Structural noise was also minimised by breaking the
CaM–IQ structures into domains, superimposing the individual
A, B and C components, and using the resultant ensemble of
three structures. For the N-domain frame to which the lanthanide
ion is bound, a per-lanthanide three-state ensemble analysis using
the RDC and PCS data was performed on the superimposed
X-ray structures to obtain the full Ai alignment tensors
(d’Auvergne and Gooley, 2008). The input data for the frame
order analyses consisted of the moving domain RDCs and PCSs
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together with the full Ai tensors. The ten tilt-and-torsion mechani-
cal models were then optimised for the single A, B, and C structures
and different superimposed ensembles of ABC (SI Section 10).

For the inter-domain motions, using AIC (Akaike, 1973;
d’Auvergne and Gooley, 2003) the most parsimonious model
was judged to be the rotor model (Table S11). However, the
more complex pseudo-ellipse model was chosen as more physi-
cally meaningful, it has a similar optimised χ2 value yet consists
of multiple modes of motion. The primary frame order MD

mode in both models is identical, matching the X-ray mode –
an oblique sliding of the moving domain over the peptide and
non-moving domain, with a mechanical pivot in the core of the
non-moving domain (Figs 2 and 3, S36, S67, S68). The minor sec-
ondary mode is the domain sliding along the peptide axis rather
than rolling along it as in the X-ray ensemble. This is similar to
the 4M + 2BE6 and 7M MD simulation ensemble primary
mode. Although the double rotor can model the exact X-ray
MD, including the secondary rolling, this motion is not supported

Fig. 2. The CaM–IQ 2BE6 X-ray crystallographic structure motions. (a–c) The C-domain backbone heavy atom superimposed structures A, B and C displayed from
three different CaM-frame orientations. The N-domain Ca2+ atom positions show the primary motional mode of the domain sliding obliquely over the IQ peptide
and non-moving C-domain. (d, e) The web-of-motion representation with equivalent backbone heavy atoms connected in the three crystal structures. This new
representation enhances the visualisation of the primary motional modes. The C-domain superimposition best highlights the double-pivot motional system as
found using a new iterative, pivoted motion finding algorithm. (g, h) The residual orthogonal motions after the first pivoted motion has been subtracted. This
perpendicular secondary motional mode is a rolling of the N-domain over the IQ peptide. ( f, i) Backbone Cα interatomic distance and C-domain superimposed
parallax shift fluctuations respectively (see the ‘Materials and methods’ section). These inter-atom measures are a new type of representation that demonstrate
the rigid C-domain and IQ peptide core, the inter and intra N-domain motions, and the maintenance of the closed CaM state.
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Fig. 3. Combined CaM–IQ frame order dynamics (a–i) compared with the X-ray structure motions ( j–l). The two rigid body frame order models consist of the
C-domain moving as a pseudo-ellipse and the N-domain helices II, III and connecting loop moving as a torsionless pseudo-ellipse. (a–c) Geometric representations
of the two pseudo-ellipse models, showing the pseudo-elliptic cones, z-axis torsional restriction (for the C-domain), motional eigenframes, and pivot points. (d–f)
Distribution representation using 1000 uniformly distributed states, shown via the Cα atom positions displayed as small spheres. (g–i) Decomposition of the dis-
tributions in (d–f) showing equally spaced states solely along the motional eigenmodes, defined as the rotations about the motional eigenframe’s axes. These
motions are animated in the SI movies. ( j–l) X-ray motions seen from the N-domain helices I and IV and calcium binding loop rigid body frame (with backbone
heavy and Ca2+ atoms superimposed) represented as a web-of-motion, whereby equivalent backbone heavy atoms are connected between the three crystal struc-
tures. The correlation of the frame order motions is evident by the almost matching amplitude and direction of motional modes at the inter-domain contact point,
as well as the similar position and orientation of the optimised pivot points and eigenframes. In the frame of the rigid C-domain, these motions would translate as
the N-domain moving over the IQ peptide, opening as it slides towards the contact point.
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by the NMR data. The amplitude of inter-domain motions is sig-
nificantly greater than in the X-ray ensemble (Fig. 3, S36, Tables
S5, S6, S19). The almost parallel rotations between the X-ray states
for the first N-domain motional mode are {9.0°, 9.7°, 16.3°},
whereas the pseudo-ellipse torsion and cone half-angles are
{σmax, θy, θx} = {29.2°, 8.2°, 0.7°}. The pseudo-ellipse torsion
angle hence produces a distribution of domain rotations greater
than any of the X-ray structure rotations (Fig. 3).

