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Abstract

The extent to which an asymmetric low-aspect-ratio flat ship is wetted when planing
at infinite Froude number is investigated, with emphasis placed on its relationship
with the shape of the hull. Two cases are considered. First the hull is assumed to have
two laterally-asymmetric leading edges and, secondly, the hull is assumed to be
yawed sufficiently for one of the leading edges to become a trailing edge. In the first
case, the relationship involves a pair of coupled integral equations, but in the second
case there is a complication by the occurrence of hull-wake interaction.

1. Introduction

As distinct from the displacement hulls of ordinary ships, which are supported by
buoyancy, most of the weight of a planing boat is supported by the hydrodynamic lift
force resulting from the upward reaction of the fluid on the moving body. Planing
usually occurs when the boat concerned is a high-speed craft of comparatively small
weight. The flow is essentially a potential flow and the pressure distribution on the
bottom of the hull may be determined without considering viscous forces. Planing is
a field which has attracted considerable attention since the first experiment with a
flat planing surface was carried out in 1912 (see Baker and Millar [1]), and both
theoretical and experimental investigations have been undertaken by a large
number of authors. A bibliography and brief review of some of the more important
papers is given in Casling [3].

In most discussions of planing problems, it is usually assumed that the hull is
laterally-symmetric. However, in practice, this is not always the case. For example,
when a catamaran is planing with one hull out of the water, the wetted region of the
other hull can no longer be considered to be symmetric with respect to the direction
in which it is moving. Similarly, when a boat moving at high speed is turning, until
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the turn is completed, the waterplane is yawed with respect to the direction of its
motion. A surfboard is another example of a laterally-asymmetric planing surface
(see Hornung and Killen [4]). It is interesting to calculate the forces and moments
acting on such hulls in order to determine, in the case of the catamaran, for example,
whether the hull tends to “right” itself (that is, become laterally-symmetric) or
whether it shows a tendency to turn right over.

Two classes of problems are considered in this paper. Firstly, the case when the
boat has two leading edges which are asymmetric with respect to the direction of
motion is discussed. The second case concerns hulls which are sufficiently yawed for
one of the leading edges to become a trailing edge, thus generating a wake forward of
the stern of the hull. The presence of the wake leads to an integral equation for the
velocity potential, which is unknown in that region, and adds considerably to the
mathematical difficulty of the problem. However, Tuck [6] obtained an almost
identical equation for yawed slender wings and presented a method for its solution,
with an analytic result possible in particular cases.

For both problems, an expression for the free-surface elevation is derived, which
leads to a pair of coupled integral equations in the first case and a single integral
equation in the second, relating section shape, waterplane shape and longitudinal
hull slope. These results are contained in Casling [3].

2. Mathematical formulation

A low-aspect-ratio flat ship is assumed to be moving with speed U in the negative
s-direction, the origin of the coordinate system (x, y, s) being fixed to the bow (see
Fig. 1). The fluid is assumed to be ideal, so that viscosity and surface tension are
neglected, and the undisturbed free surface coincides with the plane y = 0. Thus the
flow may be assumed to be irrotational, with the velocity field given by

q =V =V(Us+¢),

where ¢ is the perturbation velocity potential.
The surface of the hull is given by

y =n(x,s) 2.1

for —a(s) < x < b(s), since the waterplane is asymmetric, and for s < L, where L is
the wetted length of the hull. Note that a(s) and b(s) are both assumed to be non-
negative (that is, a(s) = 0, b(s) = 0 for 0 < s < L) and strictly monotone-increasing
functions of s, and that the leading edges of the hull are given by x = —a(s) and
x = b(s) (see Fig. 2). It is also assumed that 75(x, s) is a strictly monotone-decreasing
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x=b(s)

Fig. 1. Coordinate system.

x=b(S)

=

'

=-a(s)”

Fig. 2. Asymmetric waterplane.

function of s. Outside the hull surface, equation (2.1) describes the free-surface
elevation caused by the ship’s motion. Therefore ¢ satisfies the full three-
dimensional Laplace equation

¢xx + ¢yy +¢ss =0

in the region y < #(x, s).
The exact hull boundary condition, of no flow normal to the body, is

¢, =(U+d)n,+d.n. ony=nx,s) (2.2)

Outside the hull surface, equation (2.2) is a kinematic condition on the unknown free
surface.

