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A question of Babai on groups

J.L. Hickman and B.H. Neumann

Laszlo Babai raised the question whether every infinite group G

contains a set B of elements, of cardinal equal to the order of

G, such that for elements a, b, o of B the equation

a = bo b implies a = a . We show that the answer is

affirmative for certain classes of groups, including the soluble

groups and the countable groups, if the Axiom of Choice is

assumed, but negative, even for abelian groups, if a different

axiom, compatible with Zermelo-Fraenkel set theory but

incompatible with the Axiom of Choice, is assumed.

1. Introduction

Laszlo Babai [2] has asked whether every infinite group G must

contain a set B of elements, of cardinal equal to the order of G , such

that

( l . l ) if a, b, a € B and a = bo b then a = a .

This arose from a problem on graphs and their automorphism groups which

Babai can now solve "by other means. We understand that he has also

answered the above question affirmatively for some classes of groups [2],

but by methods different from ours. In this paper we shall show that the

answer depends on the underlying set theory: with the Axiom of Choice the

answer is affirmative for countable groups and for soluble groups, and may

indeed be affirmative for all infinite groups - our methods do not suffice

to answer the question - but without the Axiom of Choice the answer can be

negative even for some abelian groups.
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2. Conventions

Script l e t t e r s , like G , are used for groups, and the corresponding

i ta l ic let ter G denotes the set of elements, or carrier, of 6 . If B

is a set, i t is convenient to think of i t s cardinal, denoted by \B\ ,

though i t only occurs in equalities and inequalities. If G is a group,

\G\ is i t s order. The group 6 will usually be understood, and we then

call the set B large if \B\ = |G| , that is if there is a bijection from

B to G , and small if | s | < |ff| , that is if there is an injection but

no bijection from B to G . A subset B of G , the carrier of G ,

will be called a Babai set if i t satisfies ( l . l ) . The group G is good if

G contains a large Babai subset, and bad otherwise.

If G is a group and H a subgroup or factor group or section, that

is a factor group of a subgroup, of G , then H is called large or small

according as H , i t s carrier, is large or small.

We assume Zermelo-Fraenkel set theory (ZF) with an additional axiom

for most of the argument. This will be the Axiom of Choice (AC) at f irs t ,

but a different axiom later , when also the relevant further notation will

be introduced. It is well known that if ZF is consistent, then so is ZFC,

that is Zermelo-Fraenkel set theory with the addition of the Axiom of

Choice; see Godel [3].

3 . E l e m e n t a r y r e s u l t s

For our first results, AC is not needed.

LEMMA 3.1. The whole carrier G of the group G is a Babai set if,

and only if, G has exponent 2 , that is to say all squares equal the

unit element.

Proof. It is well known, and indeed elementary, that groups of

exponent 2 are abelian. Thus if G is of exponent 2 and a, b, c are

elements of G , then

a = bo b implies a = b a = a = a .

Thus G i s a Babai se t . Conversely, if G i s a Babai set and g € G an
o

arbitrary element, ve put a = X (the unit element), b = g , c = g in
( l . l ) , and find that c = 1 : as g was arbitrary, G has exponent 2 ,
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as claimed.

COROLLARY 3.2. All groups of exponent 2 are good. No finite group

other than one of exponent 2 is good.

In the absence of AC, "finite" can be given different meanings, a

point we return to later: for the present we leave the term vague, or

intuitive.

LEMMA 3.3. If G contains a large good subgroup, then G is itself

good.

This i s obvious, as a large Babai subset of the carr ier of the

subgroup i s also a large Babai subset of G .

For the next lemma and i t s corollary we use AC. We do not know

whether they remain true without AC.

LEMMA 3.4. If G has a large good factor group, then G is itself

good.

Proof. Let T\ : G -*-*• G be an epimorphism, with G large and good.

We denote by n also the corresponding surjection ri : G -*-*• G of the

car r i e r s . Let B be a large Babai subset of G, , and l e t T : G. >—*• G

be a le f t inverse (or transversal map) of n > that i s an injection of G.

to G such that xn is the ident i ty map of G, . Such a x exis ts

because we have now assumed AC. Now B = B, x i s a large Babai subset of

G : i t i s obviously large , and if a,b,c(.B, then a = a x ,

b = i .x , a = e x with a . , b , c ( . B . If, moreover, a = bo~ b ,

then an = br\(cr\)~ br\ , that i s a = b c~ b , hence a = a and

a = a .