Based on the internal motions in the X-ray ensemble (Fig. 2c),
the N-domain was split and the whole CaM system analysed as a
three segment rigid-body problem. Two frame order analyses
were performed using different N-domain subdivisions – helices
II and III and their connecting loop as the moving body, and heli-
ces I and IV moving together as a single unit. Using whole-protein
combined AIC values, the first was judged to be the best fit to the
data (Table S43). Model elimination based on RMSDs to the X-ray
structures was essential for removing failed models (d’Auvergne
and Gooley, 2006) prior to selecting the torsionless pseudo-ellipse
(Table S33). The mechanical pivot and localisation of the MD are
similar to the X-ray ensemble intra N-domain motions, yet the
directions of the main modes of motion are different and the
amplitudes are much greater (Figs 2 and 3, S76, S77). These
motions are weaker or almost absent in the 4M+ 2BE6 and 7M
ensembles respectively (Fig. S83).

In both the inter- and intra-domain cases, the individual
domain ABC superimposed structural ensembles statistically
improved the fit in comparison with the individual structures
due to the minimisation of structural noise. For the inter-domain
motions the results for the structures and ensembles were compa-
rable however for the smaller displacements of the intra
N-domain motions the choice of structure or ensemble is signifi-
cant (see all result tables in SI Section 10). Implicit in this analysis
is the quality of the input structures, and that these input struc-
tures need have no relationship with the conformation landscape.
Hence a single high quality structure is sufficient. In this case
however the use of multiple structures improved the quality of
the fit and allowed for finer motional details to be extracted. To
validate the models chosen using AIC, the results were compared
with the Bayesian information criterion (Schwarz, 1978) in Tables
S11b, S24b, and S34b. The Bayesian-based statistic made no dif-
ference to the final models selected.

For the individual moving body CaM–IQ frame order results,
no steric clashes were observed. The validation of the results by
checking the metal position as in Russo et al. (2013) is not pos-
sible as the measure is not statistically independent in this analy-
sis. The metal position is optimised using the N-domain data (see
the ‘PCS structural noise’ section). It is then fixed and the frame
order analysis predicts the reduced tensors using the full
N-domain tensors for the C-terminal domain, i.e. the problem
is implicitly constructed so that the full tensors for the N and C
domains are one and the same. Hence the metal position and
frame order results are statistically linked.

Discussion

Frame order

The theory of frame ordering developed in this paper is a new
way of representing the fundamental aspects of rotational bio-
physics. It is the exact statistical mechanical description of the
physics of how certain motions modulate the biophysical
laboratory measurements. These motions are the real molecular

dynamics, here abbreviated as MD – which should not be
confused with their in silico prediction (MD simulation).
Knowledge of the underlying physics is not necessary for model-
ling MD using biophysical measurements. However understand-
ing the concept of frame order would significantly facilitate
motional model development. Separately deriving the frame
order equations for a dynamics model and the frame order
based equations for each biophysical process simplifies the linking
of complex models to the observables. Successful derivations of
both components results in a direct set of equations linking the
model to experiment, enabling standard and relatively fast non-
linear optimisation of the model parameters. To avoid over-fitting
the data, the frame order matrices can also be simulated to see if
all aspects of the complex model affect the observables, as the
frame order matrices contribute significantly to the inherent
information bottleneck. Assuming complementary biophysical
data can be measured, a simple extension of matrices of
Eqs. (6) and (7) to include translation and skew information
would allow for both orientational and translational processes
to be studied.

For rank-1 biophysical processes, frame ordering can be visu-
alised as a series of frames attached to different parts of a mole-
cule. These frames match the order matrix at time zero,
whereby the axes are of unit length. The presence of motions
causes the ordering in certain directions to decrease with time.
At infinite time – the often observed statistical mechanical average
in a sample – the average axes of the frames may no longer be of
unit length. The lengths will correspond to the eigenvalues of the
order matrix (which in this case is the rank-2 first degree frame
order matrix minus the identity matrix). For unrestricted motions
all lengths would head to zero. If the motions are global, such as
with free or constrained molecular diffusion, all of the frames
attached to the molecule loose order equally. But if the motions
are internal, different frames would have different reduced axis
lengths. These reductions in the ordering of the frame directly
modulate the rotational biophysics observables. For rank-2 bio-
physical processes, the time-dependent frame order matrices are
the totality of the auto- and cross-correlation functions of the
frame axes. The matrices at infinity are the plateaus of these cor-
relation functions. There are 34 = 81 correlation functions, though
symmetry aspects of frame order, biophysical processes, and
motions decrease the number of unique functions. In the context
of modelling domain motions using non-local, multiple atom bio-
physical data, solely the theory of maximum occurrence (MO) has
been developed (Bertini et al., 2004, 2007, 2010; Longinetti et al.,
2006; Dasgupta et al., 2011). MO analyses RDC and PCS NMR
data and optionally small angle X-ray scattering data, and the
theory has been developed using data measured from the CaM
N60D mutant for specific lanthanide binding (Bertini et al.,
2003). This inverse problem modelling produces a map of the
conformational space showing the maximum percentage of
time for individual conformations. In the context of frame order-
ing, the physics of the rank-2 second degree matrix governs the
topological uncertainty present in the MO conformational map
due to components of the domain motions not being present in
the measured data. Further approaches rely on MD simulation
or Monte Carlo approaches (which is not guaranteed to be
exhaustive) and then selecting subensembles which best fit the
data to use for cross validation (Russo et al., 2013). Or the use
of the MEDUSA multiconformational search algorithm for gener-
ating an ensemble of structures that fulfil the data (Blackledge
et al., 1993).
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CaM–peptide motions