The dynamic free surface condition, for zero gravity (that is, for infinite Froude
number), is

§+ U, +3|V[2 =0 ony=nix,s), 2.3)

where P is defined to be the excess of pressure over atmospheric at the free surface.
Two more conditions are necessary. A Kutta-like condition, which ensures that the
free surface leaves any sharp trailing edge smoothly, is needed. For example, the
pressure should reduce to atmospheric at any such edge. In addition, a radiation
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condition at infinity, namely ¢,, ¢, — 0 as x> + y? + s> ~ o in the lower half plane, is
required.
The ship is assumed to be flat as well as slender, with

DK B<KL,
where D is the draft and B the beam of the ship. That is, if
D=0().L and B =0().L,
for small parameters « and ¢, then
o<e

When first the small-draft and then the low-aspect-ratio approximation is made,
using standard perturbation techniques, equations (2.2) and (2.3) reduce respectively
to

¢,=Un, ony=0 (2.4)

and

§+ Up,=0 ony=0. (2.5)

These linearized conditions are applied on y = 0 because, as a — 0, the hull reduces
to its projection onto the plane y = 0 and, since the ship is slender, it is not possible,
in general, to satisfy the Kutta condition at the trailing edge. The function ¢ is now
the potential for the cross-flow problem in the (x, y)-plane and satisfies the two-
dimensional Laplace equation

Prxt by =0
in the region y < 0. The problem for ¢ is shown in Fig. 3.
y
-a(s) b(s)

Y 7~ 7 pd e |

| Dzl DA AR |
bx =0 ¢y=qu=given Px=10
b =0 $x = given $éx=0

Fig. 3. Cross-flow plane.

By considering the linearized problem, some of the details of planing flow, for
example, the spray sheet, are neglected. However, Wagner [7] has shown that this
phenomenon may be represented by a square-root singularity in the pressure at the
leading edge, a result which is incorporated into the solution of the problem.
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3. A solution of the problem

There are many ways in which the problem just defined may be solved. One of the
easiest methods involves the use of complex variable techniques.
The complex function €(z) is defined by

Q(Z) = <I)x(xa Vs S) - i(py(x’ Y, S)
= (z+a(s)t (z—b{s)F w(z), 3.1
where z = x +iy and w(z) = @,(x, y,s)— i (x, y,5) is the complex velocity at station
s, since there is an inverse square-root singularity in the fluid velocity at the leading

edges, x = —a(s) and x = b(s). The branches of the square-root functions are taken
so that

(z—b(s))t - —i(b(s)—x)* as y—>0—, for x < b(s),
and

(z+a(s)t - —i(—as)—x)* asy—-0—, for x < —afs).
Thus, in the limit as y — 0 —, equation (3.1) may be written
(x — b(sWHx +a(s)* (. — i), x > b(s),
O, —i®, = —i(b(s)—xP}(x +a(s\H ¢, —ig,), —a(s) < x < b(s),
~(b(s) = x}(— als) — x) (b, —i¢,), x < —a(s).

The problem for @ is shown on Fig. 3.
Since €)(z) is an analytic function in the lower half-plane and tends to zero as
| z| = oo, from the radiation condition on ¢, and ¢,, Cauchy’s theorem implies that

(Dx(x9 0— ’ S) - i(Dy(x’ 0— 3 S) = Ell— J_ao xd_éé (q)x(i’ 0 ) S) - ld)y(é’ 0— ) S)),

where the integral is interpreted as a Cauchy principal-value integral. In particular,
since @, is known everywhere,

<I>y(x,s>=%rm L0k (32

—a(s) X _é
may be determined everywhere, there being no contribution to the integral for
& > b(s) or & < —a(s) (see Fig. 3). Expressing equation (3.2) in terms of the original

functions ¢, and ¢,
1

9yx,9) CTaFG=EOF x > b(s)
1 -1
dAx,5) } = 7| T A B —=F I(x,s), —a(s) < x < b(s), (3.3)
1
},(x,s) =2 =F BE) =9* x < —a(s),
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where

b(s)
Ii(x,s) = f_ X é¢y(é ,8) (b(s)— &) (€ +a(s))*.

