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1. Introduction

In [1] Van Est and Freudenthal introduced and studied several new separa-
tion axioms for a topological space. One of these was the pzsq axiom: Given
distinct points p and q of X, there exists a real continuous function / on X with
f(p) jL f(q). They observed that the pzsq axiom lies strictly between the Haus-
dorff and completely regular axioms, and that it neither implies nor is implied
by the T3 axiom. In [7] Proizvolov touched upon topological spaces with this
property and called them functionally Hausdorff spaces.

The completely regular 7\ or Tychonoff spaces are precisely those topologi-
cal spaces with Hausdorff compactifications. One of the best known compacti-
fications of a Tychonoff space X is the Stone-Cech compactification px, and
it is characterized as that compactification of X in which X is C* embedded [4].
A functionally Hausdorff space may fail to be regular, and so we cannot hope to
embed an arbitrary functionally Hausdorff space in a compact functionally
Hausdorff space. However, it is easily verified that corresponding to a functionally
Hausdorff space X there is a quasi compact functionally Hausdorff space Y
which contains l a s a dense, C* embedded subset. A topological Y is said to be
quasi compact if and only if every cover of Y by cozero-sets of Y has a finite
subcover. Frolik defined and studied this concept in [3], where he also in-
vestigated other generalizations of compactness. In many situations quasi-
compactness rather than compactness is sufficient.

In this paper we continue the study of quasi-compactness and functionally
Hausdorff spaces. In particular, we will show that there is a considerable amount
of interplay between these two concepts.
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2. Definitions

Let C{X) (or C(X,&~)) be the set of all continuous, real-valued functions
on a topological space (X,$~), and let C*(X) (or C*{X,$~)) denote the set of
all bounded functions in C(X). A subset A of X is said to be C-embedded in X
if every function in C{A) can be extended to a function in C(X). Similarly, the
subset A is said to be C*-embedded in X if every function in C*(A) can be extended
to a function in C*(X).

A subset A of a topological space X is said to be a zero-set of .Y if there
exists a function / in C(X) such that

Complements of zero-sets are called cozero-sets.
A space X is said to be completely regular if given any closed set F and any

point x in its complement, there exists a function fe C(X) such that f(x) = 1
and/OO = 0 if yeF.

A thorough discussion of the previous definitions and the related theory
may be found in [4].

3. Remarks

A topological space is quasi-compact if and only if every family of zero-sets
of the space with the finite intersection property has a non-empty intersection.
Any compact space is quasicompact, and a completely regular space is compact
if and only if it is quasicompact. The continuous image of a quasicompact space
is quasicompact, but we have been unable to determine if a finite or arbitrary
product of quasicompact spaces is quasicompact.

In the hypothesis of the Stone-Weierstrass Theorem, the underlying space X
is functionally Hausdorff and it is sufficient that this space be quasicompact
rather than compact. To prove this, we modify the proof of this theorem given
in [8] by replacing the word compact with quasicompact wherever it occurs.

Any quasicompact space is pseudocompact but there are examples of pseudo-
compact spaces which are not quasicompact. To see this we consider the space
W of all countable ordinals. We let W(a) denote the set of all ordinals less than a
given ordinal a: W(a) = {a: a is an ordinal and a < a}. We therefore have that
W = Wicoj) where coj is the first uncountable ordinal. The interested reader is
referred to [4] for properties of these spaces.

In particular, we observe that every tail in W, that is, every set of the form
W — W{d) where a is an ordinal less than ct^, is a zero-set of W, and that the
family of all tails has the finite intersection property. Since a^ has no immediate
predecessor, the intersection of this family is empty, so that W\% not quasicompact.
However, it is well-known that W is pseudccompact.
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The following example, which we have obtained by modifying exercise 7 on
page 86 of [6], shows that not every quasicompact space is compact. It is also
an example of a non-regular functionally Hausdorff space. Let / = [0,1] denote
the unit interval with the usual topology &~ ±, and let H be the set of all rational
numbers in the open interval (^,1). Consider the space (I,.T2) where 2T 2 is the
topology on / generated by J j U ^ j a s a subbase. Since $~ r c ^ 2 , it follows
that (/,^~2) is a functionally Hausdorff space. However, (/,^"2) is n o t regular.
The point \ is a member of the open set H, but there is no open set containing
this point whose closure is contained in H.