COROLLARY 3.5. If G is a bad group, then every large section of G

is bad.

4. Bad groups

We s t i l l assume AC. Let G be a bad inf ini te group. The following

technical lemma wi l l , with Corollary 3-5> allow us to make other bad
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groups, and to show that abelian groups are good.1

LEMMA 4.1 . Let the group G be infinite and bad and let L be a

large subset of G . Then L contains two distinct elements I, m and

a large subset X such that all x € X satisfy the equation

(U.11) I = xm~Xx .

Proof. As AC is assumed, we can use Zorn's Lemma to establish the

existence of a maximal Babai subset, say B , of L . This is trivially-

non-empty but small, as G is "bad. If y is an arbitrary element of

L - B , then B u {y} is no longer a Babai set. Thus there must be

elements g, h € B such that

(U.12) y = gh~ g and y # h , or

(U.13) h = gy~ g and y # h , or

(U.lU) g = yh~ y and g t h .

We note in passing that (*t.l2) and (U.13) are equivalent, and that y ? h

i s guaranteed anyway by h being in B and y not. The set of y that

satisfy (U.12) (and (U.13)) is small, as the set of pairs {g, h) with

g, h € B i s small - note that G is assumed to be inf ini te . Thus the set

of y that satisfy (U.lU) for some g, h € B must be large, and again

because only a small set of pairs (g, h) i s available, there must be at

leas t one such pair , say (I, m) with I t m , for which the set

X = {x € L | I = xnT^x] ,

i s large. The lemma follows.

COROLLARY 4.2. Let the group G be infinite and bad, and let L be

a large subset of G . Then G contains a large subset R - contained,

in fact, in a translate m~ L of L , where m € L - such that all

elements of R have the same square, and this is not the unit element.

V/e use t h e n o t a t i o n of Lemma U.I and put R = m X . I f r € R , then

r = m~ x w i th x € X , hence

(U.21) r2 = m^xm^x = m~Xl * 1 ,

See note added in proof at end.
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and m 1 is independent of x and r .

An incidental consequence of this corollary is that all infinite

groups of exponent 2 are good, as (U.21) can never be satisfied in them:

but we know this to be the case even without AC, and for finite as well as

infinite groups - see Lemma 3-2.

THEOREM 4.3. Under assumption of the Axiom of Choice, all infinite

abelian groups are good.

Proof. Let A be an infinite abelian group and R a large subset of

its carrier A as in Corollary h.2, that is to say such that for all

r, s € R ,

r2 = s2 * 1 .

Choose a fixed element, say r , in R and consider the set

Q = r~XR = {r'^s \ s € R] .

2
Clearly Q is large, and if q € Q then q = 1 . Thus Q generates a

large subgroup of A of exponent 2 . This subgroup is good, by Lemma

3.2, and hence A itself is good, by Lemma 3-3. The theorem follows.

COROLLARY 4.4. All infinite soluble groups are good.

Of the factors in the derived series, at least one must be large:

thus the group has a large good section.

COROLLARY 4.5. All free groups are good.

They have large abelian sections.

5. Consequences

We still assume AC and restrict our attention to infinite groups. If

G is a bad infinite group then the subgroup generated by the large subset

R of G of Corollary k.2 is also bad, and so is the factor group, say

H , obtained modulo the common square of the elements of R . Thus we have

a bad group H generated by a large set S , say, of involutions. It is

convenient to work with 5 and H rather than the original G . Another

technical lemma is required for our main result.

LEMMA 5.1. Let H be an infinite bad group generated by a large set
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S of involutions. Then there is an infinite sequence
£ = [s , s , s , . . . ) of distinct elements of S such that

(5-H) if i < 3 < k then s.s.s. = s.s.s. .
J t- J K. 7s K

Proof. We proceed by induction. Take Z- and £' as the empty

sequence and put S = S . Assume we have sequences

and a large subset 5 of S with the properties

(5.2n) if i < 3 5 n-1 then s -s .s . = s'- f s. ,
3 1* 3 "** if

(5.3n) if i 5 n-1 and s € S then

s s i s = si •

Note tha t (5.20) and (5.30) are vacuously sa t i s f ied . Now apply Lemma l+.l

with S in place of L and H in place of G , to find two d is t inc t

elements £, m of S and a large subset X of S such that for a l l

x 6

as m is an involution. Put

= am" a; = ocmx ,

s = Z , s' = m , S , = X .
rc n n + 1

Then (5.2(n+l)) and (5.3(n+l)) are easily verified. Finally form the union
Z = (s^, s , s , . . . ) of al l the sequences Z so constructed: then

(5.11) is satisfied. Note that if i < J , then s. and s. do not

commute, hence are distinct. The lemma follows.