Since ¢,(x,s) is now a known function everywhere, the slope of the free surface,
ns(x, s)is also known, from equation (2.4), and the free-surface elevation, x(x, s), may
be described by the following expressions :

1]° do
% Jo Gt a@)y by 2% x> b
fsda N.(x, @)+ ¢,(x), 0 < x < b(s)
0
n(x,s) = (3.4)
J don,(x, 6)+ c,(x), —as)<x<0
0

1y° do
nL( ao) =) (o) 2%k x < —als)

where

_ 1 (‘sotx) do b(o) df
GO ="7 ), GFARCDBON |-aox~2

x (1,(&, 0)—n,(x, W + a(o))* (b(o) —&)*

f'So(x)d ﬂa(x o.) (3.5)
Jo (x + a(0))? (x — b(o))*

[0 | 14(x,0)(b(o) — a(0))
Jo G+ a)F =)’

+2

1 a0 do
M=7| Ca—xFEe -2

§ J o % =2 (1,(&, 0) = 1,(x, 0)) (€ + a(0))* (b(o) — &)*

-a(a)x 5
" 14X, 0)
+XL T (=a(e) = x) (blo)—x)F (3.6)

s J = 1,(x,9) (b(o) — alo))
o =) x)Fble)— X"

2

b(s) d é
Iy(x,s) = J nd(&, s) (€ +als) (bls) - &)Y,

—a(m) X~ é
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5o(x) is the station at which x = b(s), and s,(x) is the station at which x = —a(s).

A relationship between the physical characteristics of the hull and the shape of its
wetted area when it is moving has emerged, in which only two variables can be fixed,
the third being determined by the relationship. This result is not unexpected,
because a similar property has already been observed for symmetric planing hulls
(see Casling [2]). In this case, it takes the form of a pair of coupled integral equations,
given in equations (3.5) and (3.6). If the water-plane shape, described by x = h(s) and
x = —a(s), and the longitudinal hull slope, n,(x, s), are known, then the complete hull
shape, determined by y = ¢,(x) for x > 0 and y = ¢,(x) for x < 0, is fixed by these
equations. If n(x,s) is assumed to be completely defined, as in equation (3.4) for
—a(s) < x < b(s), then the pair of integral equations must be inverted simul-
taneously to find the unknown waterplane shape, that is, to find the functions
x = b(s) and x = —a(s). There seems to be little hope for an analytic result in this
case.

However, the indirect problem (that is, the one in which the waterplane is fixed)
may be used in an inverse manner to produce required hull shapes. For example,
suppose #,(x, s) is independent of x and s, that is,

"s(xa S) ==7%

for some small constant y. Then equations (3.5) and (3.6) become

_ s0(x) do I Jo—(Pl0)—alo))
cy(x) =yx o (x+ao)f(x—bo)f 24 o (x+a(a’))* (x—b(a))*

and

s1() do S1(x) (b(0)— a(a))
cz(x)=‘”‘L (—a(e)—x)* (B(0) — x)*”yj 2 = dlo) = (i)

respectively. If it is further assumed that the waterplane is triangular, with

bs)y=fs and a(s)=as

for small constants a and f, then
c(x)=c;x and cy(x) =cy X,

where

2 =v[(§+sin"‘( +§))(ﬁ+a)2/4 (8- a)(aﬂ)*/Z]/(aﬁ)’”

https://doi.org/10.1017/50334270000002538 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000002538

(8] An asymmetric planing hull 41

and

¢, = —y[(g—sm- (Z;ﬁ)) (B+0?/4+(B-a) (aﬂ)*/z] / @)

are constants. Thus the section shape is also triangular. So the extent to which a
given hull with triangular sections is wetted may be determined by altering the
values of « and f until the desired values of ¢, and c, are obtained. A similar process
may be used for other hull shapes.