The combined three segment whole-protein CaM–IQ frame order
motions show strong consistencies between the two moving rigid
bodies (Figs 3, S79, S80, SI movies), with close to collinear
motional eigenframes, similarly positioned pivots and comparable
amplitudes and directions of motion sliding over the IQ peptide.
This implies that the inter-domain C-domain motions and
N-terminal intra-domain helices II, III and connecting loop
motions are one and the same. The minor differences are hypoth-
esised to be due to experimental error as the propagation of
uncertainty was computational infeasible to calculate. Although
motional correlation information is absent from the NMR data,
the motional average structure in the closed state implies strong
correlations. This is because large scale decorrelated motions of
the rigid bodies can be ruled out as only motions away from
each other are sterically possible but this would result in a non-
observed partial opening of the average structure (Fig. 1). In addi-
tion the contacting C-terminal ends of helix II in both domains

have similar RMSDs (Fig. 4), the difference of 1.3 Å being easily
bridged by side chain motions across the closed CaM clamp. This
correlation is weakly present in the X-ray structures but absent
from the MD simulation ensembles. The Gaussian network mod-
elling also indicates some inter-domain correlation, though this is
to be expected due to the elastic constraints applied across the
inter-domain clamp opening implicit in analysing a closed
CaM–IQ structure (SI Section 15). Comparing all ensembles,
the three segment frame order analysis roughly approximated
by a two-domain ensemble model, although similar to the 4M
+ 2BE6 ensemble for the tensor size ratio, best predicts the full
moving domain alignment tensors (Figs 5, S86). Movies for the
three rigid bodies moving linearly along the three motional eigen-
modes of the frame order results are presented in Supplementary
Movies S1, S2, and S3. These are in the reference frame of the
N-domain helices I and IV and calcium binding loops and are
simply animated versions of Figs 3g–i. Correlated rather than
anti-correlated movements along the eigenmodes are shown as
the anti-correlated versions result in significant overlap and steric

Fig. 4. Backbone Cα RMSDs in the N-domain helices
I and IV frame of CaM–IQ using ensemble-based
models, highlighting entropic differences. In the
frame order analyses, approximated by 1000 struc-
tures, the inter-domain contact points near the cen-
tre of both domains have similar RMSDs. This allows
the protein to remain in a closed state while the
atoms furthest from the motional pivot in the
N-domain move the greatest extent. The large
pool of entropy in the closed CaM state decreases
the entropic change ΔS between the peptide-bound
and free forms of CaM, facilitating peptide release.

Fig. 5. Inter-domain alignment tensor comparison of CaM–IQ. Using ensemble-based models/approximations, the two A tensors in the non-moving frame ideally
should match (see the ‘Materials and methods’ section). For the tensor size ratio measure Aa

N/Aa
C, which uses a single piece of geometric information, the average

value is closest to the ideal of one for the frame order ensemble approximation but the deviations are smallest for the 4M MD simulation + X-ray 2BE6 ensemble. For
the inter-tensor angle, which includes all five independent pieces of alignment tensor information, compared with the X-ray, 4M + X-ray, and 7M ensembles, the
frame order angles are closest to the ideal of zero for all tensors.
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clashes of the structures. Internal flexibility, which can account for
the gaps between amino acid residues in the animation at the
outer part of the distribution, has not been modelled and hence
is not shown.