COROLLARY 5.4. With the same notation, if i < 3 < k , then s.

commutes with s .s. .
3 k

Observe that, as we are dealing with involutions,

S -S .S . = S~S .S,
3 1 3 k 1 k

implies
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LEMMA 5.5. Let H be a group whose carrier H contains a sequence

1 = (S0' Sl' V '"}
of distinct involutions with the property

(5-11) if i < j < k then s £.s . = s,s .s . .

Then H contains an infinite abelian subgroup.

Proof. Choose a sequence

of non-negative integers so that for all m < n ,

(5-51) tn =
 si(2m)Si(2rn+l) * Si(2nfi(2n+l)

Thus, for example, we may take i{0) = 0 , i(l) = 1 , i(2) = 2 , and

i ( 3 ) = 3 or i(3) = ^ > according as

S0Sl * S2 S3 ° r S0Sl = S2 S3 •

(One can always choose i{2n) = i(2n-l) + 1 , and i(2n+l) in the range

i{2n) < i{2n+l) 5 i{2n) + n .)

Then Corollary 5.k, which only relies on the existence of the sequence £

of involutions subject to (5.11), will guarantee that for all m, n the

elements t and t commute. As by construction they are distinct, the

abelian group they generate is infinite, and the lemma follows.

We are now ready to prove our main result.

THEOREM 5.6. Under assumption of the Axiom of Choice, all countably

infinite groups are good.

Proof. If G is an infinite bad group, then it has, as we have seen,

a bad section H generated by a large set of involutions; by Lemma 5-5

then H contains an infinite abelian subgroup. This can not be large, as

otherwise it would, by Theorem 4.3 and Lemma 3.3, make H , and thus G , a

good group. Hence \G\ is uncountable, and the theorem follows.

It may be remarked that the somewhat indirect proof is in the nature

of things, as there exist infinite groups without infinite abelian

subgroups; see Adyan [?]•
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6 . More d e f i n i t i o n s

We now jettison the Axiom of Choice; this allows us to consider

different notions of finiteness and infinity. We use standard notation.

In particular the natural number n is the set of i t s predecessors,

n = {0, 1, . . . , n-l] , and w stands for the set of natural numbers. A

set is finite if i t s cardinal is a natural number, and infinite otherwise.

Then the set X is infinite if, and only if, for every natural number n

there is an injection cp : n >—• X .

The set X is called medial if i t is infinite but there is no

injection <p : w >—• X . Every medial set is Dedekind-finite, which is

defined to mean that i t has no proper subset of i ts own cardinality. Thus

X is Dedekind-finite if Y c_X and |Y| = \x\ together imply Y = X .

Conversely every infinite Dedekind-finite set is medial. In the parlance

introduced (for groups) in §2, the infinite set X is medial if i t has

only one large subset, namely itself. A set X is Dedekind-infinite if

there is an injection cp : co >—+ X .

We shall say that the set X is quasi-minimal if, whenever i t is

partitioned into two sets:

X = Y u Z , Y n Z = 0 ,

one and only one of the parts Y, Z is infinite.

It is not difficult to see that every quasi-minimal set is medial;

the converse is not true (except if neither quasi-minimal nor medial sets

exist, as for example in ZFC). If ZF is consistent, then so is ZFQ

obtained by postulating the existence of a quasi-minimal set. This is

proved in [4] and also, independently by different methods, by Monro [5].

A discussion of the properties of quasi-minimal and medial sets can also be

found in [4] and in Monro [6]. The only result from this theory that we

need is stated and proved in the next section.

If X and Y are sets, we write T for the set of functions

/ : X -*• Y . In particular if Y = n is a natural number, we define the

support o f f i n a s {x € X xf # 0 } - n o t e t h a t we u s e a l g e b r a i c

(X)
notation for functions. We further denote by n the set of those

functions f : X -> n whose support is finite. This notion and notation
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stem from corresponding ones for groups, to fee described in §8.