4. Forces and moments

From equation (3.3), ¢,(x, s) may be determined for —a(s) < x < b(s). Therefore
expressions may be derived for the forces and moments acting on the hull and the
position of the centre of pressure may be calculated.

The lift force, Fy, on the hull is given by

L b(s)
Fy=f dsj dx P(x, s)
0

—af(s)

0 L b(L) L
= f dx f ds P(x,s)+ j dx f ds P(x, s).
-a(L) s1(x) 0 So(x)

Since, from the dynamic boundary condition, P = —pU¢,, and ¢ = 0 outside the
hull surface,

b(L)
Fy= —pU‘[ dx $(x, L)

—a(L)

b(L)
=pU f dx x ¢ (x, L),

—a(L)

after an integration by parts. Substituting the expression for ¢, given in equation

(3.3),
Fo - b(L) p -1 J‘b(L) dé L
y=pU f_m * X+ a(D)f (L) — x) _G(L)aqﬁy(é, )

x (& +a(L)* (b(L)— &)

b(L)
=—pU I_ Y g ¢ (&, L) (€ +a(L)* (B(L) - &)*

a(

1 (%D dx X
*T )y X—C FaD)F (GO =%

b(L)
U f " " (& L)+ oL -2,
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since ¢, = Uy, and

1 b(L) dx X
_f —apy X—& (x+a@)F (B(L)—x)F ~ =1

As expected, the total lift depends on only the beam and the slope in the direction of
motion of the hull at the stern.
Similarly, the starboard-up roll moment, Mg, about the s-axis is given by

=f dsf dx x P(x,s)
—af(s)
b

(L)
=£- dx x* ¢ (x, L).
2 —a(l)

Making the substitution for ¢, in this equation gives
pU b(L)
Mg =—"5- )dtf $,(& L)€ +a(L)* (L) - &)
—a(L

1 (o dx 2
7 f —awy X —& (x+a(L))* (b(L)— x)*

2 L) ~
- _%j‘ b dE ny&, L) (€ +a(L)* (b(D— &) {é + M}
since
1 L O x2 B b(L)—a(L)
)y x—& (x+aL)F(b(L)—x)F &+ 3 )

When the hull slope n(x, L) is symmetric about the midpoint of the stern,

b(L)—a(L)

X = 3

the roll moment may be rewritten as

b(L) a(lL)

Mg = d§ nd&, L) (€ +a(L))* (b(L)— &)

~a(L)
b(L)—a(L)
==z F

That is, the centre of pressure is laterally located at the point corresponding to the
midpoint of the trailing edge and not on the centreplane of the hull. This means that
a hull, initially yawed to port, will tend to roll so that the starboard edge rises.

In order to find the longitudinal location of the centre of pressure, it is necessary to
evaluate the nose-up pitching moment, Mp, about the x-axis :
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L b(s)
M,,=J~ ds dx s P(x, s)
] —a(s)

b(L) L b(s)
= pULf dxxd)x(x,L)—pUJ‘ ds dx x ¢(x, s).
—a(L) 0 —a(s)
Substituting for ¢, gives
b(L
Mp=—pU? Lf

—a(

)
b dgny&, L)€ +alL)?* (L) - &)

+pU? f ds r“’ 4E 1, (&, 9)(E +als)? (bls) — ).
0 —a(s)

That is,

M, = LFy+pU? f “as |77 dxnx, ) (x -+ als) (bs)— %)t
0

—a(s)

The second term in this expression may also be written as

— fL ds F y(s),
0

where F(s) is the longitudinal lift distribution, and is therefore, by necessity,
negative. Therefore the centre of pressure will be located forward of the trailing edge,
at the point

5= bdesFAs)/Fy.
L]

>

Itis an easy task to calculate the lift force and moments using the above expressions,
as the integrals involved either can be evaluated analytically or are quite amenable
to numerical integration.