It is easily verified that (I,3~\) and {1,^2) have the same real-valued con-
tinuous functions and hence the same cozero-sets. Since (I,^y) is compact, it
follows that (I,$~2) is quasi-compact. However, (/,^"2) is n o t compact, since
a compact T2 space is regular.

The functionally Hausdorff property is both hereditary and productive. In
[2] Frink provided an internal characterization of a Tychonoff space. A Tx space X
is Tychonoff if and only if it has a normal base. For functionally Hausdorfi spaces
the situation is much simpler. A space X is functionally Hausdorff if and only if
the family of zero-sets of X separates points.

THEOREM 1. A functionally Hausdorff space {X,^^ can be densely C*-
embedded in a quasicompact functionally Hausdorff space Y.

PROOF. Let J~2 be the topology on X generated by the cozero-sets of ^~t

as a base for the open sets. It is easily verified that (X,J~2) is a Tychonofl space
and that dX,^^ = C(X,^"2). If (Y,^3) is the Stone-Cech compactification
of (X,^2), let yA be the topology on Y generated by ^\ \J3T3 as a subbase.
Clearly ( X ^ i ) is a C*-embedded in (Y,^4).

If A is a zero-set of (y,^"4), then we may write A =/"1({0}) where
/£C*(y ,^ 4 ) . Now f\ l e C * ! ! , / , ) = C\X,2T2) and so there is a function
g e C(Y, ^3) which agrees with / on X. Since / and g are members of C(Y, ^4)
and X is dense in Y, we have that / = g (see Exercise 3C of [5]). It is now clear
that (y ,^ 3 ) and (y,«^"4) have the same zero-sets which implies that (y,^~4) is
quasicompact.

A Hausdorff space is absolutely closed if and only if it is closed in every
Hausdorff space in which it can be embedded. This notion is a generalization
of a property of compact Hausdorff spaces. There is an extensive literature as-
sociated with absolutely closed spaces, and a number of references may be found
on page 304 of [9]. It is natural to inquire about the analogue of this condition
for functionally Hausdorff spaces.

THEOREM 2. A functionally Hausdorff space X is closed in every functionally
Hausdorff space in which it can be embedded if and only if it is quasicompact.
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PROOF. Suppose the functionally Hausdorff space X is quasicompact and
that it is embedded in a functionally Hausdorff space Y. Then if y e Y — X there
is for each peX a real-valued continuous function fp on Y with fp(p) = 0 and
fp(y) = 1. It is clear that Cp = {se Y:fp(s) < £} C\X is a cozero-set of .Y for
each p in X, and that Z = Up £ ^C p , But X is quasicompact and so there exist
elements Pl,p2,-,Pn of X with X = U,"=1 Cw = U,"-, {se Y;fPl{s) < * } . We
then have y a member of H"=i {se Y:fp.(s) > i} which is seen to be an open
set of Y disjoint from X. It follows that X is a closed subset of Y.

Conversely, if the functionally Hausdorff space X is not quasicompact, then
by Theorem 1, X is a dense subset of a quasicompact functionally Hausdorff
space Y. Now Y is quasicompact which implies that X cannot be closed in Y.

We now investigate how the notion of quasicompactness may be related to
a subset of a topological space. We presently show that quasicompactness, unlike
compactness, is not an absolute property.

DEFINITIONS. A subset A of a topological space X is said to be quasicompact
if A with the induced topology is quasiccmpact; A is said to be externally quasi-
compact relative to X is every co\ er of A by cozero-sets of X has a finite sub-
cover.

The subsets A and B of a space X are said to be completely separated in X
if there exists a function/in C*(X) such that/(x) = 0 for all x in A, and/(x) = 1
for all x in B.

Although every quasicompact subset of a topological space X is externally
quasicompact relative to X,the following example shows that even in a function-
ally Hausdorff space a subset which is externally quasicompact relative to X
need not be quasicompact.

We modify the example given by Gillman and Jerison in Chapter 3 of [4].
Let

I2 = {(x,y): 0 g x ^ l , 0 | ^ l }

be the unit square with the usual tocology &\ and let

A = {(x,0):(x,0)eI2;.

To each (x,0)eA define

Vx = {(x, 0)} U {(«, v)eI2:v>0 and (u-x)2 + v2 < (})2}.