7 . A s e t - t h e o r e t i c r e s u l t

The main result of this section is a slight generalization of one in

[4]; ve present the proof in some detail, to make the present paper self-

contained and because [4] is not readily accessible.

THEOREM 7.1 . If X is a quasi-minimal set and n a natural nvrrber

Xthen n is Vedekind-finite.

The proof occupies the rest of this section. As |o | = 0 and

|l | = 1 , the first interesting case is n = 2 . This is the case
y

treated in [4] (with 2 replaced fey the power set of X , which has the

same cardinal).

We start with the obvious remark that if an infinite set X is

partitioned into a finite set of subsets, say

X = YQ u Y± u . . . u Yn_± , I . n l . M i f i * 3 ,

then at least one of the parts is infinite; and if X is quasi-minimal

then precisely one of the parts is infinite. Now let f : X •*• n fee an

element of n and for i (. n put

if1 = {x (. X | xf = i) .

Then, if X is infinite, at least one of Of~X, If'1, . . . , (n-l) /"1 is

infinite, and if X is quasi-minimal, then precisely one of these parts is

infinite.

LEMMA 7.2. If the set X is quasi-minimal, then n is medial if,

(X)and (trivially) only if, n is medial.

Proof. Define sets T. , for i £ n , by
1s

T. = {f (. nX | if1 is infinite} .

By what we have seen, the T. partition n . Moreover they all have the

same cardinal, for we can define a bijection from T. to T by just
Is (J
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exchanging the values i and 0 : if / € T. , we map i t to g (. T ,

where

xg = xf if xf + 0 and xf + i ,

xg = i if xf = 0 and xg = 0 if xf = i .

Also we note that T = n . Now if there is an injection

then there is an injection

X
cp : to >—>• n ,

<p. : 0) > — • T.

for at least one i € n , and as we have seen that \T. \ = \T \ , there is
If 0

then also an injection

Thus if n is Dedekind-infinite, that is infinite but not medial, then

(X)n is infinite but not medial. The converse is t r ivial , as is also the

case (when n = 0 or 1 ) that n is finite. The lemma follows.

(X)From now on we assume that X is an infinite set and that n is

Dedekind-infinite; specifically let

(X)
tf) : a) >—>• n

be an inject ion. Thus, for m £ u , the image rmp i s a function,

mijj : X •+ n ,

of f inite support. Denote the support of m\> by ma , and define

OTT = Oa u la u . . . u (m-l)a .

Then rrn. i s , for every m £ u , a finite subset of X ; moreover

if p 5 q then p r c i j i .

On the other hand, as there are only finitely many functions mp : X •*• n

whose support is contained in any particular finite set px , the terms of

the sequence OT C I T C 2 T C , . , must properly increase again and again;

that is to say there must be an infinite sequence p < p < p . < . . . of
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natural numbers such that

We define a mapping

q, : o.

from this sequence by i<p = / . : X -*- 2 , where
is

xf\ = 1 if x Z (p^+l)x - p^T ,

a;/- = 0 otherwise.
Is

It is clear that all f. have finite support and that these supports are
tr

non-empty and dis jo in t .

Define two subsets Y, Z of X by

y = \y € X | y / . = 1 for some even number i\ ,

Z = {3 i. X I zf • = 1 for some odd number •£} .
Is

Then it is easy to see that Y and Z are both infinite, and disjoint.

Thus 1 and X - Y are also both infinite and disjoint, and X can not

be quasi-minimal. Thus we have proved:

LEMMA 7.3. If X is a quasi,-minimal set and n a natural number,

(X)
then n is Bedekind-finite.

Now Theorem 7.1 is an immediate consequence of this and Lemma 7.2.

8. Examples of bad groups

We shall call a group Dedekind-finite, medial, quasi-minimal, and so

on, if i t s carrier is Dedekind-finite, medial, quasi-minimal, and so on.

We now return to Corollary 3-2 and observe that i t s real content is the

following lemma:

LEMMA 8.1. A Dedekind-finite group is good if, and only if, i t is of

exponent 2 .

Thus to make examples of bad groups, we only need to construct

Dedekind-finite groups that are not of exponent 2 ; and as f ini te groups
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are uninteresting in this context, we want to construct medial groups that

are not of exponent 2 . To do this we now work in ZFQ, that is Zermelo-

Fraenkel set theory with an additional axiom postulating the existence of a

quasi-minimal set; and we denote "by X such a set.