For example, if n4(x, s) is dependent only on s, that is

']s(xa S) = _f(s)’
then, for any waterplane shape defined by a(s) and b(s), the lift force is given by

Fy = g pU? f(L)(B(L)+a(L),
the roll moment by

MO 4B 41+ aquyp,

¥/
Mg =35 pU? f(L)
and the pitching moment by
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Mp=ng{Lﬂuwu4+auf—JZAJuxms+dsf}

Therefore the centre of pressure is located at (x,5), where

i=mggdm
and

L
§=Mp/Fy=L~- L ds f(s) (b(s) + a(s))* / fSIL)BL) +a(L)y

As expected, the centre of pressure has its location at the offset corresponding to the
midpoint of the trailing edge, (b(L)— a(L))/2, but at a station forward of the trailing
edge.

Since (b(L)—a(L))/2 is a measure of how far the hull is yawed, the above
expressions seem to indicate that both the lift, Fy, and the pitching moment, M p, are
independent of the yaw angle. However, this is not the case, because there is an
indirect effect of yaw on the sum b(L) + a(L). For a given hull shape, defined by n(x, s),
there is a unique waterplane shape, determined by a(s) and b(s). As the hull is yawed,
its shape with respect to the coordinate axes changes and, therefore, so does the
shape of the wetted region. That is, as the functional form of 5(x, s) is altered, a(s) and
b(s) both change so that equations (3.5) and (3.6) are still satisfied. Therefore the sum
b(L)+ a(L) does depend on the yaw angle and so do the lift, Fy, and the pitching
moment, Mp. This is in contrast to the aerodynamic case in which Fy and M, are
independent of the yaw because b(L)+ a(L) is constant for a given wing. In both
cases, however, the roll moment, Mg, does depend on the yaw angle.

Neither Fy nor M g depends on the values of g, b and #, ahead of the trailing edge.
That is, two different hulls will have the same lift and rolling moment if their wetted
widths across the trailing edge and their longitudinal hull slopes at the trailing edge
are equal. The pitching moment, M p, because of the integral term in the expression
describing it, does depend on the hull shape at all stations.

5. A fully-yawed planing hull

If the hull is further yawed until one of the leading edges becomes a trailing edge,
as shown in Fig. 4, the problem is considerably altered. A wake is generated by the
trailing edge forward of the stern and there is interaction between the hull and the
wake. It is assumed that the starboard edge

x=0b(s), 0<s<L,

is always a leading edge and that the port edge, now defined by
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Leading edge

Trailing edge
x=a(s)

Fig. 4. Waterplane shape for a fully-yawed hull.

x=as), 0<s<L,

is always a trailing edge, with a(0) = 0. As in the last problem, a(s) and b(s) are both
non-negative, strictly monotone-increasing functions of s, but the added condition
b(s) > a(s), 0 < s < L, is needed here. The wake is assumed to begin at s = 0 and
occupy the area between x = 0 and the trailing edge, x = a(s). Past the stern, it will
be contained in the region between x = 0 and x = b(L). It is not necessary for the
bow to be at s = O (that is, b(0) does not need to be zero), as part of a planing hull
which generates no wake may be added for s < O (see Fig. 4).