Let 3T2 be the topology on I2 generated by the collection of sets &~i V(Vx)xeI

as a subbase. It is easily verified that (I2, ̂ "x) and (I2, &~2) h a v e the same con-
tinuous functions. This implies that A is externally quasicompact relative to the
functionally Hausdorff space (/2,^"2). But A with the topology induced by ̂ ~2

is a discrete space and hence is not quasicompact.
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Let (X,3~^) be a functionally Hausdorff space, and suppose A is a subset
of X which is externally quasicompact relative to X. If B is an intersection of
zero-sets of X (note {p} is such a set for each p in X) and A C\B = <f>, then A
and £ are completely separated. This generalizes and follows from the well-
recognized fact that in a completely regular space, any two disjoint closed sets,
one of which is compact, are completely separated [4]. We ne.d merely consider
the Tychonoff topology ^"2 on X generated by the cozero-sets of 3~ x.

It is well-known that a compact subset of a Tychonoff space is C embedded
[4]. The following theorem is an improvement of that result.

THEOREM 3. Every quasicompact subset of a functionally Hausdorff space
is C-embedded.

PROOF. Suppose A is a quasicompact subset of a functionally Hausdorff
space (X,J~) so that (A,£T^) is a quasicompact topolo6ical space where 3~^ is
the induced topology. Let ^"2 and «̂ "3 be the topologies on X and A respectively,
generated by the cozero-sets of(X,&~) and (A,^j). Furthermore, let ^~4 be the
topology on A induced by 3~2 • A base for &\ consists of all sets of the form
C C\A where C is a cozero-set of (X,$~). Each such basic element of ^ 4 is a
cozero-set of (A,^^ and thus is a member of &~3 • It is now clear that 3~A c= &~z.
The basic open sets of (A,&~3) are the cozero-sets of (A,^t) and so (A,S~^)
being quasicompact implies that (A,^~3) is compact. It follows that the identity
mapping i: (A,J~3) -> (A,&~A) is a homeomorphism because it is a 1-1, continuous
map from a compact space onto a Hausdorff space. Thus, &~3 = &~4.

UgeCiA^i) it follows that j e C ( 4 / 3 ) = C(A,^4). But each compact
subset of a Tychonoff space is C-embedded, and so ti.ere exists a function
h e C{X, 3~2) which agrees with g on A. Now h e C(X, ff~) and this completes
the proof of the theorem.

However, the above result does not hold if A is merely externally quasi-
compact relative to X. To see this we refer to the unit square example which
precedes the above theorem. The set A with the topology induced by 2T2 is a
discrete space, and no unbounded real-valued function on A will have continuous
extension to the pseudocompact space (/2,^"2). Hence A is not C-embsd^ed.

In problem 5B of [5], it is observed that the closure of a compact subset
of a topological space may fail to becomp ct. However, in the case of quasi-
compactness we have the following result.

THEOREM 4. Let A be a subset of a topological space X. If A is quasi-
compact (externally quasicompact relative to X), then the closure of A is
quasicompact (externally quasicompact relative to X).

PROOF. Suppose that A is a quasicompact subset of X, and that {Q}A = A
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is a family of cozero-sets in c l ^ whose union is cl^.4. If peA, then peCx for
some Ap e A, and so there is a cozero-set DXp of c\xA such that

peDXp s c\clxADXp s Q n .

We note that c\QlxADx = cl^D^. Now A Q Upe^DXp and since A is quasi-
compact, there exist p1,p2,---,pneA such that A Q\Jt = iDXpl. Therefore,

and hence clx^4 is quasicompact. The proof for subsets which are externally
quasicompact relative to X is similar.

However, the unit square example shows that the closure of a subset which
is externally quasicompact relative to X need not be quasicompact. We now
give a sufficient condition for a T1 space to be a functionally Hausdorff space.

THEOREM 5. If every finite subset of a 7\ space X is C-embedded, then X
is a functionally Hausdorff space.

PROOF. If p, qeX with p # q, then X being a Tx space implies that the set
{p, q] has the discrete topology as a subspace of X. The continuous function g
from {p,q} to R denned by g(p) = 0 and g(q) = 1 can be continuously extended
to X. Hence, X is a functionally Hausdorff space.

COROLLARY. / / every subset which is externally quasicompact relative to
X (every quasicompact subset) is C-embedded, then X is a functionally Haus-
dorff space.
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