If G is a group, we denote by Cr the cartesian power of G : i t s

elements are the functions

f : X * G ,

and the group operations are component-wise:

zCT1) = (xf)~l , x(fg) = ixfHxg) .

The support fa of / € u is

/ o = { i a | i / n l ,

where 1 is the unit element of G . The functions / € u of finite
v (x)

support are the elements of a subgroup of G> , the direct power G

This is generated "by the elements of the cartesian power whose support is a

singleton. (These definitions are standard in group theory, though the

nomenclature is a matter of local group-theoretical dialect.)

We note that the carrier of Gr is U , and the carrier of 6 is

(X)a natural generalization of n - they coincide if G is of f in i te

order n , the carr ier of G i s n , and 0 is taken as the unit element.

Thus in par t i cu la r , i f F is a f in i te group of order \F\ > 2 , then

X (X)
F and F , the car tes ian and direct powers, are medial, "by Theorem
7.1 and Lemma 7-3 , respect ively. Thus we have shown:

THEOREM 8.2. Let F be a finite non-trivial group and X a quasi-

X . (X)
minimal set. Then the cartesian power F and the direct power F are

X (X)
medial groups. If F is not of exponent 2 , then F and T are

infinite bad groups. In particular, if F is abelian - say cyclic of

oTder 3 - j then we thus obtain bad infinite abelian groups.

Note'acided in proof [25 November 1975]. The authors are indebted to

Dr Paul C. Eklof, Dr James H. Schmerl, and Dr Laszlo Babai for pointing

out tha t Lemma k.l and, consequently, Corollary k.2 t a c i t l y assume the
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regularity of the cardinal of G . If G can "be written as the union of a

small set of small sets, we can not prove the existence of a single pair

1, m such that all elements i of a large set X satisfy (It.11), but

only the existence of a small set P of pairs such that all x € X

satisfy (i4.ll) for some pair (l, m) £ P . Similarly, in this case the

corollary needs to be modified to say that the set of squares of elements

of R is small (not necessarily a singleton, as claimed).

Theorem h.3 remains true, though the argument proving it has to be

trivially modified if the cardinal of G is singular. The authors have

been informed by Dr Babai that this theorem was also proved, by similar

methods, by R.G. Gurevic (Leningrad).

In §5 no harm is done by the tacit assumption that the cardinal of G

is regular, as the main conclusion is only about countably infinite groups.

Dr Vance Faber has a short and elegant proof of Theorem 5.6, using Ramsey's

Theorem (oral communication); so has Dr Babai who plans to submit this and

further results, for higher cardinals, in a paper entitled "Infinite

digraphs with given regular automorphism group" to the J. Combinatorial

Theory.

References

[/] S.I. Adyan, "Periodic groups of odd exponent", Proa. Second Internat.

Conf. Theory of Groups^ Austral. National Univ. 1973, 8-12

(Lecture Notes in Mathematics, 372. Springer-Verlag, Berlin,

Heidelberg, New York, 19T1*) •

[2] Laszlo Babai, in litt.

[3] Kurt Godel, The consistency of the axiom of choice and of the

generalized continuum-hypothesis with the axioms of set theory

(Annals of Mathematics Studies, 3. Princeton University Press,

Princeton, New Jersey, 19^0; 7th pr in t ing , 1966).

[4] John Llewellyn Hickman, "An investigation of several finiteness

c r i t e r i a re la t ive to Zermelo-Fraenkel set theory" (PhD t h e s i s ,

Flinders University of South Australia, 1971)• See also:

Abstract, Bull. Austral. Math. Soc. 7 (1972), 300.

https://doi.org/10.1017/S0004972700024618 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024618


368 J.L. Hickman and B.H. Neumann

[5] G.P. Monro, "Some independence results for weak axioms of choice"

(PhD thesis, University of Bristol, 1971).

[6] G.P. Monro, "Small sets with large power sets", Bull. Austral. Math.

Soa. 8 (1973), Ul3-l*21.

Department of Mathematics,

Institute of Advanced Studies,

Australian National University,

Canberra, ACT

and

Division of Mathematics and Stat ist ics,

Commonwealth Scient i f ic and Industrial Research Organization,

Canberra, ACT.

https://doi.org/10.1017/S0004972700024618 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024618