The mathematical problem is almost identical to that defined in Section 2,
requiring solution of the two-dimensional Laplace equation in the lower half-plane,
subject to the given conditions. The pressure difference, P(x, s), is zero in the wake
region, so the dynamic free-surface condition reduces to

¢,=0 ony=0, (5.1)
when 0 < x < a(s). This implies that
¢(x,s) = O(x) for 0 < x < a(s),
where ®(x) is an unknown function to be determined as part of the solution to the
problem. Itis also necessary, in this case, for the Kutta condition to be satisfied along
the trailing edge, x = a(s), as otherwise a unique solution cannot be obtained. This is
“built into” the solution by having a square-root zero in the fluid velocity at x = a(s),
thus ensuring that the pressure is continuous across the trailing edge. The problem
for ¢ is shown in Fig. 5.
The method of solution used in Section 3 is applicable here, the complex function
appropriate for this problem being
Q2) = (2= b)) (z—als) " w(2), (5.2)

where

z=x+iy and w(2) = ¢,(x,),5)—id,(x,,5),
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as before, and
Q(2) = A(x,y,5)—iA)(x, y,s).

An inverse square-root singularity in the fluid velocity is still acceptable at the
leading edge, x = b(s), but, because of the Kutta condition, this is not the case at the
trailing edge. Hence there is the square-root zero in w(z) at x = a(s). The branches of
the square-root functions are taken so that

(z—b(s) > —i(b(s)—x)* as y—>0—, for x < b(s),
and
(z—a(s)) "t - i(a(s)—x)"* as y—»0—, for x < afs).
Thus, in the limit as y — 0—, equation (5.2) may be written
(x —b(s) (x—als)) ¥ (¢, —id,). x > b(s),
Ac—iA, = —i(bs) =2 (x—a(s)"H (b —id,),  als) < x < bis),
(b(s)—x)* (als) —x) " * ($, —id,), x < a(s).
The problem for A is also shown on Fig. 5.
Since the conditions of Cauchy’s theorem are satisfied,

b(s)
A = %L LA

as shown in Section 3, since there is no contribution to A, for £ < 0 or & > b(s) (see
Fig. 5). In terms of the original functions,

— a(s\4)
bx.9) (i—_—,‘%) x > b(s),
— 3
buxs)y ) == (-;;(S)—i(sg) Iy(xs), als) < x < bls), (53)
—x\?
B (ﬁgj’j) x < als),

where

a(s) ~E\+ b(s) £\
I5(x,s) = J; d_{(b(s) 5) '(8) - de <§(i)a(f)) @,(&, 3).

x_é a(s)_é a(s) x—__‘:—

If ®(x) were known, then the problem would be solved, because expressions for the
free-surface elevation for all values of x and s and the loading on the hull (and hence
the forces and moments acting on it) could be derived from the above equations for
¢, and ¢,. But ® is unknown and must somehow be determined before the solution
is complete. The following method for finding ® was used by Tuck [6] for yawed
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I
al(s) b(s)
x
¢x =0 ¢ ~d(x) Py=Ung=given ®,=0
°=rq>'(x)
Ax= Ax=given Ax=0

Fig. 5. Cross-flow plane.

slender wings and results in an integral equation which relates ®'(x), the waterplane
shape, and the longitudinal hull slope. The expression for ¢, given in equation (5.3) is
integrated from x = a(s) to x = b(s). Since the velocity potential must be continuous
at these two points, that is

dla(s),s) = ®la(s)) and  P(b(s),s) =0,
_ S e DA _(as)=¢
D(als)) —L dé( (5)— é> d’(i)(l <b() é> )

" (bs) =&\
J;(s) dé(é —a(s)> P& 5)
which implies that

@ (PO =EN pey — |7 g (24
J;) dé(a(s)—é) (D(é) - J;(s) dé(é a(s)> ¢y(é, S),

or, in terms of the hull slope 74(x,s),

W US)=ENE o b(s)—¢ )
J;) dé(a(s)_é> (D (6) - U J;(s) dé(é a(s) '15(6’ S)' (54)

This integral equation for determining the unknown wake velocity potential ®(x),
given the longitudinal hull slope, ,(x, s), and the waterplane shape, described by a(s)
and b(s), is almost the same as the one obtained by Tuck [6] in his note on yawed
slender wings. In that paper, he discusses the mathematical nature of the integral
equation and, in certain special cases, presents an analytic solution. The problem is,
therefore, to all intents and purposes, solved, as it has been reduced to the task of
inverting equation (5.4), and there are numerical techniques available for the
solution of such integral equations (see Tuck [6]).