From the perspective of the rigid core frame of the C-domain
and IQ peptide, all motions are localised within the N-domain. As
this domain moves in the +x direction of the clamp opening, the
correlation of the motions results in the inter-helix angles of two
N-domain EF-hands being sterically forced open. Propagating
through the semi rigid α-helices via hydrogen bonds to the Ca2+

coordination centres, this forms a mechanical lever prying open
and adding entropy to the N-domain coordination sites, decreasing
their Ca2+ binding affinity.

Due to the pool of conformational entropy in the closed CaM–
IQ complex (Spool), compared with a rigid complex a much
smaller entropy change (ΔS) is required for peptide binding and
dissociation. Together with the weakened Ca2+ binding affinity,
this primes the system for peptide release. The mechanical
model also implies that the N-domain interacting residues of
the CaM target peptides would control the size of Spool. As the
Gibbs free energy is similar for the different CaM–peptide com-
plexes, ΔG = ΔH− TΔS≈− 50 kJ mol−1 (Frederick et al., 2007),
the regulation of Spool is hypothesised to contribute significantly
to the diversity of CaM binding entropies (ΔS) and compensating
binding enthalpies (ΔH). The total value of Spool was not esti-
mated as, to be able to compare to measured ΔS values, the
large contribution due to changes in the complex, multi-layered
hydration shell needs to be separated from ΔS. This is however
currently not feasible.

Frame order analyses were also performed on free CaM
(Dasgupta et al., 2011) however the low data quality rendered
the results too noisy to make any conclusions, and on the
CaM–DAPk and CaM–DRP1p peptide complexes (Bertini
et al., 2009) in which the observed motions were statistically insig-
nificant (SI Sections 12, 13, 14). Hence frame order modelling
solely using RDCs and PCSs requires high quality data and is
insensitive to very low amplitude motions.

The current analysis is computationally expensive due to the
numerical integration of the PCS circumventing the frame order
physics. The derivation of an approximate PCS solution allowing
for a symbolic representation of the frame order tensors would
have a significant impact on the quality and modelling capabilities
of the analysis and would decrease the non-parallelisable compu-
tation time by many orders of magnitude (see SI Section 3). The
symbolic solution would also allow for deep insights into the
inverse problem, including an understanding of which compo-
nents of the MD can or cannot influence the experimental data.
And the elimination of numerical precision, sampling, model
nesting, and optimisation space simplification artefacts would
allow for more motional information to be reliably extracted
from the data.

The uniform distributions of the torsion angle and tilt compo-
nent in the current set of models are an approximation for mod-
elling the primary modes of motion of the macromolecule,
specifically the direction, amplitude, and anisotropy of the
motions. In the future, higher modes of motion could be mod-
elled to reproduce more of the conformational landscape, for
example using a Gaussian distribution and then adding higher
moments including skew and kurtosis. Alternative decomposi-
tions of the complex distribution of ensemble of states might
also yield useful information about the motion. However whether
or not information about these higher modes of motion is present

in the experimental data would need to be carefully validated. In
the above modelling, steric clashes are not excluded in order to
avoid artificial bias that certain parameter constraint algorithms
can introduce. Steric clash based structure selection is only possi-
ble using the approximate PCS numerical integration algorithm
and is not compatible with the continuous, non-ensemble
model of the frame order matrix equations. Hence the final results
were manually checked for any such issues. Note that a minor
steric clash could either be a result of the simplistic modelling
of a uniform distribution not taking higher modes of motion
into account or simply due to the loss of motional information
in the frame order averaging process resulting in the higher
modes of motion not being present in the experimental data.
As the modelling herein decomposes the MD into components
of higher and higher order for the increasingly complex models,
the final result should be considered not as the exact motion of
the macromolecule but rather a representation of the simplest
modes of that motion, and importantly those components that
survive the averaging induced by the frame ordering process.

Implications for molecular physics

In summary, the statistical mechanics rank-2n frame order tensor
is the universal physics theory linking the motional model to all
rotational molecular physics techniques. The frame ordering
defines the totality of the rotational MD information content of
an experiment and the characteristics of that information. Only
two steps are required to link the MD model to experimental
data – the physics is first broken down in terms of frame order ten-
sor elements, and then the MD model is expressed as a rotation
matrix and converted to a frame order matrix. This was performed
symbolically for rank-2 RDC data and numerically for multi-rank
PCS data, both from the field of NMR, using rotor, double rotor,
isotropic cone, and pseudo-elliptic cone models. Applying this to
the CaM–IQ complex, a correlated inter-domain and intra
N-domain motion was observed. The CaM clamp does not open
despite the large scale internal motions, showing that the target pep-
tide can regulate the entropic priming of its own release.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033583519000015.
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