Since ¢, = Un,, the free-surface elevation caused by the motion of the hull may be
written as
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nL UC Z?I;) 14(x, ), x > b(s),

J da 1,(x,0)+c,(x), a(s) < x < b(s),
0
n(x,s) = (5.5)

s
f dan(x,0)+c,(x)+cy(x,8), 0 < x < als),
0

s —x\?
%L do(j,’éj}_ ;‘) I{x0),  x<afs),
where

0=y [ o200 [ (5= o
f - ”(i :ZEZ; )* ﬁ:)) xd_éé (g(f)a?f))*(m(é, &) —1(x, 0))
- J::M d"(i-:aﬂy no(x, 0), 56)
CZ(X’S)zi'IULx)“”(ZEZ; i) fam # (”‘3 g) o)
fs,m 0(28 ) ﬁ:) xd_éé (g(f);(f))*(n,(é, 0)~1,(x, 0))

‘L,f"(?fﬁi x) 14, 9), (5.7)

with s,(x) that value of s for which x = a(s), and

L[ de (H9=EV g [*0_dE (b=
"“"’”‘UL x—é(a(S)—é) PO | x= é(é ) e

All the above formulae for #(x,s) have been derived under the assumption that
n(x,0) = 0. If this is not the case, for example, when a non-wake-generating section is
added for s < 0, then 7(x,0) must be added to each of these expressions.

As expected from previous results, the solution to the problem involves an integral
equation which relates the planing hull characteristics, namely the waterplane
shape, decribed by x = a(s) and x = b(s), and the hull shape represented by n/(x, s)
and c,(x). But, in this case, the relationship, given in equation (5.6), is more
complicated than those derived previously because of the presence of ®(x), the
velocity potential in the wake, a function which is itself the solution of an integral
equation involving the hull characteristics.
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The easiest course of action available is to fix afs), b(s) and 7,(x, s) and determine
@'(x) from equation (5.4). Then ¢,(x) and c,(x, s) may be found from equations (5.6)
and (5.7) respectively. Hence 5(x, s) may be determined everywhere. However, this is
not the situation which arises in practice. Usually #(x, s), as given by equation (5.5)
for a(s) < x < b(s), is known and it is the shape of the wetted region, that is, a(s) and
b(s), which is required. It was shown by Casling [2] that, when the hull has positive
curvature in the direction of motion, it is possible for the pressure to fall below
atmospheric forward of the stern. This suggests that the flow has separated from the
underside of the hull upstream of the stern. In this case, the position, x = a(s), of the
trailing edge must be determined as part of the solution to the problem. However, if
the hull has zero or negative curvature in the direction of motion, it may be assumed
that there is a transom stern along x = a(s). Thus a(s) may be fixed in advance and
@’(x) and b(s) are the only unknowns. Equations (5.4) and (5.6) are therefore a pair of
integral equations to be solved simultaneously for these two unknowns.

For example, suppose a low-aspect-ratio wedge is yawed with respect to the
uniform stream. If the hull shape is assumed to have been given initially by

n(x,s) =—as+es, x=0,

for small parameters « and c, then, once the hull has been yawed through a small
angle 6,

—(xcosO+csin@)s+(ccos—asinf)x, x> stan0,

n(x,s) =
—(xcos@—csinf)s—(ccos 0 +asinf)x, x < stand.

There is a change in the longitudinal hull slope, 5(x, s), along the line x = stan 8 and,
since

acosf@—csinf < xcosB+csin b

for the values of 6 under consideration, the line x = stan 0 acts like a transom stern.
That is, the free surface leaves the hull smoothly along the keel line x = stan 6. Since
x = a(s) describes the position of the trailing edge, a(s) has been fixed and equals
stan . It should be noted that the free surface also leaves the transom stern, now
given by

s=—xtan8+ Lsec9,

smoothly.
When, as in the first case, a(s) is also unknown, three equations are needed in order
to obtain a unique solution for ®'(x), b(s) and a(s). So another condition involving
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one or more of the functions must be found. It comes from the behaviour of the flow
at the trailing edge, in the following way. The problem is different from the case of a
slightly-yawed hull, because one leading edge has become a trailing edge and the
flow must now separate smoothly from the bottom of the hull along this edge
x = a(s). Continuity of the free-surface elevation across the trailing edge into the
wake region is incorporated into the equations for 5(x, s), and n,(x, s} is continuous
alepg x = als) from the Kutta condition. However, {or smooth flow detachment to
occur, the curvature must remain constant. That is, the curvature of the free surface
immediately after separation must equal the curvature of the hull at the separation
point (see Oertel [5]). The continuous curvature condition may be derived as
follows.
The slope of the free surface is given by

n2(x,s), a(s) < x < b(s),

_ | 1fa9—x\} [ d¢ D) [bs)—E&)

ndx,s) = E(b(S)—x> {L x—~¢& U (G(S)_é>
b e b(s)—&\?

_Ls) p n(&, s)<5—a(s)> },x < as),

where n9(x,s) is assumed known. When x < a(s), the above equation may be
rewritten as

—x\¢ '
nix,s) = nl(x, s)+(§8_§> {-n?(x, s)

L j “©_dE_ (@) -0(x) (b(S)—é)*

T Jo x—¢& U a(s)—¢&
(I)’(x) In 2(a(s) b(s)}* + b(s) + a(s)| _[b(s)—x\*
nU b(s)— a(s) a(s)—x

x(a(s) — b(s))
2(a (s) b(s))* (a(s) — x)* (b(s) — x)* + 2a(s) b(s) — x(a(s) + b(s))

b(s) dé b(S) é
—;J;(s) x— é(ns(é S) ’7?(3‘ S))(é a( )) }

|
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As x — a(s),

_ y\%
m@@=ﬁ@9+@$_3{}ﬁ@&ﬂ

1[0 (@) -0(as) (bs)—2)
+EL A 6 AR

2a(s) b(s))* + b(s) + a(s)
b(s) — a(s)

RO

U (5.8)

L [r (b(s) — )
+ ; J;(s) dﬁ(”?(éa S) - ”.?(a(s)’ S)) (a(s) _ é) }

In general, the curvature will be finite, and hence continuous, at x = a(s) only if the
expression in braces in equation (5.8) vanishes as x — a(s), that is, only if

a(s) HEY e
m@ﬂ@=§£‘&@@)®mm»w@ 5

U (a(s)— &7
@'(a(s) , | 2a(s) b(s))* + b(s) + a(s)
t—u o b{(s) — a(s) (59)

oo (b))
+; j 9 d{(”s(é’ S) - "(a(s)’ S)) (5 — a(s)) s

af

omitting the superscript on 7%(x, s).

Equations (5.4), (5.6) and (5.9) are three integral equations for determining the
functions @’'(x), a(s) and b(s) uniquely for a given hull shape. However, it seems
unlikely that such solutions could be obtained in practice, even with the aid of
numerical techniques. In fact, it also appears that no solution to the indirect problem
(that is, the problem in which a(s), b(s) and n,(x, s) are fixed) can be found. The reason
for this is that, if a(s) and b(s) are fixed, ®'(x) is determined uniquely by equation (5.4),
but these three functions together may not satisfy the curvature condition, equation
(5.9), as well.

6. Conclusion

The results presented in this paper highlight the indeterminacy of hull shape in
problems which involve the planing motion of a high-speed boat. In practical
situations, it is the direct problem of finding the extent of the wetted area for a given
hull which is important. It would be very useful, therefore, if a technique for solving
this case could be found. However, in the absence of this, progress can be made
through the solution of the inverse problem, in which the wetted area is fixed and the
hull shape which produced it is determined.
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